(完整版)二次函数基础练习题大全(含答案)

合集下载

二次函数考试题目及答案

二次函数考试题目及答案

二次函数考试题目及答案1. 已知二次函数y=ax^2+bx+c的图象开口向上,且经过点(1,0)和(3,0),求二次函数的解析式。

答案:由于二次函数的图象开口向上,所以a>0。

又因为函数图象经过点(1,0)和(3,0),可以设二次函数的解析式为y=a(x-1)(x-3)。

将点(2,-4)代入,得到-4=a(2-1)(2-3),解得a=4。

因此,二次函数的解析式为y=4(x-1)(x-3)。

2. 抛物线y=ax^2+bx+c与x轴交于点A(-1,0)和点B(3,0),且抛物线的顶点在直线y=-2x上,求抛物线的解析式。

答案:设抛物线的解析式为y=a(x+1)(x-3)。

由于顶点在直线y=-2x上,设顶点坐标为(m,n),则有n=-2m。

根据抛物线的对称性,顶点的横坐标m=(3-1)/2=1,所以n=-2。

将顶点坐标(1,-2)代入抛物线解析式,得到-2=a(1+1)(1-3),解得a=1。

因此,抛物线的解析式为y=(x+1)(x-3)。

3. 已知二次函数y=ax^2+bx+c的图象经过点(0,2)和(2,0),且对称轴为直线x=1,求二次函数的解析式。

答案:由于二次函数的对称轴为直线x=1,可以设二次函数的解析式为y=a(x-1)^2+k。

将点(0,2)代入,得到2=a(0-1)^2+k,即2=a+k。

又因为函数图象经过点(2,0),代入得到0=a(2-1)^2+k,即0=a+k。

解得a=-2,k=2。

因此,二次函数的解析式为y=-2(x-1)^2+2。

4. 抛物线y=ax^2+bx+c与x轴的交点为A(-2,0)和B(4,0),且抛物线经过点(1,3),求抛物线的解析式。

答案:设抛物线的解析式为y=a(x+2)(x-4)。

将点(1,3)代入,得到3=a(1+2)(1-4),解得a=-1/3。

因此,抛物线的解析式为y=-1/3(x+2)(x-4)。

5. 二次函数y=ax^2+bx+c的图象开口向下,且经过点(-1,0)和(3,0),求二次函数的解析式。

二次函数基础(含答案)

二次函数基础(含答案)

二次函数基础分类练习题二次函数y=ax2+bx+c系数符号的确定方法一、知识要点二次函数y=ax2+bx+c系数符号的确定:(1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0.(2)b由对称轴和a的符号确定:由对称轴公式x=判断符号.(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0.(4)b2-4ac的符号由抛物线与x轴交点的个数确定:2个交点,b2-4ac>0;1个交点,b2-4ac=0;没有交点,b2-4ac<0.(5)当x=1时,可确定a+b+c的符号,当x=-1时,可确定a-b+c的符号.(6)由对称轴公式x=,可确定2a+b的符号.二、基础练习1、(2011•重庆)已知抛物线y=ax2+bx+c(a≠0)在平面直角坐标系中的位置如图所示,则下列结论中,正确的是()A、a>0B、b<0C、c<0D、a+b+c>02、(2011•雅安)已知二次函数y=ax2+bx+c的图象如图,其对称轴x=-1,给出下列结果①b2>4ac;②abc>0;③2a+b=0;④a+b+c>0;⑤a-b+c<0,则正确的结论是()A、①②③④B、②④⑤C、②③④D、①④⑤3、(2011•孝感)如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为(12,1),下列结论:①ac<0;②a+b=0;③4ac-b2=4a;④a+b+c<0.其中正确结论的个数是()A、1B、2C、3D、44、(2011•山西)已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=1,则下列结论正确的是()A、ac>0B、方程ax2+bx+c=0的两根是x1=-1,x2=3C、2a-b=0D、当x>0时,y随x的增大而减小5、(2011•泸州)已知二次函数y=ax2+bx+c(a,b,c为常数,a≠0)的图象如图所示,有下列结论:①abc>0,②b2-4ac<0,③a-b+c>0,④4a-2b+c<0,其中正确结论的个数是()A、1B、2C、3D、46、(2011•兰州)如图所示的二次函数y=ax2+bx+c的图象中,刘星同学观察得出了下面四条信息:(1)b2-4ac>0;(2)c>1;(3)2a-b<0;(4)a+b+c<0.你认为其中错误的有()A、2个B、3个C、4个D、1个7、(2011•昆明)抛物线y=ax2+bx+c(a≠0)的图象如图所示,则下列说法正确的是()A、b2-4ac<0B、abc<0C、-b2a<-1D、a-b+c<08、(2011•鸡西)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,现有下列结论:①b2-4ac>0 ②a>0 ③b>0 ④c>0 ⑤9a+3b+c<0,则其中结论正确的个数是()A、2个B、3个C、4个D、5个9、(2011•防城港)已知二次函数y=ax2的图象开口向上,则直线y=ax-1经过的象限是()A、第一、二、三象限B、第二、三、四象限C、第一、二、四象限D、第一、三、四象限10、(2010•昭通)二次函数y=ax2+bx+c的图象如图所示,则下列结论正确的是()A、a<0,b<0,c>0,b2-4ac>0B、a>0,b<0,c>0,b2-4ac<0C、a<0,b>0,c<0,b2-4ac>0D、a<0,b>0,c>0,b2-4ac>011、(2010•梧州)已知二次函数y=ax2+bx+c的图象如图所示,那么下列判断不正确的是()A、ac<0B、a-b+c>0C、b=-4aD、关于x的方程ax2+bx+c=0的根是x1=-1,x2=512、(2010•文山州)已知二次函数y=ax2+bx+c的图象如图所示,则a,b,c满足()A、a<0,b<0,c>0,b2-4ac>0B、a<0,b<0,c<0,b2-4ac>0C、a<0,b>0,c>0,b2-4ac<0D、a>0,b<0,c>0,b2-4ac>013、(2010•铁岭)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列4个结论,其中正确的结论是()A、abc>0B、b>a+cC、2a-b=0D、b2-4ac<014、(2010•钦州)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①ac>0;②a-b+c<0;③当x<0时,y<0;④方程ax2+bx+c=0(a≠0)有两个大于-1的实数根.其中错误的结论有()A、②③B、②④C、①③D、①④15、(2010•黔南州)如图所示为二次函数y=ax2+bx+c(a≠0)的图象,在下列选项中错误的是()A、ac<0B、x>1时,y随x的增大而增大C、a+b+c>0D、方程ax2+bx+c=0的根是x1=-1,x2=316、(2010•荆门)二次函数y=ax2+bx+c的图象如图所示,下列结论错误的是()A、ab<0B、ac<0C、当x<2时,函数值随x增大而增大;当x>2时,函数值随x增大而减小D、二次函数y=ax2+bx+c的图象与x轴交点的横坐标就是方程ax2+bx+c=0的根17、(2010•福州)已知二次函数y=ax2+bx+c的图象如图所示,则下列结论正确的是()A、a>0B、c<0C、b2-4ac<0D、a+b+c>018、(2010•鄂州)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论①a,b异号;②当x=1和x=3时,函数值相等;③4a+b=0;④当y=4时,x的取值只能为0,结论正确的个数有()个.A、1B、2C、3D、419、(2010•百色)二次函数y=-x 2+bx+c 的图象如图所示,下列几个结论:①对称轴为x=2;②当y ≤0时,x <0或x >4;③函数解析式为y=-x (x-4);④当x ≤0时,y 随x 的增大而增大.其中正确的结论有( )A 、①②③④B 、①②③C 、①③④D 、①③二次函数解析式1、抛物线y=ax 2+bx+c 经过A(-1,0), B(3,0), C(0,1)三点,则a= , b= , c=2、把抛物线y=x 2+2x-3向左平移3个单位,然后向下平移2个单位,则所得的抛物线的解析式为 .1、 二次函数有最小值为1-,当0x =时,1y =,它的图象的对称轴为1x =,则函数的关系式为4、根据条件求二次函数的解析式(1)抛物线过(-1,-6)、(1,-2)和(2,3)三点(2)抛物线的顶点坐标为(-1,-1),且与y 轴交点的纵坐标为-3(3)抛物线过(-1,0),(3,0),(1,-5)三点;(4)抛物线在x 轴上截得的线段长为4,且顶点坐标是(3,-2);5、已知二次函数的图象经过()1,1-、()2,1两点,且与x 轴仅有一个交点,求二次函数的解析式6、抛物线y=ax 2+bx+c 过点(0,-1)与点(3,2),顶点在直线y=3x-3上,a<0,求此二次函数的解析式.7、已知二次函数的图象与x 轴交于A (-2,0)、B (3,0)两点,且函数有最大值是2.(1) 求二次函数的图象的解析式;(2) 设次二次函数的顶点为P ,求△ABP 的面积.8、以x 为自变量的函数)34()12(22-+-++-=m m x m x y 中,m 为不小于零的整数,它的图象与x 轴交于点A 和B ,点A 在原点左边,点B 在原点右边.(1)求这个二次函数的解析式;(2)一次函数y=kx+b 的图象经过点A ,与这个二次函数的图象交于点C ,且ABC S ∆=10,求这个一次函数的解析式.练习九 二次函数与方程和不等式1、已知二次函数772--=x kx y 与x 轴有交点,则k 的取值范围是 .2、关于x 的一元二次方程02=--n x x 没有实数根,则抛物线n x x y --=2的顶点在第_____象限;3、抛物线222++-=kx x y 与x 轴交点的个数为( )A 、0B 、1C 、2D 、以上都不对4、二次函数c bx ax y ++=2对于x 的任何值都恒为负值的条件是( )A 、0,0>∆>aB 、0,0<∆>aC 、0,0>∆<aD 、0,0<∆<a5、12++=kx x y 与k x x y --=2的图象相交,若有一个交点在x 轴上,则k 为( )A 、0B 、-1C 、2D 、41 6、若方程02=++c bx ax 的两个根是-3和1,那么二次函数c bx ax y ++=2的图象的对称轴是直线( )A 、x =-3B 、x =-2C 、x =-1D 、x =17、已知二次函数2y x px q =++的图象与x 轴只有一个公共点,坐标为()1,0-,求,p q 的值8、画出二次函数322--=x x y 的图象,并利用图象求方程0322=--x x 的解,说明x 在什么范围时0322≤--x x .9、如图:(1) 求该抛物线的解析式;(2) 根据图象回答:当x 为何范围时,该函数值大于0.10、二次函数c bx ax y ++=2的图象过A(-3,0),B(1,0),C(0,3),点D 在函数图象上,点C 、D 是二次函数图象上的一对对称点,一次函数图象过点B 、D ,求(1)一次函数和二次函数的解析式,(2)写出使一次函数值大于二次函数值的x 的取值范围.11、已知抛物线22y x mx m =-+-.(1)求证此抛物线与x 轴有两个不同的交点;(2)若m 是整数,抛物线22y x mx m =-+-与x 轴交于整数点,求m 的值;(3)在(2)的条件下,设抛物线顶点为A ,抛物线与x 轴的两个交点中右侧交点为B.。

完整版)初中数学二次函数专题经典练习题(附答案)

完整版)初中数学二次函数专题经典练习题(附答案)

完整版)初中数学二次函数专题经典练习题(附答案)1.抛物线$y=-3x^2+2x-1$与坐标轴的交点情况是(A)没有交点。

(C)有且只有两个交点。

(D)有且只有三个交点。

2.已知直线$y=x$与二次函数$y=ax^2-2x-1$的一个交点的横坐标为1,则$a$的值为(C)3.3.二次函数$y=x^2-4x+3$的图象交$x$轴于$A$、$B$两点,交$y$轴于点$C$,则$\triangle ABC$的面积为(B)4.4.函数$y=ax^2+bx+c$中,若$a>0$,$b<0$,$c<0$,则这个函数图象与$x$轴的交点情况是(D)一个在$x$轴的正半轴,另一个在$x$轴的负半轴。

