1.2.2 导数的运算法则(一)
第一章1.2-1.2.2基本初等函数的导数公式及导数的运算法则(一)
1.几个常用函数的导数
原函数 导函数 f(x)=c f′(x)=0 f(x)=x f′(x)=1 f(x)=x2 f′(x)=2x
f(x)=1x
1 f′(x)=_2__x__
f(x)= x f′(x)=_-__x1_2__
2.基本初等函数的导数公式
原函数
导函数
y=c y=xn(n∈Q) y=sin x y=cos x y=ax(a>0,a≠1) y=ex
2.遇到含有根式的函数求导数一般先化为幂函数的 形式再求导.
程为 y-1=-xln 2,即 xln 2+y-1=0. 答案:xln 2+y-1=0.
5.曲线 y=13x3 在 x=1 处切线的倾斜角为________. 解析:由 y=13x3 得 y′=x2,y′|x=1=1,所以切线的倾 斜角 α 满足 tan α=1,因为 0≤α<π,所以 α=π4. 答案:π4
=-13. 1
(2)因为 f(x)=ln x(x>0), 所以 f′(x)=1x, 所以 f′(x0)=x10=x120,所以 x0=1. 答案:(1)-13 (2)1
类型 3 求切线方程(互动探究)
[典例 3] 已知曲线 y=1x,求曲线在点 P(1,1)处的 切线方程.
1
1
解:y=x,y′=-x2.显然 P(1,1)是曲线上的点,
即质点在 t=π3时的速度为12. (2)因为 v(t)=cos t, 所以加速度 a(t)=v′(t)=(cos t)′=-sin t.
归纳升华 1.速度是路程对时间的导数,加速度是速度对时间 的导数. 2.求函数在某定点(点在函数曲线上)的导数的步骤 是:(1)求函数的导函数;(2)把对应点的横坐标代入导函 数,求相应的导数值.
1.2.2导数公式及运算法则
2.复合函数的求导法则 复合函数对自变量的导数,等于已知函数对中间变量
的导数,乘以中间变量对自变量的导数,即 yx′= yu′·ux′,
并且在利用复数的求导法则求导数后,最后结果要把中间 变量换成自变量的函数.复合函数,可以是一个中间变量, 也可以是两个或多个中间变量,应该按照复合次序从外向 内逐层求导.
2.函数 y=21(ex+e-x)的导数是(
)
A.12(ex-e-x) B.21(ex+e-x)
C.ex-e-x D.ex+e-x 解析 y′=21ex+e-x′=12[(ex)′+(e-x)′]=
21(ex-e-x). 3.[2017·泉州高二检测]函数 f(x)=π2x2 的导数是( )
A.f′(x)=4πx B.f′(x)=2πx
C.f′(x)=2π2x D.f′(x)=2πx2+2π2x
解析 由 f(x)=π2x2 得 f′(x)=2π2x,故选 C.
loga
xf
' ( x)
x
1 ln
a
(a
0且aΒιβλιοθήκη 1)f (x) ln xf '(x) 1 x
导数可以进行四则运算吗?
探究新知 一.导数的运算法则
设两个函数分别为f(x)和g(x)
法则
[f(x)±g(x)]′=f′(x)±g′(x)
语言法叙则述 两[个f(x函)g数(x的)]'=和f('或(x差)g()x的)+导f数(x),g'等(x)于
随堂达标自测
1.下列函数不是复合函数的是( )
A.y=-x3-1x+1 C.y=ln1x
1.2.2导数的四则运算
答案: (1) y 1 4 ; x2 x3
1 x2 ( 2) y ; 2 2 (1 x ) 1 ( 3) y ; 2 cos x
4 、 求曲线y=x2在点(1,1)处的切线与x 轴、直线x=2所围城的三角形的面 积
'
f ( x) f '( x ) 4. g '( x ) g ( x) f ( x) f ( x ) g '( x ) f '( x ) g ( x ) 5. 2 g ( x) g ( x)
'
'
练习2、
对照公式,求出下列函数的导数 1.y=2x 3 x 5 x 4
3.2导数的计算
1.2.2 导数的四则运算
法则1: [f(x) ±g(x)] ′= f'(x) ± g'(x);
1: 求下列函数的导数 3 (1)y=x +sinx
y' 3x cos x
2
(2)y=x4-x2-x+3.
