导数的运算法则及复合函数的导数

合集下载

复合函数的导数及导数的运算法则

复合函数的导数及导数的运算法则

练习、已知函数f x 在R上满足f x=2 f 2 x x2 8x 8,
则曲线y=f x 在点1,f 1 处的切线方程为 A
A.y=2x-1
B . y=x
C .y=3x-2
D.y=-2x+3
课堂小结
复合函数的导数
一般地,设函数 u=(x)在点 x 处有导数 u'x='(x),函数 y=f(u) 在点 x 的对应点 u 处 有导数 y'u=f '(u) ,则复合函数 y=f((x)) 在
6.若f(x) = e x,则f ' (x) = e x
7.若f(x) =
loga x,则f ' (x) =
1 xlna
8.若f(x) = lnx,则f ' (x) = 1 x
复 习:
二,导数的运算法则:
法则1: f (x) g(x) f (x) g(x)
法则2: f (x)• g(x) f (x)g(x) f (x)g(x)
复 习:
一,基本初等函数的导数公式
1.若f(x) = c,则f ' (x) = 0
2.若f(x) = xn,则f ' (x) = nxn-1 (n R)
3.若f(x) = sinx,则f ' (x) = cosx
4.若f(x) = cosx,则f ' (x) = -sinx
5.若f(x) = a x,则f ' (x) = a x lna
新课讲解
例 1 求下列函数的导数.
(1)y (2x 3)2
(2)y e0.05 x1
(3)y sin( x ) (其中,均为常数)
注:求复合函数的导数,关键在于分析清楚函 数的复合关系,选好中间变量,在熟练以后, 就不必再写中间步骤。

导数的四则运算及复合函数求导

导数的四则运算及复合函数求导

经济应用数学数学
2. 复合函数求导法则
y f (u) , u (x)
dy dx

dy du
du dx

f (u) (x)
说明: 最基本的公式 (C) 0
(sin x) cos x
y yuux
(ln x) 1
x
3. 初等函数在定义区间内可导, 由定义证 , 其它公式
u x2 3复合而成, 所以 dy dy du
dx du dx
2sinu2x 0
4xsin x2 3
经济应用数学数学
例9 设y tan 1 2x2 , 求 dy dx
解 因y tan 1 2x2由y tan u, u= v,v=1-2x2复合而成,所以

2 1 sec x sec x tan x 2222
sec2 x tan x 22
经济应用数学数学
例11 求函数 y ln tan 2x 的导数.
解:y ln tan x 1 tan 2x .
tan 2x
1 sec2 2x 2x
tan 2x

经济应用数学数学
三、小结
1. 有限次四则运算的求导法则
(u v) u v (uv) uv uv
注意:
(Cu) Cu ( C为常数 )
u
v


uv uv v2
(v 0)
[u( x) v( x)] u( x) v( x);
[u( x)] u( x) . v( x) v( x)

f (x) f
( x)
f
(x)
i1 i
1
2

复合函数导数公式及运算法则

复合函数导数公式及运算法则

复合函数导数公式及运算法则复合函数导数公式及运算法则是以下这些:1、链式法则:若$f\left( x \right)$关于$x$的导数为$f'\left( x \right)$,且$g\left( x \right)$关于$f\left( x \right)$的导数为$g'\left( f\left( x \right)\right)$,则$g\left( f\left( x \right) \right)$关于$x$的导数为$f'\left( x\right)\times g'\left( f\left( x \right) \right)$。

2、乘法法则:若$y=f\left( x \right)\times g\left( x \right)$,则$y$关于$x$的导数为$f'\left( x \right)\times g\left( x \right)+f\left( x \right)\timesg'\left( x \right)$。

3、除法法则:若$y=f\left( x \right)\div g\left( x \right)$,则$y$关于$x$的导数为$\frac{f'\left( x \right)\times g\left( x \right)-f\left( x \right)\timesg'\left( x \right)}{\left[ g\left( x \right) \right]^2}$。

4、指数函数法则:若$y=a^x$(a>0,a 不等于1),则$y$关于$x$的导数为$a^x\cdot \ln\left( a \right)$。

5、指数函数反函数法则:若$y=a^x$(a>0,a 不等于1),则其反函数$y=\ln _ax$的导数关于$x$的导数为$\frac{1}{a^x\cdot \ln\left( a \right)}$。

复合函数导数公式及运算法则

复合函数导数公式及运算法则

复合函数导数公式及运算法则1.基本公式:设有两个函数$f(x)$和$g(x)$,它们的复合函数为$h(x)=f(g(x))$。

那么$h(x)$的导数可以表示为:$$\frac{{dh}}{{dx}} = \frac{{df}}{{dg}} \cdot\frac{{dg}}{{dx}}$$或者可以写成简洁的形式:$$h'(x) = f'(g(x)) \cdot g'(x)$$这个公式是复合函数导数的基本公式,也是后续运算法则的基础。