5.已知$(2,5)$、$(4,5)$是抛物线$y=ax^2+bx+c$上的两点,则这个抛物线的对称轴方程是(B)$x=3$。

6.无法正确反映函数$y=ax+b$图象的选项已删除。

7.二次函数$y=2x^2-4x+5$的最小值是$4.5$。

8.某二次函数的图象与$x$轴交于点$(-1,0)$,$(4,0)$,且它的形状与$y=-x$形状相同。

则这个二次函数的解析式为$y=-\frac{1}{25}(x-1)(x-4)$。

9.若函数$y=-x+4$的函数值$y>0$,则自变量$x$的取值范围是$(-\infty,4)$。

10.某品牌电饭锅成本价为70元,销售商对其销量与定价的关系进行了调查,结果如下:定价(元) 100 110 120 130 140 150 销量(个) 80 100 110 100 80 60.为获得最大利润,销售商应将该品牌电饭锅定价为120元。

11.函数$y=ax^2-(a-3)x+1$的图象与$x$轴只有一个交点,那么$a$的值和交点坐标分别为$(a,0)$和$(\frac{a-3}{2},0)$。

12.某涵洞是一抛物线形,它的截面如图3所示,现测得水面宽$AB=1.6m$,涵洞顶点$O$到水面的距离为$2.4m$,在图中的直角坐标系内,涵洞所在抛物线的解析式为$y=-\frac{5}{6}(x-2)^2+2.4$。

(完整word版)二次函数精选练习题及答案

(完整word版)二次函数精选练习题及答案

二次函数练习题及答案一、选择题1. 将抛物线23y x =先向左平移2个单位,再向下平移1个单位后得到新的抛物线,则新抛物线的解析式是 ( )A 23(2)1y x =++B 。

23(2)1y x =+-C 。

23(2)1y x =-+ D.23(2)1y x =-- 2.将抛物线22+=x y 向右平移1个单位后所得抛物线的解析式是………………( ) A.32+=x y ; B.12+=x y ;C.2)1(2++=x y ; D.2)1(2+-=x y .3.将抛物线y= (x —1)2+3向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为( )A .y=(x —2)2B .y=(x —2)2+6C .y=x 2+6D .y=x 24.由二次函数1)3(22+-=x y ,可知( )A .其图象的开口向下B .其图象的对称轴为直线3x =-C .其最小值为1D .当x<3时,y 随x 的增大而增大5.如图,抛物线的顶点P 的坐标是(1,﹣3),则此抛物线对应的二次函数有( )A .最大值1B .最小值﹣3C .最大值﹣3D .最小值16.把函数()y f x ==246x x -+的图象向左平移1个单位,再向上平移1个单位,所得图象对应的函数的解析式是( )A .2(3)3y x =-+B .2(3)1y x =-+C .2(1)3y x =-+D .2(1)1y x =-+7.抛物线c bx x y ++=2图像向右平移2个单位再向下平移3个单位,所得图像的解析式为322--=x x y ,则b 、c 的值为A . b=2, c=2 B. b=2,c=0 C 。

b= -2,c=-1 D 。

b= -3, c=2二、填空题8.二次函数y=-2(x -5)2+3的顶点坐标是 .9.已知二次函数2y x bx c =-++中函数y 与自变量x 之间的部分对应值如下表所示,点11(,)A x y 、22(,)B x y 在函数图象上,当1201,23x x <<<<时,则1y 2y (填“>”或“<”).x 0 1 2 3 y1- 2 3 210.在平面直角坐标系中,将抛物线223y x x =++绕着它与y 轴的交点旋转180°,所得抛物线的解析式为 .11.求二次函数2245y x x =--的顶点坐标(___)对称轴____。

二次函数基础练习题及答案

二次函数基础练习题及答案

二次函数练习题〔一〕1、 一个小球由静止开场在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s〔米〕及时间t 〔秒〕的数据如下表:写出用t 表示s 的函数关系式.2、 以下函数:① 23yx ;②()21y x x x =-+;③()224y x x x =+-;④ 21y x x ;⑤()1y x x =-,其中是二次函数的是 ,其中a,b,c3、当m 时,函数()2235y m x x =-+-〔m 为常数〕是关于x 的二次函数4、当____m =时,函数2221m m ymm x是关于x 的二次函数5、当____m =时,函数()2564m m y m x -+=-+3x 是关于x 的二次函数6、假设点 A ( 2, m ) 在函数 12-=x y 的图像上,那么 A 点的坐标是____.7、在圆的面积公式 S =πr 2中,s 及 r 的关系是〔 〕A 、一次函数关系B 、正比例函数关系C 、反比例函数关系D 、二次函数关系8、正方形铁片边长为15,在四个角上各剪去一个边长为x 〔〕的小正方形,用余下的局部做成一个无盖的盒子.(1)求盒子的外表积S 〔2〕及小正方形边长x 〔〕之间的函数关系式;(2)当小正方形边长为3时,求盒子的外表积.9、矩形的长是 4,宽是 3,如果将长和宽都增加 x ,那么面积增加 2,① 求 y 及 x 之间的函数关系式. ② 求当边长增加多少时,面积增加 82.10、二次函数),0(2≠+=a c ax y 当1时, -1;当2时,2,求该函数解析式.11、富根老伯想利用一边长为a 米的旧墙及可以围成24米长的旧木料,建造猪舍三间,如图,它们的平面图是一排大小相等的长方形.(1)如果设猪舍的宽为x 米,那么猪舍的总面积S 〔米2〕及x 有怎样的函数关系?(2)请你帮富根老伯计算一下,如果猪舍的总面积为32米2,应该如何安排猪舍的长和宽的长度?旧墙的长度是否会对猪舍的长度有影响?怎样影响?二次函数练习题〔二〕函数2ax y =的图象及性质1、填空:〔1〕抛物线221x y =的对称轴是 〔或 〕,顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当 时,该函数有最 值是 ; 〔2〕抛物线221x y -=的对称轴是 〔或 〕,顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当 时,该函数有最 值是 ; 2、对于函数22x y =以下说法:①当x 取任何实数时,y 的值总是正的;②x 的值增大,y 的值也增大;③y 随x 的增大而减小;④ . 3、抛物线 y =-x 2 不具有的性质是〔 〕A 、开口向下B 、对称轴是 y 轴C 、及 y 轴不相交D 、最高点是原点4、苹果熟了,从树上落下所经过的路程 s 及下落时间 t 满足 S =122〔g=9.8〕,那么 s 及 t 的函数图像大致是〔 〕A B C D5、函数2ax y =及b ax y +-=的图象可能是〔 〕A .B .C .D .6、函数24mm ymx 的图象是开口向下的抛物线,求m 的值.7、二次函数12-=m mx y 在其图象对称轴的左侧,y 随x 的增大而增大,求m的值.8、二次函数223x y -=,当x 1>x 2>0时,求y 1及y 2的大小关系.9、函数()422-++=m m xm y 是关于x 的二次函数,求:(1) 满足条件的m 的值;(2)m 为何值时,抛物线有最低点?求出这个最低点,这时x 为何值时,ys t Ost O st O sO随x 的增大而增大;(3)m 为何值时,抛物线有最大值?最大值是多少?当x 为何值时,y 随x 的增大而减小?10、如果抛物线2yax 及直线1y x =-交于点,2b ,求这条抛物线所对应的二次函数的关系式.二次函数练习题〔三〕函数c ax y +=2的图象及性质1、抛物线322--=x y 的开口 ,对称轴是 ,顶点坐标是 ,当x 时, y 随x 的增大而增大, 当x 时, y 随x 的增大而减小.2、将抛物线231x y =向下平移2个单位得到的抛物线的解析式为 ,再向上平移3个单位得到的抛物线的解析式为 ,并分别写出这两个函数的顶点坐标 、 .3、任给一些不同的实数k ,得到不同的抛物线k x y +=2,当k 取0,1±时,关于这些抛物线有以下判断:①开口方向都一样;②对称轴都一样;③形状一样;④ .4、将抛物线122-=x y 向上平移4个单位后,所得的抛物线是 ,当 时,该抛物线有最 〔填大或小〕值,是 .5、函数2)(22+-+=x m m mx y 的图象关于y 轴对称,那么m =;6、二次函数c ax y +=2()0≠a 中,假设当x 取x 1、x 2〔x 1≠x 2〕时,函数值相等,那么当x 取x 12时,函数值等于 .二次函数练习题〔四〕函数()2h x a y -=的图象及性质1、抛物线()2321--=x y ,顶点坐标是 ,当x 时随x 的增大而减小, 函数有最 值 .2、试写出抛物线23x y =经过以下平移后得到的抛物线的解析式并写出对称轴和顶点坐标.〔1〕右移2个单位;〔2〕左移32个单位;〔3〕先左移1个单位,再右移4个单位.3、请你写出函数()21+=x y 和12+=x y 具有的共同性质〔至少2个〕.4、二次函数()2h x a y -=的图象如图:21=a ,,试求该抛物线的解析式.5、抛物线2)3(3-=x y 及x 轴交点为A ,及y 轴交点为B ,求A 、B 两点坐标及⊿的面积.6、二次函数2)4(-=x a y ,当自变量x 由0增加到2时,函数值增加6.〔1〕求出此函数关系式.〔2〕说明函数值y 随x 值的变化情况.7、抛物线9)2(2++-=x k x y 的顶点在坐标轴上,求k 的值.二次函数练习题〔五〕()k h x a y +-=2的图象及性质1、请写出一个二次函数以〔2, 3〕为顶点,且开口向上.____________.2、二次函数 y =(x -1)2+2,当 x =____时,y 有最小值.3、函数 y =12 (x -1)2+3,当 x ____时,函数值 y 随 x 的增大而增大.4、函数21(3)2-2的图象可由函数212的图象向 平移3个单位,再向平移2个单位得到.5、 抛物线的顶点坐标为2,1,且抛物线过点3,0,那么抛物线的关系式是6、 如下图,抛物线顶点坐标是P 〔1,3〕,那么函数y 随自变量x 的增大而减小的x 的取值范围是〔 〕A 、x>3B 、x<3C 、x>1D 、x<1 7、函数()9232+--=x y .(1) 确定以下抛物线的开口方向、对称轴和顶点坐标; (2) 当 时,抛物线有最 值,是 .(3)当x 时,y 随x 的增大而增大;当x 时,y 随x 的增大而减小.(4) 求出该抛物线及x 轴的交点坐标及两交点间距离;(5) 求出该抛物线及y 轴的交点坐标;(6)该函数图象可由23x y -=的图象经过怎样的平移得到的?8、函数()4y.=x+12-(1)指出函数图象的开口方向、对称轴和顶点坐标;(2)假设图象及x轴的交点为A、B和及y轴的交点C,求△的面积;(3)指出该函数的最值和增减性;(4)假设将该抛物线先向右平移2个单位,在向上平移4个单位,求得到的抛物线的解析式;(5)该抛物线经过怎样的平移能经过原点.(6)画出该函数图象,并根据图象答复:当x取何值时,函数值大于0;当x取何值时,函数值小于0.二次函数练习题〔六〕c bx ax y ++=2的图象和性质1、抛物线942++=x x y 的对称轴是 .2、抛物线251222+-=x x y 的开口方向是 ,顶点坐标是 .3、试写出一个开口方向向上,对称轴为直线2,且及y 轴的交点坐标为〔0,3〕的抛物线的解析式 .4、将 y =x 2-2x +3 化成 y =a (x -h)2+k 的形式,那么 y =____.5、把二次函数215322y x x =---的图象向上平移3个单位,再向右平移4个单位,那么两次平移后的函数图象的关系式是 6、抛物线1662--=x x y 及x 轴交点的坐标为; 7、函数x x y +-=22有最值,最值为 ;8、二次函数c bx x y ++=2的图象沿x 轴向左平移2个单位,再沿y 轴向上平移3个单位,得到的图象的函数解析式为122+-=x x y ,那么b 及c 分别等于〔 〕A 、6,4B 、-8,14C 、-6,6D 、-8,-149、二次函数122--=x x y 的图象在x 轴上截得的线段长为〔 〕 A 、22 B 、23 C 、32 D 、3310、通过配方,写出以下函数的开口方向、对称轴和顶点坐标:〔1〕12212+-=x x y ; 〔2〕2832-+-=x x y ; 〔3〕4412-+-=x x y11、把抛物线1422++-=x x y 沿坐标轴先向左平移2个单位,再向上平移3个单位,问所得的抛物线有没有最大值,假设有,求出该最大值;假设没有,说明理由.12、求二次函数62+--=x x y 的图象及x 轴和y 轴的交点坐标13、一次函数的图象过抛物线223yx x的顶点和坐标原点1) 求一次函数的关系式;2) 判断点()2,5-是否在这个一次函数的图象上14、某商场以每台2500元进口一批彩电.如每台售价定为2700元,可卖出400台,以每100元为一个价格单位,假设将每台提高一个单位价格,那么会少卖出50台,那么每台定价为多少元即可获得最大利润?最大利润是多少元?二次函数练习题〔七〕c bx ax y ++=2的性质1、函数2yx pxq 的图象是以3,2为顶点的一条抛物线,这个二次函数的表达式为 2、二次函数2224y mx xmm 的图象经过原点,那么此抛物线的顶点坐标是 3、如果抛物线2y ax bxc 及y 轴交于点A (0,2),它的对称轴是1x,那么acb4、抛物线c bx x y ++=2及x 轴的正半轴交于点A 、B 两点,及y 轴交于点C ,且线段的长为1,△的面积为1,那么b 的值为.5、二次函数c bx ax y ++=2的图象如下图,那么0,0,0,ac b 42-0;6、二次函数c bx ax y ++=2的图象如图,那么直线bc ax y +=的图象不经过第 象限.7、二次函数2yax bxc 〔0≠a 〕的图象如下图,那么以下结论:1〕,a b 同号; 2〕当1x 和3x时,函数值一样;3〕40a b;4〕当2422b b acy a-±-=-时,x 的值只能为0;其中正确的选项是 8、二次函数2224m mx x y +--=及反比例函数xm y 42+=的图象在第二象限内的一个交点的横坐标是-2,那么 9、二次函数2yx axb 中,假设0ab,那么它的图象必经过点〔 〕 A ()1,1-- B ()1,1- C1,1D ()1,1-10、函数b ax y +=及c bx ax y ++=2的图象如下图,那么以下选项中正确的选项是〔 〕A 、0,0>>c abB 、0,0><c abC 、0,0<>c abD 、0,0<<c ab11、函数c bx ax y ++=2的图象如下图,那么函数b ax y +=的图象是〔 〕12、二次函数c bx ax y ++=2的图象如图,那么、2、、这四个代数式中,值为正数的有〔 〕A .4个B .3个C .2个D .1个 13、抛物线的图角如图,那么以下结论:1①>0;②;③>;④<1.其中正确的结论是〔 〕. 〔A 〕①② 〔B 〕②③ 〔C 〕②④ 〔D 〕③④ 14、二次函数2y ax bxc 的最大值是3a ,且它的图象经过()1,2--,1,6两点,求a 、b 、c15、试求抛物线2yax bxc 及x 轴两个交点间的距离〔240b ac〕二次函数练习题〔八〕确定二次函数解析式1、抛物线2经过A(-1,0), B(3,0), C(0,1)三点,那么 , , 2、把抛物线2+23向左平移3个单位,然后向下平移2个单位,那么所得的抛物线的解析式为 .3、 二次函数有最小值为1,当0x 时,1y ,它的图象的对称轴为1x ,那么函数的关系式为 4、根据条件求二次函数的解析式〔1〕抛物线过〔-1,-6〕、〔1,-2〕和〔2,3〕三点〔2〕抛物线的顶点坐标为〔-1,-1〕,且及y 轴交点的纵坐标为-3 〔3〕抛物线过〔-1,0〕,〔3,0〕,〔1,-5〕三点;〔4〕抛物线在x 轴上截得的线段长为4,且顶点坐标是〔3,-2〕;5、二次函数的图象经过1,1、2,1两点,且及x 轴仅有一个交点,求二次函数的解析式6、抛物线2过点(01)及点(3,2),顶点在直线33上,a<0,求此二次函数的解析式.7、二次函数的图象及x 轴交于A 〔-2,0〕、B 〔3,0〕两点,且函数有最大值是2.(1) 求二次函数的图象的解析式;(2) 设次二次函数的顶点为P ,求△的面积.8、以x 为自变量的函数)34()12(22-+-++-=m m x m x y 中,m 为不小于零的整数,它的图象及x 轴交于点A 和B ,点A 在原点左边,点B 在原点右边.(1)求这个二次函数的解析式;(2)一次函数的图象经过点A ,及这个二次函数的图象交于点C ,且ABC S ∆=10,求这个一次函数的解析式.二次函数练习题〔九〕二次函数及方程和不等式1、二次函数772--=x kx y 及x 轴有交点,那么k 的取值范围是 .2、关于x 的一元二次方程02=--n x x 没有实数根,那么抛物线n x x y --=2的顶点在第象限;3、抛物线222++-=kx x y 及x 轴交点的个数为〔 〕 A 、0 B 、1 C 、2 D 、以上都不对4、二次函数c bx ax y ++=2对于x 的任何值都恒为负值的条件是〔 〕 A 、0,0>∆>a B 、0,0<∆>a C 、0,0>∆<a D 、0,0<∆<a5、12++=kx x y 及k x x y --=2的图象相交,假设有一个交点在x 轴上,那么k 为〔 〕 A 、0 B 、-1 C 、2 D 、416、假设方程02=++c bx ax 的两个根是-3和1,那么二次函数c bx ax y ++=2的图象的对称轴是直线〔 〕A 、x =-3 B 、x =-2 C 、x =-1 D 、x =17、二次函数2y x pxq 的图象及x 轴只有一个公共点,坐标为1,0,求,p q的值。

