高斯正反算公式详解

高斯正反算公式详解
高斯正反算公式详解

高斯投影坐标正反算VB程序

高斯投影坐标正反算 V B程序 文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

高斯投影坐标正反算 学院: 班级: 学号: 姓名: 课程名称: 指导老师:

实验目的: 1.了解高斯投影坐标正反算的基本思想; 2.学会编写高斯正反算程序,加深了解。 实验原理: 高斯投影正算公式中应满足的三个条件: 1. 中央子午线投影后为直线; 2. 中央子午线投影后长度不变; 3. 投影具有正形性质,即正形投影条件。 高斯投影反算公式中应满足的三个条件: 1. x坐标轴投影成中央子午线,是投影的对称轴; 2. x轴上的长度投影保持不变; 3. 正形投影条件,即高斯面上的角度投影到椭球面上后角度没有 变形,仍然相等。 操作工具: 计算机中的 代码: Dim a As Double, b As Double, x As Double, y As Double, y_#

Dim l_ As Double, b_ As Double, a0#, a2#, a4#, a6#, a8#, m2#, m4#, m6#, m8#, m0#, l0#, e#, e1# Dim deg1 As Double, min1 As Double, sec1 As Double, deg2 As Double, min2 As Double, sec2 As Double Private Sub Command1_Click() Dim x_ As Double, t#, eta#, N#, W#, k1#, k2#, ik1%, ik2%, dh% deg1 = Val min1 = Val sec1 = Val deg2 = Val min2 = Val sec2 = Val l_ = (deg1 * 3600 + min1 * 60 + sec1) / 206265 b_ = (deg2 * 3600 + min2 * 60 + sec2) / 206265 dh = Val k1 = ((l_ * 180 / + 3) / 6) k2 = (l_ * 180 / / 3) ik1 = Round(k1, 0) ik2 = Round(k2, 0) If dh = 6 Then l0 = 6 * ik1 - 3 Else

高斯正反算(零误差)

//84的椭球 final double a = 6378137; final double Alfa = 1.0 / 298.257223563; double centreL, x, y, b, e1, ee; double a0, a2, a4, a6, a8, Bf0; double[] Coeficient_a0 = new double[5]; double sinBf, cosBf; double FBf, Bf1, dB, bf; double c, v, Nf, Mf, tf; double itaf, dietaB, dietaL; double B, L; double dmsB, dmsL, dmsCentreL1; double radlat, radlon, radl0, l; double sb, cb, t, ita, X, N; public String MakeProject(double L, double B, double CentreLon) //高斯正算{ /*输入已知数据:经度\纬度\ 中央子午线*/ dmsB = B; dmsL = L; dmsCentreL1 = CentreLon; radlat = DMSTORAD(dmsB); radlon = DMSTORAD(dmsL); radl0 = DMSTORAD(dmsCentreL1); l = radlon - radl0; b = a * (1 - Alfa); sb = Math.sin(radlat); cb = Math.cos(radlat); t = sb / cb; e1 = Math.sqrt((a / b) * (a / b) - 1); ee = Math.sqrt(1 - (b / a) * (b / a)); ita = e1 * cb; a0a2a4a6a8(a, ee, Coeficient_a0); a0 = Coeficient_a0[0]; a2 = Coeficient_a0[1];

高斯投影正反算公式 新

高斯投影坐标正反算 一、相关概念 大地坐标系由大地基准面和地图投影确定,由地图投影到特定椭圆柱面后在南北两极剪开展开而成,是对地球表面的逼近,各国或地区有各自的大地基准面,我国目前主要采用的基准面为:基准面,为GPS基准面,17届国际大地测量协会上推荐,椭圆柱长半轴a=6378137m,短半轴b=; 2.西安80坐标系,1975年国际大地测量协会上推荐,椭圆柱长半轴a=6378140m,短半轴b=; 3.北京54坐标系,参照前苏联克拉索夫斯基椭球体建立,椭圆柱长半轴a=6378245m, 短半轴b=; 通常所说的高斯投影有三种,即投影后: a)角度不变(正角投影),投影后经线和纬线仍然垂直; b)长度不变; c)面积不变; 大地坐标一般采用高斯正角投影,即在地球球心放一点光源,地图投影到过与中央经线相切的椭圆柱面上而成;可分带投影,按中央经线经度值分带,有每6度一带或每3度一带两种(起始带中央经线经度为均为3度,即:6度带1带位置0-6度,3度带1带位置度),即所谓的高斯-克吕格投影。