y' 4 x 2 x 1
3
法则2:
f ( x) g( x) f ( x) g( x) f ( x) g ( x)
( 2)切线过点P (1,0) 斜率k 1 ln 1 1
切线方程是:y=x-1
例 2 、日常生活中的饮用水通常是经过净化 的.随着水纯净度的提高.所需净化费用不 断增加。已知将 1吨水净化到纯净度为 x% 时 所需费用(单位:元)为 c(x)=5284/(100-x) (80<x<100).
5 6
法则3:
3:求下列函数的导数 (1)y=tanx
1.2.2导数公式表及数学软件的应用1.2.3导数的四则运算法则 (1)
一.基本初等函数导数公式表
1. 常数函数的导数 y=f(x)≡C,C为常数,则 2.幂函数y=xα,
(C ) ' 0 .
( x )' x
1
3. 指数函数的导数 y=ax (a>0,a≠1) y=ex 4. 对数函数的导数
( y)' பைடு நூலகம் ln a
求下列函数的导数: (1)f(x)=x5+2x4+x3; (2) g(x)=3x+lnx ; (3)h(x)=cosx+sinx.
求下列函数的导数 (1) y x x 3 x 7 x6 6 x5 15 x 4 1 1 1 (2) y x x 2 x 2 2 (3) y (3 x 2)( x 5) 9 x 30 x 2
7 6 5
(4) y (5 x 7) (3x 8) 60 x3 120 x2 21 2 1 x x (5) y 2 2 2 x 1 ( x 1) x cos x sin x sin x (6) y 2 x x
3
求y=xsinx的导数。
sin x x cos x
求y x x的导数
1+ 1 2 x
已知抛物线y x 3 5,
2
求此抛物线在x 3处的切线方程
9 x y 14 0
求曲线y sin 2x在点x 处的切线方程 4 y 1
x
求y=sin2x的导数。
2 cos 2 x
求y=tanx的导数。
1 2 cos x
x
( y) ' e
x
y=logax(a>0,a≠1,x>0) y=lnx
1.2.2导数的计算(复合函数的导数)
法则3:两个函数的积的导数 等于第一个函数的导数乘第二个 法则 两个函数的积的导数,等于第一个函数的导数乘第二个 两个函数的积的导数 函数,减去第一个函数乘第二个函数的导数 再除以第二个函 函数 减去第一个函数乘第二个函数的导数 ,再除以第二个函 数的平方.即 数的平方 即:
f (x)′ f ′(x)g(x) − f (x)g′(x) (g(x) ≠ 0) g(x) = 2 [ g(x)]
'
y = y ⋅u
= e
( ) ⋅ (− 0.05x + 1)
u '
'
= −0.05eu = −0.05e −0.05 x +1.
(3)函数y = sin (πx + φ )可以看作函数y = sin u和
u = πx + φ的复合函数.
由复合函数求导法则有
' ' ' y x = yu ⋅ u x
例 3 日常生活中的饮用水 通常是 经过 净化的 .随着水 纯净度的提高 , 所需净化费 用不断增加.已知将1吨水净 用(单位 : 元 )为 化到纯净度为x%时所需费
5284 (80 < x < 100).求净化到下纯度 c( x ) = 100 − x 时, 所需净化费用的瞬时变化率 : (1) 90% ; (2)98% .