二次函数基础测试题附答案

二次函数基础测试题附答案

二次函数基础测试题附答案一、选择题1.已知二次函数y =ax 2+bx +c (a >0)经过点M (﹣1,2)和点N (1,﹣2),则下列说法错误的是( )A .a +c =0B .无论a 取何值,此二次函数图象与x 轴必有两个交点,且函数图象截x 轴所得的线段长度必大于2C .当函数在x <110时,y 随x 的增大而减小 D .当﹣1<m <n <0时,m +n <2a 【答案】C【解析】【分析】根据二次函数的图象和性质对各项进行判断即可.【详解】解:∵函数经过点M (﹣1,2)和点N (1,﹣2),∴a ﹣b +c =2,a +b +c =﹣2,∴a +c =0,b =﹣2,∴A 正确;∵c =﹣a ,b =﹣2,∴y =ax 2﹣2x ﹣a ,∴△=4+4a 2>0,∴无论a 为何值,函数图象与x 轴必有两个交点,∵x 1+x 2=2a,x 1x 2=﹣1,∴|x 1﹣x 2|=>2, ∴B 正确;二次函数y =ax 2+bx +c (a >0)的对称轴x =﹣2b a =1a , 当a >0时,不能判定x <110时,y 随x 的增大而减小; ∴C 错误;∵﹣1<m <n <0,a >0,∴m +n <0,2a >0, ∴m +n <2a;∴D 正确,故选:C .【点睛】本题考查了二次函数的问题,掌握二次函数的图象和性质是解题的关键.2.如图,在四边形ABCD 中,//AD BC ,DC BC ⊥,4cm DC =,6cm BC =,3cm AD = ,动点P ,Q 同时从点B 出发,点P 以2cm /s 的速度沿折线BA AD DC --运动到点C ,点Q 以1cm/s 的速度沿BC 运动到点C ,设P ,Q 同时出发s t 时,BPQ ∆的面积为2cm y ,则y 与t 的函数图象大致是( )A .B .C .D .【答案】B【解析】【分析】分三种情况求出y 与t 的函数关系式. 当0≤t≤2.5时:P 点由B 到A ;当2.5≤t≤4时,即P 点在AD 上时;当4≤t≤6时,即P 点从D 到C 时.即可得出正确选项.【详解】解:作AE ⊥BC 于E ,根据已知可得,AB 2=42+(6-3)2,解得,AB=5cm .下面分三种情况讨论:当0≤t≤2.5时:P 点由B 到A ,21442255y t t t ==,y 是t 的二次函数.最大面积= 5 cm 2; 当2.5≤t≤4时,即P 点在AD 上时,1422y t t =⨯=, y 是t 的一次函数且最大值=21448cm 2⨯⨯=; 当4≤t≤6时,即P 点从D 到C 时,()211226,2y t t t t =⋅-=-+y 是t 的二次函数 故符合y 与t 的函数图象是B .故选:B .【点睛】此题考查了函数在几何图形中的运用.解答本题的关键在于分类讨论求出函数解析式,然后进行判断.3.二次函数2(,,y ax bx c a b c =++为常数,且0a ≠)中的x 与y 的部分对应值如表:下列结论错误的是( )A .0ac <B .3是关于x 的方程()210ax b x c +-+=的一个根;C .当1x >时,y 的值随x 值的增大而减小;D .当13x 时,()210.ax b x c +-+>【答案】C【解析】【分析】根据函数中的x 与y 的部分对应值表,可以求得a 、b 、c 的值 然后在根据函数解析式及其图象即可对各个选项做出判断.【详解】解:根据二次函数的x 与y 的部分对应值可知:当1x =-时,1y =-,即1a b c -+=-,当0x =时,3y =,即3c =,当1x =时,5y =,即5a b c ++=,联立以上方程:135a b c c a b c -+=-⎧⎪=⎨⎪++=⎩,解得:133a b c =-⎧⎪=⎨⎪=⎩,∴233y x x =-++;A 、1330=-⨯=-<ac ,故本选项正确;B 、方程()210ax b x c +-+=可化为2230x x -++=, 将3x =代入得:232339630-+⨯+=-++=,∴3是关于x 的方程()210ax b x c +-+=的一个根,故本选项正确; C 、233y x x =-++化为顶点式得:2321()24=--+y x , ∵10a =-<,则抛物线的开口向下, ∴当32x >时,y 的值随x 值的增大而减小;当32x <时,y 的值随x 值的增大而增大;故本选项错误; D 、不等式()210ax b x c +-+>可化为2230x x -++>,令2y x 2x 3=-++, 由二次函数的图象可得:当0y >时,13x,故本选项正确;故选:C .【点睛】 本题考查了待定系数法求二次函数解析式、二次函数的性质、二次函数与不等式的关系,根据表中数据求出二次函数解析式是解题的关键.4.如图,正方形ABCD 中,AB =4cm ,点E 、F 同时从C 点出发,以1cm /s 的速度分别沿CB ﹣BA 、CD ﹣DA 运动,到点A 时停止运动.设运动时间为t (s ),△AEF 的面积为S (cm 2),则S (cm 2)与t (s )的函数关系可用图象表示为( )A.B.C.D.【答案】D【解析】试题分析:分类讨论:当0≤t≤4时,利用S=S正方形ABCD﹣S△ADF﹣S△ABE﹣S△CEF可得S=﹣t2+4t,配成顶点式得S=﹣(t﹣4)2+8,此时抛物线的开口向下,顶点坐标为(4,8);当4<t≤8时,直接根据三角形面积公式得到S=(8﹣t)2=(t﹣8)2,此时抛物线开口向上,顶点坐标为(8,0),于是根据这些特征可对四个选项进行判断.解:当0≤t≤4时,S=S正方形ABCD﹣S△ADF﹣S△ABE﹣S△CEF=4•4﹣•4•(4﹣t)﹣•4•(4﹣t)﹣•t•t=﹣t2+4t=﹣(t﹣4)2+8;当4<t≤8时,S=•(8﹣t)2=(t﹣8)2.故选D.考点:动点问题的函数图象.5.已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①a+b+c<0;②a﹣b+c>1;③abc>0;④9a﹣3b+c<0;⑤c﹣a>1.其中所有正确结论的序号是()A.①②B.①③④C.①②③④D.①②③④⑤【答案】D【分析】根据抛物线的开口方向可得出a 的符号,再由抛物线与y 轴的交点可得出c 的值,然后进一步根据对称轴以及抛物线得出当x 1=、 x 1=-、x 3=-时的情况进一步综合判断即可.【详解】由图象可知,a <0,c=1,对称轴:x=b12a-=-, ∴b=2a , ①由图可知:当x=1时,y <0,∴a+b+c <0,正确;②由图可知:当x=−1时,y >1,∴a −b+c >1,正确;③abc=2a 2>0,正确;④由图可知:当x=−3时,y <0,∴9a −3b+c <0,正确;⑤c−a=1−a >1,正确;∴①②③④⑤正确.故选:D .【点睛】本题主要考查了抛物线的函数图像性质的综合运用,熟练掌握相关概念是解题关键.6.小明从如图所示的二次函数2y ax bx c =++的图象中,观察得出了下面五条信息:①c >0,②abc <0,③a -b +c >0,④2b >4a c ,⑤2a =-2b ,其中正确结论是( ).A .①②④B .②③④C .③④⑤D .①③⑤【答案】C【解析】【分析】 由抛物线的开口方向判断a 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】①由抛物线交y 轴于负半轴,则c<0,故①错误;②由抛物线的开口方向向上可推出a>0;∵对称轴在y 轴右侧,对称轴为x=2b a->0,∴b<0;由抛物线与y 轴的交点在y 轴的负半轴上,∴c<0,故abc>0,故②错误;③结合图象得出x=−1时,对应y 的值在x 轴上方,故y>0,即a−b+c>0,故③正确; ④由抛物线与x 轴有两个交点可以推出b 2−4ac>0,故④正确;⑤由图象可知:对称轴为x=2b a -=12则2a=−2b ,故⑤正确;故正确的有:③④⑤.故选:C【点睛】本题考查了二次函数图象与系数关系,观察图象判断图象开口方向、对称轴所在位置、与x 轴交点个数即可得出二次函数系数满足条件.7.如图是二次函数2y ax bx c =++的图象,有下面四个结论:0abc >①;0a b c ②-+>; 230a b +>③;40c b ->④,其中正确的结论是( )A .①②B .①②③C . ①③④D . ①②④【答案】D【解析】【分析】 根据抛物线开口方向得到a 0>,根据对称轴02b x a=->得到b 0<,根据抛物线与y 轴的交点在x 轴下方得到c 0<,所以0abc >;1x =-时,由图像可知此时0y >,所以0a b c -+>;由对称轴123b x a =-=,可得230a b +=;当2x =时,由图像可知此时0y >,即420a bc ++>,将23a b =-代入可得40c b ->.【详解】①根据抛物线开口方向得到0a >,根据对称轴02b x a=->得到b 0<,根据抛物线与y 轴的交点在x 轴下方得到c 0<,所以0abc >,故①正确.②1x =-时,由图像可知此时0y >,即0a b c -+>,故②正确.③由对称轴123b x a =-=,可得230a b +=,所以230a b +>错误,故③错误; ④当2x =时,由图像可知此时0y >,即420a bc ++>,将③中230a b +=变形为23a b =-,代入可得40c b ->,故④正确.故答案选D.【点睛】本题考查了二次函数的图像与系数的关系,注意用数形结合的思想解决问题。

