八年级数学选择方案问题三

合集下载

人教版数学八年级下册19.3《课题学习:选择方案》教案

人教版数学八年级下册19.3《课题学习:选择方案》教案
-掌握线性规划的应用:强调线性规划在实际问题中的建模方法,以及如何运用线性规划求解最优解。
-方案比较与决策:教授学生如何从多个方案中通过比较、分析,做出合理决策。
举例:
在教学过程中,以实例1和实例2为例,详细讲解如何根据实际问题建立数学模型,运用线性规划求解最优解,并对比不同方案,做出最佳选择。
2.教学难点
3.培养学生合作交流、共同探讨问题的习惯,提升团队协作和沟通表达能力。
4.引导学生从多角度思考问题,培养创新意识和批判性思维。
5.培养学生具备良好的数学思维习惯,形成严谨、精确的数学解题风格。
三、教学难点与重点
1.教学重点
-理解选择方案的基本概念:重点讲解选择方案的定义、目的和应用场景,通过具体实例使学生明确选择方案的核心思想。
-针对难点2,采用图形法和代数法相结合的方式,简化求解过程,使学生易于理解和掌握。
-针对难点3,设计课堂讨论环节,让学生分组讨论,共同分析不同方案的优缺点,培养学生分析和决策能力。
在教学过程中,重点关注学生掌握核心知识,突破难点,确保学生能够理解并运用所学知识解决实际问题。
四、教学流程
(一)导入新课(用时5分钟)
此外,我还发现学生在成果展示环节表现得有些紧张,这可能是因为他们对所学知识不够自信。为了提高学生的自信心,我计划在以后的课堂中,多给予学生鼓励和表扬,让他们在轻松愉快的氛围中学习。
1.加强对基础知识的复习,提高学生的理解能力。
2.注重培养学生的独立思考能力,避免过分依赖他人。
3.给予学生更多的鼓励和表扬,提高他们的自信心。
本节课将围绕以下案例进行教学:
-实例1:两个工厂生产同一种产品,如何分配生产任务使得总利润最大?
-实例2:某公司计划生产两种产品,如何在资源有限的情况下安排生产,使得总收益最大?

【同步作业】人教版 八年级下册数学19.3 课题学习 选择方案(含答案)

【同步作业】人教版 八年级下册数学19.3 课题学习 选择方案(含答案)

19.3 课题学习选择方案基础知识:1、某地电话拨号入网有两种收费方式:①计时制:0.05元/分;②包月制:50元/月.此外,每一种上网方式都得加收通信费0.02元/分.某用户估计一个月上网时间为20小时,你认为采用哪种收费方式较为合算().A.计时制B.包月制C.两种一样 D.不确定2、小静准备到甲或乙商场购买一些商品,两商场同种商品的标价相同,而各自推出不同的优惠方案:在甲商场累计购买满一定数额a元后,再购买的商品按原价的90%收费;在乙商场累计购买50元商品后,再购买的商品按原价的95%收费.若累计购物x元,当x>a时,在甲商场需付钱数yA=0.9x+10,当x>50时,在乙商场需付钱数为yB.下列说法:①yB=0.95x+2.5;②a=100;③当累计购物大于50元时,选择乙商场一定优惠些;④当累计购物超过150元时,选择甲商场一定优惠些.其中正确的说法是().A.①②③④ B.①③④ C.①②④ D.①②③3、如图是甲、乙两家商店销售同一种产品的销售价y(元)与销售量x(件)之间的函数图象.下列说法:①售2件时甲、乙两家售价一样;②买1件时买乙家的合算;③买3件时买甲家的合算;④买1件时,售价约为3元,其中正确的说法有.(填序号)4、如图,有一个装有进、出水管的容器,单位时间内进、出的水量都是一定的,已知容器的容积为600L,又知单开进水管10min可以把容器注满,若同时打开进、出水管,20min可以把满容器的水放完,现已知水池内有水200L,先打开进水管5min,再打开出水管,两管同时开放,直到把容器中的水放完,则正确反映这一过程中容器的水量Q(L)随时间t(min)变化的图像是:()A. B. C. D.5、我区某储运部紧急调拨一批物资,调进物资共用4小时,调进物资2小时后开始调出物资(调进物资与调出物资的速度均保持不变).储运部库存物资S(吨)与时间t(小时)之间的函数关系如图所示,这批物资从开始调进到全部调出需要的时间是()A.4小时B.4.4小时C.4.8小时D.5小时6、关于x的一次函数)2()73(-+-=axay的图像与y轴的交点在x轴的上方,则y随x的增大而减小,则a的取值范围是。

2023-2024学年人教版 八年级数学下册19.3课题学习 选择方案 作业课件

2023-2024学年人教版 八年级数学下册19.3课题学习 选择方案 作业课件

30k+b=1200,
k=20,
解析式中,得 b=600,
解得 b=600, 即方案二中 y 关于 x 的函数解析式为
y=20x+600
(3)由两方案的图象交点为(30,1200)可知:若销售量 x 的取值范围为 0<x<30,
则选择方案二,若销售量 x=30,则选择两个方案都可以,若销售量 x 的取值范围为
(1)租用甲、乙两种客车每辆各多少元? (2)若学校计划租用8辆客车,怎样租车可使总费用最少?
解:(1)设租用甲型客车每辆 x 元,租用乙型客车每辆 y 元,根据题意可得
x+y=500,
x=200,
2x+3y=1300, 解得 y=300, ∴租用甲种客车每辆 200 元,租用乙种客车每辆 300
x>30,则选择方案一
知识点2:“一次函数增减性求最值”类方案选择问题 3.(2023·成都)2023年7月28日至8月8日,第31届世界大学生运动会在成都举行, “当好东道主,热情迎嘉宾”,成都某知名小吃店计划购买A,B两种食材制作小 吃.已知购买1千克A种食材和1千克B种食材共需68元,购买5千克A种食材和3千克 B种食材共需280元. (1)求A,B两种食材的单价; (2)该小吃店计划购买两种食材共36千克,其中购买A种食材千克数不少于B种食 材千克数的2倍,当A,B两种食材分别购买多少千克时,总费用最少?并求出最少 总费用.
解:(1)设A厂运送水泥x吨,则B厂运送水泥(x+20)吨,根据题意得x+x+20= 520,解得x=250,此时x+20=270,答:A厂运送水泥250吨,B厂运送水泥270吨
(2)设从A厂运往甲地水泥a吨,则A厂运往乙地水泥(250-a)吨,B厂运往甲地水 泥(240-a)吨,B厂运往乙地水泥280-(250-a)=(30+a)吨,由题意得w=40a+ 35(250-a)+28(240-a)+25 (a+30) =40a+8750-35a+6720-28a+25a+750= 2a+16220,∵B厂运往甲地的水泥最多150吨,∴240-a≤150,解得a≥90,∵2>0, ∴w随a的增大而增大,∴当a=90时,W最低=2×90+16220=16400(元),∴总运 费最低运输方案为A厂运往甲地水泥90吨,运往乙地水泥160吨;B厂运往甲地水泥 150吨,B厂运往乙地水泥120吨,运费总最低为16400元

八年级数学下册选择方案练习题及解析

八年级数学下册选择方案练习题及解析

第十九章函数y1>y2.需在 x > (7)观察图像可知:①当上网时间__________时,选择方式A最省钱.②当上网时间__________时,选择方式B最省钱.③当上网时间_________时,选择方式C最省钱.2.自主归纳最优方案跟________的范围有关,可以通过解不等式或画函数图象确定_______的范围.三、自学自测1.某地电话拨号入网有两种收费方式:①计时制:0.05元/分;②包月制:50元/月.此外,每一种上网方式都得加收通信费0.02元/分.某用户估计一个月上网时间为1000分钟,你认为采用哪种收费方式较为合算()A.计时制 B.包月制 C.两种一样 D.不确定2.如图,l1、l2分别表示一种白炽灯和一种节能灯的费用y (费用=灯的售价+电费,单位:元)与照明时间x(时)的函数图象,两种灯的使用寿命都是6000时,照明效果一样.(1)观察图象,你能得到哪些信息?(2)你能给买灯的小明同学提供一个参考意见吗?(3) 8000时,请你帮他设计最省钱的用灯方案.四、我的疑惑______________________________________________________________________________________________________________________________________________________一、要点探究探究点:选择方案典例精析例某工程机械厂根据市场要求,计划生产A、B两种型号的大型挖掘机共100台,该厂所筹生产资金不少于22400万元,但不超过22500万元,且所筹资金全部用于生产这两种型号的挖掘机,所生产的这两种型号的挖掘机可全部售出,此两种型号挖掘机的生产成本和售价如下表所示:型号 A B成本(万元/台)200 240售价(万元/台)250 300课堂探究教学备注配套PPT讲授1.情景引入(见幻灯片3)2.探究点1新知讲授(见幻灯片6-29)2.探究点1新知讲授(见幻灯片6-29)(1)该厂对这两种型号挖掘机有几种生产方案?Array(2)该厂如何生产获得最大利润?(3)根据市场调查,每台B型挖掘机的售价不会改变,每台A型挖掘机的售价将会提高m万元(m>0),该厂如何生产可以获得最大利润?(注:利润=售价-成本)分析:可用信息:①A、B两种型号的挖掘机共_________台;②所筹生产资金不少于22400万元,但不超过22500万元;③所筹资金全部用于生产,两种型号的挖掘机可全部售出.1.某移动公司对于移动话费推出两种收费方式:A方案:每月收取基本月租费15元,另收通话费为0.2元/分;B方案:零月租费,通话费为0.3元/分.(1)试写出A,B两种方案所付话费y(元)与通话时间t(分钟)之间的函数关系式;(2)在同一坐标系画出这两个函数的图象,并指出哪种付费方式合算?2.抗旱救灾行动中,江津、白沙两地要向中山和广兴每天输送饮用水,其中江津每天输出60车饮用水,白沙每天输出40车饮用水,供给中山和广兴各50车饮用水.由于距离不同,江津到中山需600元/车,到广兴需700元/车;白沙到中山需500元/车,到广兴需650元/车.请你设计一个调运方案使总运费最低?此时总运费为多少元?二、课堂小结当堂检测1.某单位准备和一个体车主或一国营出租车公司中的一家签订月租车合同,设汽车每月行驶x 千米,个体车主收费y1元,国营出租车公司收费为y2元,观察下列图象可知,当x________时,选用个体车较合算.。

人教版数学八年级下册《课题学习:选择方案》教学课件

人教版数学八年级下册《课题学习:选择方案》教学课件

某游泳馆普通票价20元/张,暑假为了促销,新推出两种优惠 卡: ①金卡售价600元/张,每次凭卡不再收费. ②银卡售价150元/张,每次凭卡另收10元.
暑假普通票正常出售,两种优惠卡仅限暑假使用,不限次数.设游泳x 次时,所需总费用为y元
(1)分别写出选择银卡、普通票消费
时y与x之间的函数关系式;
y1= y2
(2)若使用方式A省钱,它的含义是什么?
y1< y2
(3)若使用方式B省钱,它的含义是什么?
y1> y2
数形结合
从“形”上解
y1 y2
55
由图像可知: 1、当0 ≤ x<55时,
y1 <y2, 选择方式A 2、当x=55时,
y1=y2, 选择方式A或B 3、当x>55时, y1 > y2, 选择方式B
说法正确的是: (1) (2) (3) . 乙 y/元 甲
4 3 2 1
0 1 234
x/件
课堂小结:
课后 练习:
1.小明计划给朋友快递一部分物品,经了解有甲、乙 两家快递公司比较合适. 甲公司表示:快递物品不超过1千克的,按每千克22元收 费;超过1千克,超过的部分按每千克15元收费. 乙公司表示:按每千克16元收费,另加包装费3元.设小 明快递物品x千克(x为整数). (1)请分别写出甲、乙两家快递公司快递该物品的费用y( 元)与x(千克)之间的函数关系式; (2)小明选择哪家快递公司更省钱?
包时上网时 间/h
30
25
120
不限时
超时费/(元 /min)
0.05
问题1: 上网费用和什么有关? 一定会有超时费吗? 问题2: 如何表示两种收费方式的费用?
在选择方案时,涉及到变量的问题常用到函数。

最新人教版八年级下册数学 课题学习 选择方案 同步练习(含解析)

最新人教版八年级下册数学  课题学习 选择方案 同步练习(含解析)