图表11高斯投影和分带 地球某点经度(L)为过该点和地球自转轴的半圆与子午线所在半圆夹角,东半球为东经,西半球为西经;地球某点纬度(B)为所在水平面法线与赤道圆面的线面角。 正算是已知大地坐标(L,B),求解高斯平面坐标(X,Y),为确保Y值为正,Y增加500公里;反算则是由高斯平面坐标(X,Y)求解大地坐标(L,B)。 二、计算模型: 地球椭球面由椭圆绕地球自转轴旋转180度而成。 图表 1 椭圆 椭圆长半轴a,椭圆短半轴b, 椭圆方程:

(1) 图表2椭球面 椭球面方程: y2 a2+ x2 b2 + z2 a2 =1 /*************************************** 与网上充斥的将函数关系先展开为泰勒级数,再依据投影规则确定各参数不同,本文直接依据空间立体三角函数关系得出结果。 *****/ (一)正算 由图表1,

高斯投影坐标正反算编程报告

高斯投影坐标正反算编程报告 1. 编程思想 进行高斯投影坐标正反算的编程需要牵涉到大量的公式,为了使程序条理更清楚,各块的数据复用性更强,这里采取了结构化的编程思想。 程序由四大块组成。 GeodesyHomework 、cpp 文件用于存放main()函数,就是整个程序的入口。通过结构化的编程尽力使main()函数变得简单。 MyFunction 、h 与MyFunction 、cpp 用于存放计算过程中进行角度弧度换算时所要用到的一些自定的转换函数。 Zhengsuan 、h 与Zhengsuan 、cpp 用于存放Zhengsuan 类,在Zhengsuan 类中声明了高斯投影坐标正算所要用到的所有变量,在类的构造函数中进行成员变量的初始化及正算计算。通过get 函数获得相应的正算结果。 Fansuan 、h 与Fansuan 、cpp 用于存放Fansuan 类,类似于Zhengsuan 类,Fansuan 类中声明了高斯投影坐标反算所要用到的所有变量,在类的构造函数中进行成员变量的初始化及反算计算。通过get 函数获得相应的反算结果。 2. 计算模型 高斯投影正算公式 6 4256 4 42234 22)5861(cos sin 720)495(cos 24cos sin 2l t t B B N l t B simB N l B B N X x ''+-''+ ''++-''+''?''+=ρηηρρ 5 2224255 3 2233 )5814185(cos 120)1(cos 6cos l t t t B N l t B N l B N y ''-++-''+ ''+-''+''?''=ηηρηρρ 高斯投影反算公式 () () ()( ) 2 22425 52 23 36 4254 222232 8624285cos 12021cos 6cos 459061720935242f f f f f f f f f f f f f f f f f f f f f f f f f f f f f t t t B N y t B N y B N y l y t t y N M t y t t N M t y N M t B B ηηηηη+++++++-=++- -+++ -= 3. 程序框图

高斯投影坐标正算公式

高斯投影坐标正算公式 高斯投影坐标正反算公式 2.2.2. 1高斯投影坐标正算公式: B, x,y 高斯投影必须满足以下三个条件: ⑴中央子午线投影后为直线;⑵中央子午线投影后长度不变;⑶投影具有正形性质,即正形投影条件。 由第一条件知中央子午线东西两侧的投影必然对称于中央子午线,即 式中,x为的偶函数,y为的奇函数;,即, 如展开为的级数,收敛。 (2-10) 式中是待定系数,它们都是纬度B的函数。 由第三个条件知: 分别对和q求偏导数并代入上式 (2-11) 上两式两边相等,其必要充分条件是同次幂前的系数应相等,即

(2-12) (2-12)是一种递推公式,只要确定了就可依次确定其余各系数。 由第二条件知:位于中央子午线上的点,投影后的纵坐标x应等于投影前从赤道量至该点的子午线弧长X,即(2-10)式第一式中,当时有: (2-13) 顾及(对于中央子午线) 得: (2-14,15) (2-16) 依次求得并代入(2-10)式,得到高斯投影正算公式