二次函数试题及答案

二次函数试题及答案

二次函数试题及答案一、选择题1. 下列哪个函数是二次函数?A. y = x^2 + 3x + 2B. y = 3x + 2C. y = x^3 - 1D. y = 1/x答案:A2. 二次函数 y = ax^2 + bx + c 的顶点坐标是什么?A. (-b, c)B. (-b/2a, c)C. (-b/2a, 4ac - b^2) / 4aD. (-b/2a, 4ac - b^2) / (4a)答案:D3. 如果二次函数 y = ax^2 + bx + c 的 a < 0,那么它的图像开口方向是?A. 向上B. 向下C. 向左D. 向右答案:B二、填空题4. 二次函数 y = 2x^2 - 4x + 3 的顶点坐标是()。

答案:(1, 1)5. 如果二次函数 y = ax^2 + bx + c 与 x 轴有两个交点,那么 a 的取值范围是()。

答案:a ≠ 0 且Δ > 0三、解答题6. 已知二次函数 y = -3x^2 + 6x - 5,求该函数与 x 轴的交点。

答案:解:令 y = 0,得 -3x^2 + 6x - 5 = 0,解得x1 = (3 + √33) / 6,x2 = (3 - √33) / 6,因此,该函数与 x 轴的交点坐标为( (3 + √33) / 6, 0) 和( (3 - √33) / 6, 0)。

7. 某二次函数的图像经过点 (1, 2) 和 (2, 3),且顶点在 x 轴上,求该二次函数的解析式。

答案:解:设二次函数为 y = a(x - h)^2 + k,由于顶点在 x 轴上,所以 k = 0,又因为图像经过点 (1, 2) 和 (2, 3),代入得:a(1 - h)^2 = 2a(2 - h)^2 = 3解得 h = 1.5,a = 2,因此,该二次函数的解析式为 y = 2(x - 1.5)^2。

四、应用题8. 一个矩形的长是宽的两倍,如果面积为 24 平方米,求这个矩形的长和宽。

二次函数的练习题及答案

二次函数的练习题及答案

二次函数的练习题及答案一、选择题:1. 若二次函数y=ax^2+bx+c的图像开口向上,且与x轴有交点,则a 和b应满足的条件是()。

A. a>0, b>0B. a<0, b<0C. a>0, b^2>4acD. a<0, b^2>4ac2. 二次函数y=-x^2+4x-1的顶点坐标是()。

A. (1,4)B. (2,3)C. (-2,3)D. (2,-3)3. 对于二次函数y=ax^2+bx+c,当x=-1时,函数值最大,那么a的取值范围是()。

A. a>0B. a<0C. a=0D. 无法确定二、填空题:1. 已知二次函数y=2x^2-8x+3,当x=______时,函数值最小。

2. 若二次函数y=-3x^2-6x+5的图像与x轴的交点坐标为(x1,0),(x2,0),则x1+x2=______。

三、解答题:1. 已知二次函数y=-2x^2+4x+1,求出当x取何值时,函数值y最大,并求出最大值。

2. 已知二次函数y=3x^2-6x+2,求出函数与x轴的交点坐标。

四、应用题:1. 某工厂生产一种产品,其生产成本与产品数量的关系可以近似为二次函数:C(x)=0.5x^2-100x+3000,其中x代表产品数量,C(x)代表成本。

求出当生产多少件产品时,成本最低,并求出最低成本。

2. 某公司计划在一块长为60米的空地上建一个矩形花园,花园的长和宽之和为30米。

设花园的长为x米,求出花园的面积最大时的长和宽,并求出最大面积。

答案:一、选择题:1. C2. B3. B二、填空题:1. 22. -2三、解答题:1. 当x=1时,函数值y最大,最大值为3。

2. 函数与x轴的交点坐标为(1,0)和(2,0)。

四、应用题:1. 当生产200件产品时,成本最低,最低成本为2000元。

2. 花园的长为15米,宽为15米时,面积最大,最大面积为225平方米。

二次函数练习题及答案(解析版)

二次函数练习题及答案(解析版)

