微分方程与数学建模

合集下载

数学建模在常微分方程中的应用

数学建模在常微分方程中的应用

数学建模在常微分方程中的应用常微分方程是数学中一个重要的研究领域,它描述了物理、工程等各个领域中的许多现象和问题。

数学建模是将实际问题抽象为数学模型,通过数学方法来研究和解决这些问题。

在常微分方程中,数学建模的应用有着重要的地位。

数学建模在常微分方程中的应用,首先体现在对实际问题的建模过程中。

常微分方程可以描述许多现象,例如生物学中的人口增长问题、化学反应动力学、电路中的电流变化等等。

通过对实际问题的观察和分析,可以建立相应的常微分方程模型。

数学建模的主要任务是确定模型中的方程形式和参数值。

这一过程需要深入了解实际问题的背景和特性,结合数学的方法和技巧,确定合适的数学模型。

数学建模在常微分方程中的应用还体现在对方程的求解和分析过程中。

常微分方程一般是通过解析方法或数值方法来求解。

对于一些简单的常微分方程可以通过分离变量、变量代换等方法直接求解。

但是对于一些复杂的常微分方程,求解比较困难甚至无解析解。

此时,数值方法就发挥了重要的作用,如欧拉法、龙格-库塔法等。

数值方法通过数值逼近和计算机模拟,求得近似解,能够克服解析解的困难。

数学建模在常微分方程中的应用还包括对方程解的分析和结果的验证。

对于一些简单的常微分方程,可以通过对解的性质和图像特征的分析来得到对问题的深入理解。

通过对解的稳定性和渐近行为的分析,可以得到对系统行为的预测。

而对于一些复杂的常微分方程,数值解可以作为解的近似,对结果进行验证。

通过比较数值解和解析解(如果存在)的差异,可以评估数值方法的精确度和可靠性。

数学建模在常微分方程中的应用有着重要的作用。

它是将实际问题抽象为数学模型的过程,是求解和分析常微分方程的方法和手段。

通过数学建模,可以对实际问题进行深入理解,提供对问题的解决方案和预测。

数学建模和常微分方程的相互关系也促进了数学和其他学科的交叉和发展。

数学建模的发展对于常微分方程的研究和应用提供了更广阔的空间和方法,对各个领域的科学研究和工程实践具有重要的指导意义。

数学建模在常微分方程中的应用

数学建模在常微分方程中的应用

数学建模在常微分方程中的应用
数学建模是指运用数学方法和技巧分析和解决实际问题的过程。

在数学建模中,常微分方程是一个重要的工具,它用于描述许多实际问题中的变化和发展。

下面将介绍常微分方程在数学建模中的应用。

常微分方程可以用来描述许多自然科学和工程科学中的变化和发展过程。

描述物理学中的运动、天文学中的行星运动和混合和反应过程等。

它们还可以用于解决实际问题,如人口增长、疾病传播、金融模型和生态系统动力学等。

常微分方程的一个重要应用领域是物理学。

在经典力学中,可以通过常微分方程来描述物体在外力作用下的运动。

牛顿第二定律可以用常微分方程的形式表示为:
m*d^2x/dt^2 = F(x,t)
其中m是物体的质量,dx/dt是物体的速度,F(x,t)是物体受到的外力。

这个方程可以用来研究物体的运动轨迹和速度随时间的变化。

常微分方程在工程科学中也有广泛的应用。

热传导方程可以用常微分方程的形式表示为:
d(theta)/dt = k*d^2(theta)/dx^2
其中theta是温度分布,t是时间,k是热传导系数,x是空间位置。

这个方程可以用来研究材料中的温度分布和传热过程。

在生物学和生态学中,常微分方程被用来描述生物种群的增长和相互作用。

Lotka-Volterra方程可以用常微分方程的形式表示为:
dN/dt = r*N - a*N*P
dP/dt = -b*P + c*N*P
其中N是捕食者的数量,P是猎物的数量,t是时间,r、a、b和c是常数。

这个方程可以用来研究捕食者和猎物种群之间的相互作用和稳定性。

《微分方程数学建模》课件

《微分方程数学建模》课件

实际问题的转化
了解如何将实际问题转化为数学模型, 培养建模思维。
边界条件的确定
掌握边界条件的重要性,学会确定合适 的边界条件来求解微分方程。
数学建模实例
弹性材料的振动问题
通过建立微分方程模型,分析弹 性材料的振动特性和共振现象。
传染病传播模型
运用微分方程建模技巧,研究传 染病在人群中的传播规律和防控 策略。
《微分方程数学建模》 PPT课件
这份PPT课件将带领您深入了解微分方程数学建模,并探讨其应用与意义。通 过丰富的实例和技巧,让您轻松掌握数学建模的要点。
微分方程数学建模简介
微分方程简述
了解微分方程的基本概念和定义,掌握它在数学建模中的核心作用。
微分方程的应用和意义
探索微分方程在科学、工程和社会问题中的广泛应用,体会它的重要性。
4 高阶线性微分方程
探讨高阶线性微分方程的常见形式和特殊解 法,拓宽解题思路。
5 常系数齐次线性微分方程
学习处理常系数齐次线性微分方程的技巧和 常见应用场景。
建立微分方程模型
1
变量的择和定义
2
学习选择和定义适当的变量来建立准确
和有效的微分方程模型。
3
模型的求解方法
4
了解常见微分方程模型的解法,探索解 析和数值解的求解技巧。
相关教材
推荐一些优秀的教材,帮助 您进一步学习微分方程和数 学建模。
网络资源
介绍一些优质的网络资源, 供您查阅更多有关微分方程 数学建模的资料。
城市汽车拥堵问题的建模
通过建立微分方程模型,解析城 市交通拥堵的成因和调控方案。
总结
1 微分方程数学建模的重要性
总结微分方程在解决实际问题中的重要作用和应用前景。

常微分方程在数学建模中的应用

常微分方程在数学建模中的应用

常微分方程在数学建模中的应用
常微分方程(Ordinary Differential Equations, ODEs)是一类用来描述物理系统动态变化的方程。

它们在数学建模中有广泛的应用,可以用来描述各种各样的系统,包括力学系统、电学系统、热学系统、生物学系统等等。

举个例子,假设你想描述一个物体在受到重力作用力时的运动轨迹。

这个问题可以用常微分方程来解决,具体来说,你可以用下面的方程来描述物体的运动:
其中,x 是物体的位置,t是时间,g 是重力加速度。

这个方程表示物体受到重力作用力时的加速度,根据牛顿第二定律,加速度等于作用力除以质量。

因此,这个方程可以用来描述物体在受到重力作用力时的运动轨迹。

常微分方程还可以用来描述其他类似的问题,例如:
•电路中的电流和电压的变化
•化学反应过程中物质浓度的变化
•振动系统中振动的频率和振幅的变化
•生物学系统中生物体内激素浓度的变化
总的来说,常微分方程在数学建模中有着广泛的应用。