2.反函数法则:设有函数$y=f(x)$,如果$f(x)$的反函数存在且可导,那么反函数$f^{-1}(x)$的导数可以表示为:$$(f^{-1})'(x) = \frac{1}{{f'(f^{-1}(x))}}$$3.乘积法则:设有两个函数$f(x)$和$g(x)$,它们的乘积为$h(x) = f(x) \cdot g(x)$。

那么$h(x)$的导数可以表示为:$$h'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$这个公式可以直接应用于两个或多个函数的乘积的导数运算。

4.商法则:设有两个函数$f(x)$和$g(x)$,它们的商为$h(x) =\frac{{f(x)}}{{g(x)}}$。

那么$h(x)$的导数可以表示为:$$h'(x) = \frac{{f'(x) \cdot g(x) - f(x) \cdotg'(x)}}{{(g(x))^2}}$$这个公式可以用于计算两个函数的商的导数。

5.复合函数的高阶导数:复合函数的高阶导数是指对复合函数进行多次求导的结果。

根据基本公式,我们可以计算复合函数的高阶导数。

例如,对于三次导数,我们可以应用基本公式三次,得到如下的表达式:$$h''(x) = [f'(g(x)) \cdot g'(x)]' = f''(g(x)) \cdot(g'(x))^2 + f'(g(x)) \cdot g''(x)$$类似地,我们可以计算更高阶的导数。

导数的运算法则及复合函数的导数公式(课堂PPT)

导数的运算法则及复合函数的导数公式(课堂PPT)
A. y′=2xcosx-x2sinx B. y′=2xcosx+x2sinx C. y′=x2cosx-2xsinx D. y′=2xcosx-x2sinx
1 x 2. 求y= 3 x 的导数
1 x2
3. 求y= sin x 的导数
4. 求y=2x2+3x+1的导数
18
课外作业:
P18页习题1 .2 A组第4、6、7题
公 式 5 .若 f ( x ) a x , 则 f '( x ) a x ln a ( a 0 );
公 式 6 .若 f ( x ) e x , 则 f '( x ) e x ;
公 式 7 .若 f ( x ) lo g a
x,则 f
'( x )
1 (a x ln a
0,且 a
1);
上导乘下,下导乘上,差比下方 7
[ f( x ) g ( x ) ] f ( x ) g ( x ) f( x ) g ( x )
如果上式中f(x)=c,则公式变为:
[c(g x)]cg(x)
8
练习2、求下列函数的导数。
(1) y = x3·ex
ln x (2)(3) y =x
(2) y = x2·2x
公 式 8 .若 f ( x ) ln x , 则 f '( x ) 1 ;
x
16
课堂小结
一、导数的四则运算法则
(1) (uv) uv
(2) (uv) uvuv
(3)
(
u v
)
uvuv v2
(v0).
二、复合函数的求导法则
yx yu ux,
17
达标练习
1.函数y=x2cosx的导数为( )

导数的运算法则及复合函数的导数公式

导数的运算法则及复合函数的导数公式

x y yu u, x
达标练习
1.函数y=x2cosx的导数为(
A. y′=2xcosx-x2sinx C. y′=x2cosx-2xsinx

B. y′=2xcosx+x2sinx D. y′=2xcosx-x2sinx
1 x 2. 求y= 3 x 的导数 2 1 x 3. 求y= sin x 的导数
再利用导数的运算法则(3)来计算。
1 ( 3) y ; 2 cos x
思考?
如何求函数y=ln(x+2)的导数呢? 函数y=ln(3x+2)的导数呢?
拆分下列复合函数
1. 2. 3. 4.
y= sin(-3x+5) y=sin2x 2x y=cos x y=cos
3
复合函数的求导法则
定理 设函数 y = f (u), u = (x) 均可导, 则复合函数 y = f ( (x)) 也可导. 且
轮流求导之和
f ( x) f ( x) g ( x) f ( x) g ( x) ( g ( x) 0) g ( x) 2 g ( x)
上导乘下,下导乘上,差比下方
[ f ( x) g ( x)] f ( x) g ( x) f ( x) g ( x)
1.2.2
导数的运算法则及复合函 数的导数公式
1.求导数的方法 (1)定义法:运用导数的定义来求函数的导数. (2)公式法:运用已知函数的导数公式及导数的 则运算法则求导数.
基本初等函数的导数公式:
原函数 y=C y=xn 导函数
y=sin x y=cos x y=ax(a>0,a≠1) x y′=ex y=e 1 y=logax(a>0,a≠1) y′= y=ln x

导数的四则运算与复合函数求导

导数的四则运算与复合函数求导

导数的四则运算与复合函数求导在微积分学中,导数是描述函数变化率的重要概念。

导数的四则运算和复合函数求导是微积分中的基本技巧,本文将重点介绍这两个内容。

一、导数的四则运算导数的四则运算包括常数倍法则、和差法则、乘积法则和商法则。

下面将逐一介绍这些法则的应用。

1. 常数倍法则设函数y=f(x),其中f(x)可导,k为常数,则有:(d/dx)(k·f(x)) = k·(d/dx)f(x)即常数倍法则指出,常数与函数的导数之间可以交换次序。

