导数的四则运算法则
导数的四则运算法则
dy
即
x x (a ) a ln a .
x x 特别地, 有 (e ) e .
例 13
解
求 y arcsin x 的导数.
y arcsin x 是 x sin y 的反函数, sin y 在 x
dx cos y 0 . 区间 , 内单调、可导,且 dy 2 2
.
三.导数公式小结
1.基本初等函数的导数公式
C 0(C为常数); (log a x ) 1 x ln a ;
1 ( x ) x ( 为实数);
(ln | x |)
x x (e ) e ;
1 x
;
x x ( a ) a ln a;
(sin x ) cos x; (tan x ) 1
2
求 y sin 2 x ln x 的导数.
y 2sin x cos x ln x
y 2cos x cos x ln x 2sin x ( sin x ) ln x
2sin x cos x 1
x 1 2cos 2 x ln x sin 2 x . x
f ( x ) lim
1 1 lim x 0 x y 0 x ( y ) y
y
即 f ( x )
1
( y )
.
反三角函数导数公式的证明(略)
例 12
解
求 y a (a 0, a 1) 的导数.
x
y a 是 x log a y 的反函数, x log a y 在 且 dx 1 0 , (0,) 内单调、可导,又 dy y ln a 1 x y y ln a a ln a , 所以 dx
导数的基本公式及四则运算法则
常见函数的导数
指数函数
$(a^x)' = a^x ln a$
三角函数
$(sin x)' = cos x$, $(cos x)' = -sin x$
幂函数
$(x^n)' = n cdot x^{n-1}$
对数函数
$(ln x)' = frac{1}{x}$
反三角函数
$(arcsin x)' = frac{1}{sqrt{1x^2}}$
详细描述
对于两个可导函数的和或差,其导数可以通过分别对每个函数求导然后进行相应的加减运算来得到。 即,如果 $u(x)$ 和 $v(x)$ 都是可导的,那么 $(u(x) + v(x))'$ 和 $(u(x) - v(x))'$ 可以通过对 $u'(x)$ 和 $v'(x)$ 分别求导然后进行加法或减法运算来得到。
导数在解决实际问题中也有重要应用,如经济学、物理学和工程学等领域的问题。
导数的概念和计算方法对于培养数学思维和解决实际问题的能力具有重要意义。
导数与积分的关系
导数是微分的逆运算, 而积分是微分的积分。
通过导数和积分可以 相互转化,从而解决 复杂的数学问题。
导数和积分是微积分 中的两个基本概念, 它们之间存在密切的 联系。
THANKS
谢谢
导数的基本公式及四则运算法 则
目录
CONTENTS
• 导数的基本公式 • 导数的四则运算法则 • 导数的应用 • 导数与微积分的关系
01
CHAPTER
导数的基本公式
定义与性质
定义
导数描述了函数在某一点附近的 变化率,是函数局部性质的一种 体现。
导数的四则运算法则
这个法则可以推广到任意有限个函数, 即
( f 1 f 2 f n ) ' f 1 ' f 2 ' f n '
例 1.(1)求函 f(x) 数 x2sixn 的导 .
解: f(x)(x2sinx)
(x2)(sixn)2xcoxs
(2)求函 g(x)数 x33x26x2的导 . 2
4 x (3 x 2 ) (2 x 2 3 )3 1x828x9
法二: y(6x34x29x6)
1x828x9
3. y x2 的导数 sinx
解y: ' (x2)'sisxn i2n xx2(sx i)n '
2xsinxx2coxs sin2 x
例5:求曲线y=x3+3x-8在x=2处的切 线的方程.(备选)
yax(a0,a1),yloagx(a0,a1), ysinx,ycoxs,ytanx,ycoxt.
3.导数应用的注意事项:
求函数的导数要准确把函数分割为基本函数 的和、差、积、商,再利用运算法则求导数.在 求导过程中,要仔细分析出函数解析式的结构 特征,根据导数运算法则,联系基本函数的导 数公式.对于不具备导数运算法则结构形式的 要适当恒等变形,转化为较易求导的结构形 式,再求导数,进而解决一些切线斜率、瞬时 速度等问题.
解: f (x) (x3 3x 8) 3x2 3, k f (2) 3 22 3 15, 又 切 线 过 点(2,6), 切线方程为: y 6 15(x 2), 即:15x y 24 0.