它们可以用来描述各种各样的物理系统的动态变化,并且通常都有解析解或者近似解的存在。

此外,常微分方程还有很多的数学理论,可以用来解决常微分方程的特殊情况。

尽管常微分方程在数学建模中有着广泛的应用,但它们也有一些局限性。

例如,常微分方程通常假设系统是连续的、平滑的,并且忽略了离散的、非连续的现象。

在这些情况下,常微分方程可能不再适用。

因此,在使用常微分方程进行数学建模时,需要谨慎考虑是否适用。

微分方程在数学建模中的应用

微分方程在数学建模中的应用

微分方程在数学建模中有广泛的应用,具体如下:
1.微分方程可以描述现实世界的变化,揭示实际事物内在的动态关
系。

2.微分方程可以建立纯数学(特别是几何)模型。

3.微分方程可以建立物理学(如动力学、电学、核物理学等)模型。

4.微分方程可以建立航空航天(火箭、宇宙飞船技术)模型。

5.微分方程可以建立考古(鉴定文物年代)模型。

6.微分方程可以建立交通(如电路信号,特别是红绿灯亮的时间)
模型。

7.微分方程可以建立生态(人口、种群数量)模型。

8.微分方程可以建立环境(污染)模型。

9.微分方程可以建立资源利用(人力资源、水资源、矿藏资源、运
输调度、工业生产管理)模型。

10.微分方程可以建立生物(遗传问题、神经网络问题、动植物循环
系统)模型。

11.微分方程可以建立医学(流行病、传染病问题)模型。

12.微分方程可以建立经济(商业销售、财富分布、资本主义经济周
期性危机)模型。

13.微分方程可以建立战争(正规战、游击战)模型。

常微分方程数学建模案例分析

常微分方程数学建模案例分析

常微分方程数学建模案例分析常微分方程是运用微积分中的概念与理论研究变化率的方程。

它是数学建模中常用的方法之一,可用于描述各种实际问题,如经济增长、生物扩散、化学反应等。

本文将通过一个关于人群传染病的数学建模案例,分析常微分方程在实际问题中的应用。

假设地有一种传染病,病毒的传播速度与感染者的接触频率有关。

现在我们要研究传染病的传播速度以及控制措施对传染病传播的影响。

为此,我们可以建立如下的数学模型:设N(t)表示时间t时刻的总人口数,而I(t)表示感染者的人口数,S(t)表示易感者的人口数。

根据该模型,易感者的人数随时间的变化率可表示为:dS/dt = -βSI其中,β表示感染率,即感染者每接触到一个易感者,会使其发病的概率。

感染者的人数随时间的变化率可表示为:dI/dt = βSI - γI其中,γ表示恢复率,即感染者每天被治愈的人数。

总人口数随时间的变化率可以通过易感者和感染者的变化率求和得到:dN/dt = dS/dt + dI/dt通过对该方程进行求解,我们可以得到感染者和易感者的人数随时间变化的解析解。

进一步,我们可以通过调节β和γ来研究不同的传播速度和控制措施对传染病传播的影响。

例如,如果β较大,表示感染率较高,此时传染速度会加快,可能导致传染病扩散的速度加快。

反之,如果β较小,表示感染率较低,传染病传播的速度会减慢。

另外,如果γ较大,表示恢复率较高,此时感染者的人数会快速减少,传染病传播的速度会减慢。

相反,如果γ较小,传染病传播的速度会加快。

通过对这些参数的调节,我们可以研究不同的控制措施对传染病传播的影响。

例如,我们可以通过降低感染率β或增加恢复率γ来减缓传染病传播的速度,从而控制疫情的爆发。

在实际应用中,常微分方程数学建模方法可以用于预测传染病的传播趋势,评估各种干预措施的效果。

此外,还可以通过引入更多的变量和参数,建立更复杂的模型,以更好地解释实际问题。

总之,常微分方程是数学建模中常用的方法之一,可以用于描述各种实际问题,如传染病的传播、经济增长等。

常微分方程数学建模案例分析

常微分方程数学建模案例分析

常微分方程数学建模案例分析假设我们要研究一个简单的生物系统:一种细菌的生长过程。

我们知道,细菌的生长通常可以描述为以指数速度增长的过程。

为了建立一个数学模型,我们首先需要确定一些基本假设和已知信息。

基本假设:1.我们假设细菌的生长速度与细菌的数量成正比。

2.我们假设细菌的死亡速率与细菌的数量成正比。

已知信息:1.我们已经知道在初始时刻,细菌的数量为N0个。

2.我们已经知道在初始时刻的细菌数量的增长速率为r个/单位时间。

3.我们已经知道在初始时刻的细菌数量的死亡速率为d个/单位时间。

接下来,我们将建立一个常微分方程模型来描述细菌数量的变化。

假设t表示时间,N(t)表示时间t时刻的细菌数量,则我们可以得到以下微分方程:dN/dt = rN - dN这个方程的含义是,细菌数量的变化率等于细菌的增长速率减去细菌的死亡速率。

如果我们将细菌的增长速率和死亡速率设为常数r和d,则上述方程可以进一步简化为:dN/dt = (r-d)N解这个微分方程,我们可以得到细菌数量随时间变化的函数N(t)。

根据初值条件N(0)=N0,我们可以求解该方程并得到解析解:N(t) = N0 * exp((r-d)t)上述解析解告诉我们,细菌数量随时间以指数速度增长。

这与我们的基本假设相符。

然而,对于复杂的系统,往往很难获得精确的解析解。

在这种情况下,我们可以使用数值方法来求解微分方程。

常见的数值方法包括欧拉法、改进的欧拉法和四阶龙格-库塔法等。

这些方法基于近似计算的原理,通过迭代逼近解。

在我们的细菌生长模型中,我们可以使用数值方法来计算细菌数量随时间的变化。

我们可以选择欧拉法,它是一种简单而直观的数值方法。

欧拉法的迭代公式为:N(t+h)=N(t)+h*(r-d)N(t)其中,N(t)是在时间t时刻的细菌数量,N(t+h)是在时间(t+h)时刻的细菌数量,h是时间间隔。