2. 和差法则对于可导函数f(x)和g(x),则有:(d/dx)(f(x) ± g(x)) = (d/dx)f(x) ± (d/dx)g(x)即和差法则指出,函数的求和或求差的导数等于各函数的导数的和或差。

3. 乘积法则对于可导函数f(x)和g(x),则有:(d/dx)(f(x) · g(x)) = f(x)·(d/dx)g(x) + g(x)·(d/dx)f(x)即乘积法则指出,函数的乘积的导数等于其中一个函数乘上另一个函数的导数,再加上另一个函数乘上第一个函数的导数。

4. 商法则对于可导函数f(x)和g(x),其中g(x) ≠ 0,则有:(d/dx)(f(x) / g(x)) = (g(x)·(d/dx)f(x) - f(x)·(d/dx)g(x)) / (g(x))^2即商法则指出,函数的商的导数等于分子的导数与分母的导数的差再除以分母平方。

二、复合函数求导当函数是由一个函数与另一个函数组合而成时,就称之为复合函数。

求解复合函数的导数需要运用链式法则。

1. 链式法则设函数y=g(f(x)),其中f(x)和g(x)都可导,则有:(d/dx)g(f(x)) = (dg/df)·(df/dx)即链式法则指出,复合函数的导数等于外层函数对内层函数求导的结果乘上内层函数对自变量求导的结果。

复合函数求导公式运算法则

复合函数求导公式运算法则

复合函数求导公式运算法则1. 基本公式:如果函数y=f(u)和u=g(x)都可导,则复合函数y=f(g(x))也可导,且导数为dy/dx=f'(u)·g'(x)。

2. 对数函数:对于自然对数函数y=ln(u),其中u是一个关于自变量x的函数,其导数为dy/dx=1/u·du/dx。

3. 幂函数:对于幂函数y=u^n,其中u是关于自变量x的函数,n是常数,则其导数为dy/dx=n·u^(n-1)·du/dx。

4. 指数函数:对于指数函数y=a^u,其中a是常数,u是关于自变量x的函数,其导数为dy/dx=a^u·ln(a)·du/dx。

5. 三角函数:对于三角函数y=f(u),其中u是关于自变量x的函数,其导数为dy/dx=f'(u)·du/dx。

常见的三角函数包括正弦函数、余弦函数和正切函数等。

6. 反三角函数:对于反三角函数y=f(u),其中u是关于自变量x的函数,其导数为dy/dx=1/f'(u)·du/dx。

常见的反三角函数包括反正弦函数、反余弦函数和反正切函数等。

7. 双曲函数:对于双曲函数y=f(u),其中u是关于自变量x的函数,其导数为dy/dx=f'(u)·du/dx。

常见的双曲函数包括双曲正弦函数、双曲余弦函数和双曲正切函数等。

8. 反双曲函数:对于反双曲函数y=f(u),其中u是关于自变量x的函数,其导数为dy/dx=1/f'(u)·du/dx。

常见的反双曲函数包括反双曲正弦函数、反双曲余弦函数和反双曲正切函数等。

下面通过实际例子来说明复合函数求导公式的运算法则。

例子1:求函数y=(2x+1)^3的导数。

解:将y看作是外层函数f(u)=u^3,其中u=2x+1、根据链式法则,导数dy/dx=f'(u)·u'(x)。

复合函数的导数及导数的运算法则

复合函数的导数及导数的运算法则

复合函数的导数及导数的运算法则复合函数是指由两个或多个函数组成的函数。

在求复合函数的导数时,需要使用链式法则,即将函数的导数作为求导的一部分。

设有两个函数f(x)和g(x),假设y=f(g(x))是一个复合函数。

我们的目标是求解复合函数y=f(g(x))的导数dy/dx。

根据链式法则,dy/dx可以表示为:dy/dx = df(g(x))/dx根据上述公式,我们可以按照以下步骤求导:Step 1: 首先对f(g(x))进行求导,即求df(g)/dg。

Step 2: 然后对g(x)进行求导,即求dg(x)/dx。

Step 3: 最后将求导得到的结果相乘,即df(g)/dg * dg(x)/dx =dy/dx。

下面我们讨论一些常见的复合函数和它们的导数运算法则。

1. 复合函数的链式法则(Chain Rule)设有函数f(u)和g(x),假设y=f(g(x))是一个复合函数。

根据链式法则,复合函数y=f(g(x))的导数可以表示为:dy/dx = f'(g(x)) * g'(x)其中,f'(u)和g'(x)分别表示f(u)和g(x)的导数。

例如,如果y=(2x+1)^3,则可以将它表示为y=u^3,其中u=2x+1、根据链式法则:dy/dx = 3u^2 * du/dx = 3(2x + 1)^2 * 2 = 6(2x + 1)^22.复合函数中的乘法法则如果复合函数中有乘法运算,则可以使用乘法法则来求导。