课题学习选择方案同步练习一、选择题1.6月份以来,猪肉价格一路上涨.为平抑猪肉价格,某省积极组织货源,计划由A、B、C三市分别组织10辆、10辆和8辆运输车向D、E两市运送猪肉,现决定派往D、E两地的运输车分别是18辆、10辆,已知一辆运输车从A市到D、E两市的运费分别是200元和800元,从B市到D、E两市的运费分别是300元和700元,从C市到D、E两市的运费分别是400元和500元.若设从A、B两市都派x辆车到D市,则当这28辆运输车全部派出时,总运费W(元)的最小值和最大值分别是()A. 8000,13200B. 9000,10000C. 10000,13200D. 13200,154002.春节期间,某批发商欲将一批海产品由A地运往B地,汽车货运公司和铁路货运公司均开放海产品的运输业务,两货运公司的收费项目及收费标准如下表所示.已知运输路程为120千米,汽车和火车的速度分别为60千米/小时,100千米/小时,请你选择一种交通工具()火车 1.8 5 0 1600 A. 当运输货物重量为60吨,选择汽车B. 当运输货物重量大于50吨,选择汽车C. 当运输货物重量小于50吨,选择火车D. 当运输货物重量大于50吨,选择火车3.某公司准备与汽车租凭公司签订租车合同,以每月用车路程xkm 计算,甲汽车租凭公司每月收取的租赁费为y1元,乙汽车租凭公司每月收取的租赁费为y2元,若y1、y2与x之间的函数关系如图3所示,其中x=0对应的函数值为月固定租赁费,则下列判断错误的是()A. 当月用车路程为2000km时,两家汽车租赁公司租赁费用相同B. 当月用车路程为2300km时,租赁乙汽车租赁公车比较合算C. 除去月固定租赁费,甲租赁公司每公里收取的费用比乙租赁公司多D. 甲租赁公司平均每公里收到的费用比乙租赁公司少4.一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠:会员年卡类型办卡费用(元) 每次游泳收费(元)A类50 25B类200 20C类400 15例如,购买A类会员年卡,一年内游泳20次,消费50+25×20=550元,若一年内在该游泳馆游泳的次数介于45~55次之间,则最省钱的方式为( )A. 购买A类会员年卡B. 购买B类会员年卡C. 购买C类会员年卡D. 不购买会员年卡二、填空题5.小明家准备春节前举行80人的聚餐,需要去某餐馆订餐.据了解餐馆有10人坐和8人坐两种餐桌,要使所订的每个餐桌刚好坐满,则订餐方案共有_____种.6.某电信公司推出了A,B两种手机上网套餐,每种套餐一个月的手机上网费用y(元)与上网时间x(分钟)之间的关系如图,如果顾客一个月上网300分钟,那么选择套餐_______(填A或B)产生的费用比较高,高__________ 元。

人教版数学八年级下册《19.3 课题学习——选择方案》教案

人教版数学八年级下册《19.3 课题学习——选择方案》教案

人教版数学八年级下册《19.3 课题学习——选择方案》教案一. 教材分析人教版数学八年级下册《19.3 课题学习——选择方案》这一节主要让学生学会如何从多个方案中选择最优方案。

通过引入实际问题,让学生运用概率知识、列举法等方法,解决实际选择问题。

教材以案例的形式呈现,让学生在解决问题的过程中,掌握选择方案的方法和技巧。

二. 学情分析学生在学习本节内容前,已经掌握了概率基础知识,能够理解并运用列举法。

但如何在实际问题中灵活运用这些知识,选择最优方案,对学生来说还较为困难。

因此,在教学过程中,教师需要引导学生将所学知识与实际问题相结合,提高学生的解决问题的能力。

三. 教学目标1.让学生理解选择方案的概念,掌握选择方案的方法和技巧。

2.培养学生运用概率知识、列举法解决实际问题的能力。

3.培养学生独立思考、合作交流的能力。

四. 教学重难点1.重点:选择方案的方法和技巧。

2.难点:如何将所学知识应用于实际问题中,灵活选择最优方案。

五. 教学方法1.案例教学法:通过引入实际问题,让学生在解决问题的过程中掌握选择方案的方法。

2.引导发现法:教师引导学生发现问题的解决方法,培养学生的独立思考能力。

3.合作交流法:分组讨论,让学生在合作中发现问题、解决问题,提高学生的沟通能力。

六. 教学准备1.准备相关案例材料,用于引导学生解决实际问题。

2.准备多媒体教学设备,用于展示案例和引导学生思考。

七. 教学过程1.导入(5分钟)利用多媒体展示一个实际问题:某商场举行抽奖活动,奖品有电视机、洗衣机、电风扇和玩具。

奖品设置如下:一等奖:电视机,概率为1/10;二等奖:洗衣机,概率为2/10;三等奖:电风扇,概率为3/10;四等奖:玩具,概率为4/10。

提问:如果你参加这次抽奖活动,你希望获得哪个奖项?为什么?2.呈现(10分钟)引导学生分析问题,让学生认识到选择最优方案的重要性。

呈现教材中的案例,让学生了解选择方案的方法和技巧。

最新人教版八年级下册数学试题:课题学习 选择方案 习题

最新人教版八年级下册数学试题:课题学习 选择方案 习题

课题学习选择方案【问题3 怎样调水】从A,B两水库向甲、乙两地调水,其中甲地需要水15万吨,乙地需要水13万吨,A,B两水库各可调出水14万吨。

从A地到甲地50千米,到乙地30千米;从B地到甲地60千米,到乙地45千米。

设计一个调运方案使水的调运量(单位:万吨•千米)尽可能小.【课堂操练】1.A城有肥料200吨,B城有肥料300吨,现要把这些肥料全部运往C,D两乡。

从A城往C,D两乡运肥料的费用分别是每吨20元和25元;从B城往C,D两乡运肥料的费用分别为15元和24元,现C 乡需要肥料240吨,D乡需要肥料260吨,怎样调运可使总运费最少?2.已知雅美服装厂现有A种布料70米,B种布料52米,现计划用这两种布料生产M,N两种型号的时装共80套。

已知做一套M型号的时装需要A种布料0.6米,B种布料0.9米,可获利润45元;做一套N型号的时装需要A种布料1.1米,B种布料0.4米,可获利润50元。

若设生产N型号的时装套数为x,用这批布料生产这两种型号的时装所获总利润为y元。

(1)求y与x的函数关系式,并求出自变量的取值范围;(2)雅美服装厂在生产这批服装中,当N型号的时装为多少套时,所获利润最大?最大利润是多少?3.扬州火车货运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往广州,这列货车可挂A、B两种不同规格的货厢50节,已知用一节A型货厢的运费是0.5吨万元,用一节B型货厢的运费是0.8万元。

(1)设运输这批货物的总运费为y (万元),用A型货的节数为x (节),试写出y与x之间的函数关系式;(2) 已知甲种货物35吨和乙种货物15吨,可装满一节A型货厢,甲种货物25吨和乙种货物35吨可装满一节B型货厢,按此要求安排A、B两种货厢的节数,有哪几种运输方案?请你设计出来。

(3)利用函数的性质说明,在这些方案中,哪种方案总运费最少?最少运费是多少万元?4.某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品,共50件。

八年级数学下册(人教版)19.3课题学习选择方案说课稿

八年级数学下册(人教版)19.3课题学习选择方案说课稿
2.情境教学:将实际生活情境融入教学中,使学生能够更好地理解数学知识在实际生活中的应用,提高学生运用所学知识解决实际问题的能力。
3.合作学习:通过小组合作、讨论等形式,促进学生之间的互动与交流,培养学生的团队协作能力和沟通能力,同时提高学生的自主学习能力。
(二)媒体资源
我将使用以下教具、多媒体资源和技术工具来辅助教学:
教学内容主要包括以下知识点:
1.认识选择方案,理解其在生活中的实际意义。
2.学会运用概率、统计等知识对选择方案进行量化分析。
3.掌握各种选择方案的评价方法,如期望值法、决策树法等。
4.能够根据实际问题,运用所学方法做出最佳选择。
(二)教学目标
1.知识与技能目标
(1)理解选择方案的概念,知道选择方案在实际生活中的应用。
5.结合学生的兴趣和特长,设计富有挑战性的拓展任务,激发学生的探究欲望。
三、教学方法与手段
(一)教学策略ቤተ መጻሕፍቲ ባይዱ
我将采用的主要教学方法包括启发式教学、情境教学和合作学习。选择这些方法的理论依据如下:
1.启发式教学:这种方法能够激发学生的思维,引导他们主动探索问题,培养学生独立思考的能力。通过设置问题情境,让学生在探究中学习,有助于提高他们的学习兴趣和动机。
1.教具:实物模型、卡片、图表等,用于直观展示问题情境,帮助学生更好地理解抽象的数学概念。
2.多媒体资源:PPT、教学视频、网络资源等,丰富教学内容,提高学生的学习兴趣。
3.技术工具:投影仪、计算机、互动白板等,实现课堂信息化教学,提高教学效果。
这些媒体资源在教学中的作用主要有:提供丰富的教学情境,激发学生的学习兴趣;直观展示抽象概念,降低学生的学习难度;拓展教学时空,提高教学效率。
3.情感态度与价值观目标

八年级数学(下)第十九章《一次函数——选择方案》同步练习题(含答案)

八年级数学(下)第十九章《一次函数——选择方案》同步练习题(含答案)