我们可以选择一个足够小的时间间隔h,并迭代使用欧拉法来计算细菌数量的近似解。

数学建模微分方程模型

数学建模微分方程模型

数学建模微分方程模型在数学建模的旅程中,微分方程模型扮演了至关重要的角色。

它们在描述和解决各种实际问题中,从物理学到社会科学,都起到了关键的作用。

在本章中,我们将探讨微分方程模型的基本概念、类型和应用。

微分方程是一种方程,它包含未知函数的导数。

这种方程在描述变化率时非常有用,例如,描述物体的速度或加速度。

在形式上,微分方程可以表示为 y'(x) = f(x, y),其中 y'表示 y的导数,f是一个给定的函数。

根据方程的特点,微分方程可以划分为多种类型,如线性微分方程、非线性微分方程、常微分方程、偏微分方程等。

每种类型的方程都有其特定的求解方法和应用领域。

微分方程在众多领域中都有应用,如物理学、工程学、经济学等。

例如,牛顿第二定律就是一个微分方程,它描述了物体的加速度如何由作用力决定。

人口增长模型、传染病模型等也都依赖于微分方程。

建立微分方程模型通常需要以下步骤:确定模型的目标和变量;然后,根据问题背景和物理规律建立数学模型;通过数值计算或解析解法得出结果。

求解微分方程的方法主要有两种:数值方法和解析方法。

数值方法是通过计算机程序或软件进行数值计算得到近似解,而解析方法是通过求解方程得到精确解。

对于某些类型的微分方程,可能需要结合使用这两种方法。

建立微分方程模型后,我们需要对模型进行评估和检验,以确保其有效性和准确性。

这通常包括对模型的假设进行检验、对模型的预测结果进行验证以及对模型的参数进行估计和调整等。

随着科学技术的发展,微分方程模型的应用前景越来越广阔。

例如,在生物学中,微分方程被用来描述疾病的传播动态;在经济学中,微分方程被用来分析市场供需关系的变化;在工程学中,微分方程被用来模拟复杂系统的行为等。

未来,随着大数据和人工智能等技术的发展,微分方程模型将在更多领域得到应用和发展。

微分方程模型是数学建模中一个极其重要的部分。

通过学习和掌握微分方程的基本概念、类型、应用以及求解方法等,我们可以更好地理解和解决现实生活中的各种问题。

常微分方程的解法在数学建模中的应用

常微分方程的解法在数学建模中的应用

常微分方程的解法在数学建模中的应用
常微分方程的解法在数学建模中有广泛的应用,涉及到许多领域,如物理学、经济学、生物学、工程学等。

以下介绍其中一些应用:
1. 物理学模型:在物理学建模中,常微分方程可以用来描述射线的传播,弹性杆的变形,振动的周期等。

如著名的二阶线性微分方程 y''+by'+ky=0 可以用来描述简谐振动,而 y'+ky=0 可以用来描述自由阻尼振动。

2. 经济学模型:经济学中很多模型,如经济增长模型、消费模型、储蓄模型等都可以用常微分方程来描述。

经济模型一般包含多个变量,每个变量都可以用常微分方程来表示,构成一组微分方程组,从而得到系统的解析解。

3. 生物学模型:常微分方程也是生物学建模中最常用的工具之一。

生物学中很多现象如人口增长、病毒传播、生物物种的竞争和合作等都可以用常微分方程来描述。

4. 工程学模型:工程学中,常微分方程可以用来描述控制系统中的动态行为,例如控制电路、城市交通流、水力系统等。

综上所述,常微分方程的解法在数学建模中有广泛的应用,能够帮助科学家和工程师更好地预测和解决现实生活中的问题。

数学建模中的微分方程与边界条件的应用分析

数学建模中的微分方程与边界条件的应用分析

数学建模中的微分方程与边界条件的应用分析在数学建模中,微分方程是一种重要的工具,用于描述自然界和社会现象中的各种变化规律。

微分方程可以分为常微分方程和偏微分方程两类。

常微分方程是只涉及一个自变量的方程,而偏微分方程则涉及多个自变量。

边界条件是微分方程求解过程中的重要条件,它限定了解的取值范围。

微分方程在数学建模中的应用非常广泛,我们可以通过一些具体的实例来进行分析。

首先,考虑一个经典的物理问题:自由落体运动。

假设一个物体从高处自由落下,我们想要知道它在任意时刻的位置。

根据牛顿第二定律,我们可以得到物体的运动方程:$m\frac{d^2y}{dt^2} = -mg$,其中$y$表示物体的高度,$m$表示物体的质量,$g$表示重力加速度。

这是一个二阶常微分方程,我们需要给出适当的边界条件来求解它。

边界条件可以是物理上的限制,比如物体在$t=0$时刻的初始位置和初始速度。

假设物体在$t=0$时刻的位置为$y_0$,初始速度为$v_0$,那么我们可以得到边界条件$y(0) = y_0$和$\frac{dy}{dt}(0) = v_0$。

将这些边界条件代入微分方程,我们可以求解得到物体在任意时刻的位置。

另一个常见的应用是热传导问题。

假设一个杆体的两端分别与两个恒温热源接触,我们想要知道杆体上各点的温度分布。

根据热传导定律,我们可以得到杆体上的热传导方程:$\frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2}$,其中$u(x,t)$表示杆体上某点的温度,$\alpha$表示热扩散系数。