例如,如果y=x^2*e^x,则可以使用乘法法则来求导:dy/dx = (d/dx)(x^2) * e^x + x^2 * (d/dx)(e^x)对于每一项使用基本求导法则:dy/dx = 2x * e^x + x^2 * e^x3.复合函数中的除法法则如果复合函数中有除法运算,则可以使用除法法则来求导。

例如,如果y=(x^2+1)/(x-1),则可以使用除法法则来求导:dy/dx = [(d/dx)(x^2 + 1)(x - 1) - (d/dx)(x - 1)(x^2 + 1)]/(x - 1)^2再对每一项使用基本求导法则:dy/dx = [(2x)(x - 1) - (x^2 + 1)]/(x - 1)^24.复合函数中的三角函数法则如果复合函数中包含三角函数,则可以使用三角函数法则来求导。

四则运算与复合函数求导法则

四则运算与复合函数求导法则

四则运算与复合函数求导法则在微积分中,求导是一个重要的概念和工具。

通过求导,我们可以计算函数在某一点上的斜率,进而研究函数的性质和变化规律。

本文将介绍四则运算和复合函数求导法则,帮助读者理解和应用这些常用的求导规则。

一、四则运算求导法则四则运算是指加法、减法、乘法和除法。

求导的四则运算法则可总结如下:1. 加减法:对于两个函数的和或差,求导后的结果等于各自函数的导数之和或差。

即如果函数f(x)和g(x)可导,则有:(f(x) ± g(x))' = f'(x) ± g'(x)2. 乘法:对于两个函数的乘积,求导后的结果等于第一个函数乘以第二个函数的导数再加上第二个函数乘以第一个函数的导数。

即如果函数f(x)和g(x)可导,则有:(f(x) * g(x))' = f'(x) * g(x) + g'(x) * f(x)3. 除法:对于两个函数的商,求导后的结果等于第一个函数乘以第二个函数的导数减去第二个函数乘以第一个函数的导数,再除以第二个函数的平方。

即如果函数f(x)和g(x)可导,并且g(x)≠0,则有: (f(x) / g(x))' = (f'(x) * g(x) - g'(x) * f(x)) / (g(x))^2二、复合函数求导法则复合函数是由两个或多个函数构成的复合形式,求导的复合函数法则可总结如下:1. 外函数求导后不变,内函数求导后乘上外函数对内函数的导数:若y = f(u),u = g(x),则y对x的导数为:dy/dx = dy/du * du/dx = f'(u) * g'(x)2. 链式法则:对于一个复合函数,可以将其表示为一系列简单的函数的复合形式,利用链式法则求导,即将求导过程分解为多个简单函数的求导过程。

若y = f(u),u = g(v),v = h(x),则有:dy/dx = dy/du * du/dv * dv/dx = f'(u) * g'(v) * h'(x)综上所述,四则运算和复合函数求导法则是微积分中常用的工具。

导数的运算法则及复合函数的导数

导数的运算法则及复合函数的导数

导数的运算法则及复合函数的导数导数是微积分中非常重要的概念,它描述了一个函数在其中一点的变化率。

在实际应用中,我们常常需要对函数进行一系列运算,包括加减乘除和复合函数等,了解导数的运算法则以及复合函数的导数可以帮助我们更好地进行运算和解决实际问题。

1.导数的运算法则:(1)和差法则:设函数f(x)和g(x)在区间I上可导,则它们的和、差的函数f(x)+g(x)和f(x)-g(x)在区间I上仍然可导,并且有如下的导数公式:(f(x)±g(x))'=f'(x)±g'(x)(2)乘法法则:设函数f(x)和g(x)在区间I上可导,则它们的乘积函数f(x)g(x)在区间I上可导,并且有如下的导数公式:(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)(3)除法法则:设函数f(x)和g(x)在区间I上可导,并且g(x)≠0,则它们的商函数f(x)/g(x)在区间I上可导,并且有如下的导数公式:(f(x)/g(x))'=(f'(x)g(x)-f(x)g'(x))/[g(x)]²(4)常数法则:设c为常数,函数f(x)在区间I上可导,则常数函数cf(x)在区间I 上可导,并且有如下的导数公式:(cf(x))' = cf'(x)(5)幂函数法则:设函数f(x)=x^n在区间(x>0)上可导,则幂函数f(x)=x^k在区间(x>0)上可导,并且有如下的导数公式:(x^k)' = kx^(k-1)2.复合函数的导数:复合函数是指一个函数内部存在另一个函数,即一个函数的输入是另一个函数的输出。

在实际运算中,我们还需要计算复合函数的导数,可以利用链式法则来求解。

(1)链式法则:设函数y=f(u),u=g(x)是由两个函数构成的复合函数,在函数f和g 满足一定的条件下dy/dx = dy/du * du/dx具体地,对于复合函数y=f(g(x)),先计算出f对u的导数df/du,再计算出g对x的导数dg/dx,最后将两个结果相乘即可得到复合函数对x的导数。