(2-17) 2.2.2. 2高斯投影坐标反算公式 x,y B, 投影方程: (2-18) 高斯投影坐标反算公式推导要复杂些。 ⑴由x求底点纬度(垂足纬度),对应的有底点处的等量纬度,求x,y与 的关系式,仿照式有, 由于y和椭球半径相比较小(1/16.37),可将展开为y的幂级数;又由于是对称投影,q必是y的偶函数,必是y的奇函数。 (2-19) 是待定系数,它们都是x的函数. 由第三条件知: ,

, (2-20) (2-19)式分别对x和y求偏导数并代入上式 上式相等必要充分条件,是同次幂y前的系数相等, 第二条件,当y=0时,点在中央子午线上,即x=X,对应的点称为底点,其纬度为底点纬度,也就是x=X时的子午线弧长所对应的纬度,设所对应的等量纬度为。也就是在底点展开为y的幂级数。 由(2-19)1式 依次求得其它各系数 (2-21) (2-21)1 ………… 将代入(2-19)1式得

高斯投影正反算

class Gauss { #region 高斯投影正反算 ///

/// 从大地坐标到平面坐标的高斯正算 /// /// 默认的是使用假定坐标的六度带投影 /// /// 大地纬度 /// 大地经度 /// 平面纵轴 /// 平面横轴 /// 参考椭球长半轴 /// 参考椭球扁率倒数 public static void BL_xy(double B, double L, out double x, out double y, double a, double f) { BL_xy(B, L, out x, out y, a, f, 6, true); } /// /// 从大地坐标到平面坐标的高斯正算 /// /// 默认的是使用假定坐标 /// /// 大地纬度 /// 大地经度 /// 平面纵轴 /// 平面横轴 /// 参考椭球长半轴 /// 参考椭球扁率倒数 /// 投影分带的带宽 public static void BL_xy(double B, double L, out double x, out double y, double a, double f, int beltWidth) { BL_xy(B, L, out x, out y, a, f, beltWidth, true); } /// /// 从大地坐标到平面坐标的高斯正算 /// /// 默认的是六度带投影 /// /// 大地纬度 /// 大地经度 /// 平面纵轴

高斯投影坐标正反算VB程序

高斯投影坐标正反算 学院: 班级: 学号: 姓名: 课程名称: 指导老师:

实验目的: 1.了解高斯投影坐标正反算的基本思想; 2.学会编写高斯正反算程序,加深了解。 实验原理: 高斯投影正算公式中应满足的三个条件: 1. 中央子午线投影后为直线; 2. 中央子午线投影后长度不变; 3. 投影具有正形性质,即正形投影条件。 高斯投影反算公式中应满足的三个条件: 1. x坐标轴投影成中央子午线,是投影的对称轴; 2. x轴上的长度投影保持不变; 3. 正形投影条件,即高斯面上的角度投影到椭球面上后角度没 有变形,仍然相等。 操作工具: 计算机中的VB6.0 代码: Dim a As Double, b As Double, x As Double, y As Double, y_# Dim l_ As Double, b_ As Double, a0#, a2#, a4#, a6#, a8#, m2#, m4#,

m6#, m8#, m0#, l0#, e#, e1# Dim deg1 As Double, min1 As Double, sec1 As Double, deg2 As Double, min2 As Double, sec2 As Double Private Sub Command1_Click() Dim x_ As Double, t#, eta#, N#, W#, k1#, k2#, ik1%, ik2%, dh% deg1 = Val(Text1.Text) min1 = Val(Text2.Text) sec1 = Val(Text3.Text) deg2 = Val(Text4.Text) min2 = Val(Text5.Text) sec2 = Val(Text6.Text) l_ = (deg1 * 3600 + min1 * 60 + sec1) / 206265 b_ = (deg2 * 3600 + min2 * 60 + sec2) / 206265 dh = Val(Text9.Text) k1 = ((l_ * 180 / 3.14159 + 3) / 6) k2 = (l_ * 180 / 3.14159 / 3) ik1 = Round(k1, 0) ik2 = Round(k2, 0) If dh = 6 Then l0 = 6 * ik1 - 3 Else If dh = 3 Then

高斯投影正反算编程(可编辑修改word版)

高斯投影正反算编程一.高斯投影正反算基本公式(1)高斯正算基本公式 (2)高斯反算基本公式

以上主要通过大地测量学基础课程得到,这不进行详细的推导,只是列出基本公式指导编程的进行。 二.编程的基本方法和流程图 (1)编程的基本方法 高斯投影正反算基本上运用了所有的编程基本语句,本文中是利用C++语言进行基本的设计。高斯正算中对椭球参数和带宽的选择主要运用了选择语句。而高斯反算中除了选择语句的应用,在利用迭代算法求底点纬度还应用了循环语句。编程中还应特别注意相关的度分秒和弧度之间的相互转换,这是极其重要的。 (2)相关流程图 1)正算