这是一个一维的偏微分方程,我们需要给出适当的边界条件来求解它。

边界条件可以是温度的限制,比如杆体两端的温度分别为$T_1$和$T_2$。

我们可以得到边界条件$u(0,t) = T_1$和$u(L,t) = T_2$,其中$L$表示杆体的长度。

微分方程及其应用领域中的数学建模分析

微分方程及其应用领域中的数学建模分析

微分方程及其应用领域中的数学建模分析微分方程是数学分析的重要内容,它在各个科学领域中都有广泛的应用。

本文将分析微分方程及其在应用领域中的数学建模。

微分方程是描述自变量与相关导数之间关系的方程。

它由一些未知函数及其导数组成,通常用y表示未知函数。

微分方程可分为常微分方程和偏微分方程两类,在应用中广泛应用于物理、生物、经济等领域。

首先,我们来看物理领域中的应用。

物理学中许多自然现象可以通过微分方程建模,其中最典型的是牛顿第二定律。

牛顿第二定律指出力是质量与加速度的乘积,可以用微分方程表示为F=ma,其中F是物体受到的力,m是物体的质量,a是物体的加速度。

通过解这个微分方程,可以预测物体在受力作用下的运动轨迹。

此外,在电路理论中,欧姆定律也可以用微分方程表示。

欧姆定律指出电流与电压之间的关系为I=V/R,其中I是电流,V是电压,R是电阻。

通过解这个微分方程,可以分析电路中的电流变化。

在生物领域中,微分方程的应用同样重要。

生物学中的许多自然现象可以用微分方程建模,例如生物种群的增长。

假设某个生物种群的增长速率与种群数量成正比,可以用微分方程dy/dt = ky表示,其中y是种群的数量,t是时间,k是比例常数。

通过解这个微分方程,可以预测种群数量的变化。

除了物理和生物领域,微分方程在经济学中也有广泛应用。

经济学中的许多问题都可以用微分方程建模,例如经济增长模型和物价变动模型。

通过建立适当的微分方程模型,可以分析经济变量之间的关系,并对经济情况进行预测和决策。

总而言之,微分方程在各个领域中都有广泛的应用。

通过建立合适的微分方程模型,可以描述和分析自然现象和社会现象。

这些模型不仅可以用于预测和决策,还可以用于深入理解问题的本质和规律。

因此,微分方程及其应用领域中的数学建模分析是数学分析的重要内容,也是应用数学的重要工具。

通过不断研究和探索微分方程及其应用,我们能够更好地理解自然界和人类社会的运行规律,为科学研究和社会发展做出贡献。

常微分方程在数学建模中的应用(免费版)

常微分方程在数学建模中的应用(免费版)

常微分方程在数学建模中的应用这里介绍几个典型的用微分方程建立数学模型的例子. 一、人口预测模型由于资源的有限性,当今世界各国都注意有计划地控制人口的增长,为了得到人口预测模型,必须首先搞清影响人口增长的因素,而影响人口增长的因素很多,如人口的自然出生率、人口的自然死亡率、人口的迁移、自然灾害、战争等诸多因素,如果一开始就把所有因素都考虑进去,则无从下手.因此,先把问题简化,建立比较粗糙的模型,再逐步修改,得到较完善的模型.例1( 马尔萨斯 (Malthus ) 模型) 英国人口统计学家马尔萨斯(1766—1834)在担任牧师期间,查看了教堂100多年人口出生统计资料,发现人口出生率是一个常数,于1789年在《人口原理》一书中提出了闻名于世的马尔萨斯人口模型,他的基本假设是:在人口自然增长过程中,净相对增长(出生率与死亡率之差)是常数,即单位时间内人口的增长量与人口成正比,比例系数设为r ,在此假设下,推导并求解人口随时间变化的数学模型.解 设时刻t 的人口为)(t N ,把)(t N 当作连续、可微函数处理(因人口总数很大,可近似地这样处理,此乃离散变量连续化处理),据马尔萨斯的假设,在t 到t t ∆+时间段内,人口的增长量为t t rN t N t t N ∆=-∆+)()()(,并设0t t =时刻的人口为0N ,于是|⎪⎩⎪⎨⎧==.,00)(d d N t N rN t N这就是马尔萨斯人口模型,用分离变量法易求出其解为)(00e )(t t r N t N -=,此式表明人口以指数规律随时间无限增长.模型检验:据估计1961年地球上的人口总数为91006.3⨯,而在以后7年中,人口总数以每年2%的速度增长,这样19610=t ,901006.3⨯=N ,02.0=r ,于是)1961(02.09e1006.3)(-⨯=t t N .这个公式非常准确地反映了在1700—1961年间世界人口总数.因为,这期间地球上的人口大约每35年翻一番,而上式断定年增加一倍(请读者证明这一点).但是,后来人们以美国人口为例,用马尔萨斯模型计算结果与人口资料比较,却发现有很大的差异,尤其是在用此模型预测较遥远的未来地球人口总数时,发现更令人不可思议的问题,如按此模型计算,到2670年,地球上将有36 000亿人口.如果地球表面全是陆地(事实上,地球表面还有80%被水覆盖),我们也只得互相踩着肩膀站成两层了,这是非常荒谬的,因此,这一模型应该修改.;例2(逻辑Logistic 模型) 马尔萨斯模型为什么不能预测未来的人口呢这主要是地球上的各种资源只能供一定数量的人生活,随着人口的增加,自然资源环境条件等因素对人口增长的限制作用越来越显著,如果当人口较少时,人口的自然增长率可以看作常数的话,那么当人口增加到一定数量以后,这个增长率就要随人口的增加而减小.因此,应对马尔萨斯模型中关于净增长率为常数的假设进行修改.1838年,荷兰生物数学家韦尔侯斯特(Verhulst)引入常数m N ,用来表示自然环境条件所能容许的最大人口数(一般说来,一个国家工业化程度越高,它的生活空间就越大,食物就越多,从而m N 就越大),并假设将增长率等于⎪⎪⎭⎫⎝⎛-m N t N r )(1,即净增长率随着)(t N 的增加而减小,当m N t N →)(时,净增长率趋于零,按此假定建立人口预测模型.解 由韦尔侯斯特假定,马尔萨斯模型应改为⎪⎩⎪⎨⎧=⎪⎪⎭⎫⎝⎛-=,,000)(1d d N t N N N N r t N 上式就是逻辑模型,该方程可分离变量,其解为,)(00e 11)(t t r m mN N N t N --⎪⎪⎭⎫ ⎝⎛-+=.下面,我们对模型作一简要分析.(1)当∞→t ,m N t N →)(,即无论人口的初值如何,人口总数趋向于极限值m N ;@(2)当m N N <<0时,01d d >⎪⎪⎭⎫ ⎝⎛-=N N N r t N m ,这说明)(t N 是时间t 的单调递增函数;(3)由于N N N N N r t N m m ⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=211d d 222,所以当2m N N <时,0d d 22>t N ,t N d d 单增;当2m N N >时,0d d 22<tN ,t N d d 单减,即人口增长率t Nd d 由增变减,在2m N 处最大,也就是说在人口总数达到极限值一半以前是加速生长期,过这一点后,生长的速率逐渐变小,并且迟早会达到零,这是减速生长期;(4)用该模型检验美国从1790年到1950年的人口,发现模型计算的结果与实际人口在1930年以前都非常吻合,自从1930年以后,误差愈来愈大,一个明显的原因是在20世纪60年代美国的实际人口数已经突破了20世纪初所设的极限人口.由此可见该模型的缺点之一是m N 不易确定,事实上,随着一个国家经济的腾飞,它所拥有的食物就越丰富, m N 的值也就越大;(5)用逻辑模型来预测世界未来人口总数.某生物学家估计,029.0=r ,又当人口总数为91006.3⨯时,人口每年以2%的速率增长,由逻辑模型得⎪⎪⎭⎫⎝⎛-=m N N r t N N 1d d 1, 即 ⎪⎪⎭⎫ ⎝⎛⨯-=m N 91006.31029.002.0, 从而得 91086.9⨯=m N ,即世界人口总数极限值近100亿. )值得说明的是:人也是一种生物,因此,上面关于人口模型的讨论,原则上也可以用于在自然环境下单一物种生存着的其他生物,如森林中的树木、池塘中的鱼等,逻辑模型有着广泛的应用.二、市场价格模型对于纯粹的市场经济来说,商品市场价格取决于市场供需之间的关系,市场价格能促使商品的供给与需求相等(这样的价格称为(静态)均衡价格).也就是说,如果不考虑商品价格形成的动态过程,那么商品的市场价格应能保证市场的供需平衡,但是,实际的市场价格不会恰好等于均衡价格,而且价格也不会是静态的,应是随时间不断变化的动态过程.例3 试建立描述市场价格形成的动态过程的数学模型解 假设在某一时刻t ,商品的价格为)(t p ,它与该商品的均衡价格间有差别,此时,存在供需差,此供需差促使价格变动.对新的价格,又有新的供需差,如此不断调节,就构成市场价格形成的动态过程,假设价格)(t p 的变化率tpd d 与需求和供给之差成正比,并记),(r p f 为需求函数,)(p g 为供给函数(r 为参数),于是()()[]⎪⎩⎪⎨⎧=-=,,0)0(,d d p p p g r p f tpα 其中0p 为商品在0=t 时刻的价格,α为正常数.若设b ap r p f +-=),(,d cp p g +=)(,则上式变为—⎪⎩⎪⎨⎧=-++-=,,0)0()()(d d p p d b p c a t pαα ① 其中d c b a ,,,均为正常数,其解为ca db c a d b p t p t c a +-+⎪⎭⎫ ⎝⎛+--=+-)(0e)(α. 下面对所得结果进行讨论:(1)设p 为静态均衡价格 ,则其应满足0)(),(=-p g r p f ,即d p c b p a +=+-,于是得ca db p +-=,从而价格函数)(t p 可写为 。