1.导数的四则运算法则是什么? 2.几个常用的函数的导数是什么?
yc(c是常),y数 x(为实),数
导数的四则运算法则
法二:∵y=(2x2-1)(3x+1)=6x3+2x2-3x-1,
∴y′=(6x3+2x2-3x-1)′=(6x3)′+(2x2)′-(3x)′-(1)′=18x2+4x-3.
题型二 由导数值求参数 [学透用活]
[典例 2] 设 f(x)=a·ex+bln x,且 f′(1)=e,f′(-1)=1e,求 a,b 的值. [解] f′(x)=(a·ex)′+(bln x)′=a·ex+bx,
法二:设直线 l 的方程为 y=kx,切点为(x0,y0),则 k=xy00--00=x30+xx00-16. 又∵k=f′(x0)=3x20+1,∴x30+xx00-16=3x20+1,解得 x0=-2. ∴y0=(-2)3+(-2)-16=-26,k=3×(-2)2+1=13. ∴直线 l 的方程为 y=13x,切点坐标为(-2,-26).
应 求在某点处的切线方程,已知切线的方程或斜率求切点,以 用 及涉及切线问题的综合应用
先求出函数的导数,若已知切点,则求出切线斜率、切线方 方 程;若切点未知,则先设出切点,用切点表示切线斜率,再 法 根据条件求切点坐标.总之,切点在解决此类问题时起着至
关重要的作用
[对点练清]
1.若过函数f(x)=ln x+ax上的点P的切线与直线2x-y=0平行,则实数a的取值
[对点练清] 求下列函数的导数: (1)y=x2+xln x;(2)y=lnx2x; (3)y=exx;(4)y=(2x2-1)(3x+1).
解:(1)y′=(x2+xln x)′=(x2)′+(xln x)′
=2x+(x)′ln x+x(ln x)′=2x+ln x+x·1x=2x+ln x+1.
()
3.已知函数 f(x)=ax2+c,且 f′(1)=2,则 a 的值为
5.2.2导数的四则运算法则
2 所以 f′(1)=ae=2,故 a= .
e
导数的运算法则的综合应用
x)(
x2 )
2x2 cos x 4x sin x
x4
2x cos
x x3
4 sin
x
.
导数的运算法则的综合应用
例 3:设 y=f(x)是二次函数,方程 f(x)=0 有两个相等的实根,且 f′(x)=2x +1.
求 y=f(x)的函数表达式.
解:因为 f′(x)=2x+1,所以 f(x)=x2+x+c(c 为常数),
解:( 1) y ′=( 2x 3) ′ +( x 2) ′ -( x ) ′+( 1) ′=6x 2+2x -1.
(2)y′=(x4)′+(cos x)′=4x3-sin x.
(3)y′=(ex)′+(ln
x
)
′
=ex
1 +
.
x
(4)y′=(5x)′-(ln
x ) ′=5x
ln
1 5-
.
x
1
(5)y′=(lg x)′+(sin x)′=
导数的运算法则的综合应用
又点( 1,0) 在切线上,所以
3x02-2x03=0,解得
x0=0
或
3 x0=
.