复合函数求导法则公式

复合函数求导法则公式

复合函数求导法则公式1.链式法则:链式法则是用于求解复合函数导数的基本法则。

设y=f(u),u=g(x)为两个可导函数,且y=f(u)和u=g(x)均是一对一函数,则复合函数y=f(g(x))的导数可以通过链式法则求得。

链式法则的公式为:dy/dx=dy/du * du/dx其中,dy/du表示函数y=f(u)对u的导数,du/dx表示函数u=g(x)对x的导数。

例如,设y=sin(x^2),我们需要求解dy/dx。

首先,令u=x^2,y=sin(u),则dy/du=cos(u)=cos(x^2)。

其次,求解du/dx=2x。

最后,根据链式法则,dy/dx=dy/du * du/dx = cos(x^2) * 2x = 2x*cos(x^2)。

2.乘积法则:乘积法则用于求解两个函数乘积的导数。

设y=u*v为两个可导函数的乘积,则乘积函数y=u*v的导数可以通过乘积法则求得。

乘积法则的公式为:dy/dx = u * dv/dx + v * du/dx例如,设y=x*sin(x),我们需要求解dy/dx。

根据乘积法则,将u=x,v=sin(x)代入上述公式,dy/dx = x * cos(x) + sin(x)。

3.商规则:商规则用于求解两个函数的商的导数。

设y=u/v为两个可导函数的商,则商函数y=u/v的导数可以通过商规则求得。

商规则的公式为:dy/dx = (v * du/dx - u * dv/dx) / v^2例如,设y=(x^2+1) / x,我们需要求解dy/dx。

根据商规则,将u=x^2+1,v=x代入上述公式,dy/dx = ((x) * (2x) - (x^2+1) * (1)) / (x^2)^2 = (x^2 - 1) / x^4小结:复合函数求导法则包括链式法则、乘积法则和商规则。

链式法则适用于求解复合函数的导数,乘积法则适用于求解两个函数乘积的导数,商规则适用于求解两个函数的商的导数。

复合导数公式及运算法则

复合导数公式及运算法则

复合导数公式及运算法则1、设u=g(x),对f(u)求导得:f'(x)=f'(u)*g'(x);2、设u=g(x),a=p(u),对f(a)求导得:f'(x)=f'(a)*p'(u)*g'(x);1、设函数y=f(u)的定义域为Du,值域为Mu,函数u=g(x)的定义域为Dx,值域为Mx,如果Mx∩Du≠Ø,那么对于Mx∩Du内的任意一个x经过u;有唯一确定的y值与之对应,则变量x与y 之间通过变量u形成的一种函数关系,这种函数称为复合函数(composite function),记为:y=f[g(x)],其中x称为自变量,u为中间变量,y为因变量(即函数)。

2、定义域:若函数y=f(u)的定义域是B,u=g(x)的定义域是A,则复合函数y=f[g(x)]的定义域是D= {x|x∈A,且g(x)∈B} 综合考虑各部分的x的取值范围,取他们的交集。

3、周期性:设y=f(u)的最小正周期为T1,μ=φ(x)的最小正周期为T2,则y=f(μ)的最小正周期为T1*T2,任一周期可表示为k*T1*T2(k属于R+).4、单调(增减)性的决定因素:依y=f(u),μ=φ(x)的单调性来决定。

即“增+增=增;减+减=增;增+减=减;减+增=减”,可以简化为“同增异减”。

复合函数的导数等于原函数对中间变量的导数乘以中间变量对自变量的导数。

举个例子来说:F(x)=In(2x+5),这个函数就是个复合函数,设u=2x+5,则u就是中间变量,则F(u)=Inu (1)原函数对中间变量的导就是函数(1)的导,即1/u中间变量对自变量的导就是u对x求导,即2最后原函数的导数等于他们两个的乘积,即2乘以1/u,但千万别忘了把u=2x+5带进去,所以答案就是2/(2x+5)。

其他的不管在复杂的复合函数都是这么求的,要是有多重复合就一层一层的求下去,一般来讲,高三最多要你求3层复合就像:F(x)=log[(2x+5)平方},这个就是简单的三层复合,设u=v平方,v=2x+5, 再用上面一样的方法把各自的求出来,来乘起来就是. 熟悉了以后根本不用列这么多,直接写就行。

导数的运算法则和复合函数的导数

导数的运算法则和复合函数的导数

导数的运算法则和复合函数的导数导数是微积分中一个非常重要的概念,它表征了函数在其中一点上的变化率。

导数的运算法则以及复合函数的导数是我们在求导过程中经常用到的方法和技巧。

下面我将分别介绍导数的运算法则和复合函数的导数,并给出相应的例子进行说明。

一、导数的运算法则1. 常数规则:常数的导数为零。

即对于任意常数c,有d/dx (c) = 0。

例如,d/dx (3) = 0。

2. 幂规则:对于任意实数a和正整数n,有d/dx (x^n) = n *x^(n-1)。

例如,d/dx (x^2) = 2x。

3. 和差规则:两个函数的和(差)的导数等于两个函数分别的导数的和(差)。

即d/dx (f(x) ± g(x)) = d/dx (f(x)) ± d/dx (g(x))。

例如,如果f(x) = 2x^2和g(x) = 3x,则d/dx (f(x) + g(x)) = d/dx(2x^2) + d/dx (3x) = 4x + 34. 积法则:两个函数的乘积的导数等于第一个函数的导数乘以第二个函数再加上第一个函数再乘以第二个函数的导数。