数学建模在常微分方程中的应用

数学建模在常微分方程中的应用

数学建模在常微分方程中的应用数学建模是将现实世界中的问题用数学语言表示和解决的过程,而在这一过程中,常微分方程则是数学建模中最常用的工具之一。

常微分方程描述了自变量与因变量及其导数之间的关系,而在实际应用中,常微分方程被广泛用于描述各种变化和动力学系统,如物理、生物、经济学等领域。

在本文中,我们将介绍一些常微分方程在数学建模中的应用,并讨论其重要性和意义。

常微分方程在生物学和生态学中扮演着至关重要的角色。

人口增长模型可以用常微分方程描述,这些模型不仅可以帮助我们预测未来的人口数量,还可以提供人口增长对资源利用和环境变化的影响。

常微分方程也被用于描述化学反应和自然界中的各种生物过程,比如鱼群的迁徙、细胞的增殖和死亡等。

通过数学建模和常微分方程分析,我们可以更好地理解这些生物和生态系统的行为规律,为保护生态环境和可持续发展提供科学依据。

常微分方程在物理学中也有着重要的应用。

牛顿第二定律描述了运动物体的运动规律,它可以通过常微分方程的形式表示为F=ma,其中F是作用在物体上的力,m是物体的质量,a是物体的加速度。

这个简单的方程描述了物体随时间的位置和速度的变化,为我们理解宇宙中的运动和力学系统提供了重要工具。

电路中的电流和电压、谐振子的运动等现象也可以通过常微分方程进行描述和分析,在工程和技术应用中有着广泛的应用价值。

常微分方程还在经济学和金融学中有着重要的应用。

经济增长模型、货币供应和通货膨胀等经济现象,都可以通过常微分方程进行建模和分析。

在金融领域,股票价格波动、利率变化和金融衍生品的定价等问题也可以通过常微分方程进行描述和预测。

这些模型不仅可以帮助我们理解经济和金融系统的运行机制,还可以提供决策者制定政策和管理风险的依据。

在实际的数学建模过程中,常微分方程不仅是描述现象和问题的工具,更重要的是它们可以通过解析或数值方法进行求解,从而得到对问题的深入理解和有效预测。

通过求解微分方程可以得到系统的稳定性、平衡点、周期解等重要信息,从而为我们提供了优化系统和设计控制方法的依据。

数学建模中的微分方程及其应用研究

数学建模中的微分方程及其应用研究

数学建模中的微分方程及其应用研究随着科技的不断发展,数学建模已经成为了一个不可或缺的工具。

数学建模是指将现实问题抽象为数学模型,通过数学方法来预测和解决问题。

微分方程是数学建模中的关键工具之一。

在本文中,我将介绍微分方程在数学建模中的重要性以及其应用研究。

一、微分方程的定义和分类微分方程是描述一个或多个未知函数及其导数之间关系的方程,通常用来描述自然现象。

微分方程可以分为常微分方程和偏微分方程两种。

常微分方程是指只涉及一个自变量的导数的方程,例如:$\frac{dy}{dx}= f(x,y)$偏微分方程是指涉及多个自变量的导数的方程,例如:$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}=0$二、微分方程在数学建模中的重要性微分方程在数学建模中有着广泛的应用。

它可以用来研究自然现象中的变化关系,例如物理学中的运动规律、化学中的反应过程,甚至是医学中的疾病治疗。

通过微分方程的求解,我们可以得到有关系统的重要信息,比如系统的稳定性、解的性质、系统的动态行为等等。

三、常微分方程在数学建模中的应用常微分方程是数学建模中最常见的工具之一。

在数学建模中,解决一个常微分方程通常需要以下步骤:1. 根据问题描述建立数学模型。

2. 对模型中的常微分方程进行求解。

3. 通过解析解或数值解来得到所需的结果。

以下是常微分方程在数学建模中的一些应用:1. 表示天体运动的牛顿运动定律。

牛顿运动定律可以用一个常微分方程来描述:$m\frac{d^2x}{dt^2}= -G\frac{Mm}{r^2}$其中,$m$ 是天体的质量,$M$ 是太阳的质量,$r$ 是天体和太阳之间的距离,$G$ 是万有引力常数,$x$ 是天体相对太阳的位置。