八年级数学(下)第十九章《一次函数——选择方案》同步练习题(含答案)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.若等腰△ABC的周长是50 cm,底边长为x cm,一腰长为y cm,则y与x的函数关系式及自变量x的取值范围是A.y=50-2x(0<x<50)B.y=50-2x(0<x<25)C.y=12(50-2x)(0<x<50)D.y=12(50-x)(0<x<25)【答案】D【解析】由题意得2y+x=50,所以y=12(50-x),且025x<<,故选D.2.在一定范围内,某种产品的购买量y吨与单价x元之间满足一次函数关系,若购买1000吨,每吨为800元;购买2000吨,每吨为700元,一客户购买400吨单价应该是A.820元B.840元C.860元D.880元【答案】C【解析】设购买量y吨与单价x元之间的一次函数关系式为y=kx+b,由题意,得1000800 2000700k bk b=+⎧⎨=+⎩,解得109000kb=-⎧⎨=⎩,解析式为:y=-10x+9000,当y=400时,400=-10x+9000,860x=,故选C.3.春节期间,某批发商欲将一批海产品由A地运往B地,汽车货运公司和铁路货运公司均开放海产品的运输业务,两货运公司的收费项目及收费标准如下表所示.已知运输路程为120千米,汽车和火车的速度分别为60千米/小时,100千米/小时,请你选择一种交通工具A.当运输货物重量为60吨,选择汽车B.当运输货物重量大于50吨,选择汽车C .当运输货物重量小于50吨,选择火车D .当运输货物重量大于50吨,选择火车 【答案】D【解析】(1)y 1=2×120x +5×(120÷60)x +200=250x +200, y 2=1.8×120x +5×(120÷100)x +1600=222x +1600; (2)若y 1=y 2,则x =50,∴当海产品不少于30吨但不足50吨时,选择汽车货运公司合算;当海产品恰好是50吨时选择两家公司都一样,没有区别;当海产品超过50吨时选择铁路货运公司费用节省一些,故选D .4.学校春季运动会期间,负责发放奖品的张也同学,在发放运动鞋(奖品)时,对运动鞋的鞋码统计如下表:如果获奖运动员李伟领取的奖品是43号(原鞋码)的运动鞋,则这双运动鞋的新鞋码是A .270B .255C .260D .265【答案】D【解析】由题中的表格知,y 是x 的一次函数,可设y 与x 的关系为y =kx +b , 由题意得22535k 24539b k b =+⎧⎨=+⎩,解得550k b =⎧⎨=⎩,∴y 与x 之间的函数关系式为y =5x +50,当x =43时,y =265,故选D .5.如图,小明从A 地前往B 地,到达后立刻返回,他与A 地的距离(y 千米)和所用时间(x 小时)之间的函数关系如图所示,则小明出发6小时后距A 地A .120千米B .160千米C .180千米D .200千米【答案】B【解析】设当46x ≤≤时,y 与x 的函数关系式为y kx b =+,4240100k b k b +=⎧⎨+=⎩,得40400k b =-⎧⎨=⎩, 即当46x ≤≤时,y 与x 的函数关系式为40400y x =-+, 当6x =时,406400160y =-⨯+=, 即小明出发6小时后距A 地160千米,故选B . 二、填空题:请将答案填在题中横线上.6.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400 m ,先到终点的人原地休息.已知甲先出发4 min ,在整个步行过程中,甲、乙两人的距离y (m )与甲出发的时间t (min )之间的关系如图所示,以下结论:①甲步行的速度为60 m /min ;②乙走完全程用了32 min ;③乙用16 min 追上甲;④乙到达终点时,甲离终点还有300 m ,其中正确的结论有___________(填序号).【答案】①【解析】由图可得,甲步行的速度为:240÷4=60米/分,故①正确; 乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故②错误; 乙追上甲用的时间为:16-4=12(分钟),故③错误;乙到达终点时,甲离终点距离是:2400-(4+30)×60=360米,故④错误,故答案为:①. 7.某体育用品商场为推销某一品牌运动服,先做了市场调查,得到数据如下表:则P 与x 的函数关系式为___________,当卖出价格为60元时,销售量为___________件. 【答案】P =-10x +1000;400件【解析】(1)P 与x 成一次函数关系,设函数关系式为P =kx +b , 则5005049051k b k b=+⎧⎨=+⎩,解得101000k b =-=⎧⎨⎩ , ∴P =−10x +1000,经检验可知:当x =52,P =480,当x =53,P =470时也适合这一关系式, ∴所求的函数关系为P =−10x +1000.(2)当x=60时,P=−10×60+1000=400,故答案为:P=−10x+1000;400.三、解答题:解答应写出文字说明、证明过程或演算步骤.8.某移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元月租费,然后每通话1分钟,再付话费0.4元;“神州行”不缴月租费,每通话1 min付费0.6元.若一个月内通话x min,两种方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的函数解析式;(2)一个月内通话多少分钟,两种通讯业务费用相同;(3)某人估计一个月内通话300 min,应选择哪种移动通讯业务合算些?【解析】(1)y1=50+0.4x,y2=0.6x.(2)令y1=y2,则50+0.4x=0.6x,解之,得x=250.所以通话250分钟两种费用相同.(3)令x=300,则y1=50+0.4×300=170,y2=0.6×300=180,所以选择全球通合算.9.甲、乙两个厂家生产的办公桌和办公椅的质量、价格一致,每张办公桌800元,每张椅子80元.甲、乙两个厂家推出各自销售的优惠方案,甲厂家:买一张桌子送三张椅子;乙厂家:桌子和椅子全部按原价8折优惠.现某公司要购买3张办公桌和若干张椅子,若购买的椅子数为x张(x≥9).(1)分别用含x的式子表示甲、乙两个厂家购买桌椅所需的金额;(2)购买的椅子至少多少张时,到乙厂家购买更划算?【解析】(1)根据甲、乙两个厂家推出各自销售的优惠方案:甲厂家所需金额为:3×800+80(x﹣9)=1680+80x;乙厂家所需金额为:(3×800+80x)×0.8=1920+64x.(2)由题意,得:1680+80x≥1920+64x,解得:x≥15.答:购买的椅子至少15张时,到乙厂家购买更划算.10.为响应绿色出行号召,越来越多市民选择租用共享单车出行,已知某共享单车公司为市民提供了手机支付和会员卡支付两种支付方式,如图描述了两种方式应支付金额y(元)与骑行时间x(时)之间的函数关系,根据图象回答下列问题:(1)求手机支付金额y (元)与骑行时间x (时)的函数关系式;(2)李老师经常骑行共享单车,请根据不同的骑行时间帮他确定选择哪种支付方式比较合算. 【解析】(1)由题意和图象可设:手机支付金额y (元)与骑行时间x (时)的函数解析式为:1y kx b =+,由图可得:0.500.5k b k b +=⎧⎨+=⎩,解得10.5k b =⎧⎨=-⎩,∴手机支付金额y (元)与骑行时间x (时)的函数解析式为:10.5y x =-.(2)由题意和图象可设会员支付y (元)与骑行时间x (时)的函数解析式为:2y ax =, 由图可得:0.75a =,由0.750.5y x y x =⎧⎨=-⎩,可得21.5x y =⎧⎨=⎩, ∴图中两函数图象的交点坐标为(2,1.5), 又∵0x >,结合图象可得:当02x <<时,李老师用“手机支付”更合算; 当0x =时,李老师选择两种支付分式花费一样多; 当2x >时,李老师选择“会员支付”更合算.11.某工厂生产某种产品,每件产品的出厂价为1000元,其原材料成本价为550元,同时在生产过程中平均每生产一件产品有10千克的废渣产生.为达到国家环要求,需要对废渣进行处理,现有两种方案可供选择:方案一:由工厂对废渣直接进行处理,每处理10千克废渣所用的原料费为50元,并且每月设备维护及损耗费为2000元.方案二:工厂将废渣集中到废渣处理厂统一处理,每处理10千克废渣需付100元的处理费. (1)设工厂每月生产x 件产品.用方案一处理废渣时,每月利润为__________元;用方案二处理废渣时,每月利润为__________元(利润=总收入-总支出);(2)若每月生产30件和60件,用方案一和方案二处理废渣时,每月利润分别为多少元? (3)如何根据月生产量选择处理方案,既可达到环保要求又最划算?【解析】(1)由题意可得,用方案一处理废渣时,每月的利润为:x(1000-550)-50x-2000=400x-2000;用方案二处理废渣时,每月利润为:x(1000-550)-100x=350x,故答案为:400x-2000;350x.(2)当x=30时,用方案一处理废渣时,每月的利润为:400×30-2000=10000元;用方案二处理废渣时,每月利润为:350×30=10500元;x=60时,用方案一处理废渣时,每月的利润为:400×60-2000=22000;用方案二处理废渣时,每月利润为:350×60=21000.(3)令400x-2000=350x,解得x=40,即当生产产品数量少于40时,选择方案二;当生产产量大于40时,选择方案一.12.水果商贩小李去水果批发市场采购被誉为“果中之王”的泰顺猕猴桃,他了解到猕猴桃有精品盒与普通盒两种包装,精品盒的批发价格每盒60元,普通盒的批发价格每盒40元,现小李购得精品盒与普通盒共60盒,费用共为3100元。