3
4). y = x 1 + x
2
( +2x2) 1+ x2 1 ' 4).y = 1+ x2
又y x = y u y u v x
' ' '
∴ yx =
'
1
ex + 2 ex = x 3((e x + 2 )2
高中数学第一章几个常用函数的导数1.2.2基本初等函数的导数公式及导数的运算法则(一)讲义
1.2.2 基本初等函数的导数公式及导数的运算法则(一)1.几个常见函数的导数2.基本初等函数的导数公式设两个函数分别为f(x)和g(x).4.导数的加法与减法法则(1)两个函数和(或差)的导数等于两个函数的导数的和(或差),可推广到多个函数的和(或差),即(f1±f2±…±f n)′=□17f1′±f2′±…±f n′.(2)两个函数和(或差)的导数还可推广为[mf(x)±ng(x)]′=□18mf′(x)±ng′(x)(m,n为常数).基本初等函数的四类求导公式(1)第一类为幂函数,y ′=(x α)′=α·xα-1(注意幂指数α可推广到全体实数).对于解析式为根式形式的函数,首先应把根式化为分数指数幂的形式,再求导数.(2)第二类为三角函数,可记为正弦函数的导数为余弦函数,余弦函数的导数为正弦函数的相反数.注意余弦函数的导数,不要漏掉前面的负号.(3)第三类为指数函数,y ′=(a x)′=a x·ln a ,当a =e 时,e x的导数是(a x )′的一个特例.(4)第四类为对数函数,y ′=(log a x )′=1x ·ln a ,也可记为(log a x )′=1x·log a e ,当a=e 时,ln x 的导数也是(log a x )′的一个特例.1.判一判(正确的打“√”,错误的打“×”) (1)若y =2,则y ′=12×2=1.( )(2)若f ′(x )=sin x ,则f (x )=cos x .( ) (3)若f (x )=-1x ,则f ′(x )=12x x.( ) 答案 (1)× (2)× (3)√ 2.做一做(1)⎝ ⎛⎭⎪⎫1x 3′=________. (2)(2x)′=________.(3)若f (x )=x 3,g (x )=log 3x ,则f ′(x )-g ′(x )=________. 答案 (1)-3x4 (2)2x ln 2 (3)3x 2-1x ln 3探究1 利用导数公式及运算法则求导 例1 求下列函数的导数.(1)y =5x 3;(2)y =log 5x ;(3)f (x )=(x +1)2(x -1); (4)f (x )=2-2sin 2x2;(5)f (x )=e x+1e x -1.[解] (1)y ′=(5x 3)′=(x 35 )′=35x - 25 =355x 2.(2)y ′=(log 5x )′=1x ln 5. (3)因为f (x )=(x +1)2(x -1)=(x 2+2x +1)(x -1)=x 3+x 2-x -1,所以f ′(x )=3x 2+2x -1.(4)因为f (x )=2-2sin 2x2=1+cos x ,所以f ′(x )=-sin x .(5)解法一:f ′(x )=x +x--x+x-x -2=-2e xx -2.解法二:因为f (x )=e x+1e x -1=1+2e x -1,所以f ′(x )=x--x -x -2=-2e xx -2.拓展提升(1)利用函数的和、差、积、商的求导法则求函数的导数时,要分清函数的结构,再利用相应的法则进行求导.(2)遇到函数的表达式是乘积形式或是商的形式,有时先将函数表达式展开或化简,然后再求导.【跟踪训练1】 求下列函数的导数. (1)y =13x2;(2)y =x 3·e x;(3)y =cos x x.解 (1)y ′=⎝ ⎛⎭⎪⎪⎫13x 2′=(x - 23 )′=-23x -23-1 =-23x - 53 .(2)y ′=(x 3·e x )′=(x 3)′·e x +x 3·(e x)′ =3x 2·e x +x 3·e x=x 2e x(3+x ). (3)y ′=⎝ ⎛⎭⎪⎫cos x x ′=xx -cos x xx 2=-x ·sin x -cos x x2=-x sin x +cos xx2. 