即d/dx (f(x) *g(x)) = f'(x) * g(x) + f(x) * g'(x)。

例如,如果f(x) = x^2和g(x) = 3x,则d/dx (f(x) * g(x)) = 2x * 3x + x^2 * 3 = 6x^2 + 3x^35. 商法则:两个函数的商的导数等于分子函数的导数乘以分母函数再减去分子函数再乘以分母函数的导数,最后再除以分母函数的平方。

即d/dx (f(x) / g(x)) = (f'(x) * g(x) - f(x) * g'(x)) / g(x)^2、例如,如果f(x) = x^2和g(x) = 3x,则d/dx (f(x) / g(x)) = (2x * 3x- x^2 * 3) / (3x)^2 = (6x^2 - 3x^2) / (9x^2) = 3x / 9x^2 = 1 /3x。

求导法则及复合函数求导

求导法则及复合函数求导

求导法则及复合函数求导引言求导法则是微积分中的重要内容之一,它描述了如何对各种类型的函数进行求导运算。

在数学和物理等学科中,求导法则被广泛应用于函数的变化率、最优化问题以及解析几何中的切线和法线等问题。

本文将介绍几种常见的求导法则,并讨论复合函数的求导方法。

一、基本求导法则1.1 常数求导法则如果函数f(x)是常数,即f(x)=C,其中C是一个常数,则它的导数为零。

这是因为常数函数在任何值上的斜率都为零。

1.2 变量求导法则如果函数f(x)是一个变量,即f(x)=x,则它的导数为1。

这是因为变量x的导数是其本身。

1.3 幂函数求导法则幂函数是指函数f(x)=x n,其中n是一个实数。

根据幂函数求导法则,幂函数的导数等于指数乘以基数的指数减一,即$\\frac{d}{dx} (x^n) = nx^{n-1}$。

1.4 指数函数求导法则指数函数是指函数f(x)=a x,其中a是一个正实数且a≠1。

根据指数函数求导法则,指数函数的导数等于该函数的自变量乘以函数值的自然对数和底数的乘积,即$\\frac{d}{dx} (a^x) = a^x \\ln a$。

1.5 对数函数求导法则对数函数是指函数$f(x) = \\log_a{x}$,其中a是一个正实数且a≠1。

根据对数函数求导法则,对数函数的导数等于该函数的自变量的倒数除以底数的自然对数,即$\\frac{d}{dx} (\\log_a{x}) = \\frac{1}{x \\ln a}$。

1.6 三角函数求导法则常见的三角函数包括正弦函数、余弦函数和正切函数等。

根据三角函数求导法则,正弦函数的导数等于余弦函数,余弦函数的导数等于负的正弦函数,正切函数的导数等于正弦函数的平方的倒数。

例如,$\\frac{d}{dx} (\\sin{x}) = \\cos{x}$,$\\frac{d}{dx} (\\cos{x}) = -\\sin{x}$,$\\frac{d}{dx} (\\tan{x}) =\\frac{1}{\\cos^2{x}}$。

复合函数求导公式

复合函数求导公式

复合函数求导公式一、复合函数的导数定义假设y=f(u),u=g(x)都是可导函数,则复合函数y=f(g(x))也是可导函数。

复合函数的导数定义如下:dy/dx = dy/du * du/dx其中dy/du表示y关于u的导数,du/dx表示u关于x的导数。

二、链式法则链式法则是复合函数求导的重要工具,它表明复合函数的导数等于内外导数的积。

链式法则的数学表示如下:d(f(g(x)))/dx = f'(g(x)) * g'(x)其中f'(g(x))是f对于g(x)的导数,g'(x)是g对于x的导数。

三、基本公式1.复合函数的求导公式【公式1】(f(g(x))'=f'(g(x))*g'(x)【例题1】计算函数y=sin(x^2)的导数。

解:我们将y=sin(u)和u=x^2,那么y=sin(g(x))。

根据链式法则:dy/dx = dy/du * du/dx= cos(u) * 2x所以,函数y=sin(x^2)的导数为2x * cos(x^2)。

【例题2】计算函数y=(3x^2+2x+1)^3的导数。

解:我们将y=u^3和u=3x^2+2x+1,那么y=(g(x))^3、根据链式法则:dy/dx = dy/du * du/dx=3u^2*(6x+2)=3(3x^2+2x+1)^2*(6x+2)所以,函数y=(3x^2+2x+1)^3的导数为3(3x^2+2x+1)^2*(6x+2)。