新人教版数学八年级下册第十九章第三节选择方案课时练习

新人教版数学八年级下册第十九章第三节选择方案课时练习

新人教版数学八年级下册第十九章第三节选择方案课时练习 班级 姓名一.填空题 1.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y (米)与乙出发的时间t (秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是( )A. ①②③B. ①②C. ①③D. ②③2. 李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米,要围成的菜园是如图所示的矩形ABCD ,设BC 的边长为x 米,AB 边的长为y 米,则y 与x 之间的函数关系式是( )A.y=-2x+24(0<x <12)B. y=-21x+12(0<x <24) C. y=2x-24(0<x <12) D. y=21x-12(0<x <24) 3. 有甲、乙两个大小不同的水桶,容量分别为x 、y 公升,且已各装一些水.若将甲中的水全倒入乙后,乙只可再装20公升的水;若将乙中的水倒入甲,装满甲水桶后,乙还剩10公升的水,则x 、y 的关系式是( )A.y=20-x B .y=x+10 C .y=x+20 D .y=x+304.某蓄水池的横断面示意图如图所示,分深水区和浅水区,如果这个注满水的蓄水池以固定的流量把水全部放出,下面的图象能大致表示水的深度h 和放水时间t 之间的关系的是( )A.B.C.D.5. 甲、乙、丙、丁四人一起到冰店买红豆与桂圆两种棒冰.四人购买的数量及总价分别如表所示.若其中一人的总价算错了,则此人是谁()甲乙丙丁红豆棒冰(枝) 18 15 24 27桂圆棒冰(枝) 30 25 40 45总价(元) 396 330 528 585A.甲B.乙C.丙D.丁6. 某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,那么旅客可携带的免费行李的最大质量()A.20kg B.25kg C.28kg D.30kg7. 三军受命,我解放军各部队奋力抗战地救灾一线.现有甲、乙两支解放军小分队将救灾物资送往某重灾小镇,甲队先出发,从部队基地到小镇只有唯一通道,且路程为24km,如图是他们行走的路线关于时间的函数图象,四位同学观察此函数图象得出有关信息,其中正确的个数是()A.1B.2C.3D.48. 小敏从A地出发向B地行走,同时小聪从B地出发向A地行走,如图所示,相交于点P 的两条线段l1、l2分别表示小敏、小聪离B地的距离y(km)与已用时间x(h)之间的关系,则小敏、小聪行走的速度分别是()A.3km/h和4km/h B.3km/h和3km/hC.4km/h和4km/h D.4km/h和3km/h9. 2006年的夏天,某地旱情严重.该地10号,15号的人日均用水量的变化情况如图所示.若该地10号,15号的人均用水量分别为18千克和15千克,并一直按此趋势直线下降.当人日均用水量低于10千克时,政府将向当地居民送水.那么政府应开始送水的号数为()A.23 B.24 C.25 D.2610. 如图,l1反映了某公司的销售收入与销售量的关系,l2反映了该公司产品的销售成本与销售量的关系,当该公司盈利(收入大于成本)时,销售量()A.小于3t B.大于3t C.小于4t D.大于4t11. 甲、乙、丙、丁四人一起到冰店买红豆与桂圆两种棒冰.四人购买的数量及总价分别如表所示.若其中一人的总价算错了,则此人是谁()甲乙丙丁红豆棒冰(枝) 18 15 24 27桂圆棒冰(枝) 30 25 40 45总价(元) 396 330 528 585A.甲B.乙C.丙D.丁12. 2004年6月3日中央新闻报道,为鼓励居民节约用水,北京市将出台新的居民用水收费标准:①若每月每户居民用水不超过4立方米,则按每立方米2元计算;②若每月每户居民用水超过4立方米,则超过部分按每立方米4.5元计算(不超过部分仍按每立方米2元计算).现假设该市某户居民某月用水x立方米,水费为y元,则y与x的函数关系用图象表示正确的是()A.B.C.D.13. 汽车由重庆驶往相距400千米的成都,如果汽车的平均速度是100千米/时,那么汽车距成都的路程s(千米)与行驶时间t(小时)的函数关系用图象表示为()A.B.C.D.14. 在西部大开发中,为了改善生态环境,鄂西政府决定绿化荒地,计划第1年先植树1.5万亩,以后每年比上一年增加1万亩,结果植树总数是时间(年)的一次函数,则这个一次函数的图象是()15. 学校春季运动会期间,负责发放奖品的张也同学,在发放运动鞋(奖品)时,对运动鞋的鞋码统计如下表:如果获奖运动员李伟领取的奖品是43号(原鞋码)的运动鞋,则这双运动鞋的新鞋码是()新鞋码(y)225 245 (280)原鞋码(x)35 39 (46)A.270 B.255 C.260 D.265二.填空题16. 为迎接省运会在我市召开,市里组织了一个梯形鲜花队参加开幕式,要求共站60排,第一排40人,后面每一排都比前一排都多站一人,则每排人数y与该排排数x之间的函数关系式为__ __.(x为1≤x≤60的整数)17.如图,射线OA、BA分别表示甲、乙两人骑自行车运动过程的一次函数的图象,图中s、t分别表示行驶距离和时间,则这两人骑自行车的速度相差____km/h.18.一辆汽车在行驶过程中,路程y(千米)与时间x(小时)之间的函数关系如图所示.当0≤x≤1时,y关于x的函数解析式为y=60x,那么当1≤x≤2时,y关于x的函数解析式为____.19. 利民商店中有3种糖果,单价及重量如下表,若商店将以上糖果配成什锦糖,则这种什锦糖果的单价是每千克____元.品种水果糖花生糖软糖单价(元/千克)10 12 16重量(千克) 3 3 419.如图所示中的折线ABC为甲地向乙地打长途电话需付的电话费y(元)与通话时间t(分钟)之间的函数关系,则通话8分钟应付电话费____元.三.解答题21. 张勤同学的父母在外打工,家中只有年迈多病的奶奶.星期天早上,李老师从家中出发步行前往张勤家家访.6分钟后,张勤从家出发骑车到相距1200米的药店给奶奶买药,停留14分钟后以相同的速度按原路返回,结果与李老师同时到家.张勤家、李老师家、药店都在东西方向笔直大路上,且药店在张勤家与李老师家之间.在此过程中设李老师出发t (0≤t≤32)分钟后师生二人离张勤家的距离分别为S1、S2.S1与t之间的函数关系如图所示,请你解答下列问题:(1)李老师步行的速度为____(2)求S2与t之间的函数关系式,并在如图所示的直角坐标系中画出其函数图象;(3)张勤出发多长时间后在途中与李老师相遇?22. 某工厂计划生产A、B两种产品共50件,需购买甲、乙两种材料.生产一件A产品需甲种材料30千克、乙种材料10千克;生产一件B产品需甲、乙两种材料各20千克.经测算,购买甲、乙两种材料各1千克共需资金40元,购买甲种材料2千克和乙种材料3千克共需资金105元.(1)甲、乙两种材料每千克分别是多少元?(2)现工厂用于购买甲、乙两种材料的资金不超过38000元,且生产B产品不少于28件,问符合条件的生产方案有哪几种?(3)在(2)的条件下,若生产一件A产品需加工费200元,生产一件B产品需加工费300元,应选择哪种生产方案,使生产这50件产品的成本最低?(成本=材料费+加工费)23. 某市为了鼓励居民节约用电,采用分段计费的方法按月计算每户家庭的电费.月用电量不超过200度时,按0.55元/度计费;月用电量超过200度时,其中的200度仍按0.55元/度计费,超过部分按0.70元/度计费.设每户家庭月用电量为x度时,应交电费y元.(1)分别求出0≤x≤200和x>200时,y与x的函数表达式;(2)小明家5月份交纳电费117元,小明家这个月用电多少度?24. 某商店销售A,B两种商品,已知销售一件A种商品可获利润10元,销售一件B种商品可获利润15元.(1)该商店销售A,B两种商品共100件,获利润1350元,则A,B两种商品各销售多少件?(2)根据市场需求,该商店准备购进A,B两种商品共200件,其中B种商品的件数不多于A种商品件数的3倍.为了获得最大利润,应购进A,B两种商品各多少件?可获得最大利润为多少元?25. 在社会主义新农村建设中,衢州某乡镇决定对A、B两村之间的公路进行改造,并有甲工程队从A村向B村方向修筑,乙工程队从B村向A村方向修筑.已知甲工程队先施工3天,乙工程队再开始施工.乙工程队施工几天后因另有任务提前离开,余下的任务有甲工程队单独完成,直到公路修通.下图是甲乙两个工程队修公路的长度y(米)与施工时间x(天)之间的函数图象,请根据图象所提供的信息解答下列问题:(1)乙工程队每天修公路多少米?(2)分别求甲、乙工程队修公路的长度y(米)与施工时间x(天)之间的函数关系式.(3)若该项工程由甲、乙两工程队一直合作施工,需几天完成?参考答案与解答:一.填空题1.答案:A知识点:一次函数的图像解析:解答:甲的速度为:8÷2=4米/秒; 乙的速度为:500÷100=5米/秒; b=5×100-4×(100+2)=92米;5a-4×(a+2)=0,解得a=8,c=100+92÷4=123,∴正确的有①②③.故选A .分析:易得乙出发时,两人相距8m ,除以时间2即为甲的速度;由于出现两人距离为0的情况,那么乙的速度较快.乙100s 跑完总路程500可得乙的速度,进而求得100s 时两人相距的距离可得b 的值,同法求得两人距离为0时,相应的时间,让两人相距的距离除以甲的速度,再加上100即为c 的值.2. 答案:B.知识点:根据实际问题列一次函数表达式解析:解答:由题意得:2y+x=24,故可得:y=-21x+12(0<x <24). 故选B分析:根据题意可得2y+x=24,继而可得出y 与x 之间的函数关系式,及自变量x 的范围. 3. 答案:D知识点:根据实际问题列一次函数表达式解析:解答:设甲、乙两个水桶中已各装了m 、n 公升水,由“若将甲中的水全倒入乙后,乙只可再装20公升的水”得:y=m+n+20;由“若将乙中的水倒入甲,装满甲水桶后,乙还剩10公升的水”得:x=m+n-10.两式相减得:y-x=30,y=x+30.故选D .分析:设甲、乙两个水桶中已各装了m 、n 公升水,由题意可得:y=m+n+20,x=m+n-10.则y=x+30.4.答案:A知识点:一次函数的性质 一次函数的图像解析:解答:由图知蓄水池上宽下窄,深度h 和放水时间t 的比不一样,前者慢后者快,即前者的斜率小,后者斜率大,分析各选项知只有A 正确.B 斜率一样,C 前者斜率大,后者小,D 也是前者斜率大,后者小,因此B 、C 、D 排除.故选A .分析:由于蓄水池不规则,上面宽,下面窄,因此在相同时间内上半部分下降缓慢,图象比较平稳.下半部分下降快,图象比较陡,据此即可解答.5. 答案:D知识点:根据实际问题列一次函数表达式 一次函数的性质解析:解答:设红豆和桂圆的单价分别为x 、y ,假设甲是对的,那么有18x+30y=396即3x+5y=66,将此式代入乙,丙,丁中,我们发现乙,丙都和甲相同,因此,甲是正确的,丁是错误的.故选D .分析:题中,红豆和桂圆两种棒冰的单价是不变的,可设红豆和桂圆的单价分别为x 、y .根据甲列出方程,然后逐一把乙、丙、丁代入,即可判断.6. 答案:A知识点:根据实际问题列一次函数表达式 一次函数的性质 一次函数的图像解析:解答:设y 与x 的函数关系式为y=kx+b ,由题意可知 ⎩⎨⎧+=+=bk b k 5090030300 所以k=30,b=-600,所以函数关系式为y=30x-600,当y=0时,即30x-600=0,所以x=20.故选A .分析:根据图中数据,用待定系数法求出直线解析式,然后求y=0时,x 对应的值即可.7. 答案:D知识点:一次函数的图像解析:解答:由图可知:甲、乙的起始时间分别为0h和2h;因此甲比乙早出发2小时;在3h-4h这一小时内,甲的函数图象与x轴平行,因此在行进过程中,甲队停顿了一小时;两个函数有两个交点:①甲行驶4.5小时、乙行驶2.5小时时,两函数相交,因此乙队出发2.5小时后追上甲队;②甲行驶6小时、乙行驶4小时后,两函数相交,此时两者同时到达目的地.所以在整个行进过程中,乙队用的时间为4小时,行驶的路程为24千米,因此它的平均速度为6km/h.这四个同学的结论都正确,故选D.分析:本题主要考查的是分段函数的应用,应结合函数的图形,按不同的时间段进行逐段分析.8. 答案:D知识点:根据实际问题列一次函数表达式一次函数的性质一次函数的图像解析:解答:设小敏的速度为:m,则函数式为,y=mx+b,由已知小敏经过两点(1.6,4.8)和(2.8,0),所以得:4.8=1.6m+b,0=2.8m+b,解得:m=-4,b=11.2,小敏离B地的距离y(km)与已用时间x(h)之间的关系为:y=-4x+11.2;由实际问题得小敏的速度为4km/h.