2
当 x0=0 时,由直线 y=0 与曲线 y=ax2+15 x-9 相切可得, 4
方程 ax2+15 x-9=0 有两个相等的实数根, 4
一导数的四则运算法则
u'( x) lim u( x) , v'( x) lim v( x)
x0 x
x0 x
且y v( x)在点x处必连续,即
lim v( x x) v( x)
x0
所以
lim
x0
y x
=
lim
x0
u( x) x
v(
x
x)
v( x) x
u( x)
=u '( x) v( x) u( x) v '( x)
一、导数的四则运算法则
定理1 设函数u( x)与v( x)在点x处可导,则函数u( x) v( x), u( x) v( x),u( x) (v( x) 0)在点x处也可导并且有:
v( x)
1、u(x) v(x) ' u '(x) v '(x)
2、u(x) v(x) ' u '(x) v(x) u(x) v '(x)
=
1
1 x
2
(16)(arc
cot
x)'
=
1 1 x
2
2、 导数的四则运算法则
(1)u(x) v(x) ' u '(x) v '(x)
(2)u(x) v(x) ' u '(x) v(x) u(x) v '(x)
(3)Cu(x) ' Cu '(x)(C为常数)
'
u( x)
u '( x) v( x) u( x) v '( x)
f '(u)u'( x)
值得指出的是,复合函数的求导法,有时也称为链 导法,它可用于多次复合的情形。
导数的运算公式和法则
导数的运算公式和法则导数是微积分中的重要概念,用于描述函数的变化率。
在求导的过程中,有一些常用的运算公式和法则,可以帮助我们简化计算。
下面是一些常用的导数运算公式和法则。
一、基本导数公式1. 常数导数法则:对于任意常数c,其导数为0,即d/dx(c) = 0。
2. 幂函数导数法则:对于任意实数n,幂函数y = x^n的导数为d/dx(x^n) = nx^(n-1)。
特别地,当n = 0时,常数函数y = c的导数为d/dx(c) = 0。
3. 指数函数导数法则:对于底数为常数a的指数函数y = a^x,其导数为d/dx(a^x) = ln(a) * a^x。
这个法则也适用于自然对数中的指数函数y = e^x,其导数为d/dx(e^x) = e^x。
4. 对数函数导数法则:对于底数为常数a的对数函数y = log_a(x),其导数为d/dx(log_a(x)) = 1 / (x * ln(a))。
特别地,当底数为自然常数e时,对数函数变为自然对数函数y =ln(x),其导数为d/dx(ln(x)) = 1 / x。
5.三角函数导数法则:(1)正弦函数的导数为d/dx(sin(x)) = cos(x)。
(2)余弦函数的导数为d/dx(cos(x)) = -sin(x)。
(3)正切函数的导数为d/dx(tan(x)) = sec^2(x)。
(4)余切函数的导数为d/dx(cot(x)) = -csc^2(x)。
(5)正切函数和余切函数的导数也可以写成d/dx(tan(x)) = 1 /cos^2(x)和d/dx(cot(x)) = -1 / sin^2(x)。
6.反三角函数导数法则:(1)反正弦函数的导数为d/dx(arcsin(x)) = 1 / sqrt(1 - x^2)。
(2)反余弦函数的导数为d/dx(arccos(x)) = -1 / sqrt(1 - x^2)。
(3)反正切函数的导数为d/dx(arctan(x)) = 1 / (1 + x^2)。
四则运算与复合函数求导法则
四则运算与复合函数求导法则在微积分中,求导是一个重要的概念和工具。
通过求导,我们可以计算函数在某一点上的斜率,进而研究函数的性质和变化规律。
本文将介绍四则运算和复合函数求导法则,帮助读者理解和应用这些常用的求导规则。
一、四则运算求导法则四则运算是指加法、减法、乘法和除法。
求导的四则运算法则可总结如下:1. 加减法:对于两个函数的和或差,求导后的结果等于各自函数的导数之和或差。
即如果函数f(x)和g(x)可导,则有:(f(x) ± g(x))' = f'(x) ± g'(x)2. 乘法:对于两个函数的乘积,求导后的结果等于第一个函数乘以第二个函数的导数再加上第二个函数乘以第一个函数的导数。
即如果函数f(x)和g(x)可导,则有:(f(x) * g(x))' = f'(x) * g(x) + g'(x) * f(x)3. 除法:对于两个函数的商,求导后的结果等于第一个函数乘以第二个函数的导数减去第二个函数乘以第一个函数的导数,再除以第二个函数的平方。
即如果函数f(x)和g(x)可导,并且g(x)≠0,则有: (f(x) / g(x))' = (f'(x) * g(x) - g'(x) * f(x)) / (g(x))^2二、复合函数求导法则复合函数是由两个或多个函数构成的复合形式,求导的复合函数法则可总结如下:1. 外函数求导后不变,内函数求导后乘上外函数对内函数的导数:若y = f(u),u = g(x),则y对x的导数为:dy/dx = dy/du * du/dx = f'(u) * g'(x)2. 链式法则:对于一个复合函数,可以将其表示为一系列简单的函数的复合形式,利用链式法则求导,即将求导过程分解为多个简单函数的求导过程。
若y = f(u),u = g(v),v = h(x),则有:dy/dx = dy/du * du/dv * dv/dx = f'(u) * g'(v) * h'(x)综上所述,四则运算和复合函数求导法则是微积分中常用的工具。
课件11:1.2.3 导数的四则运算法则
本节内容结束 更多精彩内容请登录:
1.2.3 导数的四则运算法则
学习目标 (1)能利用导数的运算法则和基本初等函数的导数公式 求简单函数的导数; (2)理解并掌握复合函数的求导法则.