选择带宽 3/6 度带 计算带号 输入大地坐标 B ,L 和经差 L0 6 度带 3 度带 选择椭球参数 计算带号 计算弧长 计算平面坐标 x,y 打印 x,y 开始 计算平面坐标 x,y 计算弧长 打印 x,y

开始 输入自然值坐标x,y 和经差L0 选择椭球参数 利用迭代算法 求解底点纬度 利用公式计算B 和L 打印B 和L 2)反算

三.编程的相关代码(1)正算 # include "stdio.h" # include "stdlib.h" # include "math.h" # include "assert.h" #define pi (4*atan(1.0)) int i; struct jin { double B; double L; double L0; }; struct jin g[100]; main(int argc, double *argv[]) { FILE *r=fopen("a.txt","r"); assert(r!=NULL); FILE *w=fopen("b.txt","w"); assert(r!=NULL); int i=0;

(完整word版)高斯投影坐标正反算编程报告

高斯投影坐标正反算编程报告 10021班 张鑫 学号:2010302590040 1. 编程思想 进行高斯投影坐标正反算的编程需要牵涉到大量的公式,为了使程序条理更清楚,各块的数据复用性更强,这里采取了结构化的编程思想。 程序由四大块组成。 GeodesyHomework.cpp 文件用于存放main()函数,是整个程序的入口。通过结构化的编程尽力使main()函数变得简单。 MyFunction.h 和MyFunction.cpp 用于存放计算过程中进行角度弧度换算时所要用到的一些自定的转换函数。 Zhengsuan.h 和Zhengsuan.cpp 用于存放Zhengsuan 类,在Zhengsuan 类中声明了高斯投影坐标正算所要用到的所有变量,在类的构造函数中进行成员变量的初始化及正算计算。通过get 函数获得相应的正算结果。 Fansuan.h 和Fansuan.cpp 用于存放Fansuan 类,类似于Zhengsuan 类,Fansuan 类中声明了高斯投影坐标反算所要用到的所有变量,在类的构造函数中进行成员变量的初始化及反算计算。通过get 函数获得相应的反算结果。 2. 计算模型 高斯投影正算公式 6 4256 4 42234 22)5861(cos sin 720)495(cos 24cos sin 2l t t B B N l t B simB N l B B N X x ''+-''+ ''++-''+''?''+=ρηηρρ 5 2224255 3 2233)5814185(cos 120)1(cos 6cos l t t t B N l t B N l B N y ''-++-''+''+-''+''?''=ηηρηρρ 高斯投影反算公式 () () ()( ) 222425 52 2336 4254 2222 32 8624285cos 12021cos 6cos 459061720935242f f f f f f f f f f f f f f f f f f f f f f f f f f f f f t t t B N y t B N y B N y l y t t y N M t y t t N M t y N M t B B ηηηηη+++++++-=++- -+++ -=

高斯正算公式-Read

椭球参数: P34 克氏椭球: a =6378245.0 e 2=0.006693421622966 e ′2=0.006693421622966 WGS84椭球: a =6387137.0 e 2=0.006694379901 e ′2 =0.00673949674227 中央经线:L 0=6N -3 高斯正算公式: P125 x =X +N 2 tcos 2Bl 2+N 24 t(5-t 2+9η2+4η4)cos 4Bl 4+N 720 t(61-58t 2+t 4)cos 6Bl 6 y =NcosBl +N 6 (1-t 2+η2)cos 3Bl 3+N 120 (5-18t 2+t 4+14η2-58η2t 2)cos 5Bl 5 令m =(cosB )·l ·л180 则上式为: x =X +Nt[(12 +(124 (5-t 2+9η2+4η4)+ 1720 (61-58t 2+t 4)m 2)m 2)m 2] y =N[(1+(16 (1-t 2+η2)+ 1120 (5-18t 2+t 4+14η2-58η2t 2)m 2)m 2)m] 其中: X 为子午线弧长:X =a 0B -a 22 sin2B +a 44 sin4B -a 66 sin6B P71 N 为卯酉圈曲率半径:N =a(1-e 2sin 2B) -1/2 P67 t =tanB η=e ′cosB P33 X 中 a 0=m 0+m 22 +38 m 4+516 m 6+35128 m 8+…… P71 a 2= m 22 +m 42 +1532 m 6+716 m 8 a 4= m 48 +316 m 6+732 m 8 a 6= m 632 +m 816 又 m 0=a(1-e 2) P67 m 2=32 e 2m 0 m 4=54 e 2m 2 m 6=76 e 2m 4 m 8=98 e 2m 6