2.反函数的导数公式如果y=f(g(x)),且g(x)与f(x)互为反函数,则有:dy/dx = 1 / (dx/dy)其中dx/dy表示g(x)对于x的导数。

【例题3】计算函数y=ln(sin(x))的导数。

解:将y=ln(u)和u=sin(x),那么y=ln(g(x))。

根据反函数的导数公式:dy/dx = 1 / (dx/dy)= 1 / (d(sin(x))/dx)所以,函数y=ln(sin(x))的导数为1 / (cos(x))。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

活页规范训练
自学导引 1.导数运算法则 法则 [f(x)± g(x)]′= f′(x)±g′(x) [f(x)· g(x)]′= f′(x)· g(x)+ f(x)· g′(x) 语言叙述 两个函数的和(或差)的导数,等于这两 个函数的导数的和(或差) 两个函数的积的导数,等于第一个函数 的导数乘上第二个函数,加上第一个函 数乘上第二个函数的导数
第2课时 导数的运算法则及复合函数的导数
课前探究学习
课堂讲练互动
活页规范训练
【课标要求】 1.能利用导数的四则运算法则求解导函数. 2.能运用复合函数的求导法则进行复合函数的求导. 【核心扫描】
1.对导数四则运算法则的考查.(重点)
2.复合函数的考查常在解答题中出现.(重点)
课前探究学习
课堂讲练互动
4x 4x
1 2x 1 1-cos x 3 1 =1- sin =1- · = + cos x, 2 2 2 2 4 4 1 ∴y′=-4sin x.
课前探究学习
课堂讲练互动
活页规范训练
1+ x 1- x 1+ x2 1- x2 (3)∵y= + = + 1-x 1-x 1- x 1+ x 2+2x 4 = = -2, 1-x 1-x
f′x 这样想当然的错误; 其次还要特别注意两个函数积与商的求 g′x 导公式中符号的异同,积的导数法则中是“+”,商的导数法则 中分子上是“-”.
课前探究学习
课堂讲练互动
活页规范训练
2.复合函数求导
对于复合函数的求导法则,需注意以下几点: (1)分清复合函数的复合关系是由哪些基本函数复合而成,适当 选定中间变量. (2)分步计算中的每一步都要明确是对哪个变量求导,而其中要 特别注意的是中间变量的系数.如(sin 2x)′≠cos 2x. 2x)′=2cos 2x,而(sin
课前探究学习
课堂讲练互动
活页规范训练
题型二
求复合函数的导数
【例 2】 求下列函数的导数. 1 (1)y= 2; 1-2x (2)y=e2x+1; (3)y=( x-2)2; (4)y=5log2(2x+1). [思路探索] 可分析复合函数的复合层次,再利用复合函数的 求导法则求解.
课前探究学习
课堂讲练互动
活页规范训练
(2)y=eu,u=2x+1, ∴y′x=y′u· x=(eu)′· u′ (2x+1)′=2eu=2e2x+1.
课前探究学习
课堂讲练互动
活页规范训练
(3)法一
∵y=( x-2)2=x-4 x+4,
∴y′=x′-(4 x)′+4′ =1-4× 法二 =2( 2 =1- . x
令 u= x-2,则 y′x=y′u· x=2( x-2)· x-2)′ u′ (
3 ∴将②式和(1,-1)代入①式得-1-(x0-2x0)
(3 分) (4 分)