二次函数练习题及答案(解析版)一、选择题:1 下列关系式中,属于二次函数的是(x为自变量)( )2 函数y=x2-2x+3的图象的顶点坐标是( )A (1,-4) B(-1,2) C (1,2) D(0,3)23 抛物线y=2(x-3)的顶点在( )A 第一象限B 第二象限C x轴上D y轴上4 抛物线的对称轴是( )A x=-2 Bx=2 C x=-4 D x=45 已知二次函数y=ax2+bx+c的图象如图所示,则下列结论中,正确的是( )A ab>0,c>0B ab>0,c<0C ab<0,c>0D ab<0,c<06 二次函数y=ax2+bx+c的图象如图所示,则点在第___象限( )A 一B 二C 三D 四7 如图所示,已知二次函数y=ax2+bx+c(a≠0) 的图象的顶点P 的横坐标是4,图象交 x 轴于点A(m,0) 和点B ,且m>4,那么AB 的长是( )A 4+mB mC 2m-8D 8-2m8 若一次函数y=ax+b的图象经过第二、三、四象限,则二次函数y=ax2+bx的图象只可能是( )9 已知抛物线和直线在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线x=-1,P 1(x1,y 1) ,P 2(x2,y 2) 是抛物线上的点,P3(x3,y 3) 是直线上的点,且-1A y110 把抛物线物线的函数关系式是( ) AC 的图象向左平移2个单位,再向上平移3个单位,所得的抛B D二、填空题:11 二次函数y=x2-2x+1的对称轴方程是______________12 若将二次函数y=x2-2x+3配方为y=(x-h)2+k的形式,则y=________13 若抛物线y=x2-2x-3与x 轴分别交于A 、B 两点,则AB 的长为_________14 抛物线y=x2+bx+c,经过A(-1,0) ,B(3,0) 两点,则这条抛物线的解析式为_____________15 已知二次函数y=ax2+bx+c的图象交x 轴于A 、B 两点,交y 轴于C 点,且△ABC 是直角三角形,请写出一个符合要求的二次函数解析式________________16 在距离地面2m 高的某处把一物体以初速度v 0(m/s)竖直向上抛物出,在不计空气阻力的情况下,其上升高度s(m)与抛出时间t(s)满足:(其中g 是常数,通常取10m/s2) 若v 0=10m/s,则该物体在运动过程中最高点距地面_________m17 试写出一个开口方向向上,对称轴为直线x=2,且与y 轴的交点坐标为(0,3) 的抛物线的解析式为______________18 已知抛物线y=x2+x+b2经过点,则y 1的值是_________三、解答题:19 若二次函数的图象的对称轴方程是,并且图象过A(0,-4) 和B(4,0) ,(1)求此二次函数图象上点A 关于对称轴对称的点A ′的坐标; (2)求此二次函数的解析式;20 在直角坐标平面内,点 O 为坐标原点,二次函数y=x2+(k-5)x-(k+4) 的图象交 x 轴于点A(x1,0) 、B(x2,0) ,且(x1+1)(x2+1)=-8 (1)求二次函数解析式;(2)将上述二次函数图象沿x 轴向右平移2个单位,设平移后的图象与y 轴的交点为C ,顶点为P ,求△POC 的面积21 已知:如图,二次函数y=ax2+bx+c的图象与x 轴交于A 、B 两点,其中A 点坐标为(-1,0) ,点C(0,5) ,另抛物线经过点(1,8) ,M 为它的顶点(1)求抛物线的解析式; (2)求△MCB 的面积S △MCB22 某商店销售一种商品,每件的进价为250元,根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是1350元时,销售量为500件,而单价每降低1元,就可以多售出200件请你分析,销售单价多少时,可以获利最大二次函数练习题参考答案与解析一、选择题1 考点:二次函数概念选A2 考点:求二次函数的顶点坐标解析:法一,直接用二次函数顶点坐标公式求法二,将二次函数解析式由一般形式转换为顶点式,即y=a(x-h)2+k的形式,顶点坐标即为(h,k) ,y=x2-2x+3=(x-1)2+2,所以顶点坐标为(1,2) ,答案选C3 考点:二次函数的图象特点,顶点坐标解析:可以直接由顶点式形式求出顶点坐标进行判断,函数y=2(x-3)2的顶点为(3,0) ,所以顶点在x 轴上,答案选C4 考点:数形结合,二次函数y=ax2+bx+c的图象为抛物线,其对称轴为解析:抛物线,直接利用公式,其对称轴所在直线为答案选B5 考点:二次函数的`图象特征解析:由图象,抛物线开口方向向下,抛物线对称轴在y 轴右侧,抛物线与y 轴交点坐标为(0,c) 点,由图知,该点在x 轴上方,答案选C6 考点:数形结合,由抛物线的图象特征,确定二次函数解析式各项系数的符号特征解析:由图象,抛物线开口方向向下,抛物线对称轴在y 轴右侧,抛物线与y 轴交点坐标为(0,c) 点,由图知,该点在x 轴上方,在第四象限,答案选D7 考点:二次函数的图象特征解析:因为二次函数y=ax2+bx+c(a≠0) 的图象的顶点P 的横坐标是4,所以抛物线对称轴所在直线为x=4,交x 轴于点D ,所以A 、B 两点关于对称轴对称,因为点A(m,0) ,且m>4,所以AB=2AD=2(m-4)=2m-8,答案选C8 考点:数形结合,由函数图象确定函数解析式各项系数的性质符号,由函数解析式各项系数的性质符号画出函数图象的大致形状解析:因为一次函数y=ax+b的图象经过第二、三、四象限,所以二次函数y=ax2+bx的图象开口方向向下,对称轴在y 轴左侧,交坐标轴于(0,0) 点答案选C9 考点:一次函数、二次函数概念图象及性质解析:因为抛物线的对称轴为直线x=-1,且-1-1时,由图象知,y 随x 的增大而减小,所以y 210 考点:二次函数图象的变化抛物线平移2个单位得到,再向上平移3个单位得到的图象向左答案选C二、填空题11 考点:二次函数性质解析:二次函数y=x2-2x+1,所以对称轴所在直线方程答案x=112 考点:利用配方法变形二次函数解析式解析:y=x2-2x+3=(x2-2x+1)+2=(x-1)2+2答案y=(x-1)2+213 考点:二次函数与一元二次方程关系解析:二次函数y=x2-2x-3与x 轴交点A 、B 的横坐标为一元二次方程x 2-2x-3=0的两个根,求得x 1=-1,x 2=3,则AB=|x2-x 1|=4答案为414 考点:求二次函数解析式解析:因为抛物线经过A(-1,0) ,B(3,0) 两点,解得b=-2,c=-3,答案为y=x2-2x-315 考点:此题是一道开放题,求解满足条件的二次函数解析式,答案不唯一解析:需满足抛物线与x 轴交于两点,与y 轴有交点,及△ABC 是直角三角形,但没有确定哪个角为直角,答案不唯一,如:y=x2-116 考点:二次函数的性质,求最大值解析:直接代入公式,答案:717 考点:此题是一道开放题,求解满足条件的二次函数解析式,答案不唯一解析:如:y=x2-4x+318 考点:二次函数的概念性质,求值三、解答题19 考点:二次函数的概念、性质、图象,求解析式解析:(1)A′(3,-4)(2)由题设知:∴y=x2-3x-4为所求(3)20 考点:二次函数的概念、性质、图象,求解析式解析:(1)由已知x 1,x 2是x 2+(k-5)x-(k+4)=0的两根又∵(x1+1)(x2+1)=-8 ∴x 1x 2+(x1+x2)+9=0 ∴-(k+4)-(k-5)+9=0 ∴k=5 ∴y=x2-9为所求 (2)由已知平移后的函数解析式为: y=(x-2)2-9 且x=0时y=-5 ∴C(0,-5) ,P(2,-9)21 解: (1)依题意:(2)令y=0,得(x-5)(x+1)=0,x 1=5,x 2=-1 ∴B(5,0)由,得M(2,9)作ME ⊥y 轴于点E ,则可得S △MCB =1522 思路点拨:通过阅读,我们可以知道,商品的利润和售价、销售量有关系,它们之间呈现如下关系式:总利润=单个商品的利润×销售量要想获得最大利润,并不是单独提高单个商品的利润或仅大幅提高销售量就可以的,这两个量之间应达到某种平衡,才能保证利润最大因为已知中给出了商品降价与商品销售量之间的关系,所以,我们完全可以找出总利润与商品的价格之间的关系,利用这个等式寻找出所求的问题,这里我们不妨设每件商品降价x 元,商品的售价就是(135-x)元了单个的商品的利润是(135-x-25)这时商品的销售量是(500+200x)总利润可设为y 元利用上面的等量关式,可得到y 与x 的关系式了,若是二次函数,即可利用二次函数的知识,找到最大利润解:设销售单价为降价x 元顶点坐标为(425,91125)即当每件商品降价425元,即售价为135-425=925时,可取得最大利润91125元数学速算的技巧1、“凑整”先算1.计算:(1)24+44+56 (2)53+36+47解:(1)24+44+56=24+(44+56)=24+100=124因为44+56=100是个整百的数,所以先把它们的和算出来。

二次函数基础练习题大全(含答案)

二次函数基础练习题大全(含答案)

二次函数基础练习题练习一 二次函数1、 一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s (米)与时间t(秒)的数据如下表:写出用t 表示s 的函数关系式:2、 下列函数:① y =② ()21y x x x =-+;③ ()224y x x x =+-;④ 21y x x=+; ⑤ ()1y x x =-,其中是二次函数的是 ,其中a = ,b = ,c =3、当m 时,函数()2235y m x x =-+-(m 为常数)是关于x 的二次函数4、当____m =时,函数()2221m m y m m x --=+是关于x 的二次函数5、当____m =时,函数()2564m m y m x -+=-+3x 是关于x 的二次函数 6、若点 A ( 2, m ) 在函数 12-=x y 的图像上,则 A 点的坐标是____.7、在圆的面积公式 S =πr 2 中,s 与 r 的关系是( )A 、一次函数关系B 、正比例函数关系C 、反比例函数关系D 、二次函数关系8、正方形铁片边长为15cm ,在四个角上各剪去一个边长为x (cm )的小正方形,用余下的部分做成一个无盖的盒子.(1)求盒子的表面积S (cm 2)与小正方形边长x (cm )之间的函数关系式;(2)当小正方形边长为3cm 时,求盒子的表面积.9、如图,矩形的长是 4cm ,宽是 3cm ,如果将长和宽都增加 x cm ,那么面积增加 ycm 2, ① 求 y 与 x 之间的函数关系式.② 求当边长增加多少时,面积增加 8cm 2.10、已知二次函数),0(2≠+=a c ax y 当x=1时,y= -1;当x=2时,y=2,求该函数解析式.11、富根老伯想利用一边长为a 米的旧墙及可以围成24米长的旧木料,建造猪舍三间,如图,它们的平面图是一排大小相等的长方形.(1) 如果设猪舍的宽AB 为x 米,则猪舍的总面积S (米2)与x 有怎样的函数关系?(2) 请你帮富根老伯计算一下,如果猪舍的总面积为32米2,应该如何安排猪舍的长BC 和宽AB 的长度?旧墙的长度是否会对猪舍的长度有影响?怎样影响?练习二 函数2ax y =的图像与性质1、填空:(1)抛物线221x y =的对称轴是 (或 ),顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是 ;(2)抛物线221x y -=的对称轴是 (或 ),顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是 ;2、对于函数22x y =下列说法:①当x 取任何实数时,y 的值总是正的;②x 的值增大,y 的值也增大;③y 随x 的增大而减小;④图像关于y 轴对称.其中正确的是 .3、抛物线 y =-x 2 不具有的性质是( )A 、开口向下B 、对称轴是 y 轴C 、与 y 轴不相交D 、最高点是原点4、苹果熟了,从树上落下所经过的路程 s 与下落时间 t 满足 S =12gt 2(g =9.8),则 s 与 t 的函数图像大致是( )A B C D5、函数2ax y =与b ax y +-=的图像可能是( )A .B .C .D . 6、已知函数24mm y mx --=的图像是开口向下的抛物线,求m 的值. 7、二次函数12-=mmx y 在其图像对称轴的左侧,y 随x 的增大而增大,求m 的值. 8、二次函数223x y -=,当x 1>x 2>0时,求y 1与y 2的大小关系. 9、已知函数()422-++=m m x m y 是关于x 的二次函数,求:(1) 满足条件的m 的值;(2) m 为何值时,抛物线有最低点?求出这个最低点,这时x 为何值时,y 随x 的增大而增大; tt tt(3) m 为何值时,抛物线有最大值?最大值是多少?当x 为何值时,y 随x 的增大而减小?10、如果抛物线2y ax =与直线1y x =-交于点(),2b ,求这条抛物线所对应的二次函数的关系式.练习三 函数c ax y +=2的图象与性质1、抛物线322--=x y 的开口 ,对称轴是 ,顶点坐标是 ,当x 时, y 随x 的增大而增大, 当x 时, y 随x 的增大而减小.2、将抛物线231x y =向下平移2个单位得到的抛物线的解析式为 ,再向上平移3个单位得到的抛物线的解析式为 ,并分别写出这两个函数的顶点坐标 、 .3、任给一些不同的实数k ,得到不同的抛物线k x y +=2,当k 取0,1±时,关于这些抛物线有以下判断:①开口方向都相同;②对称轴都相同;③形状相同;④都有最底点.其中判断正确的是 .4、将抛物线122-=x y 向上平移4个单位后,所得的抛物线是 ,当x= 时,该抛物线有最 (填大或小)值,是 .5、已知函数2)(22+-+=x m m mx y 的图象关于y 轴对称,则m =________;6、二次函数c ax y +=2()0≠a 中,若当x 取x 1、x 2(x 1≠x 2)时,函数值相等,则当x 取x 1+x 2时,函数值等于 .练习四 函数()2h x a y -=的图象与性质 1、抛物线()2321--=x y ,顶点坐标是 ,当x 时,y 随x 的增大而减小, 函数有 最 值 . 2、试写出抛物线23x y =经过下列平移后得到的抛物线的解析式并写出对称轴和顶点坐标.(1)右移2个单位;(2)左移32个单位;(3)先左移1个单位,再右移4个单位.3、请你写出函数()21+=x y 和12+=x y 具有的共同性质(至少2个).4、二次函数()2h x a y -=的图象如图:已知21=a ,OA=OC ,试求该抛物线的解析式.5、抛物线2)3(3-=x y 与x 轴交点为A ,与y 轴交点为B ,求A 、B 两点坐标及⊿AOB 的面积.6、二次函数2)4(-=x a y ,当自变量x 由0增加到2时,函数值增加6.(1)求出此函数关系式.(2)说明函数值y 随x 值的变化情况.7、已知抛物线9)2(2++-=x k x y 的顶点在坐标轴上,求k 的值.练习五 ()k h x a y +-=2的图象与性质 1、请写出一个二次函数以(2, 3)为顶点,且开口向上.____________.2、二次函数 y =(x -1)2+2,当 x =____时,y 有最小值.3、函数 y =12(x -1)2+3,当 x ____时,函数值 y 随 x 的增大而增大. 4、函数y=21(x+3)2-2的图象可由函数y=21x 2的图象向 平移3个单位,再向 平移2个单位得到.5、 已知抛物线的顶点坐标为()2,1,且抛物线过点()3,0,则抛物线的关系式是6、 如图所示,抛物线顶点坐标是P (1,3),则函数y 随自变量x 的增大而减小的x 的取值范围是( )A 、x>3B 、x<3C 、x>1D 、x<17、已知函数()9232+--=x y . (1)确定下列抛物线的开口方向、对称轴和顶点坐标; (2)当x= 时,抛物线有最 值,是 . (3)当x 时,y 随x 的增大而增大;当x 时,y 随x 的增大而减小. (4)求出该抛物线与x 轴的交点坐标及两交点间距离; (5) 求出该抛物线与y 轴的交点坐标;(6) 该函数图象可由23x y -=的图象经过怎样的平移得到的?8、已知函数()412-+=x y . (1)指出函数图象的开口方向、对称轴和顶点坐标; (2)若图象与x 轴的交点为A 、B 和与y 轴的交点C ,求△ABC 的面积; (3)指出该函数的最值和增减性; (4)若将该抛物线先向右平移2个单位,在向上平移4个单位,求得到的抛物线的解析式; (5)该抛物线经过怎样的平移能经过原点. (6)画出该函数图象,并根据图象回答:当x 取何值时,函数值大于0;当x 取何值时,函数值小于0.练习六 c bx ax y ++=2的图象和性质1、抛物线942++=x x y 的对称轴是 .2、抛物线251222+-=x x y 的开口方向是 ,顶点坐标是 .3、试写出一个开口方向向上,对称轴为直线x=-2,且与y 轴的交点坐标为(0,3)的抛物线的解析式 .4、将 y =x 2-2x +3 化成 y =a (x -h)2+k 的形式,则 y =____.5、把二次函数215322y x x =---的图象向上平移3个单位,再向右平移4个单位,则两次平移后的函数图象的关系式是6、抛物线1662--=x x y 与x 轴交点的坐标为_________;7、函数x x y +-=22有最____值,最值为_______;8、二次函数c bx x y ++=2的图象沿x 轴向左平移2个单位,再沿y 轴向上平移3个单位,得到的图象的函数解析式为122+-=x x y ,则b 与c 分别等于( )A 、6,4B 、-8,14C 、-6,6D 、-8,-149、二次函数122--=x x y 的图象在x 轴上截得的线段长为( )A 、22B 、23C 、32D 、3310、通过配方,写出下列函数的开口方向、对称轴和顶点坐标:(1)12212+-=x x y ; (2)2832-+-=x x y ; (3)4412-+-=x x y 11、把抛物线1422++-=x x y 沿坐标轴先向左平移2个单位,再向上平移3个单位,问所得的抛物线有没有最大值,若有,求出该最大值;若没有,说明理由.12、求二次函数62+--=x x y 的图象与x 轴和y 轴的交点坐标13、已知一次函数的图象过抛物线223y x x =++的顶点和坐标原点1) 求一次函数的关系式;2) 判断点()2,5-是否在这个一次函数的图象上14、某商场以每台2500元进口一批彩电.如每台售价定为2700元,可卖出400台,以每100元为一个价格单位,若将每台提高一个单位价格,则会少卖出50台,那么每台定价为多少元即可获得最大利润?最大利润是多少元?练习七 c bx ax y ++=2的性质1、函数2y x px q =++的图象是以()3,2为顶点的一条抛物线,这个二次函数的表达式为2、二次函数2224y mx x m m =++-的图象经过原点,则此抛物线的顶点坐标是3、如果抛物线2y ax bx c =++与y 轴交于点A (0,2),它的对称轴是1x =-,那么ac b= 4、抛物线c bx x y ++=2与x 轴的正半轴交于点A 、B 两点,与y 轴交于点C ,且线段AB 的长为1,△ABC 的面积为1,则b 的值为______.5、已知二次函数c bx ax y ++=2的图象如图所示,则a___0,b___0,c___0,ac b 42-____0;6、二次函数c bx ax y ++=2的图象如图,则直线bc ax y +=的图象不经过第 象限.7、已知二次函数2y ax bx c =++(0≠a )的图象如图所示,则下列结论: 1),a b 同号;2)当1x =和3x =时,函数值相同;3)40a b +=;4)当2y =-时,x 的值只能为0;其中正确的是(第5题) (第6题) (第7题) (第10题)8、已知二次函数2224m mx x y +--=与反比例函数xm y 42+=的图象在第二象限内的一个交点的横坐标是-2,则m=9、二次函数2y x ax b =++中,若0a b +=,则它的图象必经过点( )A ()1,1--B ()1,1-C ()1,1D ()1,1-10、函数b ax y +=与c bx ax y ++=2的图象如上图所示,则下列选项中正确的是( )A 、0,0>>c abB 、0,0><c abC 、0,0<>c abD 、0,0<<c ab11、已知函数c bx ax y ++=2的图象如图所示,则函数b ax y +=的图象是( )12、二次函数c bx ax y ++=2的图象如图,那么abc 、2a+b 、a+b+c 、a-b+c 这四个代数式中,值为正数的有( )A .4个B .3个C .2个D .1个13、抛物线的图角如图,则下列结论:①>0;②;③>;④<1.其中正确的结论是( ).(A )①② (B )②③ (C )②④ (D )③④14、二次函数2y ax bx c =++的最大值是3a -,且它的图象经过()1,2--,()1,6两点, 求a 、b 、c 的值。