知识导学 一、导数的四则运算法则 1.函数和(或差)的求导法则 若f(x),g(x)是可导的,则(f(x)+g(x))′=f′(x)+g′(x),(f(x) -g(x))′=f′(x)-g′(x). 注意:(1)设f(x),g(x)是可导的,则(f(x)±g(x))′= f′(x)±g′(x),即两个函数的和(或差)的导数,等于这两 个函数的导数的和(或差).
解:(1)y′=4x3-9x2+4x-4. (2)y′=x′cosx+x(cosx)′=cosx-xsinx. (3)y′=(sin2x)′=(2sinxcosx)′=(2sinx)′cosx+2sinx(cosx)′ =2cos2x-2sin2x=2cos2x. (4)y′=(tanx+cotx)′=csoinsxx′+csoinsxx′ =cos2cxo+s2sxin2x+-sins2ixn-2xcos2x=co1s2x-sin12x
归纳总结 (1)熟练掌握和运用函数的和、差、积、商的导数公式, 并进行简单、合理的运算,注意运算中公式运用的准确 性. (2)灵活运用公式,化繁为简,如小题(2)这种类型,展开 化为和、差的导数比用积的导数简单容易.
练一练 1.求下列函数的导数: (1)y=x4-3x3+2x2-4x-1; (2)y=xcosx; (3)y=sin2x; (4)y=tanx+cotx; (5)y=x2lnx+lo1gax(a>0 且 a≠1,x>0).
(2)对任意有限个可导函数,有(f1(x)±f2(x)±…±fn(x))′ =f1′(x)±f2′(x)±…±fn′(x).
导数的四则运算法则
导数的四则运算法则导数的四则运算法则是微积分中常用的法则,它们描述了导数在加减乘除运算中的规律。
在微积分中,导数表示函数变化率的概念,它可以通过极限的方法计算得到。
四则运算法则包括加法法则、减法法则、乘法法则和除法法则。
1.加法法则:如果两个函数f(x)和g(x)都可导,则它们的和函数(f+g)(x)也可导,且有(d/dx)(f+g)(x) = f'(x) + g'(x)。
这个法则表明,两个函数的导数之和等于它们的和函数的导数。
2.减法法则:如果函数f(x)和g(x)都可导,则它们的差函数(f-g)(x)也可导,且有(d/dx)(f-g)(x) = f'(x) - g'(x)。
这个法则表明,两个函数的导数之差等于它们的差函数的导数。
3.乘法法则:如果函数f(x)和g(x)都可导,则它们的乘积函数(f*g)(x)也可导,且有(d/dx)(f*g)(x) = f'(x) * g(x) + f(x) * g'(x)。
这个法则可以通过展开乘积并使用导数定义来证明。
它表示两个函数的导数之乘等于其中一个函数乘以另一个函数的导数再加上另一个函数乘以其中一个函数的导数。
4.除法法则:如果函数f(x)和g(x)都可导,并且g(x)不等于零,则它们的商函数(f/g)(x)也可导,且有(d/dx)(f/g)(x) = (f'(x) * g(x) - f(x) * g'(x)) / g^2(x)。
这个法则可以通过乘法法则和导数的倒数法则来证明。
它表示两个函数的导数之商等于分子的导数乘以分母减去分母的导数乘以分子再除以分母的平方。
总结:导数的四则运算法则包括加法法则、减法法则、乘法法则和除法法则。
它们描述了导数在加减乘除运算中的规律。
利用这些法则,我们可以对函数进行导数计算,从而求解各种应用问题,如曲线的切线方程、最优化问题等。
这些法则是微积分中基础且重要的内容,值得深入学习和掌握。
导数的四则运算法则
1 2
xsinx + = = -
1 2 x x
cosx = -
2xsinx + cosx 2x x
cosx + 2xsinx 2x x
首页 上页பைடு நூலகம்返回 下页 结束 铃