=(3x2-2)(1-x0). 0 1 解得 x0=1 或 x0=-2.
(6 分) (8 分)
5 故所求的切线方程为 y+1=x-1 或 y+1=- (x-1). (10 分) 4 即 x-y-2=0 或 5x+4y-1=0.
4 -41-x′ 4 ∴y′=1-x-2′= = 2 2. 1-x 1-x
课前探究学习
课堂讲练互动
活页规范训练
题型三 求导法则的应用 【例3】 求过点(1,-1)与曲线f(x)=x3-2x相切的直线方程.
课前探究学习
课堂讲练互动
活页规范训练
[规范解答] 设 P(x0,y0)为切点,则切线斜率为 k=y′|x=x0=3x2-2(2 分) 0 故切线方程为 y-y0=(3x2-2)(x-x0) ① 0 ∵(x0,y0)在曲线上,∴y0=x3-2x0 0 又∵(1,-1)在切线上,
复合函数 复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)
的求导法 的导数间的关系为yx′= yu′·ux′ ,即y对x的导 则 数等于 y对u的导数与u对x的导数的乘积 .
课前探究学习
课堂讲练互动
活页规范训练
想一想:若复合函数y=f(g(x))由函数y=f(u),u=g(x)复合而成, 则函数y=f(u),u=g(x)的定义域、值域满足什么关系? 提示 在复合函数中,内层函数u=g(x)的值域必须是外层函数y
课前探究学习
课堂讲练互动
1 1 x-2)2· -0=1- x
2 . x
(4)设 y=5log2u,u=2x+1, 10 10 则 y′=5(log2u)′(2x+1)′=uln 2= . 2x+1ln 2
课前探究学习
课堂讲练互动
活页规范训练
应用复合函数的求导法则求导,应注意以下几个方面:
(1)中间变量的选取应是基本函数结构.
课前探究学习
课堂讲练互动
活页规范训练
(2)∵(x+1)(x+2)(x+3)=(x2+3x+2)(x+3)=x3+6x2+11x+6, ∴y′=[(x+1)(x+2)(x+3)]′=(x3 +6x2 +11x+6)′=3x2 +12x +11. x+3′x2+3-x+3x2+3′ -x2-6x+3 (3)y′= = . x2+32 x2+32 (4)y′=(xsin
两个函数的商的导数,等于分子的导数
乘上分母减去分子乘上分母的导数,再 除以分母的平方
课前探究学习 课堂讲练互动 活页规范训练
2.复合函数的求导法则
复合函数
的概念
一般地,对于两个函数y=f(u)和u=g(x),如果通 过变量u,y可以表示成 x的函数 ,那么称这个函 数为y=f(u)和u=g(x)的复合函数,记作 y=f(g(x)).
(2)正确分析函数的复合层次,并要弄清每一步是哪个变量对哪个 变量的求导. (3)一般是从最外层开始,由外及里,一层层地求导. (4)善于把一部分表达式作为一个整体.
(5)最后要把中间变量换成自变量的函数.熟练后,就不必再写中
间步骤.
课前探究学习
课堂讲练互动
活页规范训练
【变式 2】 求下列函数的导数: (1)y=ln(x+2); (2)y=sin 4+cos 4; 1+ x 1- x (3)y= + . 1- x 1+ x
课前探究学习 课堂讲练互动
(12 分)
活页规范训练
【题后反思】 点(1,-1)虽然在曲线上,但是经过该点的切线不 一定只有一条,即该点有可能是切点,也可能是切线与曲线的交
点,解题时注意不要失解.
课前探究学习
课堂讲练互动
活页规范训练
【变式3】 若将本例改为求曲线y=x3-2x在点A(1,-1)处的切线 方程,结果会怎样? 解 ∵点A(1,-1)在曲线上,点A是切点,∴在A处的切线方
=f(u)的定义域的子集.
课前探究学习
课堂讲练互动
活页规范训练
名师点睛 1.运用导数运算法则的注意事项 (1)对于教材中给出的导数的运算法则, 不要求根据导数定义进 行推导,只要能熟练运用运算法则求简单函数的导数即可. (2)①对于和差的导数运算法则, 可推广到任意有限可导函数的 和或差,即[f1(x)± 2(x)±…±fn(x)]′=f1′(x)± 2′(x)± f′(x). f f „± n ②[ af(x)± bg(x)]′=af′(x)± bg′(x); ③当 f(x)=1
4x 4x
课前探究学习
课堂讲练互动
活页规范训练
解 (1)y=ln u,u=x+2 1 1 ∴y′x=y′u· x=(ln u)′· u′ (x+2)′=u· 1= . x+2 (2)∵y=sin 4+cos 4
2x 2x 2 2x 2x =sin 4+cos 4 -2sin cos 4 4
1 g′x 时,有 ′=- 2 . gx g x

课前探究学习
课堂讲练互动
活页规范训练
(3)对于积与商的导数运算法则,首先要注意在两个函数积与商的
fx 导数运算中,不能出现[f(x)· g(x)]′=f′(x)· g′(x)以及 gx ′=
导,以减少运算量.
课前探究学习
课堂讲练互动
活页规范训练
【变式 1】 求下列函数的导数:(1)y=5-4x3; 1 (2)y=3x +xcos x;(3)y=e · x;(4)y=lg x- 2. ln x
2 x

(1)y′=-12x2;
(2)y′=(3x2+xcos x)′=6x+cos x-xsin x; ex x (3)y′= +e · x; ln x 1 2 (4)y′=xln 10+x3.
课前探究学习
课堂讲练互动
活页规范训练
[思路探索] 可先确定式子的形式,再用基本初等函数的导数公式 和四则运算法则求解. 解 (1)y′=(x· tan
xsin x x)′= cos x ′
xsin x′cos x-xsin xcos x′ = cos2x sin x+xcos xcos x+xsin2x = cos2x sin xcos x+x = . cos2x
辅相成,仅对代数问题进行几何分析或仅对几何问题进行代数分
析,在许多时候是很难完成的.(3)简单性原则:找到解题思路之 后,至于用几何方法还是采用代数方法,则取决于哪种方法更为 简单有效,“数”与“形”的结合往往能起到事半功倍的效果.
课前探究学习
课堂讲练互动
活页规范训练
【示例】 讨论关于 x 的方程 ln x=kx 解的个数. [思路分析] 通过求导的方法求出曲线 y=ln x 与直线 y=kx 相 切时 k 的值,借助图形回答问题. 解 如图,方程 ln x=kx 的解的个数就是直线 y=kx 与曲线 y
2 x)′-cos x′=sin
2sin x x+xcos x- cos2x .
相关文档
最新文档