探究2 曲线切线方程的确定与应用例2 过原点作曲线y =e x的切线,求切点的坐标及切线的斜率.[解] 因为(e x )′=e x,设切点坐标为(x 0,e x 0),则过该切点的直线的斜率为e x 0,所以所求切线方程为y -ex 0=ex 0(x -x 0).因为切线过原点,所以-ex 0=-x 0·ex 0,x 0=1.所以切点为(1,e),斜率为e.[条件探究] 已知点P 是曲线y =e x上任意一点,求点P 到直线y =x 的最小距离.[解] 根据题意设平行于直线y =x 的直线与曲线y =e x相切于点(x 0,y 0),该切点即为与y =x 距离最近的点,如图.则在点(x 0,y 0)处的切线斜率为1,即y ′|x =x 0=1.y ′=(e x )′=e x,ex 0=1,得x 0=0,代入y =e x,y 0=1,即P (0,1). 利用点到直线的距离公式得距离为22. 拓展提升利用基本初等函数的求导公式和导数的四则运算法则,结合导数的几何意义可以解决一些与距离、面积相关的几何的最值问题.解题的关键是正确确定所求切线的位置,进而求出切点坐标.【跟踪训练2】 已知点P (-1,1),点Q (2,4)是曲线y =x 2上的两点,求与直线PQ 平行的曲线y =x 2的切线方程.解 因为y ′=(x 2)′=2x ,设切点为M (x 0,y 0), 则y ′| x =x 0=2x 0.又因为PQ 的斜率为k =4-12+1=1,而切线平行于PQ ,所以k =2x 0=1,即x 0=12,所以切点为M ⎝ ⎛⎭⎪⎫12,14. 所以所求的切线方程为y -14=x -12,即4x -4y -1=0. 探究3 导数的综合应用例3 已知函数f (x )=x 3-4x 2+5x -4. (1)求曲线f (x )在点(2,f (2))处的切线方程; (2)求经过点A (2,-2)的曲线f (x )的切线方程. [解] (1)∵f ′(x )=3x 2-8x +5, ∴f ′(2)=1,又f (2)=-2,∴曲线f (x )在点(2,f (2))处的切线方程为y -(-2)=x -2,即x -y -4=0. (2)设切点坐标为(x 0,x 30-4x 20+5x 0-4), ∵f ′(x 0)=3x 20-8x 0+5,∴切线方程为y -(-2)=(3x 20-8x 0+5)(x -2), 又切线过点(x 0,x 30-4x 20+5x 0-4), ∴x 30-4x 20+5x 0-2=(3x 20-8x 0+5)(x 0-2), 整理得(x 0-2)2(x 0-1)=0, 解得x 0=2或x 0=1,∴经过A (2,-2)的曲线f (x )的切线方程为x -y -4=0或y +2=0. 拓展提升求曲线方程或切线方程时,应注意:(1)切点是曲线与切线的公共点,切点坐标既满足曲线方程也满足切线方程; (2)曲线在切点处的导数就是切线的斜率;(3)必须明确已知点是不是切点,如果不是,应先设出切点.【跟踪训练3】 已知f (x )=13x 3+bx 2+cx (b ,c ∈R ),f ′(1)=0,当x ∈[-1,3]时,曲线y =f (x )的切线斜率的最小值为-1,求b ,c 的值.解 f ′(x )=x 2+2bx +c =(x +b )2+c -b 2, 且f ′(1)=1+2b +c =0.① 若-b ≤-1,即b ≥1,则f ′(x )在[-1,3]上是增函数, 所以f ′(x )min =f ′(-1)=-1, 即1-2b +c =-1,②由①②,解得b =14,不满足b ≥1,应舍去.若-1<-b <3,即-3<b <1, 则f ′(x )min =f ′(-b )=-1, 即b 2-2b 2+c =-1,③由①③,解得b =-2,c =3或b =0,c =-1. 若-b ≥3,即b ≤-3,f ′(x )在[-1,3]上是减函数, 所以f ′(x )min =f ′(3)=-1, 即9+6b +c =-1,④由①④,解得b =-94,不满足b ≤-3,应舍去.综上可知,b =-2,c =3或b =0,c =-1.1.利用常见函数的导数公式可以比较简捷地求出函数的导数,其关键是牢记和运用好导数公式.