通过求解这个方程,我们可以得到天体的运动轨迹。

2. 描述弹簧振动的简谐运动。

弹簧振动可以用一个常微分方程来描述:$m\frac{d^2x}{dt^2}= -kx$其中,$m$ 是弹簧质量,$k$ 是弹簧的弹性系数,$x$ 是弹簧相对平衡位置的偏移量。

数学建模中的微分方程求解

数学建模中的微分方程求解

数学建模中的微分方程求解数学建模是将真实世界中的问题抽象成数学模型,利用数学方法求解并得出结论的过程。

微分方程作为数学建模中最常用的数学工具之一,广泛应用于物理、生物、工程等领域,成为数学建模不可或缺的一部分。

本文将着重介绍微分方程在数学建模中的求解方法以及常见的数学模型。

一、常见的微分方程求解方法(一) 分离变量法分离变量法是最基本的微分方程求解方法之一。

对于形如$ \frac{dy}{dx} = f(x)g(y) $的一阶微分方程,我们可以将其分离为$ \frac{dy}{g(y)} = f(x) dx $,进而求解出$ y $的解析解。

例如,对于简单的一阶线性微分方程$ \frac{dy}{dx} + p(x)y = q(x) $,我们可以将其写成$ \frac{dy}{dx} = -p(x)y + q(x) $,然后将$ y $和$ x $分隔开来,即$ \frac{dy}{-p(x)y+q(x)} = dx $,最后将分子和分母积分得到$ y $的解析解。

但是,在实际问题中的微分方程很难一步到位地完成分离变量,需要结合其他的方法。

(二) 特解法特解法是一种特殊的微分方程求解方法,它适用于某些特殊的微分方程。

特解法的思想是先猜出通解的一部分,然后再根据该猜测解答出剩余的部分,得到最终的通解。

例如,对于形如$ y'' + ay' + by = f(x) $的二阶非齐次微分方程,我们可以先猜测一个特解$ y_p $,然后再求出方程的通解$ y = y_c + y_p $,其中$ y_c $是齐次方程的通解。

特解法在实际问题中应用广泛,但对特定问题的适用性并不一定好。

(三) 变量代换法变量代换法是另一种常见的微分方程求解方法,它常用于解决高阶微分方程或无法通过分离变量法解决的微分方程。

变量代换法的思想是将微分方程通过变量代换转化为可分离变量或一阶线性微分方程的形式。

例如,对于形如$ y'' + py' + qy = 0 $的二阶齐次微分方程,我们可以通过变量代换$ z = y' $,将其转化为一阶线性微分方程。

数学建模在常微分方程中的应用

数学建模在常微分方程中的应用

数学建模在常微分方程中的应用引言数学建模是一门将现实世界问题抽象化、定量化以及数学化的学科,它在工程、科学和商业等领域中有着广泛的应用。

而常微分方程是数学建模中最为基础且也是最为重要的一部分,因为许多自然现象的演化过程都可以用常微分方程来描述。

数学建模在常微分方程中的应用更是无处不在。

本文将对数学建模在常微分方程中的应用做一些探讨。

一、数学建模的意义数学建模是将现实生活中的问题抽象成数学模型,然后通过数学方法对模型进行分析、求解和预测的过程。

数学建模不仅仅是解决实际问题,更重要的是它可以提高人们对现实世界的理解和认识,促进科学和技术的进步。

常微分方程作为数学建模中的重要工具,可以描述许多自然现象的变化规律,比如天体运动、生物种群的动态演化、电路中的响应等等。

数学建模在常微分方程中的应用对于理解和控制自然现象具有极其重要的意义。

二、常微分方程的基本概念在谈论数学建模在常微分方程中的应用之前,我们先来回顾一下常微分方程的基本概念。

常微分方程是一种描述一个或多个未知函数的导数与自变量之间的关系的方程。

如果一个微分方程中未知函数的最高阶导数不超过一阶,则称为常微分方程。

常微分方程通常可以分为初值问题和边值问题两种类型。

初值问题是指在某个初始时刻的初始条件下求解未知函数,而边值问题是指在一些边界条件下求解未知函数。

三、数学建模在常微分方程中的应用1. 生物种群动态问题生物种群动态问题是常微分方程中的一个典型应用。

生态系统中的各种生物种群都受到环境变化、资源竞争、捕食者和天敌等因素的影响,它们的数量和分布往往是复杂而动态的。

数学建模可以帮助我们理解和预测不同生物种群的数量和分布。

许多生物种群的数量动态可以用Lotka-Volterra方程组来描述。

在这个方程组中,常微分方程描述了捕食者和被捕食者的数量随时间的变化规律。

2. 电路的响应问题在电路中,通过电流、电压和电阻的关系可以建立常微分方程模型来描述电路的响应。

微分方程模型——数学建模真题解析

微分方程模型——数学建模真题解析
练习:如果例2中的桶是漏斗形的(倒圆锥)或球形 的,计算水深的变化规律。
练习题: 1、在一所大学,某个教师每天从图书馆借出一本 书,而图书馆每周收回所借图书的10%。2年后, 这个教师手中有大约多少本图书馆的书? 2、某学院的教育基金,最初投资P元,以后按利 率r的连续复利增长。另外,每年在基金开算的时 间,都要投入新的资本A/年求7年的累计资金数 量。 另外,如果每年在基金开算的时间,把其中20% 用于奖学金的发放,求7年后累计资金数量。 3、一场降雪开始于中午前的某个时刻,降雪量稳 定。某人从正午12点开始清扫人行道,他的铲雪 速度(m3/小时)和路面宽度都不变,到下午2点他 扫了1000米,到下午4点又清扫了500米。雪是什 么时间开始下的?另外,如果他在下午4点开始回 头清扫,什么时间回到开始清扫的地点?
2004C题 饮酒驾车 据报载,2003年全国道路交通事故死亡人数为 10.4372万,其中因饮酒驾车造成的占有相当的比例。 针对这种严重的道路交通情况,国家质量监督检验检 疫局2004年5月31日发布了新的《车辆驾驶人员血液、 呼气酒精含量阈值与检验》国家标准,新标准规定, 车辆驾驶人员血液中的酒精含量大于或等于20毫克/ 百毫升,小于80毫克/百毫升为饮酒驾车(原标准是 小于100毫克/百毫升),血液中的酒精含量大于或 等于80毫克/百毫升为醉酒驾车(原标准是大于或等 于100毫克/百毫升)。 大李在中午12点喝了一瓶啤酒,下午6点检查时符合 新的驾车标准,紧接着他在吃晚饭时又喝了一瓶啤酒, 为了保险起见他呆到凌晨2点才驾车回家,又一次遭 遇检查时却被定为饮酒驾车,这让他既懊恼又困惑, 为什么喝同样多的酒,两次检查结果会不一样呢?
微分方程基础
微分方程是含有函数及其导数的方程。 如果方程(组)只含有一个自变量(通常是时间t),则 称为常微分方程。否则称为偏微分方程。