高斯投影正反算公式83

§8.3高斯投影坐标正反算公式 任何一种投影①坐标对应关系是最主要的;②如果是正形投影,除了满足正形投影的条件外(C-R 偏微分方程),还有它本身的特殊条件。 8.3.1高斯投影坐标正算公式: B,l ? x,y 高斯投影必须满足以下三个条件: ①中央子午线投影后为直线;②中央子午线投影后长度不变;③投影具有正形性质,即正形投影条件。 由第一条件知中央子午线东西两侧的投影必然对称于中央子午线,即(8-10)式中,x 为l 的偶函数,y 为l 的奇函数;0330'≤l ,即20/1/≈''''ρl ,如展开为l 的级数,收敛。 +++=++++=553316644220l m l m l m y l m l m l m m x (8-33) 式中 ,,10m m 是待定系数,它们都是纬度B 的函数。 由第三个条件知: q y l x l y q x ??-=????=??, (8-33)式分别对l 和q 求偏导数并代入上式 ----=++++++=+++553315 63424 42204 52 3164253l dq dm l dq dm l dq dm l m l m l m l dq dm l dq dm dq dm l m l m m (8-34) 上两式两边相等,其必要充分条件是同次幂l 前的系数应相等,即

dq dm m dq dm m dq dm m 231 20 13121? =? -== (8-35) (8-35)是一种递推公式,只要确定了 0m 就可依次确定其余各系数。 由第二条件知:位于中央子午线上的点,投影后的纵坐标x 应等于投影前从赤道量至该点的子午线弧长X ,即(8-33)式第一式中,当0=l 时有: 0m X x == (8-36) 顾及(对于中央子午线) B V M r M B N dq dB M dB dX cos cos 2 ==== 得: B V c B N r dq dB dB dX dq dX dq dm m cos cos 01===?===(8-37,38) B B N dq dB dB dm dq dm m cos sin 2 2121112=?-=?-= (8-39) 依次求得6543,,,m m m m 并代入(8-33)式,得到高斯投影正算公式

高斯正反算计算函数

//servey.h // #ifndef SERVEY_H // #define SERVEY_H #include #include #include const double PI = 3.149323846; const double epsilon = 0.; //角度(度、分、秒)化弧度(带符号) double angle_to_radian (double alfa) { double alfa1,alfa2,fsign,fbeta; if( fabs(alfa) < epsilon ) return(0.0); fbeta=fabs(alfa); fsign=alfa/fbeta; alfa1=floor(fbeta+epsilon)+floor((fbeta-floor(fbeta+epsilon))*100.+epsilon)/60.; alfa2=(fbeta*100.-floor(fbeta*100.+epsilon))/36.; alfa1+=alfa2; alfa1=fsign*alfa1*PI/180.; return (alfa1); } //度分秒化为度 double angle_to_degree(double alfa) { double alfa_sign; //alfa的正负号 if(alfa>=0) { alfa_sign = 1; }else { alfa_sign = -1; } alfa = fabs(alfa); double alfa1,alfa2; double A = floor(alfa+epsilon); double B = floor((alfa-A)*100+epsilon); alfa1 = A+B/60; alfa2=(alfa*100.-floor(alfa*100.+epsilon))/36.; alfa1+=alfa2; return (alfa_sign*alfa1);

高斯五点公式详细计算方法

高斯五点公式详细计算方法 A A R K 1= ,B B R K 1= , A B AB K K K -= 则p 点坐标如下: ??????+±+=∑ =2 2 1 2(cos i S AB i A A n i i A p V l l K lv K R l x x α ? ? ????+±+=∑ =2 21 2(sin i S AB i A A n i i A p V l l K lv K R l y y α p 点方位角: ) 2(2 S AB A A P l l K l K + ±=α α 式中:A α=起始方位角 l =p 点到A 的距离 S l =曲线总长 P α=p 点切线方位角 五节点系数 : 28095 1184634425.051==R R 49683 2393143352.042==R R 4444 2844444444 .03 =R 046910070 .0151=-=V V 2307653449 .0142=-=V V 5.03=V 四节点系数:R 1=R 4=0.1739274266 R 2=R 3=0.3260725774 V 1=1-V 4=0.0694318442 V 2=1-V 3=0.3300094782 三节点系数:R 1=R 3=0.27777778 R 2=0.44444444 V1=1-V 3=0.1127016654 V 2=0.5 其中: A r A A K l R l l K ==π180 r S AB r B A S B A S AB l K l R R l R R l l l K ) 2() (9022 2 2 = -= π (其中