1 x 例6.求y=f(x)= 的导函数,f'(1). 3 x
2 2 1 x (1 x ) (3 x ) (1 x )(3 x ) 解: y ' ( )' 3 x (3 x 2 )2
首页 上页 返回 下页 结束 铃
证明:令y=f(x)+g(x),则
Δy = f(x +Δx)+ g(x +Δx)-[f(x)+ g(x)] =[f(x +Δx)- f(x)]+[g(x +Δx)- g(x)]= Δf +Δg
Δy Δf Δg = + Δx Δx Δx Δy Δf Δg Δf Δg lim = lim + = lim + lim Δx→0 Δx Δx→0 Δx Δx Δx→0 Δx Δx→0 Δx
练习:求下列函数导函数 (1)y= e2x (2) 答案:(e2x)'=2e2x ,
首页 上页 返回
y=cos2x (cos2x)'= -sin2x
下页 结束 铃
练习题 1.若f(x)与g(x)是定义在R上的两个可导 函数,且f(x),g(x)满足f ’(x)=g’(x),则f(x) 与g(x)满足( B ) (A)f(x)=g(x) (B)f(x)-g(x)为常数函数
(1) y 2 x 3x 8
5 2
(2) y ( x 2x)( x 2)
导数的四则运算法则
导数的四则运算法则1.求和规则:如果f(x)和g(x)都是可导函数,则它们的和的导数等于各自函数的导数之和。
即:(f+g)'(x)=f'(x)+g'(x)2.差规则:如果f(x)和g(x)都是可导函数,则它们的差的导数等于各自函数的导数之差。
即:(f-g)'(x)=f'(x)-g'(x)3.乘法规则:如果f(x)和g(x)都是可导函数,则它们的乘积的导数等于第一个函数的导数乘以第二个函数加上第一个函数乘以第二个函数的导数。
即:(f*g)'(x)=f'(x)*g(x)+f(x)*g'(x)4.除法规则:如果f(x)和g(x)都是可导函数且g(x)不等于零,则它们的商的导数等于第一个函数的导数乘以第二个函数减去第一个函数乘以第二个函数的导数,再除以第二个函数的平方。
即:(f/g)'(x)=(f'(x)*g(x)-f(x)*g'(x))/(g(x))^2这些四则运算法则可以用于计算复杂函数的导数。
下面通过一些简单的例子来说明这些规则的具体应用。
例子1:计算函数f(x)=x^3+2x^2-3x+1的导数。
解:对于这个函数,可以按照求和规则和乘法规则分别对各项进行求导。
f'(x)=(x^3)'+(2x^2)'+(-3x)'+(1)'=(3x^2)+(4x)+(-3)=3x^2+4x-3例子2:计算函数g(x)=(2x^2+3x-1)/(x+2)的导数。
解:应用乘法规则和除法规则对该函数进行求导。
g'(x)=((2x^2+3x-1)'*(x+2)-(2x^2+3x-1)*(x+2)')/(x+2)^2=(((4x+3)*(x+2))-((2x^2+3x-1)*1))/(x+2)^2=(4x^2+11x+6-2x^2-3x+1)/(x+2)^2=(2x^2+8x+7)/(x+2)^2通过这两个简单的例子,我们可以看到四则运算法则在计算导数中的应用。
导数的四则运算
(2)Sn = 1 2 + 2 3x +…+ (n 1)nxn2 ( x ≠ 1).
(xn )′ = nxn1, 可联想到它是另一个和式 对(1)由求导公式 由求导公式
x+x2+x3+…+xn的导数 的导数.
x (1 x n ) (1 ( x ≠ 1), 解: ) ∵ x + x 2 + x 3 + … + x n = 1 x
y′ = (uv)′ = u′v + uv′.
推论:常数与函数的积的导数, 推论:常数与函数的积的导数,等于常数乘 函数的导数, 函数的导数,即: (Cu)′ = Cu′.