数学建模方法及其应用

数学建模方法及其应用

数学建模方法及其应用
数学建模是一种通过建立数学模型来解决现实问题的方法。

它可以应用于各种领域,包括物理学、工程学、经济学、环境科学、生物学等。

以下是一些常用的数学建模方法及其应用:
1.微分方程模型:用于描述动态系统的变化规律,包括传热、传质、机械运动等。

应用领域包括物理学、化学工程、生态学等。

2.优化模型:用于最大化或最小化某个目标函数,如生产成本最小化、资源利用最大化等。

应用领域包括供应链管理、金融风险管理、交通规划等。

3.图论模型:用于描述图形结构和网络连接关系,包括最短路径、最小生成树、网络流等。

应用领域包括电力系统优化、社交网络分析、交通路线规划等。

4.概率统计模型:用于描述随机事件和概率分布,包括回归分析、假设检验、时间序列分析等。

应用领域包括经济预测、医学统计、风险评估等。

5.离散事件模型:用于描述离散事件的发生和演化过程,包括排队论、蒙特卡洛模拟等。

应用领域包括交通流量预测、物流调度、金融风险评估等。

这只是数学建模的一小部分方法和应用,实际上还有很多其他方法和领域。

数学建模可以帮助解决实际问题,优化决策,提高效率和效果。

微分方程在数学建模中的应用

微分方程在数学建模中的应用

35微分方程在数学建模中的应用黄 羿(吉首大学湖南吉首416000)摘 要:高等数学在很多领域有着成功的应用,因此,通过建立实际应用模型,将高等数学课程中的微分方程理论与实际相结合,可以增加学生学习新知识的兴趣,提高课堂授课效果。

关键词:数学教学;理论与实际;教学方法中图分类号:O175文献标识码:A 文章编号:1000-9795(2010)04-0315-02收稿日期:5作者简介:黄 羿(),女,湖南岳阳人,从事微分方程与动力系统方向的研究。

一、数学建模与微分方程概述数学建模(Mathematical Modeling)是用数学方法解决各种实际问题的桥梁,随着计算机的发明和计算机技术的飞速发展,数学的应用日益广泛,数学建模的作用也越来越重要,而且已经渗透到各个领域,可以毫不夸张的说,数学和数学建模无处不在。