设小聪的速度为:n,则函数图象过原点则函数式为,y=nx,由已知经过点(1.6,4.8),所以得:4.8=1.6n,则n=3,即小聪的速度为3km/h.故选D.分析:由已知图象上点分别设出两人的速度,写出函数关系式,求出两人的速度.9. 答案:B知识点:根据实际问题列一次函数表达式一次函数的性质一次函数的图像解析:解答:设号数为x,用水量为y千克,直线解析式为y=kx+b.根据题意得⎩⎨⎧+=+=bk b k 15151018 解得:⎪⎩⎪⎨⎧=-=2453b k所以直线解析式为y=-53x+24, 当y=10时,有-53x+24=10,解之得x=2331, 根据实际情况,应在24号开始送水.故选B .分析:根据两天的用水量易求直线解析式,当函数值为10时自变量的值即为开始送水的号数.10. 答案:D知识点:一次函数的性质 一次函数的图像解析:解答:盈利时收入大于成本,即l 1>l 2,在图上应是l 1在上面,在交点右边的部分满足条件.故选D .分析:从图象得出,当x >4t 时,盈利收入大于成本,即l 1>l 2.11. 答案:D知识点:一次函数的性质解析:解答:设红豆和桂圆的单价分别为x 、y ,假设甲是对的,那么有18x+30y=396即3x+5y=66,将此式代入乙,丙,丁中,我们发现乙,丙都和甲相同,因此,甲是正确的,丁是错误的.故选D .分析:题中,红豆和桂圆两种棒冰的单价是不变的,可设红豆和桂圆的单价分别为x 、y .根据甲列出方程,然后逐一把乙、丙、丁代入,即可判断.12. 答案:C知识点:根据实际问题列一次函数表达式 一次函数的性质 一次函数的图像解析:解答:由题意知,y 与x 的函数关系为分段函数.y= 2x(0≤x <4)和y= 4.5x-10(x≥4). 故选C .分析:根据题意列出x 与y 之间的函数关系式,根据函数的特点解答即可.13. 答案:C知识点:根据实际问题列一次函数表达式 一次函数的性质 一次函数的图像解析:解答:根据题意可知s=400-100t (0≤t≤4),∴与坐标轴的交点坐标为(0,400),(4,0).要注意x 、y 的取值范围(0≤t≤4,0≤y≤400).故选C .分析:先根据题意列出s 、t 之间的函数关系式,再根据函数图象的性质和实际生活意义进行选择即可.14. 答案:B知识点:一次函数的性质 一次函数的图像解析:解答:根据题意:计划第1年先植树1.5万亩,即函数图象左端点为(1,1.5). 以后每年比上一年增加1万亩,即第二年的植树量为2.5万亩,即x=2时,y=2.5. 故选B .分析:根据题意先找出函数图象的最低点,再找出点(2,2.5)在图象上的函数即可.15. 答案:D知识点:根据实际问题列一次函数表达式 一次函数的性质 解析:解答:由题中的表格知,y 是x 的一次函数,可设y 与x 的关系为y=kx+b , 由题意得⎩⎨⎧+=+=bk b k 3924535225 解得⎩⎨⎧==505b k ∴y 与x 之间的函数关系式为y=5x+50,当x=43时,y=265.故选D .分析:由表格可知,给出了3对对应值,销售原鞋码每增加4,新鞋码增加20,即销售量与销售单价是一次函数关系,设y=kx+b ,把表中的任意两对值代入即可求出y 与x 的关系.二.填空题16. 答案:y=39+x知识点:根据实际问题列一次函数表达式解析:解答:根据题意得y=40+(x-1)×1=x+39(x 为1≤x≤60的整数).分析:根据“第一排40人,后面每一排都比前一排都多站一人”可列出y 与x 之间的关系式y=40+(x-1)×1,整理即可求解,注意x 的取值范围是1到60的整数.17. 答案:4知识点:一次函数的性质 一次函数的图像解析:解答:根据图象可得:∵甲行驶距离为100千米时,行驶时间为5小时,乙行驶距离为80千米时,行驶时间为5小时,∴甲的速度是:100÷5=20(千米/时);乙的速度是:80÷5=16(千米/时);故这两人骑自行车的速度相差:20-16=4(千米/时);故答案为:4.分析:根据图中信息找出甲,乙两人行驶的路程和时间,进而求出速度即可. 18. 答案:y=100x-40知识点:一次函数的性质 一次函数的图像解析:解答::∵当时0≤x≤1,y 关于x 的函数解析式为y=60x ,∴当x=1时,y=60.又∵当x=2时,y=160,当1≤x≤2时,将(1,60),(2,160)分别代入解析式y=kx+b 得,⎩⎨⎧=+=+160260b k b k解得⎩⎨⎧-==40100b k 由两点式可以得y 关于x 的函数解析式y=100x-40.分析:由图象可知在前一个小时的函数图象可以读出一个坐标点,再和另一个坐标点就可以写出函数关系式.19. 答案:13知识点:一次函数的性质解析:解答:3种糖果的总价=10×3+12×3+16×4=130,总重量=3+3+4=10,所以单价为13. 分析:单价=总价÷总重量.所以必须求出三种糖的总价格和总重量,然后进行解答.20. 答案:13知识点:根据实际问题列一次函数表达式 一次函数的性质 一次函数的图像解析:解答:由图象可得,点B (3,2.4),C (5,4.4),设射线BC 的解析式为y=kt+b (t≥3),则⎩⎨⎧=+=+4.454.23b k b k 解得⎩⎨⎧-==6.01b k 所以,射线BC 的解析式为y=t-0.6(t≥3),当t=8时,y=8-0.6=7.4元.故答案为:7.4.分析:根据图形写出点B 、C 的坐标,然后利用待定系数法求出射线BC 的解析式,再把t=8代入解析式进行计算即可得解.三.解答题21. 答案:(1)50米/分.(2)当0≤t≤6时,S 2=0,当6<t≤12时,S 2=200t-1200,当12<t≤26时,S2=1200,当26<t≤32时,S2=-200t+6400,(3)张勤出发5.2分钟后在途中与李老师相遇.知识点:一次函数的性质,一次函数的图像根据实际问题列一次函数表达式,解析:解答:(1)李老师步行的速度为1600÷32=50米/分;故答案为:50米/分.(2)根据题意得:当0≤t≤6时,S2=0,当6<t≤12时,S2=200t-1200,当12<t≤26时,S2=1200,当26<t≤32时,S2=-200t+6400,(3)S1=-50t+1600,由S 1=S 2得,200t-1200=-50t+1600,解得t=11.2,可得t-6=11.2-6=5.2(分)则张勤出发5.2分钟后在途中与李老师相遇.分析:(1)根据速度=时间路程,再结合图形,即可求出李老师步行的速度; (2)根据题意分0≤t≤6,6<t≤12,12<t≤26,26<t≤32四种情况进行讨论,即可得出S 2与t 之间的函数关系式;(3)由S 1=S 2得,200t-1200=-50t+1600,然后求出t 的值即可;22. 答案: (1)甲材料每千克15元,乙材料每千克25元;(2)共有三种方案,如下表:A (件)20 21 22 B (件) 30 29 28(3)当m=22时,总成本最低,此时W=-200×22+55000=50600元.知识点:一次函数的性质 一次函数的图像 根据实际问题列一次函数表达式 一次函数与二元一次方程(组)解析:解答::(1)设甲材料每千克x 元,乙材料每千克y 元,则 ⎩⎨⎧=+=+1053240y x y x 解得⎩⎨⎧==2515y x 所以甲材料每千克15元,乙材料每千克25元;(2)设生产A 产品m 件,生产B 产品(50-m )件,则生产这50件产品的材料费为15×30m+25×10m+15×20(50-m )+25×20(50-m )=-100m+40000,由题意:-100m+40000≤38000,解得m≥20,又∵50-m≥28,解得m≤22,∴20≤m≤22,∴m 的值为20,21,22,共有三种方案,如下表:A (件)20 21 22 B (件) 30 29 28 (3)设总生产成本为W 元,加工费为:200m+300(50-m ),则W=-100m+40000+200m+300(50-m )=-200m+55000,∵W 随m 的增大而减小,而m=20,21,22,∴当m=22时,总成本最低,此时W=-200×22+55000=50600元.分析:(1)设甲材料每千克x 元,乙材料每千克y 元,根据购买甲、乙两种材料各1千克共需资金40元,购买甲种材料2千克和乙种材料3千克共需资金105元,可列出方程组 ⎩⎨⎧=+=+1053240y x y x ,解方程组即可得到甲材料每千克15元,乙材料每千克25元; (2)设生产A 产品m 件,生产B 产品(50-m )件,先表示出生产这50件产品的材料费为15×30m+25×10m+15×20(50-m )+25×20(50-m )=-100m+40000,根据购买甲、乙两种材料的资金不超过38000元得到-100m+40000≤38000,根据生产B 产品不少于28件得到50-m≥28,然后解两个不等式求出其公共部分得到20≤m≤22,而m 为整数,则m 的值为20,21,22,易得符合条件的生产方案;(3)设总生产成本为W 元,加工费为:200m+300(50-m ),根据成本=材料费+加工费得到W=-100m+40000+200m+300(50-m )=-200m+55000,根据一次函数的性质得到W 随m 的增大而减小,然后把m=22代入计算,即可得到最低成本.23. 答案: (1)y=0.7x-30; (2)210度.知识点:一次函数的性质 根据实际问题列一次函数表达式,解析:解答:(1)当0≤x≤200时,y 与x 的函数表达式是y=0.55x ;当x >200时,y 与x 的函数表达式是y=0.55×200+0.7(x-200),即y=0.7x-30;(2)因为小明家5月份的电费超过110元,所以把y=117代入y=0.7x-30中,得x=210.答:小明家5月份用电210度.分析:(1)0≤x≤200时,电费y就是0.55乘以相应度数;x>200时,电费y=0.55×200+超过200的度数×0.7;(2)把117代入x>200得到的函数求解即可.24. 答案:(1)A种商品销售30件,B种商品销售70件.(2)应购进A种商品50件,B种商品150件,可获得最大利润为2750元.知识点:一次函数的性质一次函数的图像根据实际问题列一次函数表达式一次函数与二元一次方程(组)解析:解答:(1)设A种商品销售x 件,则B种商品销售(100-x)件.依题意,得 10x+15(100-x)=1350解得x=30.∴100-x=70.答:A种商品销售30件,B种商品销售70件.(2)设A种商品购进a件,则B种商品购进(200-a)件.依题意,得0≤200-a≤3a解得50≤a≤200设所获利润为w元,则有w=10a+15(200-a)=-5a+3000∵-5<0,∴w随a的增大而减小.∴当a=50时,所获利润最大W最大=-5×50+3000=2750元.200-a=150.答:应购进A种商品50件,B种商品150件,可获得最大利润为2750元.分析:(1)设A种商品销售x 件,B种商品销售y件,根据“销售A,B两种商品共100件,获利润1350元”列出二元一次方程组求解即可;(2)设A 种商品购进a 件,则B 种商品购进(200-a )件,根据“B 种商品的件数不多于A 种商品件数的3倍”列出不等式即可求得结果.25. 答案: (1)乙工程队每天修公路120米;(2)y 甲=60x ,y 乙=120x-360;(3)该项工程由甲、乙两工程队一直合作施工,需9天完成.知识点:一次函数的性质 一次函数的图像 根据实际问题列一次函数表达式 一次函数与二元一次方程(组)解析:解答:(1)由图得:720÷(9-3)=120(米)答:乙工程队每天修公路120米.(2)设y 乙=kx+b ,则 ⎩⎨⎧=+=+720903b k b k 解得:⎩⎨⎧-==360120b k 所以y 乙=120x-360,当x=6时,y 乙=360,设y 甲=k 1x ,∵y 乙与y 甲的交点是(6,360)∴把(6,360)代入上式得:360=6k 1,k 1=60,所以y 甲=60x ;(3)当x=15时,y 甲=900,所以该公路总长为:720+900=1620(米),设需x 天完成,由题意得:(120+60)x=1620,解得:x=9,答:该项工程由甲、乙两工程队一直合作施工,需9天完成.分析:(1)根据图形用乙工程队修公路的总路程除以天数,即可得出乙工程队每天修公路的米数;(2)根据函数的图象运用待定系数法即可求出y 与x 之间的函数关系式;(3)先求出该公路总长,再设出需要x 天完成,根据题意列出方程组,求出x ,即可得出该项工程由甲、乙两工程队一直合作施工,需要的天数.。