′ 1 (3)商的导数 = v′ ( x) . )商的导数: 特别地 法则3:两个函数的商的导数 分子等于原分子函数的 两个函数的商的导数,分子等于原分子函数的 法则 两个函数的商的导数 x) v ( x) v2 ( 导数乘原分母函数,减去原分子函数乘原分母函数的 导数乘原分母函数 减去原分子函数乘原分母函数的 证: 分母等于原分母函数的平方 分母等于原分母函数的平方. 导数 ,分母等于原分母函数的平方.即
§4.2 导数的四则运算法则
数
学
组
孙
靓
一,新课讲授: 新课讲授:
1,四则运算 ,
定理 如果函数u( x), v( x)在点x处可导, 则它们的
和,差,积,商(分母不为零)在点x处也可导,
并且
(1) [u( x) ± v( x)]′ = u′( x) ± v′( x); (2) [u( x) v( x)]′ = u′( x)v( x) + u( x)v′( x);
1+ 2x + 3x2 1 x + sin x cos x cos2 x (6) y′ = ; . 2 4 (7) y′ = 2 (1+ x) (1 x) (sin x cos x)
4.导数的四则运算法则
§4 导数的四则运算法则
学习 目标
1.理解函数的和、差、积、商的求导法则. 2.掌握求导法则的证明过程,能够综合运用导数公式和导数运算 法则求函数的导数. 3.能运用复合函数的求导法则进行复合函数的求导.
知识点一 导数运算法则
法则
语言叙述
两个函数的和(差)的导数,等于这两个函 [ff′(x)(±x)±g(xg)′]′(x=) _____________ 数的导数的和(差)
知识点二 复合函数的导数
复合函数的概念
一般地,对于两个函数y=f(u)和u=φ(x)=ax+b, 给定x的一个值,就得到了u的值,进而确定了y的值, 这样y可以表示成x的函数 ,我们称这个函数为函数 y=f(u)和u=φ(x)的复合函数,记作 y=f(φ(x)) .
复合函数的求导法则 复合函数y=f(φ(x))的导数为y′x=[f(φ(x))]′= f′(u)φ′(x)
解 令 y=u2,u=sin 1x,再令 u=sin v,v=1x,
∴y′x=y′u·u′v·v′x=(u2)′·(sin
v)′·1x′=2u·cos
0-1 v· x2 =2sin
1x·cos1x
(3)y=
1 x·cos
x;
解析答案
(4)y=x-sin 2x·cos 2x.
解
∵y=x-sin
x 2·cos
2x=x-12sin x,
∴y′=x-12sin x′=1-12cos x.
反思与感悟 在对较复杂函数求导时,应利用代数或三角恒等变形对已知
函数解析式进行化简变形,如:把乘积的形式展开,分式形式变为和或差
[f(x)·g(x)]′= __f′__(_x)_·_g_(x_)_+__f(_x)_·_g_′__(x_)_
一、导数的四则运算法则
x0 x
x0 x
且y v( x)在点x处必连续,即
lim v( x x) v( x)
x0
所以
lim
x0
y x
=
lim
x0
u( x) x
v(
x
x)
v( x) x
u( x)
=u '( x) v( x) u( x) v '( x)
即u(x) v(x) ' u '(x) v(x) u(x) v '(x)
例7 设y sin(ln x),求y。
解: y' cos(ln x) 1 cos(ln x)
x
x
例8 设y ln( x4 tan x),求y。
解:
y'
x4
1 (4x3 tan x
sec2
x)
4 x3 sec2 x x4 tan x
Hale Waihona Puke 例9 设y esin3x,求y。
解: y' esin3x cos 3x 3
且有 f (( x)) f (u)( x),或记为
dy dy du dx du dx
证明 因为y f (u)在对应点u处可导,即f (u) lim y
u0 u
那么,由无穷小与函数极限的关系,有 y =f '(u)+,(其中为当u 0时的无穷小)
u
得 y=f '(u)u+u
于是 lim y = lim f '(u)u+u
3、
u( v(
x) x)
'
u
'( x) v( x) u( x) v v2(x)
'(x)
导数的基本公式和四则运算法则
导数的基本公式和四则运算法则
导数是微积分中的一个重要概念,它描述了函数在某一点处的变化率。