高斯投影正反算c代码

高斯投影正反算c代码 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】

高斯投影正反算程序设计 一.程序设计流程 本程序的设计思路如下: (1),程序采用VS08版本作为开发平台,并采用C#语言作为开发语言,设计为WindowsForm窗体程序形式。 (2),程序主要的算法来自于教材。但是本程序为了更加实用,添加了更多的解算基准,包括:WGS-84,国际椭球1975,克氏椭球,和2000国家大地坐标系。 (3),程序为了更方便的读取数据和输出数据,故需要自己定义了固定的数据输入格式和数据输出格式或形式,请老师注意查看。 二.代码 using System; using ; using ; using ; using ; using Gauss { public partial class Form1 : Form { double b = (a * a * (1 - ee * ee)); double c = a * a / b; double epp = ((a * a - b * b) / b / b); CRDGEODETIC pcrdGeo; CRDCARTESIAN pcrdCar; double midlong = 0;

//求X,Y和带号 = ; ytext = ; string temp = (0, 2); num = (temp); ytext = (0, 2); = (ytext) - 500000; try { tt = } catch { ("Choose 3/6 error!"); return; } if ("3度带") == 0) { midlong = num * 3 * pai / 180; } if ("6度带") == 0) { midlong = (6 * num - 3) * pai / 180; } b = (a * a * (1 - ee * ee)); c = a * a / b; epp = (a * a - b * b) / b; double m0, m2, m4, m6, m8; double a0, a2, a4, a6, a8; m0 = a * (1 - ee * ee);

高斯投影坐标正反算公式

高斯投影坐标正反算公式 未知2010-04-03 10:47:15 本站 §高斯投影坐标正反算公式 任何一种投影①坐标对应关系是最主要的;②如果是正形投影,除了满足正形投影的条件外( C-R 偏微分方程),还有它本身的特殊条件。 1.1 高斯投影坐标正算公式: B, x,y 高斯投影必须满足以下三个条件: ①中央子午线投影后为直线;②中央子午线投影后长度不变;③投影具有正形性质,即正形投影条件。 由第一条件知中央子午线东西两侧的投影必然对称于中央子午线,即 (8-10) 式中, x 为 的偶函数, y 为的奇函数;,即,如展开为的级数,收敛。 ( 8-33 ) 式中是待定系数,它们都是纬度 B 的函数。 由第三个条件知: (8-33) 式分别对和 q 求偏导数并代入上式

(8-34) 上两式两边相等,其必要充分条件是同次幂前的系数应相等,即 (8-35) (8-35) 是一种递推公式,只要确定了就可依次确定其余各系数。 由第二条件知 : 位于中央子午线上的点,投影后的纵坐标 x 应等于投影前从赤道量至该点的子午线弧长 X ,即 (8-33) 式第一式中,当时有: (8-36) 顾及 ( 对于中央子午线 )

得: (8-37,38) (8-39) 依次求得并代入 (8-33) 式,得到高斯投影正算公式 (8-42) 1.2 高斯投影坐标反算公式 x,y B, 投影方程: (8-43)

满足以下三个条件:

①x 坐标轴投影后为中央子午线是投影的对称轴;② x 坐标轴投影后长度不变;③投影具有正形性质,即正形投影条件。 高斯投影坐标反算公式推导要复杂些。 ①由 x 求底点纬度 ( 垂足纬度 ), 对应的有底点处的等量纬度,求 x,y 与 的关系式,仿照 (8-10) 式有, 由于 y 和椭球半径相比较小 (1/16.37) ,可将展开为 y 的幂级数;又由于是对称投影, q 必是 y 的偶函数,必是 y 的奇函数。 (8-45) 是待定系数,它们都是 x 的函数 . 由第三条件知: , , (8-21)