课题学习 选择方案(分层作业)-八年级数学下册(人教版)(解析版)

 课题学习 选择方案(分层作业)-八年级数学下册(人教版)(解析版)

人教版初中数学八年级下册19.3课题学习选择方案分层作业夯实基础篇一、单选题:A.18B.12【答案】B【分析】先求出直线AB的解析式,当2千克时,每2千克葡萄的价格为将(2,38)、(4,70)代入得,238470k b k b,解得:166y x ,当6x 时,102y ,即萌萌一次购买6千克这种葡萄需要102元;她分三次购买每次购2千克这种葡萄需要383114 (元),∴11410212 (元),萌萌一次购买6千克这种葡萄比她分三次购买每次购2千克这种葡萄可节省12元.故选:B .【点睛】本题考查了一次函数的应用、待定系数法等知识,解题的关键是理解题意,灵活运用所学知识解决问题,利用数形结合的思想解答.4.某电脑公司经营A ,B 两种台式电脑,分析过去的销售记录可以知道:每台A 型电脑可盈利200元,每台B 型电脑可盈利300元;在同一时期内,A 型电脑的销售量不小于B 型电脑销售量的4倍.已知该公司在同一时期内销售这两种电脑共210台,则该公司在这一时期内销售这两种电脑能获得的最大利润是()A .42000元B .46200元C .52500元D .63000元【答案】B【分析】设该公司在这一时期内销售获得的利润是W 元,销售A 型电脑x 台,则销售B 型电脑 210x 台,根据在同一时期内,A 型电脑的销售量不小于B 型电脑销售量的4倍可得:168x ,而20030021010063000W x x x ,由一次函数性质可得答案.【详解】解:设该公司在这一时期内销售获得的利润是W 元,销售A 型电脑x 台,则销售B 型电脑 210x 台,根据题意得: 4210x x ,解得:168x ,∵ 20030021010063000W x x x ,1000 ,∴W 随x 的增大而减小,∴当168x 时,W 取最大值,最大值为1001686300046200 (元),答:该公司在这一时期内销售这两种电脑能获得的最大利润是46200元.故选:B .【点睛】本题考查一元一次不等式的应用,涉及一次函数的应用,解题的关键是读懂题意,列出不等式求出x 的范围.5.某游泳馆新推出了甲、乙两种消费卡,设游泳次数为x 时两种消费卡所需费用分别为y 甲,y 乙元,y 甲,y 乙与x 的函数图象如图所示,当游泳次数为30次时选择哪种消费卡更合算()A .甲种更合算B .乙种更合算C .两种一样合算D .无法确定【答案】B 【分析】根据一次函数的图象,哪个函数图象在上面,哪个就大,直接得出答案即可.【详解】解:利用图象,当游泳次数大于10次时,y在y乙上面,即y甲>y乙,甲∴当游泳次数为30次时,选择乙种方式省钱.故选:B.【点睛】此题主要考查了一次函数的应用以及利用函数图象比较函数大小,利用数形结合得出是解题关键.6.如图,某电信公司提供了A,B两种方案的移动通讯费用y(元)与通话时间x(分)之间的关系,则以下说法正确的是()①若通话时间少于120分,则A方案比B方案便宜②若通话时间超过200分,则B方案比A方案便宜③通讯费用为60元,则B方案比A方案的通话时间多④当通话时间是170分钟/时,两种方案通讯费用相等A.1个B.2个C.3个D.4个【答案】D【分析】根据图象知道:在通话170分钟收费一样,在通话120时A收费30元,B收费50元,其中A超过120分钟后每分钟加收0.4元,B超过200分钟加收每分钟0.4元,由此即可确定有几个正确.【详解】解:依题意得A:(1)当0≤x≤120,y A=30,(2)当x>120,y A=30+(x-120)×[(50-30)÷(170-120)]=0.4x-18;B :(1)当0≤x <200,y B =50,当x >200,y B =50+[(70-50)÷(250-200)](x-200)=0.4x-30,所以当x≤120时,A 方案比B 方案便宜20元,故(1)正确;当x≥200时,B 方案比A 方案便宜12元,故(2)正确;当y=60时,A :60=0.4x-18,∴x=195,B :60=0.4x-30,∴x=225,故(3)正确;当A 方案与B 方案的费用相等,通话时间为170分钟,故(4)正确;故选:D .【点睛】本题考查了函数图象和性质,解题的关键是从图象中找出隐含的信息解决问题.7.某商场销售一种儿童滑板车,经市场调查,售价x (单位:元)、每星期销量y (单位:件)、单件利润w (单位:元)之间的关系如图1、图2所示.若某星期该滑板车单件利润为20元,则本星期该滑板车的销量为()A .94B .96C .1600D .1800【答案】D 【分析】先由图1求出y 与x 的函数解析式,再由图2求出x 与w 的函数解析式,然后把w =20代入即可.【详解】解:由图1可设y 与x 的函数解析式为y =kx +b ,把(92,1400)和(98,2000)代入得,140092200098k b k b解得:1007800k b,∴y 与x 的函数解析式为:y =100x ﹣7800;由图2可设x 与w 的函数解析式为x =mw +n ,把(18,98)和(24,92)代入得:98189224m n m n解得:1116m n ∴x 与w 的函数解析式为:x =﹣w +116,当w =20时,x =﹣20+116=96,y =100×96﹣7800=9600﹣7800=1800(件),∴本星期该滑板车的销量为1800件,故选:D .【点睛】本题考查一次函数的应用和待定系数法求函数解析式,关键是根据图象求出函数解析式.二、填空题:8.元旦期间,大兴商场搞优惠活动,其活动内容是:凡在本商场一次性购买商品超过100元者,超过100元的部分按8折优惠.在此活动中,小明到该商场一次性购买单价为60元的礼盒x (2x )件,则应付款y (元)与商品数x (件)之间的关系式,化简后的结果是______.【答案】y =48x +20(x >2)/y=20+48x (x >2)【分析】根据已知表示出买x 件礼盒的总钱数以及优惠后价格,进而得出等式即可.【详解】解:∵凡在该商店一次性购物超过100元者,超过100元的部分按8折优惠,李明到该商场一次性购买单价为60元的礼盒x (x >2)件,∴李明应付货款y (元)与礼盒件数x (件)的函数关系式是:y =(60x -100)×0.8+100=48x +20(x >2),故答案为:y =48x +20(x >2).【点睛】本题主要考查了根据实际问题列一次函数解析式,根据已知得出货款与礼盒件数的等式是解题关键.9.某苹果种植合作社通过网络销售苹果,图中线段AB 为苹果日销售量y (千克)与苹果售价x (元)的函数图像的一部分.已知1千克苹果的成本价为5元,如果某天以8元/千克的价格销售苹果,那么这天销售苹果的盈利是_____元.【答案】6600【分析】根据图象求出线段AB 的解析式,求出当x =8时的y 值,再根据利润公式计算即可.【详解】解:设线段AB 的解析式为y =kx +b ,点A 、B 的坐标代入,得54000101000k b k b ,解得6007000k b,∴y =-600x +7000,当x =8时,y =600870002200 ,∴这天销售苹果的盈利是 852200 =6600(元),故答案为:6600.【点睛】此题考查了一次函数的实际应用,正确理解函数图象求出线段AB 的解析式是解题的关键.10.假期学校组织360名师生外出旅游,某客车出租公司有两种大客车可供选择:甲种客车每辆车有40个座,租金400元;乙种客车每辆车有50个座,租金480元.则租用该公司客车最少需用租金__元.【详解】设买入价x 与利润y 之间的函数关系式为:y kx b ,将4200x y ,6198x y代入得:20041986k b k b,解得:1204k b,故:204y x ,当197y 代入得:197204x ,解得:7x ,即:1吨水的买入价为7元,则买入10吨水共需71070 元.故答案为:70.【点睛】本题考查了一次函数,根据表格求出一次函数的关系式是解题的关键.13.某手工作坊生产并销售某种食品,假设销售量与产量相等,如图中的线段AB 、OC 分别表示每天生产成本1y (单位:元)、收入2y (单位:元)与产量x (单位:千克)之间的函数关系.若该手工作坊某一天既不盈利也不亏损,则这天的产量是______千克.【答案】30【分析】根据题意可设AB 段的解析式为11y k x b ,OC 段的解析式为22y k x ,再结合图象利用待定系数法求出解析式,最后根据该手工作坊某一天既不盈利也不亏损时,即12y y ,可列出关于x 的等式,解出x 即可.【详解】根据题意可设AB 段的解析式为:11y k x b ,且经过点A (0,240),B (60,480),∴124048060b k b,解得:14240k b,∴AB 段的解析式为:14240y x ;设OC 段的解析式为:22y k x ,且经过点C (60,720),∴272060k ,解得:212k ,∴OC 段的解析式为:212y x .当该手工作坊某一天既不盈利也不亏损时,即12y y ,∴424012x x ,解得:30x .所以这天的产量是30千克.故答案为:30.【点睛】本题考查一次函数的实际应用.掌握利用待定系数法求函数解析式是解答本题的关键.三、解答题:14.乡村振兴作为“十四五”期间的重要战略,受到了广大人民群众的关注.党的二十大再次对全面推进乡村振兴进行部署.为了发展乡村特色产业,百花村花费3000元集中采购了甲种树苗700株,乙种树苗400株,已知乙种树苗单价是甲种树苗单价的2倍.(1)求甲、乙两种树苗的单价分别是多少元?(2)百花村决定再购买同样的两种树苗100株用于补充栽种.其中甲种树苗不多于33株,在单价不变,总费用不超过340元的情况下,最低费用是多少元?【答案】(1)甲种树苗的单价是2元,则乙种树苗的单价是4元(2)最低费用是334元.【分析】(1)设甲种树苗的单价是x 元,则乙种树苗的单价是2x 元,根据题意得到等量关系建立方程求出其解即可;(2)设购买甲种树苗a 棵,则购买乙种树苗 100a 棵,其中a 为正整数,总费用为w 元,根据题意得2400w a ,然后根据一次函数性质即可解决问题.【详解】(1)解:设甲种树苗的单价是x 元,则乙种树苗的单价是2x 元,根据题意得:70040023000x x ,解得:2x ,∴24 x ,答:甲种树苗的单价是2元,则乙种树苗的单价是4元;(2)解:设购买甲种树苗a 棵,则购买乙种树苗 100a 棵,其中a 为正整数,根据题意得:03324100340x a a,解得:3033a ,设总费用为w 元,∴ 24100w a a ,整理得2400w a ,∵20 ,∴w 随a 的增大而减小,∴当33a 时,w 最小,最小值为334,答:最低费用是334元.【点睛】本题考查了列一元一次方程解实际问题的运用,不等式组的运用,一次函数的应用,关键是正确理解题意,找出题目中的等量关系列出方程,找出不等关系列出不等式组,一次函数的关系式,利用一次函数的性质解答.15.为弘扬爱国精神,传承民族文化,某校组织了“诗词里的中国”主题比赛,计划去某超市购买A ,B 两种奖品共300个,A 种奖品每个20元,B 种奖品每个15元,该超市对同时购买这两种奖品的顾客有两种销售方案(只能选择其中一种).方案一:A 种奖品每个打九折,B 种奖品每个打六折.方案二:A ,B 两种奖品均打八折.设购买A 种奖品x 个,选择方案一的购买费用为1y 元,选择方案二的购买费用为2y 元.(1)请分别写出1y 、2y 与x 之间的函数关系式.(2)请你计算该校选择哪种方案支付的费用较少.【答案】(1)192700y x ,243600y x (2)购买A 种奖品超过180个时,方案二支付费用少;购买A 种奖品180个时,方案一和方案二支付费用一样多;购买A 种奖品少于180个时,方案一支付费用少【分析】(1)根据总费用A ,B 两种奖品费用之和列出1y 、2y 关于x 的函数关系式;(2)根据(1)中关系式分三种情况讨论即可.【详解】(1)由题意得:1200.9150.6(300)92700y x x x ;2200.8150.8(300)43600y x x x ,1y ∴与x 之间的函数关系式为192700y x ,2y 与x 之间的函数关系式为243600y x ;(2)当12y y 时,9270043600x x ,解得180x ,购买A 种奖品超过180个时,方案二支付费用少;当12y y 时,9270043600x x ,解得180x ,购买A 种奖品180个时,方案一和方案二支付费用一样多;当12y y 时,9270043600x x ,解得180x ,购买A 种奖品少于180个时,方案一支付费用少.【点睛】本题考查一次函数的应用以及一元一次不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,列出函数解析式.16.某地计划修建一条长36千米的乡村公路,已知甲工程队修路的速度是乙工程队修路速度的1.5倍,乙工程队单独完成本次修路任务比甲工程队单独完成多20天.(1)求甲、乙两个工程队每天各修路多少千米?(2)已知甲工程队修路费用为25万元/千米,乙工程队修路费用为20万元/千米.甲工程队先单独修路若干天后,接到其它任务需要离开,剩下的工程由乙工程队单独完成.若要使修路总时间不超过55天,总费用不超过820万元,且甲工程队所修路程需为整数,请问共有几种修路方案?哪种方案最省钱?【答案】(1)甲工程队每天修路0.9千米,乙工程队每天修路0.6千米(2)共有13种方案,其中甲单独干10天,剩下的乙单独修完,最省钱.【分析】(1)设乙工程队每天修路x 千米,则甲工程队每天修路1.5x 千米,根据乙工程队单独完成本次修路任务比甲工程队单独完成多20天,列出方程,进行求解即可;(2)设甲工程队修路a 天,根据修路总时间不超过55天,总费用不超过820万元,列出不等式组,求出a 的取值范围,确定方案,设花费的总费用为w ,列出一次函数解析式,利用一次函数的性质,即可得出结套乒乓球拍和羽毛球拍进行销售,其中购进乒乓球拍的套数不超过【点睛】本题考查了一次函数和二元一次方程组的应用,解题的关键是仔细审题,找到等量关系列出函数能力提升篇一、单选题:∴当海产品不少于30吨但不足50吨时,选择汽车货运公司合算;当海产品恰好是50吨时选择两家公司都一样,没有区别;当海产品超过50吨时选择铁路货运公司费用节省一些.故选D.2.小明和小张是邻居,某天早晨,小明7:40先出发去学校,走了一段后,在途中停下吃早餐,后来发现上学时间快到了,就跑步到学校;小张比小明晚出发5分钟,乘公共汽车到学校.右图是他们从家到学校已走的路程y (米)和小明所用时间x (分钟)的函数关系图.则下列说法中不正确的是()A .小明家和学校距离1000米;B .小明吃完早餐后,跑步到学校的速度为80米/分;C .小张乘坐公共汽车后7:48与小明相遇;D .小张到达学校时,小明距离学校400米.【答案】C【分析】根据函数图像中各拐点的实际意义求解可得.【详解】解:A 、由图像可知,小明家和学校距离1000米,故此选项不符合题意;B 、小明吃完早餐后,跑步到学校的速度为: 1000360201280 (米/分),故此选项不符合题意;C 、小张乘公共汽车的速度为: 1000155100 (米/分),360100 3.6 (分),故小张乘坐公共汽车后7点48分36秒与小明相遇,故此选项符合题意;,故此选项不符合题意.二、填空题:4.本年度某单位常有集体外出学习活动,因此准备与出租车公司签订租车协议.现有甲、乙两家出租车公司供选择.设每月行驶x千米,应付给甲公司1y元,应付给乙公司2y元,1y、2y分别与x之间的函数关系如图所示,若这个单位估计每月需要行驶的路程为3500千米,那么为了省钱,这个单位应租__________公司.【答案】B【分析】先由表格中数据分别表示出A y、B y关于x的函数表达式,分别令A y=B y、A y>B y、A y<B y求解,即可做出判断.【详解】解:由题意可知:A y=0.1x,B y=20+0.05x,当A y=B y时,由0.1x=20+0.05x得:x=400,两种收费方式一样省钱;当A y>B y时,由0.1x>20+0.05x得:x>400,B种方式省钱;当A y<B y时,由0.1x<20+0.05x得:x<400,A种方式省钱,∴当每月上网时间多于400分钟时,选择B种方式省钱,故答案为:B.【点睛】本题考查一次函数的应用、解一元一次方程、解一元一次不等式,理解题意,正确列出函数关系式是解答的关键.三、解答题:【答案】(1)48y x ;(2)修建方案为修建A 、B 两种型号的沼气池分别为8个、16个,此时修建完沼气池剩余的用地面积为12平方米.【分析】(1)分别求出A 型和B 型两种沼气池的修建费用,相加即可;(2)利用题意列出不等式组,再根据y 与x 之间的函数关系式得到y 的值最小时对应的x 的值,即可得到费用最少时的修建方案,以及此时修建完沼气池剩余的用地面积.【详解】解:(1) y 3x 224x x 48 ,∴y 与x 之间的函数关系式为48y x .(2)由题可得: 20152440010824220x x x x①②,由①得:8x ,由②得:14x ≤,∴814x ,∵48y x ,其中y 随x 的增大而增大;∴当8x 时y 最小,此时84856y ,2416x 因此方案为修建A 、B 两种型号的沼气池分别为8个、16个时总费用最少;用地面积剩余: 22010824220108824812x x (平方米),答:费用最少时的修建方案为修建A 、B 两种型号的沼气池分别为8个、16个,此时修建完沼气池剩余的用地面积为12平方米.【点睛】本题涉及到了方案选择问题,考查了一次函数和一元一次不等式组的应用,要求学生能根据题意列出函数关系式和一元一次不等式组,能根据实际情况和函数的性质得到函数的极值,并确定出最优方案,考查了学生的综合分析与实际应用的能力.。

初中数学一次函数的应用题型分类汇编——分配方案决策问题3(附答案详解)

初中数学一次函数的应用题型分类汇编——分配方案决策问题3(附答案详解)