二次函数练习题(含答案)

二次函数练习题(含答案)

二次函数练习题 (一)1.抛物线y=x 2+3x 的顶点在( )A.第一象限B.第二象限C.第三象限D.第四象限 2.抛物线y=-3x 2+2x-1的图象与x 轴、y 轴交点的个数是( ) A.没有交点 B.只有一个交点 C.有两个交点 D.有三个交点3.已知抛物线y=ax 2+bx+c(a≠0)在平面直角坐标系中的位置如图1所示,则有( ) A.a>0,b>0 B.a>0,c>0 C.b>0,c>0 D.a 、b 、c 都小于0(1) (2) 4.若抛物线y=ax 2-6x 经过点(2,0),则抛物线顶点到坐标原点的距离为( )5.如图2所示,二次函数y=x 2-4x+3的图象交x 轴于A 、B 两点, 交y 轴于点C, 则△ABC 的面积为( )A.6B.4C.3D.16.(2010年北京崇文区) 函数y=x 2-2x-2的图象如右图所示,根据其中提供的信息,可求得使y ≥1成立的x 的取值范围是( )A .31≤≤-xB .31<<-xC .31>-<x x 或D .31≥-≤x x 或7.二次函数y =ax 2+bx +c 的图象如图所示,反比例函数y =ax与正比例函数y =(b +c )x 在同一坐标系中的大致图象可能是( )A .B .C .D .8.(2010江苏泰州,5,3分)下列函数中,y 随x 增大而增大的是( )A.x y 3-= B. 5+-=x y C. 12y x = D. )0(212<=x x y 9.二次函数y=ax 2+bx+c 的图象如图3所示,那么abc,b 2-4ac,2a+b,a+b+c 这四个代数式中,值为正数的有( )xy OxBACy OA.4个B.3个C.2个D.1个10.如图所示,当b<0时,函数y=ax+b 与y=ax 2+bx+c 在同一坐标系内的图象可能是( )11.二次函数y=2x 2- 4x+ 3 通过配方化为顶点式为y= _________, 其对称轴是______,顶点坐标为_______,抛物线开口________,当x_______时,y 随x 的增大而增大;当x____时,y 随x 的增大而减小;当x=______时,y 最值=________.12.已知抛物线y=ax 2+bx+c(a≠0)图象的顶点为P(-2,3),且过A(-3,0), 则抛物线的关系式为___________.13.若二次函数y=ax 2+bx+c 的图象经过点(0,-1),(5,-1), 则它的对称轴方程是________. 14.在同一坐标系内,抛物线y=ax 2与直线y=2x+b 相交于A 、B 两点,若点A 的坐标是(2,4),则点B 的坐标是_________.15.将抛物线y=ax 2向右平移2个单位,再向上平移3个单位,移动后的抛物线经过点(3,-1),那么移动后的抛物线的关系式为__________.16.若抛物线y=ax 2+bx+c 经过(0,1)和(2,-3)两点,且开口向下,对称轴在y 轴左侧,则a 的取值范围是_________.17.已知抛物线y =ax 2+bx +c 的对称轴为x =2,且经过点(1,4)和点(5,0),则该抛物线的解析式为_______________.18.函数y =2x 2 – 4x – 1写成y = a (x –h)2 +k 的形式是________,抛物线y =2x 2– 4x – 1的顶点坐标是_______,对称轴是__________.19.已知函数①y =x 2+1,②y =-2x 2+x .函数____(填序号)有最小值,当x =____时,该函数的最小值是_______20.当m=_________时,函数y = (m 2-4))3(42-+--m x m mx + 3是二次函数,其解析式是__________________,图象的对称轴是_______________,顶点是________,当x =______时, y 有最____值_______.21.已知二次函数的图象开口向下,且与y 轴的正半轴相交.请你写出一个满足条件的二次函数的解析式:___________22.抛物线c bx ax y ++=2如右图所示,则它关于y析式是__________.23、(2010年宁波市)如图,已知二次函数bx x y +-=221的图象经过A (2,0)、B (0,-6)两点。