高斯投影坐标正反算VB程序

高斯投影坐标正反算V B 程序 Jenny was compiled in January 2021

高斯投影坐标正反算 学院: 班级: 学号: 姓名: 课程名称: 指导老师:

实验目的: 1.了解高斯投影坐标正反算的基本思想; 2.学会编写高斯正反算程序,加深了解。 实验原理: 高斯投影正算公式中应满足的三个条件: 1. 中央子午线投影后为直线; 2. 中央子午线投影后长度不变; 3. 投影具有正形性质,即正形投影条件。 高斯投影反算公式中应满足的三个条件: 1. x坐标轴投影成中央子午线,是投影的对称轴; 2. x轴上的长度投影保持不变; 3. 正形投影条件,即高斯面上的角度投影到椭球面上后角度没有 变形,仍然相等。 操作工具: 计算机中的 代码: Dim a As Double, b As Double, x As Double, y As Double, y_#

Dim l_ As Double, b_ As Double, a0#, a2#, a4#, a6#, a8#, m2#, m4#, m6#, m8#, m0#, l0#, e#, e1# Dim deg1 As Double, min1 As Double, sec1 As Double, deg2 As Double, min2 As Double, sec2 As Double Private Sub Command1_Click() Dim x_ As Double, t#, eta#, N#, W#, k1#, k2#, ik1%, ik2%, dh% deg1 = Val min1 = Val sec1 = Val deg2 = Val min2 = Val sec2 = Val l_ = (deg1 * 3600 + min1 * 60 + sec1) / 206265 b_ = (deg2 * 3600 + min2 * 60 + sec2) / 206265 dh = Val k1 = ((l_ * 180 / + 3) / 6) k2 = (l_ * 180 / / 3) ik1 = Round(k1, 0) ik2 = Round(k2, 0) If dh = 6 Then l0 = 6 * ik1 - 3 Else

Gauss型积分公式

Gauss型积分公式

摘要 求函数在给定区间上的定积分,在微积分学中已给出了许多计算方法,但是,在实际问题计算中,往往仅给出函数在一些离散点的值,它的解析表达式没有明显的给出,或者,虽然给出解析表达式,但却很难求得其原函数。这时我们可以通过数值方法求出函数积分的近似值。 当然再用近似值代替真实值时,误差精度是我们需要考虑因素,但是除了误差精度以外,还可以用代数精度来判断其精度的高低。已知n+1点的Newton-Cotes型积分公式,当n为奇数时,其代数精度为n;当n 为偶数时,其代数精度达到n+1。若对随机选取的n+1个节点作插值型积分公式也仅有n次代数精度。 如何选取适当的节点,能使代数精度提高?Gauss型积分公式可是实现这一点,但是Gauss型求积公式,需要被积函数满足的条件是正交,这一条件比较苛刻。因此本实验将针对三种常用的Gauss型积分公式进行讨论并编程实现。 关键词:Newton-Cotes型积分公式正交多项式代数精度

1、实验目的 1)通过本次实验体会并学习Gauss型积分公式,在解决如何取节点能提 高代数精度这一问题中的思想方法。 2)通过对Gauss型积分公式的三种常见类型进行编程实现,提高自己的 编程能力。 3)用实验报告的形式展现,提高自己在写论文方面的能力。 2、算法流程 下面介绍三种常见的Gauss型积分公式 1)高斯-勒让德(Gauss-Legendre)积分公式 勒让德(Legendre)多项式 如下定义的多项式 称作勒让德多项式。由于是次多项式,所以是n次多项式,其最高次幂的系数与多项式 的系数相同。也就是说n次勒让德多项式具有正交性即勒让德多项式是在上带的n次正交多项式,而且 这时Gauss型积分公式的节点就取为上述多项式的零点,相应的Gauss型积分公式为 此积分公式即成为高斯-勒让德积分公式。 其中Gauss-Legendre求积公式的系数 1