初中数学一次函数的应用题型分类汇编——分配方案决策问题3(附答案详解) 1.一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠:例如,购买A 类会员年卡,一年内游泳20次,消费50+25×20=550元,若一年内在该游泳馆游泳的次数介于40~50次之间,则最省钱的方式为( )A .购买A 类会员卡B .购买B 类会员年卡C .购买C 类会员年卡D .不购买会员年卡2.超市有A ,B 两种型号的瓶子,其容量和价格如表,小张买瓶子用来分装15升油(瓶子都装满,且无剩油);当日促销活动:购买A 型瓶3个或以上,一次性返还现金5元,设购买A 型瓶x (个),所需总费用为y (元),则下列说法不一定成立的是( )A .购买B 型瓶的个数是253x ⎛⎫- ⎪⎝⎭为正整数时的值 B .购买A 型瓶最多为6个C .y 与x 之间的函数关系式为30y x =+D .小张买瓶子的最少费用是28元 3.学校准备租用甲乙两种大客车共8辆,送师生集体外出研学,每辆甲种客车的租金是400元,每辆乙种客车的租金是280元,设租用甲种客车x 辆,租车费用为y 元. (1)求出y 与x 的函数关系式;(2)若租用甲种客车不少于6辆,应如何租用租车费用最低,最低费用是多少? 4.某草莓采摘园元旦至春节期间推出了甲、乙两种优惠方案.甲种优惠方案:游客进园需要购买40元的门票(每个家庭购买一张门票),采摘的草莓均按定价的六折卖给采摘游客;乙种优惠方案:游客进园不需购买门票,采摘的草莓按定价出售,但超过一定重量后,超过的部分打折卖给采摘的游客.优惠期间,设某游客(或一个家庭)采摘草莓的重量为x (kg ),选用甲种优惠方案采摘所需的总费用为y1(元),选用乙种优惠方案采摘所需的总费用为y2(元).已知1,y2与采摘重量x(kg)之间的函数关系如图所示.(1)分别求y1,y2与x之间的函数关系式;(2)求点A的坐标,并解释坐标的实际意义;(3)采摘重量x为多少时,游客选用甲种优惠方案采摘更合算.(直接写出答案即可)5.某市为支援灾区建设,计划向A、B两受灾地运送急需物资分别为60吨和140吨,该市甲、乙两地有急需物资分别为120吨和80吨,已知甲、乙两地运到A、B两地的每吨物资的运费如表所示:甲乙A20元/吨15元/吨B25元/吨24元/吨(1)设甲地运到A地的急需物资为x吨,求总运费y(元)关于x(吨)的函数关系式,并写出x的取值范围;(2)求最低总运费,并说明总运费最低时的运送方案.6.为了提高服务质量,某宾馆决定对甲、乙两种套房进行星级提升,已知甲种套房提升费用比乙种套房提升费用少3万元,如果提升相同数量的套房,甲种套房费用为625万元,乙种套房费用为700万元.(1)甲、乙两种套房每套提升费用各多少万元?(2)如果需要甲、乙两种套房共80套,市政府筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于甲、乙种套房星级提升,市政府对两种套房的提升有几种方案?哪一种方案的提升费用最少?7.为了争创全国文明卫生城市,优化城市环境,节约能源,某市公交公司决定购买一批共10台全新的混合动力公交车,现有A、B两种型号,其中每台的价格,年省油量如下表:经调查,购买一台A型车比购买一台B型车多10万元,购买3台A型车比购买4台B型车少30万元.(1)请求出a和b的值;(2)若购买这批混合动力公交车(两种车型都要有)每年能节省的油量不低于21.6万升,请问有几种购车方案?请写出解答过程.(3)求(2)中最省钱的购车方案及所需的购车款.8.某电视机厂要印制产品宜传材料甲印刷厂提出:每份材料收1元印制费,另收1500元制版费;乙厂提出:每份材料收2.5元印制费,不收制版费.(1)分别写出两厂的收费y元与印制数量x(份)之间的关系式(2)在同一直角坐标系内画出它们的图象;(3)根据图像回答下列问题:①印制800份宣传材料时,选择哪家印刷厂比较合算?②电视机厂拟拿出3000元用于印制宣传材料,找哪家印刷厂印制宣传材料能多一些? 9.“垃圾分类”意识已经深入人心.我校王老师准备用2000元(全部用完)购买,A B两类垃圾桶,已知A类桶单价20元,B类桶单价40元,设购入A类桶x个,B类桶y个.(1)求y关于x的函数表达式.(2)若购进的A类桶不少于B类桶的2倍.①求至少购进A类桶多少个?②根据临场实际购买情况,王老师在总费用不变的情况下把一部分A类桶调换成另一种C类桶,且调换后C类桶的数量不少于B类桶的数量,已知C类桶单价30元,则按这样的购买方式,B类桶最多可买个.(直接写出答案)10.中国移动公司开设适合普通用户的两种通讯业务分别是:“全球通”用户先缴12元月租,然后每分钟通话费用0.2元;“神州行”用户不用缴纳月租费,每分钟通话0.3元.(通话均指拨打本地电话)()1设一个月内通话时间约为x分钟(3x≥且x为整数),求这两种用户每月需缴的费用分别是多少元?(用含x的式子表示)()2若张老师一个月通话约180分钟,请你给他提个建议,应选择哪种移动通讯方式合算一些?并说明理由.11.为庆祝中华人民共和国七十周年华诞,某校举行书画大赛,准备购买甲、乙两种文具,奖励在活动中表现优秀的师生.已知购买2个甲种文具、1个乙种文具共需花费35元;购买1个甲种文具、3个乙种文具共需花费30元.(1)求购买一个甲种文具、一个乙种文具各需多少元?(2)若学校计划购买这两种文具共120个,投入资金不少于955元又不多于1000元,设购买甲种文具x个,求有多少种购买方案?(3)设学校投入资金W元,在(2)的条件下,哪种购买方案需要的资金最少?最少资金是多少元?12.某大剧院举行专场音乐会,成人票每张20元,学生票每张5元,暑假期间,为了丰富广大师生的业余文化生活,影剧院制定了两种优惠方案,方案1:购买一张成人票赠送一张学生票;方案2:按总价的90%付款,某校有4名老师与若干名(不少于4人)学生听音乐会.(1)设学生人数为x(人),付款总金额为y(元),分别建立两种优惠方案中y与x的函数关系式;(2)请计算并确定出最节省费用的购票方案.13.某城市为了加强公民的节气和用气意识,按以下规定收取每月煤气费:所用煤气如果不超过50立方米,按每立方米0.8元收费;如果超过50立方米,超过部分按每立方米1.2元收费设小丽家每月所用煤气量为x立方米,应交煤气费为y元.(1)若小丽家某月所用煤气量为80立方米,则小丽家该月应交煤气费多少元?(2)试写出y与x之间的解析式.(3)若小丽家4月份的煤气费为88元,则她家4月份所用煤气量为多少立方米?(4)已知小丽家6月份所交的煤气费平均每立方米为0.95元,那么6月份小丽家用了多少立方米的煤气?14.光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台,先将这50台联合收割机派往A、B两地区收割小麦,其中30台派往A地区,20台派往B地区.两地区与该农机租赁公司商定的每天的租赁价格见表:(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),求y与x间的函数关系式,并写出x的取值范围;(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79 600元,说明有多少种分配方案,并将各种方案设计出来;(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提一条合理化建议.15.某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x(x≥2)个羽毛球,供社区居民免费借用.该社区附近A、B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:A超市:所有商品均打九折(按标价的90%)销售;B超市:买一副羽毛球拍送2个羽毛球.设在A超市购买羽毛球拍和羽毛球的费用为y A(元),在B超市购买羽毛球拍和羽毛球的费用为y B(元).请解答下列问题:(1)分别写出y A、y B与x之间的关系式;(2)若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?(3)若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.16.为响应市政府“创建国家森林城市”的号召,某小区计划购进A,B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元。

初中人教版数学八年级下册:19.3 课题学习 选择方案 习题课件(含答案)

初中人教版数学八年级下册:19.3 课题学习 选择方案  习题课件(含答案)

7.(2020·河南中考)暑期将至,某健身俱乐部面向学 生推出暑期优惠活动,活动方案如下. 方案一:购买一张学生暑期专享卡,每次健身费用 按六折优惠; 方案二:不购买学生暑期专享卡,每次健身费用按 八折优惠.
设某学生暑期健身 x(次),按照方案一所需费用为 y1(元),且 y1 =k1x +b ;按照方案二所需费用 为 y2(元),且 y2=k2x.其函数图象如图所示. (1)求 k1 和 b 的值, 并说明它们的实际意义;
目录页
A 分点训练•打好基础 B 综合运用•提升能力
知识点 选择方案 1.某公司急需用车,但又不准备买车,公司准备和 一个个体车主或一家出租车公司签订月租车合同, 他们的月收费 y(元)与公司每月用车的路程 x(千米)
之间的关系如图所示(其中个体车主收费为 y1 元,出 租车公司收费为 y2 元),则当 x >1800 时,选 用个体车主较合算.
解:(1)∵y1=k1x+b 过点(0,30),(10,180),
∴ b=30,
解得 k1=15,
10k1 +b=180,
b=30.
k1=15 表示的实际意义是:购买一张学生暑期专享
卡后每次健身费用为 15 元;
b=30 表示的实际意义是:购买一张学生暑期专享
卡的费用为 30 元.
(2)求打折前的每次健身费用和 k2 的值; (2)由题意可得, 打折前的每次健身费用为 15÷0.6=25(元), 则 k2=25×0.8=20.
(3)八年级学生小华计划暑期前往该俱乐部健身 8 次,应选择哪种方案所需费用更少?说明理由.
(3)选择方案一所需费用更少.理由如下: 由(1)(2)可知,y1=15x+30,y2=20x. 当健身 8 次时,选择方案一所需费用为 y1=15×8+ 30=150(元),选择方案二所需费用为 y2=20×8= 160(元). ∵150<160, ∴选择方案一所需费用更少.

八年级数学课题学习选择方案测试题(新版)新人教版

八年级数学课题学习选择方案测试题(新版)新人教版

八年级数学课题学习选择方案测试题(新版)新人教版19.3课题学习选择方案1.某商场新进一批A,B两种型号的节能防近视台灯,每台进价分别为200元、170元,近两周的销售状况如下:销售时段销售数量销售收入A种型号B种型号第一周3台5台1800元其次周4台10台100元(进价、售价均保持不变,利润=销售收入-进货本钱)(1)求A,B两种型号的台灯的销售单价;(2)若该商场预备用不多于5400元的金额再购进这两种型号的台灯共30台,求A种型号的台灯最多能购进多少台?(3)在(2)的条件下,能否求出该商场销售完这30台台灯所获得的最大利润.若能,求出最大利润;若不能,请说明理由.解:(1)设A,B两种型号的台灯的销售单价分别为*元、y元,则解得答:A,B两种型号台灯的销售单价分别为250元和210元.(2)设选购A种型号台灯a台,则选购B种型号的台灯(30-a)台,则200a+170(30-a)≤5400,解得a≤10,答:最多选购A种型号的台灯10台.(3)依据题意得所得利润w=(250-200)a+(210-170)(30-a)=10a+1200,∵10>0,∴所得利润w随着a的增大而增大,∴最大利润为10×10+1200=1300(元).2.某大剧院进行专场音乐会,成人票每张20元,学生票每张5元,暑假期间,为了丰富广阔师生的业余文化生活,影剧院制定了两种优待方案,方案1:购置一张成人票赠送一张学生票;方案2:按总价的90%付款,某校有4名教师与若干名(不少于4人)学生听音乐会.(1)设学生人数为*(人),付款总金额为y(元),分别建立两种方案中y 与*的函数关系式;(2)请计算并确定出最节约费用的购票方案.解:(1)按优待方案1可得y1=20×4+(*-4)×5=5*+60(*≥4);按优待方案2可得y2=(5*+20×4)×90%=4.5*+72(*≥4).(2)由于y1-y2=0.5*-12(*≥4),①当y1-y2=0时,解得*=24,②当y1-y224,所以当购置24张票时,两种方案付款一样多.当4≤*y2,方案2付款较少.3.某社区活动中心为鼓舞居民加强体育熬炼,预备购置10副某种品牌的羽毛球拍,每副球拍配*(*≥2)个羽毛球,供社区居民免费借用.该社区四周A,B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:A超市:全部商品均打九折(按标价的90%)销售;B超市:买一副羽毛球拍送2个羽毛球.设在A超市购置羽毛球拍和羽毛球的费用为yA(元),在B 超市购置羽毛球拍和羽毛球的费用为yB(元).请解答以下问题:(1)分别写出yA,yB与*之间的关系式;(2)若该活动中心只在一家超市购置,你认为在哪家超市购置更划算?(3)若每副球拍配15个羽毛球,请你帮忙该活动中心设计出最省钱的购置方案.解:(1)由题意得yA=(10×30+3×10*)×0.9=27*+270,yB=10×30+3(10*-20)=30*+240.(2)当yA=yB时,得*=10;当yA>yB时,得*10,所以选择A超市需27×15+270=675(元).先选择B超市购置10副羽毛球拍,送20个羽毛球,然后在A超市购置剩下的羽毛球(10×15-20)×3×0.9=351(元),共需要费用10×30+351=651(元).由于651<675,所以最正确方案是先选择B超市购置10副羽毛球拍,然后在A超市购置130个羽毛球.篇2:小学数学课堂学具运用有效性的讨论》课题讨论方案《小学数学课堂学具运用有效性的讨论》课题讨论方案《小学数学课堂学具运用有效性的讨论》课题讨论方案江山市淤头小学周冬英一、课题讨论的现实背景及意义小学数学《课程标准》明确指出:“强调从学生已有的生活阅历动身,让学生将亲身经受的实际问题抽象成数学模型并进展解释与应用,进而使学生获得对数学理解的同时,在思维力量、情感态度与价值观等多方面得到进步和进展。