(完整版)二次函数练习题及答案

(完整版)二次函数练习题及答案

n dAl l t h i ng si nt he i rb ei n ga re go od fo二次函数练习题一、选择题:1.下列关系式中,属于二次函数的是(x 为自变量)( ) A. B. C. D.2. 函数y=x 2-2x+3的图象的顶点坐标是( )A. (1,-4)B.(-1,2)C. (1,2)D.(0,3)3. 抛物线y=2(x-3)2的顶点在( )A. 第一象限B. 第二象限C. x 轴上D. y 轴上4. 抛物线的对称轴是( )A. x=-2B.x=2C. x=-4D. x=45. 已知二次函数y=ax 2+bx+c 的图象如图所示,则下列结论中,正确的是( ) A. ab>0,c>0 B. ab>0,c<0 C. ab<0,c>0 D. ab<0,c<06. 二次函数y=ax 2+bx+c 的图象如图所示,则点在第___象限( )A. 一B. 二C. 三D. 四7. 如图所示,已知二次函数y=ax 2+bx+c(a ≠0)的图象的顶点P 的横坐标是4,图象交x 轴于点A(m ,0)和点B ,且m>4,那么AB 的长是( )A. 4+mB. mC. 2m-8D. 8-2m8. 若一次函数y=ax+b 的图象经过第二、三、四象限,则二次函数y=ax 2+bx 的图象只可能是( )9. 已知抛物线和直线 在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线x=-1,P 1(x 1,y 1),P 2(x 2,y 2)是抛物线上的点,P 3(x 3,y 3)是直线 上的点,且-1<x 1<x 2,x 3<-1,则y 1,y 2,y 3的大小关系是( )A. y 1<y 2<y 3 B. y 2<y 3<y 1 C. y 3<y 1<y 2 D. y 2<y 1<y 3andllt hi ng si nt he i rb ei n ga re go od fo rs o 10.把抛物线的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是( )A.B.C. D.二、填空题:11. 二次函数y=x 2-2x+1的对称轴方程是______________.12. 若将二次函数y=x 2-2x+3配方为y=(x-h)2+k 的形式,则y=________.13. 若抛物线y=x 2-2x-3与x 轴分别交于A 、B 两点,则AB 的长为_________.14. 抛物线y=x 2+bx+c ,经过A(-1,0),B(3,0)两点,则这条抛物线的解析式为_____________.15. 已知二次函数y=ax 2+bx+c 的图象交x 轴于A 、B 两点,交y 轴于C 点,且△ABC 是直角三角形,请写出一个符合要求的二次函数解析式________________.16. 在距离地面2m 高的某处把一物体以初速度v 0(m/s)竖直向上抛物出,在不计空气阻力的情况下,其上升高度s(m)与抛出时间t(s)满足:(其中g 是常数,通常取10m/s 2).若v 0=10m/s ,则该物体在运动过程中最高点距地面_________m.17. 试写出一个开口方向向上,对称轴为直线x=2,且与y 轴的交点坐标为(0,3)的抛物线的解析式为______________.18. 已知抛物线y=x 2+x+b 2经过点,则y 1的值是_________.三、解答题:19. 若二次函数的图象的对称轴方程是,并且图象过A(0,-4)和B(4,0),(1)求此二次函数图象上点A 关于对称轴对称的点A ′的坐标; (2)求此二次函数的解析式;20. 在直角坐标平面内,点O为坐标原点,二次函数y=x2+(k-5)x-(k+4) 的图象交x轴于点A(x1,0)、B(x2,0),且(x1+1)(x2+1)=-8. (1)求二次函数解析式;(2)将上述二次函数图象沿x轴向右平移2个单位,设平移后的图象与y轴的交点为C,顶点为P,求△POC的面积.21.已知:如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(-1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点. (1)求抛物线的解析式; (2)求△MCB的面积S△MCB.22.某商店销售一种商品,每件的进价为2.50元,根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.50元时,销售量为500件,而单价每降低1元,就可以多售出200件.请你分析,销售单价多少时,可以获利最大.e an dAl l t h i ng si nt he i rb ei n 答案与解析:一、选择题1.考点:二次函数概念.选A.2.考点:求二次函数的顶点坐标. 解析:法一,直接用二次函数顶点坐标公式求.法二,将二次函数解析式由一般形式转换为顶点式,即y=a(x-h)2+k 的形式,顶点坐标即为(h ,k),y=x 2-2x+3=(x-1)2+2,所以顶点坐标为(1,2),答案选C. 3.考点:二次函数的图象特点,顶点坐标. 解析:可以直接由顶点式形式求出顶点坐标进行判断,函数y=2(x-3)2的顶点为(3,0),所以顶点在x 轴上,答案选C. 4. 考点:数形结合,二次函数y=ax 2+bx+c 的图象为抛物线,其对称轴为. 解析:抛物线,直接利用公式,其对称轴所在直线为答案选B. 5. 考点:二次函数的图象特征. 解析:由图象,抛物线开口方向向下, 抛物线对称轴在y 轴右侧, 抛物线与y 轴交点坐标为(0,c)点,由图知,该点在x 轴上方,答案选C. 6. 考点:数形结合,由抛物线的图象特征,确定二次函数解析式各项系数的符号特征. 解析:由图象,抛物线开口方向向下, 抛物线对称轴在y 轴右侧, 抛物线与y 轴交点坐标为(0,c)点,由图知,该点在x 轴上方,在第四象限,答案选D. 7. 考点:二次函数的图象特征. 解析:因为二次函数y=ax 2+bx+c(a ≠0)的图象的顶点P 的横坐标是4,所以抛物线对an dAl l t h i ng si nt he i rb ei n ga re go od fo rs 称轴所在直线为x=4,交x 轴于点D ,所以A 、B 两点关于对称轴对称,因为点A(m ,0),且m>4,所以AB=2AD=2(m-4)=2m-8,答案选C. 8. 考点:数形结合,由函数图象确定函数解析式各项系数的性质符号,由函数解析式各项系数的性质符号画出函数图象的大致形状. 解析:因为一次函数y=ax+b 的图象经过第二、三、四象限,所以二次函数y=ax 2+bx 的图象开口方向向下,对称轴在y 轴左侧,交坐标轴于(0,0)点.答案选C. 9. 考点:一次函数、二次函数概念图象及性质. 解析:因为抛物线的对称轴为直线x=-1,且-1<x 1<x 2,当x>-1时,由图象知,y 随x 的增大而减小,所以y 2<y 1;又因为x 3<-1,此时点P 3(x 3,y 3)在二次函数图象上方,所以y 2<y 1<y 3.答案选D. 10.考点:二次函数图象的变化.抛物线的图象向左平移2个单位得到,再向上平移3个单位得到.答案选C.二、填空题 11. 考点:二次函数性质. 解析:二次函数y=x 2-2x+1,所以对称轴所在直线方程.答案x=1. 12. 考点:利用配方法变形二次函数解析式. 解析:y=x 2-2x+3=(x 2-2x+1)+2=(x-1)2+2.答案y=(x-1)2+2. 13. 考点:二次函数与一元二次方程关系. 解析:二次函数y=x 2-2x-3与x 轴交点A 、B 的横坐标为一元二次方程x 2-2x-3=0的两个根,求得x 1=-1,x 2=3,则AB=|x 2-x 1|=4.答案为4. 14. 考点:求二次函数解析式. 解析:因为抛物线经过A(-1,0),B(3,0)两点,解得b=-2,c=-3, 答案为y=x 2-2x-3. 15. 考点:此题是一道开放题,求解满足条件的二次函数解析式,答案不唯一. 解析:需满足抛物线与x 轴交于两点,与y 轴有交点,及△ABC 是直角三角形,但没有确定哪个角为直角,答案不唯一,如:y=x 2-1. 16. 考点:二次函数的性质,求最大值. 解析:直接代入公式,答案:7.Al l t h i ng si nt he i rb ei n ga re go od fo r 17. 考点:此题是一道开放题,求解满足条件的二次函数解析式,答案不唯一. 解析:如:y=x 2-4x+3. 18. 考点:二次函数的概念性质,求值. 答案:.三、解答题 19. 考点:二次函数的概念、性质、图象,求解析式. 解析:(1)A ′(3,-4) (2)由题设知: ∴y=x 2-3x-4为所求 (3) 20. 考点:二次函数的概念、性质、图象,求解析式. 解析:(1)由已知x 1,x 2是x 2+(k-5)x-(k+4)=0的两根 又∵(x 1+1)(x 2+1)=-8 ∴x 1x 2+(x 1+x 2)+9=0 ∴-(k+4)-(k-5)+9=0 ∴k=5 ∴y=x 2-9为所求 (2)由已知平移后的函数解析式为: y=(x-2)2-9 且x=0时y=-5 ∴C(0,-5),P(2,-9). 21. 解: (1)依题意:n dAl lt h i ng si nt he i rb ei n ga re go od fo rs o (2)令y=0,得(x-5)(x+1)=0,x 1=5,x 2=-1 ∴B(5,0) 由,得M(2,9) 作ME ⊥y 轴于点E , 则 可得S △MCB =15. 22. 思路点拨:通过阅读,我们可以知道,商品的利润和售价、销售量有关系,它们之间呈现如下关系式: 总利润=单个商品的利润×销售量.要想获得最大利润,并不是单独提高单个商品的利润或仅大幅提高销售量就可以的,这两个量之间应达到某种平衡,才能保证利润最大.因为已知中给出了商品降价与商品销售量之间的关系,所以,我们完全可以找出总利润与商品的价格之间的关系,利用这个等式寻找出所求的问题,这里我们不妨设每件商品降价x 元,商品的售价就是(13.5-x)元了. 单个的商品的利润是(13.5-x-2.5) 这时商品的销售量是(500+200x) 总利润可设为y 元. 利用上面的等量关式,可得到y 与x 的关系式了,若是二次函数,即可利用二次函数的知识,找到最大利润. 解:设销售单价为降价x 元.Al l t h i ng si nt he i rb ei n ga re go od fo rs o 顶点坐标为(4.25,9112.5). 即当每件商品降价4.25元,即售价为13.5-4.25=9.25时,可取得最大利润9112.5元。

二次函数试题及答案

二次函数试题及答案

二次函数试题及答案一、选择题1. 已知二次函数y=ax^2+bx+c(a≠0)的图象开口向上,且与x轴有两个交点,则a、b、c之间的关系是()。

A. b^2-4ac>0B. b^2-4ac=0C. b^2-4ac<0D. b^2-4ac≤0答案:A2. 若二次函数y=ax^2+bx+c的图象与y轴的交点为(0,3),则c的值为()。

A. 3B. -3C. 0D. 1答案:A二、填空题1. 若二次函数y=ax^2+bx+c的图象的顶点坐标为(2,-1),则b=______。

答案:-4a-42. 已知抛物线y=ax^2+bx+c与x轴的交点为(-1,0)和(3,0),则b=______。

答案:-2a三、解答题1. 已知二次函数y=ax^2+bx+c(a≠0)的图象经过点(1,2)和(-1,0),求该二次函数的解析式。

答案:将点(1,2)和(-1,0)代入二次函数的解析式,得到方程组:\begin{cases}a+b+c=2 \\9a-3b+c=0\end{cases}解得a=1,b=-2,c=1,所以二次函数的解析式为y=x^2-2x+1。

2. 已知抛物线y=ax^2+bx+c(a≠0)的对称轴为直线x=1,且抛物线经过点(0,3),求抛物线的解析式。

答案:由对称轴为直线x=1,可知-b/2a=1,即b=-2a。

又抛物线经过点(0,3),代入解析式得c=3。

设a=1,则b=-2,c=3,所以抛物线的解析式为y=x^2-2x+3。

四、综合题1. 已知二次函数y=ax^2+bx+c(a≠0)的图象与x轴的交点为(2,0)和(-3,0),且抛物线的顶点坐标为(-1,-4),求该二次函数的解析式。

答案:由抛物线与x轴的交点可知,2和-3是方程ax^2+bx+c=0的两个根,所以有:\begin{cases}4a+2b+c=0 \\9a-3b+c=0\end{cases}又因为顶点坐标为(-1,-4),所以有:\begin{cases}-\frac{b}{2a}=-1 \\\frac{4ac-b^2}{4a}=-4\end{cases}解得a=1,b=4,c=-6,所以二次函数的解析式为y=x^2+4x-6。