高斯投影正算

高斯投影正、反算代码 //高斯投影正、反算 //////6度带宽 54年北京坐标系 //高斯投影由经纬度(Unit:DD)反算大地坐标(含带号,Unit:Metres) void GaussProjCal(double longitude, double latitude, double *X, double *Y) { int ProjNo=0; int ZoneWide; ////带宽 double longitude1,latitude1, longitude0,latitude0, X0,Y0, xval,yval; double a,f, e2,ee, NN, T,C,A, M, iPI; iPI = 0.0174532925199433; ////3.1415926535898/180.0; ZoneWide = 6; ////6度带宽 a=6378245.0; f=1.0/298.3; //54年北京坐标系参数 ////a=6378140.0; f=1/298.257; //80年西安坐标系参数 ProjNo = (int)(longitude / ZoneWide) ; longitude0 = ProjNo * ZoneWide + ZoneWide / 2; longitude0 = longitude0 * iPI ; latitude0=0; longitude1 = longitude * iPI ; //经度转换为弧度 latitude1 = latitude * iPI ; //纬度转换为弧度 e2=2*f-f*f; ee=e2*(1.0-e2); NN=a/sqrt(1.0-e2*sin(latitude1)*sin(latitude1)); T=tan(latitude1)*tan(latitude1); C=ee*cos(latitude1)*cos(latitude1); A=(longitude1-longitude0)*cos(latitude1); M=a*((1-e2/4-3*e2*e2/64-5*e2*e2*e2/256)*latitude1-(3*e2/8+3*e2*e2 /32+45*e2*e2 *e2/1024)*sin(2*latitude1)

高斯平面直角坐标与大地坐标转换

高斯平面直角坐标系与大地坐标系 1 高斯投影坐标正算公式 (1)高斯投影正算:已知椭球面上某点的大地坐标()B L ,,求该点在高斯投影平面上的直角坐标()y x ,,即()),(,y x B L ?的坐标变换。 (2)投影变换必须满足的条件 ● 中央子午线投影后为直线; ● 中央子午线投影后长度不变; ● 投影具有正形性质,即正形投影条件。 (3)投影过程 在椭球面上有对称于中央子午线的两点1P 与2P ,它们的大地坐标分别为(B L ,)及(B l ,),式中l 为椭球面上P 点的经度与中央子午线)(0L 的经度差:0L L l -=, P 点在中央子午线之东, l 为正,在西则为负,则投影后的平面坐标一定为),(1y x P '与),(2y x P -'。 (4)计算公式 ??? ? ??? ''+-''+''+-''+''''=''+-''+''''+ =54255 32234223422)185(cos 120)1(6cos )95(cos sin 2sin 2l t t B N l t B N l B N y l t B B N l B N X x ρηρρηρρ 当要求转换精度精确至0、OOlm 时,用下式计算: ?????? ???????''-++-' '+''+-''+''''= ''+-' '+''++-''+''''+ =52224255 3223364256 44223422)5814185(cos 720)1(cos 6cos )5861(cos sin 720)495(cos sin 24sin 2l t t t B N l t B N l B N y l t t B B N l t B B N l B N X x ηηρηρρρηηρρ 2 高斯投影坐标反算公式 (1)高斯投影反算:已知某点的高斯投影平面上直角坐标()y x ,,求该点在椭球面上的大地坐标()B L ,,即()),(,B L y x ?的坐标变换。 (2)投影变换必须满足的条件 ● x 坐标轴投影成中央子午线,就是投影的对称轴; ● x 轴上的长度投影保持不变; ● 投影具有正形性质,即正形投影条件。 (3)投影过程 根据x 计算纵坐标在椭球面上的投影的底点纬度f B ,接着按f B 计算(B B f -)及经差l ,最后得到)(B B B B f f --=、l L L +=0。

高斯投影正反算——包括3度和6度带的选择

// guass coordinateDlg.cpp : implementation file // #include "stdafx.h" #include "guass coordinate.h" #include "guass coordinateDlg.h" #include "math.h" #ifdef _DEBUG #define new DEBUG_NEW #undef THIS_FILE static char THIS_FILE[] = __FILE__; #endif ///////////////////////////////////////////////////////////////////////////// // CAboutDlg dialog used for App About class CAboutDlg : public CDialog { public: CAboutDlg(); // Dialog Data //{{AFX_DATA(CAboutDlg) enum { IDD = IDD_ABOUTBOX }; //}}AFX_DATA // ClassWizard generated virtual function overrides //{{AFX_VIRTUAL(CAboutDlg) protected: virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support //}}AFX_VIRTUAL // Implementation protected: //{{AFX_MSG(CAboutDlg) //}}AFX_MSG DECLARE_MESSAGE_MAP() }; CAboutDlg::CAboutDlg() : CDialog(CAboutDlg::IDD) { //{{AFX_DATA_INIT(CAboutDlg) //}}AFX_DATA_INIT }

相关文档
最新文档