人教版八年级数学下册19.3课题学习 选择方案设计同步练习(无答案)

人教版八年级数学下册19.3课题学习 选择方案设计同步练习(无答案)

人教版八年级数学下册19.3课题学习选择方案(无答案)一、选择题1.一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠:A.购买A类会员年卡B.购买B类会员年卡C.购买C类会员年卡D.不购买会员年卡2.为打造“书香校园”,某学校计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个,已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.若组建一个中、小型图书角的费用是860元、570元,则最低费用是()A.22300元B.22610元C.22320元D.22650元3.如图,l1反映了某公司的销售收入y(元)与销售量x(吨)之间的关系,l2反映了该公司产品的销售成本y (元)与销售量x(吨)之间的关系,当该公司盈利(收入大于成本)时,销售量()A.小于3吨B.大于3吨C.小于4吨D.大于4吨4.如图,购买一种苹果,所付款金额y(单位:元)与购买量x(单位:kg)之间的函数图象由线段OA和射线AB组成,则一次购买5kg这种苹果比分五次每次购买1kg这种苹果可节省()元.A.4B.5C.6D.75.某通讯公司提供了两种移动电话收费方式:方式一:收月基本费20元,再以每分钟0.1元的价格按通话时间计费;方式二:收月基本费20元,送80min通话时间,超过80min的部分,以每分钟0.15元的价格计费.设每月通话时间为xmin,月收费为y元.给出下列结论:①如图描述的是方式一的收费方法;②若月通话时间少于240min,选择方式二省钱;③若月通信费为50元,则方式一比方式二的通话时间多;④若方式一比方式二的通信费多10元,则方式一比方式二的通话时间多100min.其中正确的结论是()A.①②B.③④C.①②③D.①②③④6.某地电话拨号上网有两种收费方式:计时制——每分钟0.05元,包月制——每月50元.此外,每一种上网方式都得加收通信费每分钟0.02元.某用户估计一个月上网时间为20h,则采用哪种收费方式较为合算()A.计时制B.包月制C.两种一样D.不确定7.某市打市电话的收费标准是:每次3分钟以内(含3分钟)收费0.2元,以后每分钟收费0.1元(不足1分钟按1分钟计).某天小芳给同学打了一个6分钟的市话,所用电话费为0.5元;小刚现准备给同学打市电话6分钟,他经过思考以后,决定先打3分钟,挂断后再打3分钟,这样只需电话费0.4元.如果你想给某同学打市话,准备通话10分钟,则你所需要的电话费至少为()A.0.6元B.0.7元C.0.8元D.0.9元8.某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A.每月上网时间不足25h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱9.如图是甲、乙两家商店销售同一种产品的销售价y(元)与销售量x(件)之间的函数图象,下列说法:①售2件时,甲、乙两家售价一样;②买1件时,买乙家的合算;③买3件时,买甲家的合算;④买乙家的1件售价约为3元.其中正确的说法是()A.①②B.②③④C.②③D.①②③10.一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠:A.购买A类会员年卡B.购买B类会员年卡C.购买C类会员年卡D.不购买会员年卡二、填空题11.某水果店计划购进甲、乙两种新出产的水果共140kg,这两种水果的进价、售价如下表所示,该水果店决定乙种水果的进货量不超过甲种水果的3倍,当购进甲种水果kg时利润最大.13.某超市对顾客购物采取优惠措施,规定如下:①一次购物少于100元,则不予优惠;②一次购物满100元,但不超过500元,按标价九折优惠;③一次购物超过500元,其中500元九折,超过500元部分八折,小李两次去该超市购物,分别付款99元和530元,现在小张决定一次性去购买小李分两次购买的同样多的物品,则小张需付 .14.某电信局收取的网费如下:“163网费”为每小时3元;“169网费”为每小时2元,但要收取每月基本费15元.设每月上网总费用为y元,上网时间为x小时.如果一个网民每月上网19小时,他应选择(填“163网费”或“169网费”).15.学校准备在周末组织老师去某地参加梨花节,现在有甲、乙两家旅行社表示对老师优惠.设参加梨花节的老师有x人,甲、乙两家旅行社实际收费为y甲、y乙与x的函数关系如图所示,根据图象信息,请你回答下列问题:(1)当x满足时,两家旅行社收费相同;(2)当x满足时,选择甲旅行社合适.16.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24m,要围成的菜园是如图所示的矩形ABCD.设BC边的长为xm,AB边的长为ym,则y与z之间的函数关系式是 .17.解决含有多个变量的问题时,可以分析这些变量之间的关系,从中选取一个取值能影响其他变量的值的变量作为,然后根据问题的条件寻求可以反映实际问题的,以此作为解决问题的数学模型.18.在选择方案时,往往需要从数学角度进行分析,涉及变量的问题常用到.三、解答题19.某学校计划购买若干台电脑,现从两家商场了解到同一型号电脑每台报价均为6000元,并且多买都有一定的优惠.如果甲商场的优惠条件是:第一台按原报价收费,其余每台优惠25%,那么甲商场的收费y1(单位:元)与所买电脑台数x(单位:台)之间的函数解析式是 .如果乙商场的优惠条件是:每台优惠20%,那么乙商场的收费y2(单位:元)与所买电脑台数x(单位:台)之间的函数解析式是 .(1)在什么情况下到甲商场购买更优惠?(2)在什么情况下到乙商场购买更优惠?20.某地手机上网有两种收费方式,用户可以任选其一:(A)计量制:0.08元/MB;(B)包月制:50元/月.此外每一种上网方式都得加收通信费0.02元/MB.(1)请你分别写出两种收费方式下用户每月应支付的费用y(单位:元)与上网流量x(单位:MB)之间的函数解析式;(2)若某用户估计一个月内上网流量为1GB(1GB=1024MB),你认为哪种方式较为合算?21.某学校餐厅计划购买12张餐桌和一批餐椅(餐椅数量大于等于12),现从甲、乙两商场了解到同一型号的餐桌报价均为每张200元,餐椅每把50元.甲商场称:每张餐桌送一把餐椅;乙商场称:所有餐桌、餐椅均按报价的八五折销售.在什么情况下甲商场更优惠?22.某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的八折优惠;方案二:若不购买会员卡,则购买商品内任何商品,一律按商品价格的九五折优惠,已知小敏5月1日前不是该商店的会员。

人教新课标版初中八上第14章—课题学习 选择方案(3)调水问题一案三单设计

人教新课标版初中八上第14章—课题学习 选择方案(3)调水问题一案三单设计

14.4课题学习——选择方案教学设计【教材分析】本节课是人教版数学教材八年级上册14.4课题学习本节内容选择了贴近生活实际的三个方案,③怎样调水。

在此之前学生已经学习了一元一次方程、二元一次方程组、一元一次不等式的解法和应用,一次函数的图像和性质,一次函数与一元一次方程、二元一次方程组、一元一次不等式之间的关系的基础上进行教学。

由于本节内容具有较强的实际背景,分析实际背景中所包含的变量及其对应关系较复杂,且方法多,即可用学过的方程不等式又可用刚学过的函数知识,又要选择最优化的方案,因此是对以前知识的综合应用和升华。

目的是提高综合应用所学知识分析和解决实际问题的能力,从而体会一次函数在分析和解决实际问题中的重要作用,进一步感受建立数学模型思想方法,为后继课的学习奠定基础。

【教学目标】根据《新课程》对本节课内容的要求,针对学生的一般性认知规律及学生个性品质发展的需要,确定教学目标如下:知识目标:利用函数解析式、不等式组解决方案设计问题.过程与方法:通过对方案设计问题中调水问题解法的探究,使学生能更加灵活的运用函数、不等式组来解决实际问题.情感态度:根据方案设计问题的特点,培养学生的应用意识,引导学生多角度思考,培养开拓创新的精神,增强其合作交流意识.【重点与难点】重点:建立函数、不等式(组)等数学模型来解决方案设计问题.难点:根据隐含条件或关键字、词,来判断是建立哪种数学模型解决方案设计问题.【学生分析】本节课个人觉得内容比较抽象,而且学生的知识基础较差,认知能力不强,要想学生掌握本节课内容,难度较大。

所以本节课我决定对教材进行二次处理,以多媒体为教学平台,根据课堂教学需要,做成PPT课堂给同学们演示,在题目较长,信息量较大的题目我给学生创造机会,降低问题的坡度,使他们不难成功,体验成功的乐趣,激发学习兴趣。

【教学方法】教法:1.在教学过程中我采用先学后教,导练结合的教学方法。

2.坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,采用学生参与程度高的学导式讨论教学法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

焦村一中八年级数学师生共用导学案
14.4课题学习选择方案(3)组内编号____姓名____学号____
一、学习目标
1、经历方案选择的探究过程,思考问题的实际背景中包含的变量及对应关系,结合一次函数知识,体会函数的模型作用。

尤其是多变量问题中自变量的处理
2、通过问题的解决方式体会数形结合的数学思想
二、指导自学
【活动一】从A,B两水库向甲乙两地调水,其中甲地需水15万吨,乙地需水13万吨,A,B两水库各可调水14万吨,从A地到甲地50千米,到乙地30千米,从B地到甲地60千米,到乙地45千米。

设计一个调运方案,使得水的调运量(单位:万吨×千米)尽可能最小
分析1、为完成调运,过程中有哪些地方到哪些地方的调运?彼此运程各为多少?
A到甲 50千米; __到___ __千米; __到___ __千米; __到___ __千米;
2、若设从A水库调往甲水库x万吨,完成左表调出地共有_____万吨,调入地共需____万吨,填写左表时,应横看纵看加以检验, 15
13
4.结合1题和左表,补充右图,(箭头外侧填写水量,箭头内侧填写运程)
5.设总的调运量为Y万吨×千米,结合右图可列Y关于X的函数关系式为:Y=____________+____________+____________+____________,并化简
6.自变量的取值如何确定?实际问题中应确保每一个变量_________
7.画出函数简易图象,并结合图象及解析式说明最佳方案,最小调运量为多少?并作答(利用一次函数性质,K的正负决定函数随着自变量的变化而变化,从而求的最小调运量)解:设从A水库调往甲水库x万吨,总调运量为Y万吨×千米
Y=_______+________+_______+_______
化简得:Y=___________
∵X____0; _______0; ______0; ______0

∴自变量的取值为__________图象为:
∵K=___ __0,
∴Y随X的增大而____,当X=___时,Y有最__值Y=___________=________
答:调运方案为:从___调往________万吨,从___调往________万吨,从____调往________万吨,从____调往________万吨,调运量为_________
三、合作探究
【活动二】
如果设A 水库调往乙水库X万吨,能否得到同样的最佳方案?
解:设从____调往____水库x 万吨,总调运量为Y 万吨×千米
Y=_______+________+_______+_______ 化简得:Y=___________ ∵X ____0; _______0; ______0; ______0 ∴ ∴自变量的取值为__________
图象为:
∵K=___ __0,
∴Y随X的增大而____,当X=___时,Y有最__值 Y=___________=________ 答:调运方案为:从___调往_______万吨,从___调往_______万吨,从____调往_______万吨,从____调往________万吨,调运量为_______
四、当堂检测
为了迎接中考理化生实验操作考试,各校开展实验操作训练。

现有甲、乙两商店要往一中,二中两个学校运送一批实验器材。

甲商店有50套实验器材,乙商店有30套实验器材。

一中班需要60套实验器材,二中需要20套实验器材。

已知由于路程远近不同,从甲商店往一中运送一套实验器材需要22元,往二中运送一套实验器材需要20元,从乙商店往一中运送一套实验器材需要20元,往二中运送一套实验器材需21元. 怎样调运花钱最少? 解:设甲商店调往一中X 套实验器材,总调运款为Y 元,由题意得:
Y=______+________+_______+_______ 化简得Y=______________________ ∵X ____0; _______0; ______0; ______0 ∴ ∴自变量的取值为: _________
图象为:
∵K=________ __0,Y随X的增大而____,当X=___时,Y有最__值 Y=___________=________
归纳:解决含有多个变量的问题时,可以分析这些变量之间的关系,从中___________ 量为自变量,然后根据问题的条件寻求___________,以此作为解决问题的数学模型。

答:调运方案为:从甲商店调往一中_______套,从甲商店调往二中______套‘从乙商店调往一中______套,从乙商店调往二中________套,调运费最小为________。

相关文档
最新文档