解题时,要认真观察函数的结构特征,积极地进行联想划归.2.准确记忆导数的运算法则是进行导数运算的前提,但在解题过程中要注意如何使用运算法则可使运算较为简单,例如求y =x ·x 的导数,若使用积的导数公式可以求出结果,但不如先化简为y =x ·x =x 32 ,再求y ′=32x 12简单.3.三次函数的导数为二次函数,当涉及与二次函数最值有关的问题时,常需要讨论,而讨论的立足点是二次函数的图象的对称轴与区间的位置关系.1.已知函数f (x )=5,则f ′(1)等于( ) A .5 B .1 C .0 D .不存在 答案 C解析 因为f (x )=5,所以f ′(x )=0,所以f ′(1)=0. 2.已知f (x )=x 3+3x+ln 3,则f ′(x )为( ) A .3x 2+3xB .3x 2+3x·ln 3+13C .3x 2+3x ·ln 3D .x 3+3x·ln 3答案 C解析 (ln 3)′=0,注意避免出现(ln 3)=13的错误,∵f (x )=x 3+3x +ln 3,∴f ′(x )=3x 2+3x·ln 3.3.曲线y =cos x 在点A ⎝ ⎛⎭⎪⎫π6,32处的切线方程为________.答案 x +2y -3-π6=0解析 因为y ′=(cos x )′=-sin x ,所以k =-sin π6=-12,所以在点A 处的切线方程为y -32=-12⎝ ⎛⎭⎪⎫x -π6,即x +2y -3-π6=0.4.已知函数f (x )=f ′⎝ ⎛⎭⎪⎫π4cos x +sin x ,则f ⎝ ⎛⎭⎪⎫π4的值为________.答案 1解析 ∵f (x )=f ′⎝ ⎛⎭⎪⎫π4cos x +sin x , ∴f ′(x )=-f ′⎝ ⎛⎭⎪⎫π4sin x +cos x , ∴f ′⎝ ⎛⎭⎪⎫π4=-f ′⎝ ⎛⎭⎪⎫π4sin π4+cos π4,即f ′⎝ ⎛⎭⎪⎫π4=2-1,从而有f ⎝ ⎛⎭⎪⎫π4=(2-1)cos π4+sin π4=1,故填1. 5.已知直线y =kx 是函数y =ln x 的一条切线,试求k 的值. 解 设切点坐标为(x 0,y 0).∵y =ln x ,∴y ′=1x ,∴y ′| x =x 0=1x 0=k .∵点(x 0,y 0)既在直线y =kx 上,也在曲线y =ln x 上, ∴⎩⎪⎨⎪⎧y 0=kx 0,①y 0=ln x 0,②把k =1x 0代入①式得y 0=1,再把y 0=1代入②式求出x 0=e ,∴k =1x 0=1e .。
1.2.2基本初等函数的导数公式及导数的运算法则
情感态度与价值观
经历由实际问题中抽象出导数概 念,使同学们体会到通过导数也能刻
画现实世界中的数量关系的一个有效
数学模型.
教学重难点
重点
理解简单复合函数的复合过程.
难点
函数的积、商的求导法则的推 导及复合函数的结构分析.
知识要点
为了方便,今后我们可以直接使 用下面的初等函数的导数公式表:
基本初等函数的导数公式
f (x)
例8
求函数 y = 2x + 3 的导数.
2
解:函数 y 2 x 3 可以看作函数 y u
2
3
和 u 2x 3 的复合函数.由复合函数求 导法则有
y y u u
' x ' u ' x
2 '
2 x 3
'
4u 8x 12.
'
(2) y ' 2e x ;
(3) y ' 10 x 4 6 x;
(4) y ' 3sin x 4cos x;
1 x (5) y sin ; 3 3 1 ' (6) y . 2 x 1
'
u v
y u v x x x
y u v u v lim lim lim lim x 0 x x 0 x x 0 x x 0 x x
u ' ( x) v ' ( x)
例2
求y= x 3 + sin x的导数. 解:由导数的基本公式得:
y=-2/x3,那么函数y=1/(3x-2)2的导数又
是什么呢?
学习了这节课, 就可以解决这些 问题了!
1.2.2基本初等函数的导数公式及导数的运算法则(一)
x ;
(4) y
1
2
;
1 2
x
1 2
x -2x-3
注意公式中,n的任意性.