二次函数复习题及答案

二次函数复习题及答案

二次函数复习题及答案1. 二次函数的一般形式是什么?答案:二次函数的一般形式为 y = ax^2 + bx + c,其中a ≠ 0。

2. 请写出二次函数 y = 2x^2 - 4x + 3 的顶点坐标。

答案:顶点坐标为 (1, 1)。

3. 判断二次函数 y = -3x^2 + 6x - 5 的开口方向。

答案:由于二次项系数 a = -3 < 0,所以函数开口向下。

4. 给定二次函数 y = 5x^2 - 10x + 3,求其对称轴方程。

答案:对称轴方程为 x = 1。

5. 若二次函数 y = ax^2 + bx + c 经过点 (2, 0) 和 (-1, 0),求a 的值。

答案:将点 (2, 0) 和 (-1, 0) 代入方程,得到两个方程:4a + 2b + c = 0 和 a - b + c = 0。

解得 a = 1。

6. 二次函数 y = x^2 - 6x + 9 的最小值是多少?答案:最小值为 0,当 x = 3 时取得。

7. 已知二次函数 y = ax^2 + bx + c 的图像与 x 轴有两个交点,求a 的取值范围。

答案:a > 0,因为当 a > 0 时,二次函数图像开口向上,与 x 轴有两个交点。

8. 二次函数 y = 2x^2 + 4x - 6 的图像经过哪些象限?答案:图像经过第一、二、四象限。

9. 求二次函数 y = -x^2 + 4x - 3 与 x 轴的交点坐标。

答案:交点坐标为 (1, 0) 和 (3, 0)。

10. 已知二次函数 y = ax^2 + bx + c 的顶点坐标为 (2, -1),且图像经过点 (0, 3),求 a、b、c 的值。

答案:由顶点坐标可得 b = -4a,c = 4a - 1。

将点 (0, 3) 代入方程得 3 = c,解得 a = 1,b = -4,c = 3。

(完整版)二次函数练习题及答案

(完整版)二次函数练习题及答案
23.已知点M,N的坐标分别为(0,1),(0,-1),点P是抛物线y= x2上的一个动点.
(1)求证:以点P为圆心,PM为半径的圆与直线y=-1的相切;
(2)设直线PM与抛物线y= x2的另一个交点为点Q,连接NP,NQ,求证:∠PNM=∠QNM.
24.研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为x(吨)时,所需的全部费用y(万元)与x满足关系式y= x2+5x+90,
12.已知(-2,y1),(-1,y2),(2,y3)是二次函数y=x2-4x+m上的点,
则y1,y2,y3从小到大用 “<”排列是__________.
13.(2011•攀枝花)在同一平面内下列4个函数;①y=2(x+1)2﹣1;②y=2x2+3;③y=﹣2x2﹣1;④ 的图象不可能由函数y=2x2+1的图象通过平移变换得到
17.若二次函数y=(x-m)2-1,当x<1时,y随x的增大而减小,则m的取值范围是______
三、解答题
18.已知二次函数 .
(1)求二次函数 的图象与两个坐标轴的交点坐标;
(2)在坐标平面上,横坐标与纵坐标都是整数的点 称为整点. 直接写出二次函数 的图象与 轴所围成的封闭图形内部及边界上的整点的个数.
19.(8分)张大爷要围成一个矩形花圃.花圃的一边利用足够长的墙另三边用总长为32米的篱笆恰好围成.围成的花圃是如图所示的矩形ABCD.设AB边的长为x米.矩形ABCD的面积为S平方米.
(1)求S与x之间的函数关系式(不要求写出自变量x的取值范围)
(2)当x为何值时,S有最大值?并求出最大值.
20.如图,矩形ABCD中,AB=16cm,AD=4cm,点P、Q分别从A、B同时出发,点P在边AB上沿AB方向以2cm/s的速度匀速运动,点Q在边BC上沿BC方向以1cm/s的速度匀速运动,当其中一点到达终点时,另一点也随之停止运动.设运动时间为x秒,△PBQ的面积为y(cm2).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数基础练习题练习一 二次函数1、 一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s (米)与时间t时间t (秒) 1 2 3 4 … 距离s (米) 281832…写出用t 表示s 的函数关系式: 2、 下列函数:① 23y x ;② 21y x x x ;③ 224y x x x ;④ 21y x x ;⑤ 1yx x ,其中是二次函数的是 ,其中a,b,c3、当m 时,函数2235y mx x(m 为常数)是关于x 的二次函数4、当____m 时,函数2221mm y m m x 是关于x 的二次函数 5、当____m时,函数2564mm ymx +3x 是关于x 的二次函数6、若点 A ( 2, m ) 在函数 12-=x y 的图像上,则 A 点的坐标是____.7、在圆的面积公式 S =πr 2 中,s 与 r 的关系是( )A 、一次函数关系B 、正比例函数关系C 、反比例函数关系D 、二次函数关系8、正方形铁片边长为15cm ,在四个角上各剪去一个边长为x (cm )的小正方形,用余下的部分做成一个无盖的盒子.(1)求盒子的表面积S (cm 2)与小正方形边长x (cm )之间的函数关系式; (2)当小正方形边长为3cm 时,求盒子的表面积.9、如图,矩形的长是 4cm ,宽是 3cm ,如果将长和宽都增加 x cm , 那么面积增加 ycm 2, ① 求 y 与 x 之间的函数关系式. ② 求当边长增加多少时,面积增加 8cm 2.10、已知二次函数),0(2≠+=a c ax y 当x=1时,y= -1;当x=2时,y=2,求该函数解析式.11、富根老伯想利用一边长为a 米的旧墙及可以围成24米长的旧木料,建造猪舍三间,如图,它们的平面图是一排大小相等的长方形.(1) 如果设猪舍的宽AB 为x 米,则猪舍的总面积S (米2)与x 有怎样的函数关系?(2) 请你帮富根老伯计算一下,如果猪舍的总面积为32米2,应该如何安排猪舍的长BC 和宽AB 的长度?旧墙的长度是否会对猪舍的长度有影响?怎样影响?练习二 函数2ax y =的图像与性质1、填空:(1)抛物线221x y =的对称轴是 (或 ),顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是 ; (2)抛物线221x y -=的对称轴是 (或 ),顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是 ; 2、对于函数22x y =下列说法:①当x 取任何实数时,y 的值总是正的;②x 的值增大,y 的值也增大;③y 随x 的增大而减小;④图像关于y 轴对称.其中正确的是 . 3、抛物线 y =-x 2 不具有的性质是( )A 、开口向下B 、对称轴是 y 轴C 、与 y 轴不相交D 、最高点是原点4、苹果熟了,从树上落下所经过的路程 s 与下落时间 t 满足 S =12gt 2(g =9.8),则 s 与 t 的函数图像大致是( )A B C D5、函数2ax y =与b ax y +-=的图像可能是( )A .B .C .D .6、已知函数24mm ymx 的图像是开口向下的抛物线,求m 的值.7、二次函数12-=m mx y 在其图像对称轴的左侧,y 随x 的增大而增大,求m 的值.8、二次函数223x y -=,当x 1>x 2>0时,求y 1与y 2的大小关系. 9、已知函数()422-++=m mx m y 是关于x 的二次函数,求:(1) 满足条件的m 的值;(2) m 为何值时,抛物线有最低点?求出这个最低点,这时x 为何值时,y 随x 的增大而增大; (3) m 为何值时,抛物线有最大值?最大值是多少?当x 为何值时,y 随x 的增大而减小? 10、如果抛物线2yax 与直线1y x 交于点,2b ,求这条抛物线所对应的二次函数的关系式.s t OstOst O st O1、抛物线322--=x y 的开口 ,对称轴是 ,顶点坐标是 ,当x 时, y 随x 的增大而增大, 当x 时, y 随x 的增大而减小. 2、将抛物线231x y =向下平移2个单位得到的抛物线的解析式为 ,再向上平移3个单位得到的抛物线的解析式为 ,并分别写出这两个函数的顶点坐标 、 . 3、任给一些不同的实数k ,得到不同的抛物线k x y +=2,当k 取0,1±时,关于这些抛物线有以下判断:①开口方向都相同;②对称轴都相同;③形状相同;④都有最底点.其中判断正确的是 . 4、将抛物线122-=x y 向上平移4个单位后,所得的抛物线是 ,当x= 时,该抛物线有最 (填大或小)值,是 .5、已知函数2)(22+-+=x m m mx y 的图象关于y 轴对称,则m =________;6、二次函数c ax y +=2()0≠a 中,若当x 取x 1、x 2(x 1≠x 2)时,函数值相等,则当x 取x 1+x 2时,函数值等于 .练习四 函数()2h x a y -=的图象与性质1、抛物线()2321--=x y ,顶点坐标是 ,当x 时,y 随x 的增大而减小, 函数有 最 值 .2、试写出抛物线23x y =经过下列平移后得到的抛物线的解析式并写出对称轴和顶点坐标. (1)右移2个单位;(2)左移32个单位;(3)先左移1个单位,再右移4个单位. 3、请你写出函数()21+=x y 和12+=x y 具有的共同性质(至少2个).4、二次函数()2h x a y -=的图象如图:已知21=a ,OA=OC ,试求该抛物线的解析式.5、抛物线2)3(3-=x y 与x 轴交点为A ,与y 轴交点为B ,求A 、B 两点坐标及⊿AOB 的面积. 6、二次函数2)4(-=x a y ,当自变量x 由0增加到2时,函数值增加6.(1)求出此函数关系式.(2)说明函数值y 随x 值的变化情况.7、已知抛物线9)2(2++-=x k x y 的顶点在坐标轴上,求k 的值.1、请写出一个二次函数以(2, 3)为顶点,且开口向上.____________.2、二次函数 y =(x -1)2+2,当 x =____时,y 有最小值.3、函数 y =12(x -1)2+3,当 x ____时,函数值 y 随 x 的增大而增大.4、函数y=21(x+3)2-2的图象可由函数y=21x 2的图象向 平移3个单位,再向 平移2个单位得到.5、 已知抛物线的顶点坐标为2,1,且抛物线过点3,0,则抛物线的关系式是6、 如图所示,抛物线顶点坐标是P (1,3),则函数y 随自变量x 的增大而减小的x 的取值范围是( )A 、x>3B 、x<3C 、x>1D 、x<1 7、已知函数()9232+--=x y .(1) 确定下列抛物线的开口方向、对称轴和顶点坐标; (2) 当x= 时,抛物线有最 值,是 .(3) 当x 时,y 随x 的增大而增大;当x 时,y 随x 的增大而减小. (4) 求出该抛物线与x 轴的交点坐标及两交点间距离; (5) 求出该抛物线与y 轴的交点坐标;(6) 该函数图象可由23x y -=的图象经过怎样的平移得到的?8、已知函数()412-+=x y .(1) 指出函数图象的开口方向、对称轴和顶点坐标;(2) 若图象与x 轴的交点为A 、B 和与y 轴的交点C ,求△ABC 的面积; (3) 指出该函数的最值和增减性;(4) 若将该抛物线先向右平移2个单位,在向上平移4个单位,求得到的抛物线的解析式; (5) 该抛物线经过怎样的平移能经过原点.(6) 画出该函数图象,并根据图象回答:当x 取何值时,函数值大于0;当x 取何值时,函数值小于0.1、抛物线942++=x x y 的对称轴是 .2、抛物线251222+-=x x y 的开口方向是 ,顶点坐标是 .3、试写出一个开口方向向上,对称轴为直线x=-2,且与y 轴的交点坐标为(0,3)的抛物线的解析式 .4、将 y =x 2-2x +3 化成 y =a (x -h)2+k 的形式,则 y =____.5、把二次函数215322yx x的图象向上平移3个单位,再向右平移4个单位,则两次平移后的函数图象的关系式是6、抛物线1662--=x x y 与x 轴交点的坐标为_________; 7、函数x x y +-=22有最____值,最值为_______;8、二次函数c bx x y ++=2的图象沿x 轴向左平移2个单位,再沿y 轴向上平移3个单位,得到的图象的函数解析式为122+-=x x y ,则b 与c 分别等于( ) A 、6,4 B 、-8,14 C 、-6,6 D 、-8,-149、二次函数122--=x x y 的图象在x 轴上截得的线段长为( ) A 、22 B 、23 C 、32 D 、3310、通过配方,写出下列函数的开口方向、对称轴和顶点坐标: (1)12212+-=x x y ; (2)2832-+-=x x y ; (3)4412-+-=x x y 11、把抛物线1422++-=x x y 沿坐标轴先向左平移2个单位,再向上平移3个单位,问所得的抛物线有没有最大值,若有,求出该最大值;若没有,说明理由. 12、求二次函数62+--=x x y 的图象与x 轴和y 轴的交点坐标 13、已知一次函数的图象过抛物线223y x x 的顶点和坐标原点1) 求一次函数的关系式; 2) 判断点2,5是否在这个一次函数的图象上14、某商场以每台2500元进口一批彩电.如每台售价定为2700元,可卖出400台,以每100元为一个价格单位,若将每台提高一个单位价格,则会少卖出50台,那么每台定价为多少元即可获得最大利润?最大利润是多少元?练习七 c bx ax y ++=2的性质1、函数2yx px q 的图象是以3,2为顶点的一条抛物线,这个二次函数的表达式为 2、二次函数2224y mx x mm 的图象经过原点,则此抛物线的顶点坐标是3、如果抛物线2yax bxc 与y 轴交于点A (0,2),它的对称轴是1x ,那么ac b4、抛物线c bx x y ++=2与x 轴的正半轴交于点A 、B 两点,与y 轴交于点C ,且线段AB 的长为1,△ABC 的面积为1,则b 的值为______.5、已知二次函数c bx ax y ++=2的图象如图所示,则a___0,b___0,c___0,ac b 42-____0;6、二次函数c bx ax y ++=2的图象如图,则直线bc ax y +=的图象不经过第 象限. 7、已知二次函数2yax bx c (0≠a )的图象如图所示,则下列结论:1),a b 同号;2)当1x 和3x 时,函数值相同;3)40a b ;4)当2y 时,x 的值只能为0;其中正确的是(第5题) (第6题) (第7题) (第10题) 8、已知二次函数2224m mx x y +--=与反比例函数xm y 42+=的图象在第二象限内的一个交点的横坐标是-2,则m= 9、二次函数2yx ax b 中,若0a b ,则它的图象必经过点( )A 1,1B 1,1C 1,1 D1,110、函数b ax y +=与c bx ax y ++=2的图象如上图所示,则下列选项中正确的是( ) A 、0,0>>c ab B 、0,0><c ab C 、0,0<>c ab D 、0,0<<c ab 11、已知函数c bx ax y ++=2的图象如图所示,则函数b ax y +=的图象是( )12、二次函数c bx ax y ++=2的图象如图,那么abc 、2a+b 、a+b+c 、a-b+c 这四个代数式中,值为正数的有( ) A .4个 B .3个 C .2个 D .1个 13、抛物线的图角如图,则下列结论: ①>0;②;③>;④<1.其中正确的结论是( ).(A )①② (B )②③ (C )②④ (D )③④14、二次函数2yax bx c 的最大值是3a ,且它的图象经过1,2,1,6两点,求a 、b 、c 的值。

相关文档
最新文档