在求解导数时,我们可以利用一些基本公式和四则运算法则来简化计算过程。
首先,导数的基本公式包括:
1. 对常数函数求导,常数函数的导数为0。
2. 幂函数求导,对于函数f(x) = x^n,其导数为f'(x) = nx^(n-1)。
3. 指数函数求导,指数函数e^x的导数仍为e^x。
4. 三角函数求导,常见的三角函数sin(x)和cos(x)的导数分别为cos(x)和-sin(x)。
其次,利用四则运算法则,我们可以对复合函数进行求导。
四则运算法则包括:
1. 和差法则,对于函数f(x) = g(x) ± h(x),其导数为f'(x) = g'(x) ± h'(x)。
2. 积法则,对于函数f(x) = g(x) h(x),其导数为f'(x) =
g'(x) h(x) + g(x) h'(x)。
3. 商法则,对于函数f(x) = g(x) / h(x),其导数为f'(x) = (g'(x) h(x) g(x) h'(x)) / h(x)^2。
通过这些基本公式和四则运算法则,我们可以更轻松地求解各
种函数的导数,从而更好地理解函数的变化规律和性质。
在实际应
用中,导数的概念和计算方法也被广泛地运用于物理、工程、经济
学等领域,为我们解决实际问题提供了重要的数学工具。
因此,熟
练掌握导数的基本公式和四则运算法则对于学习和应用微积分知识
都是至关重要的。
导数的四则运算法则
导数的四则运算法则导数的四则运算法则是微积分中非常重要的一个内容,它们是利用导数的性质进行四则运算的基本规则。
本质上,这些规则是微分操作与代数运算之间的对应关系,它们使得我们能够灵活、高效地应用导数概念解决各种实际问题。
1. 常数倍法则:设k是常数,对于任意可导函数f(x),有d/dx (k·f(x)) = k·(d/dx) f(x)。
它表示常数倍的函数导数等于常数倍的函数原函数的导数。
2. 常数法则:对于常数c,有d/dx(c) = 0。
它表示常数的导数等于0,因为常数在任意两点之间没有变化。
3.基本变换法则:设f(x)和g(x)是可导函数,对于任意实数a和b,有:a. d/dx (f(x) ± g(x)) = (d/dx)f(x) ± (d/dx)g(x),它表示函数的加减运算在取导数时可以分别取导。
b. d/dx (a·f(x) ± b·g(x)) = a·(d/dx)f(x) ±b·(d/dx)g(x),它表示常数倍的函数的加减运算在取导数时可以先取导再进行加减运算。
4.乘积法则:设u(x)和v(x)是可导函数,对于任意实数a和b,有:d/dx (u(x)·v(x)) = u(x)·(d/dx)v(x) + v(x)·(d/dx)u(x),它表示两个函数乘积的导数等于第一个函数乘以第二个函数的导数再加上第二个函数乘以第一个函数的导数。
特别地,若其中一个函数是常数函数,则该法则简化为常数倍法则。
5.商法则:设u(x)和v(x)是可导函数,对于任意实数a和b(b≠0),有:d/dx (u(x)/v(x)) = (v(x)·(d/dx)u(x) -u(x)·(d/dx)v(x))/v^2(x),它表示两个函数商的导数等于分子函数乘以分母函数的导数再减去分母函数乘以分子函数的导数,最后除以分母函数的平方。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课后作业:课本第21页 A组 2 ; B组 3.
例2.求y=xsinx的导数。 解:y′=(x· sinx) ′ =x′·sinx+x· (sinx) ′ =sinx+xcosx. 例3.求y=sin2x的导数。 解:y′=(2sinxcosx) ′ =2(cosx· cosx-sinx· sinx) =2cos2x.
法则3 :两个函数的商的导数,等于分子的
y (3) 当x 0, 常数 x
3.巩固练习:利用导数定义求 的导数.
2
yx x
2
( x x) 2 x 1
2
f ( x) x
结论: ( x
2
g ( x) x
2
f ( x) g ( x) x x
x) ( x ) ( x).
2
猜想: [ f ( x) g ( x)]
3
法则 2: 两个函数的积的导数,等于第一
个函数的导数乘以第二个函数加上第一个 函数乘以第二个函数的导数.即:
[ f ( x) g ( x)] f ( x) g ( x) f ( x) g ( x).