经典的数学建模理论认为数学建模一般由下列六个步骤组成。

1.建模准备:包括进行调查研究,明确问题,搜集信息,查阅文献资料,初步确定问题属于哪一类模型。

2.分析与简化:分析问题,分析信息与资料,抓住主要因素,忽略次要因素,简化问题。

3.模型建立:用数学语言刻画所研究问题的因果关系,得到问题的数学描述,通常是所研究问题的主要因素的变量之间的一个关系式或其他的数学结构。

4.模型求解:选择合适的方法求解上述数学模型,多数情况下很难获得其解析解,而只能得到其数值解,这就需要应用各种数值方法,各种软件系统和计算机。

5.模型检验与评价:包括模型是否易于求解,是否能反映和解决实际问题等。

6.模型应用:就是把经过改进的模型及其解应用于实际系统,看是否达到预期的目的.若不够满意,则建模任务尚未完成,仍需继续努力。

二、微分方程在数学建模中的应用(一)人口预测模型由于资源的有限性,当今世界各国都注意有计划地控制人口的增长。

为了得到人口预测模型,必须首先搞清影响人口增长的因素,而影响人口增长的因素很多。

因此,先把问题简化,建立比较粗糙的模型,再逐步修改,得到较完善的模型。

常微分方程在数学建模中的应用

常微分方程在数学建模中的应用

常微分方程在数学建模中的应用常微分方程是数学中的一个重要分支,它研究描述自然现象中连续变化的函数的微分方程。

在数学建模中,常微分方程是一种常用的工具,用于描述和解释各种自然和社会现象。

本文将探讨常微分方程在数学建模中的应用,并详细介绍其中的一些具体案例。

首先,常微分方程在经济学建模中发挥着重要作用。

经济学中,人们经常使用常微分方程来描述经济系统中的变化。

例如,经济增长模型可以使用一阶线性常微分方程来描述。

这个方程中的未知函数是时间的函数,表示经济变量(如国内生产总值)的增长率。

通过求解这个方程,可以推导出经济增长模型中的稳定点、周期性和渐近行为等信息,从而对经济现象进行预测和分析。

其次,常微分方程在物理学建模中也有广泛的应用。

物理学中的许多自然现象可以用微分方程来描述,例如运动学、力学、光学等。

例如,一个简单的自由落体模型可以用一阶非线性微分方程来描述。

这个方程中的未知函数是时间的函数,表示物体的高度随时间的变化。

通过求解这个方程,可以推导出物体的运动轨迹、终止位置和速度等信息,从而对物理现象进行分析和预测。

此外,常微分方程在生物学建模中也有重要的应用。

生物学中的许多现象和过程可以用微分方程来描述,例如生物种群的增长、化学反应速率的变化等。

例如,一个简单的生物种群模型可以用一阶线性微分方程来描述。

这个方程中的未知函数是时间的函数,表示种群数量随时间的变化。

通过求解这个方程,可以推导出种群的稳定点、消亡速度和周期性等信息,从而对生物现象进行研究和分析。

最后,常微分方程还在工程学建模中广泛应用。

工程学中的许多问题,如电路、动力学系统、流体力学等,都可以用微分方程来描述。

例如,一个简单的电路模型可以用一阶非线性微分方程来描述。

这个方程中的未知函数是时间的函数,表示电流随时间的变化。

通过求解这个方程,可以推导出电流的稳定值、频率响应和幅频特性等信息,从而对电路的性能进行分析和优化。

综上所述,常微分方程在数学建模中具有重要的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

u y du u u 2 1 dy
y du 1 u 2 dy
分离变量后积分
du 1 u2
dy y
即 ln(u 1 u2 ) ln y ln C 或写成 u 1 u2 y
C
整理得
y
2
2 yu
1
C C
将u
x y
代入得
y2
2C(x
C) 2
,这是以
x
为轴,焦点在
原点得一族抛物线。
三、一阶线性微分方程及可降阶 的高阶微分方程
第六章 微分方程与数学建模
第一节 微分方程 第二节 微分方程在数学建模中的应用
第一节 微分方程
一、微分方程的基本概念 二、一阶微分方程 三、一阶线性微分方程及可降阶的高阶 微分方程 四、二阶常系数线性微分方程
一、微分方程的基本概念
1. 引例
例 一曲线通过点(1,2),且在该曲线上任一点
M ( x, y)处的切线的斜率为2 x,求这曲线的方程.
3. 可降阶的高阶微分方程
(1) y(n) f (x) 型的微分方程 特点:方程的右端仅含有自变量 x 的函数. 解法:只要把 y(n1) 作为新的函数,该方程就变为新 未知函数的一阶微分方程,两边积分,得
同理
y(n1) f (x)dxC1
y(n2) [ f (x)dxC1]dxC2
如果自变量为x,未知函数为y,则n阶微分 方程的一般形式为
F (x, y, y,L , y(n) ) 0
任何满足微分方程的函数都称为微分方程的解.
如果微分方程的解中含有任意常数 且任意常数 的个数与微分方程的阶数相同 这样的解叫做微分方 程的通解.
不含任意常数的解称为微分方程的特解.
用来确定方程通解中任意常数的条件称为方程 的初始条件.
求微分方程满足初始条件的解的问题称为初值 问题.
二、一阶微分方程
一阶微分方程的一般形式为
F(x, y, y) 0 或 dy f (x, y) dx
1. 可分离变量的微分方程
形如
dy f (x)g( y) dx
的一阶微分方程,称为可分离变量的微分方程.
这类方程的特点是经过适当的变换,可以将方程
右边分解成只含 x 的函数与只含 y 的函数的乘积,而左 边是关于 y 的一阶导数.具体解法如下:
(1) 分离变量 将方程写成 1 dy f (x)dx 的形式
g( y)
(2) 两 端 积 分
1 g( y)
dy
f
(x)dx
设积分后得
G( y) F(x) C ; 则 G( y) F(x) C 称为隐式通解,隐式解有时可以
一阶线性微分方程的标准形式:
dy P( x) y Q( x) dx
当Q( x) 0, 上方程称为齐次的.
当Q(x) 0, 上方程称为非齐次的.
1.一阶线性齐次方程 dy P( x) y 0.的解法 dx
(使用分离变量法)
dy P( x)dx, y
dy y
P
(
x)dx,
ln y P( x)dx lnC,
dy dx
(x,C1)
因此原方程的通解为
y (x,C1)dxC2 ,其中 C1,C2 为任意常数.
(3) y f ( y, y) 型的微分方程
特点: 方程的右端不显含 x.
齐次方程的通解为 y Ce P( x)dx .
2.一阶线性非齐次方程
dy dx
P(x)y
Q(x)
的解法
对应齐次方程
dy P(x) y 0.
dx
解法:常数变易法
先求出对应齐次方程 dy P(x) y 0 的通解: dx
再令C=u(x),即
为原方程的解,
将y和y代入原方程得
u '(x)eP(x)dx Q(x),
解 设所求曲线为 y y( x)
dy 2x dx
其中 x 1时, y 2
y 2xdx 即 y x2 C, 求得C 1,
所求曲线方程为 y x2 1 .
2. 微分方程的基本概念
凡是表示未知函数、未知函数的导数(或微 分)与自变量之间关系的方程 称为微分方程.
微分方程中未知函数导数的最高阶数称为方 程的“阶”,未知函数是一元函数的微分方程称 为常微分方程
整理得 ln(1 y2 ) ln c(1 x2 ) ,
所以,方程的通解为: (1 y2 ) c(1 x2 ) . 由初始条件 y(0) 1,得 (11) c(1 02 ) , c 2 ,
所以,所求特解: (1 y2 ) 2(1 x2 ) 或 2x2 y2 1 0 .
2. 齐次方程
积分得
u(x) Q(x)e P(x)dxdx C,
变易常数应 满足的条件
一阶线性非齐次微分方程的通解为
y [ Q( x)e P( x)dxdx C ]e P( x)dx
Ce P( x)dx e P( x)dx Q( x)e P( x)dxdx
对应齐次 方程通解
非齐次方程特解
x
ln
C
ln
x C

x
Ce
du (u )u

再将 u
y x
代入上式得原方程的通解.

求方程
dy dx
x
y

x2 y2
y 0 的通解.
解 这是齐次方程,可以化成如下形式
dx x dy
x2 y2 x
y
y
x y
2
1

x y
u

x
yu ,
dx dy
u
y
du dy
代入上述方程得: 整理得
依次类推,连续积分 n 次,就得到方程的通解, 其中含有 n 个任意的常数.
(2) y f (x, y) 型的微分方程
特点:方程的右端中不显含未知函数 y.
解法 令 y p ,则 y p ,代入原方程得 p f (x, p)
这是一一阶微分方程,设其的通解为 p (x,C1) 由
y p 得到一阶微分方程
化成显式解
dy x(1 y2 ) 例 求 微 分 方 程 dx y(1 x2 ) 满 足 初 始 条 件
y( 0 ) 的1 特解.

分离变量:
y 1 y2
dy
x 1 x2
dx

y
x
两边取积分: 1 y2 dy 1 x2 dx ,
积分得
1 2
ln(1
y2
)
1 2
ln(1
x2 ) dy ( y )的微分方程称为齐次方程.
dx x
作变量代换
u y , x
即 y xu,
dy u x du ,
dx
dx
代入原式
u x du (u),
dx
即 x du (u) u.
dx
变量可分离的微分方程
分离变量得
du dx
(u) u x
两边积分得
du
(u)
u
ln
相关文档
最新文档