有上述法则立即可以得出:
[Cf ( x)] Cf ( x).(C为常数)
即,常数与函数之积的导数,等 于常数乘以函数的导数。
例4.求y=tanx的导数。
解:y′=
sin x ( )' cos x
cos x cos x sin x sin x 1 2 2 cos x cos x
1.求 y 2x 3x 5x 4 的导数
3
2
解 : y (2 x 3x 5 x 4)
3 2
6x 6x 5
注意:关于a x和x a 是两个不同
的函数,例如:
(1)(3 ) 3 ln 3
x
x
(2)( x ) 3 x
3
2
2、由定义求导数(三步法)
步骤:
(1) 求增量 y f ( x x ) f ( x );
y f ( x x ) f ( x ) ( 2) 算比值 ; x x
2.几个常用的函数的导数是什么?
y c(c是常数), y x (为实数), y a (a 0, a 1), y log a x(a 0, a 1),
x
y sin x, y cos x, y tan x, y cot x.
3.导数应用的注意事项:
求函数的导数要准确把函数分割为基本函数 的和、 差、 积、商, 再利用运算法则求导数. 在 求导过程中,要仔细分析出函数解析式的结构 特征,根据导数运算法则,联系基本函数的导 数公式.对于不具备导数运算法则结构形式的 要适当恒等变形,转化为较易求导的结构形 式,再求导数,进而解决一些切线斜率、瞬时 速度等问题.
y f ( x x) f ( x) g ( x x) g ( x) x x
f ( x x) f ( x) g ( x x) g ( x)
x x
f ( x) g ( x)
同理可证 :
y ' ( f g ) ' f ' g '
导数与分母的积,减去分母的导数与分子 的积,再除以分母的平方,即:
f ( x) f ( x) g ( x) f ( x) g ( x) [ ] 其中g ( x) 0 2 g ( x) g ( x)
提示: 积法则,商法则, 都是前导后不导, 前不导后导, 但积法则中间是加号, 商法则中间是减号.
二、知识新授
法则1: 两个函数的和(或差)的导数, 等于这两个函数的导数的和(或差),即:
[ f ( x) g ( x)] f ( x) g ( x).
这个法则可以推广到任意有限个函数, 即
( f1 f 2 f n ) ' f1 ' f 2 ' f n '
n n 1 x nx n N
1 ( x ) x ( 为实数);
1 (loga x ) ; x ln a x x (a ) a ln a; (sin x ) cos x;
1 (ln x ) ; x x x (e ) e ; (cos x ) sin x;
f ( x) g ( x)
证明猜想
证明:令
f ( x) g ( x)
y f ( x) g ( x).
f ( x) g ( x).
y f ( x x) g ( x x) f ( x) g ( x)
f ( x x) f ( x) g ( x x) g ( x)
3 2
解: f ( x) ( x 3x 8) 3x 3, k f (2) 3 2 3 15,
2
又切线过点 (2,6), 切线方程为 : y 6 15( x 2), 即: 15 x y 24 0.
1.导数的四则运算法则是什么?
例 1. (1)求函数f ( x) x sin x的导数.
2
解:f ( x) ( x sin x)
2
( x ) (sin x) 2 x cos x
2
3 2 (2)求函数g ( x) x x 6 x 2的导数. 2
3
3 2 解:g ( x) ( x x 6 x) 2 3 2 3 2 ( x ) ( x ) (6 x) 3x 3x 6 2
2
2. 用两种方法求y (2x 3)(3x 2) 的导数
2 2 解: 法一:y (2 x 3)(3x 2) (2 x 3)(3x 2)
2
4 x ( 3 x 2) ( 2 x 3) 3
2
18 x 8 x 9 3 2 法二: y (6 x 4 x 9 x 6)
学习目标:
1.理解两函数的和(或差)的导数法则, 会求一些函数的导数. 2.理解两函数的积(或商)的导数法则, 会求一些函数的导数
教学重难点
教学重点:
导数公式和导数的四则运算法则。
教学难点:
灵活地运用导数的四则运算法则进 行相关计算
一、复习回顾 1、基本求导公式:
C 0(C为常数);
2
18 x 8 x 9
2
x 3. y 的导数 sin x
2
( x ) sin x x (sin x) 解:y 2 sin x
2 ' 2 '
'
2 x sin x x cos x 2 sin x
2
3 例5:求曲线y=x +3x-8在x=2处的切
线的方程.(备选)