公式三:
(sin x) cos x
公式四:
(cos x) sin x
公式五:指数函数的导数
(1) (a ) a ln a(a 0, a 1).
x x
(2)
(e ) e .
x x
注意: f ( x )= a x 和 f ( x )= x a 是两 个不同的函数,例如:
2
(4) y
sin x x
y
'
x cos x sin x x
7、(2)已知 f ( x ) 则a=( D ) A
19 3
ax
3
3x 2
2
若 f ( 1) 4
'
B
ax sin x
16 3
'
C
13 3
D
10 3
f (3) ( x )
若f ( )3
2
则a=( B ) D -2
法则1:
[f(x) ±g(x)] ′= f'(x) ± g'(x);
即两个函数的和(或差)的导数,等于这两
个函数的导数的和(或差).
应用1: 求下列函数的导数 2 (1)y=x3+sinx y ' 3x cos x (2)y=x4-x2-x+3.
y' 4 x 2 x 1
3
和差导数可推广到任意有限个
∴ x0 1 , y 0 = 0
∴ 切线方程为y=x-1
即x-y-1=0
1.2.2 导数公式与导数运算法则
1.2.2 导数公式与导数运算法则
(第2课时)
人教版(A版)选修2-2
一、复习引入
◆导数的运算法则
(1)加法法则: f g ' f ' g ';
(2)减法法则: f g ' f ' g ';
(3)乘法法则: f • g ' f '• g f • g ';
特别地:c • f ' c • f '.
①求出导函数f'(x);
②求出原函数f(x)以及导函数f'(x)在x0处的 的函数值f(x0)与f'(x0);
③利用点斜式方程y-f(x0)=f'(x0)(x-x0)写出切 线方程.
4.求曲线
y sin x x
在点
M ( ,0)处的切线方程 .
解:Q y sin xn x
x
'
sin x' • x sin x • x '
y'
x2
cos x • x sin x •1 x2
x cos
x sin x2
x.
切线方程为y y( ) y ' x ,即
y 0 1 x y= 1 x 1.
三、课堂小结
1.导数的运算法则 2.导数公式 3.切线方程的求法
四、课后作业
f ' x 13 8x 2x2 ' 13' 8x' 2x2 '
0 8• x ' 2 • x2 '
0 81 2 • 2x 2 2x 8.
又Q f ' x0 4. f ' x0 2 2x0 8 4
1.2.2导数的运算法则
知识要点
1.本课重点是导数运算法则的掌握与应用. 2.本课难点是导数运算法则的灵活应用.
和(差) 积 商
[f(x)±g(x)]′=f′(x)±g′(x) [f(x)g(x)]′=f′(x)g(x)+f(x)g′(x) [Cf(x)]′=Cf′(x)(其中C为常数)
[ f (x)]' g( x)
解 题 启 示
1 2
【解析】法一:由 f '(x) x1 1 ,故直线 l 的斜率为 1,切点为(1,f(1)),即(1,0).∴ l : y x 1 ①
又∵
g '( x)
x
1
,切点为 (1,
1
a)
,∴
l
:
y
1 (
a)
x
1 ,即
y
x
1
a
②,
2
2
2
比较①和②的系数得 1 a 1,∴ a 1 .
2
2
法二:由 f '(x) x1 1 ,直线 l 的斜率为 1,切点为(1,f(1)),即(1,0).∴ l : y x 1 ①,
(2)利用积(或商)的导数运算法则时,注意避免以下错误:
①[f(x)g(x)]′=f′(x)g′(x);
②[
f (x)
g( x) ]′=
f '( x) g '( x)
③[ f ( x) ]′=
g( x)
f '( x)g( x) f ( x)g '( x) g2(x)
典题剖析
应用法则求函数的导数
示 ② 出隐含条件进而得到②式,则此种情况在实际考试中最多给 4分.
在解答过程中,若正确解出x0,但没有验证增根的情况,即 在③处没有分别舍去x0=-3与x0=-3a,这是因为没有注意到这两 ③ 种情况下,不符合函数g(x)的定义域(0,+∞)而造成解答过程 不完整.实际考试中此种情况一般给10分.是考试中最不该失分 的地方.
1.2.2基本初等函数的导数公式及导数的运算法则(学、教案)
1.2.2基本初等函数的导数公式及导数的运算法则(学、教案)D§1.2.2基本初等函数的导数公式及导数的运算法则课前预习学案一. 预习目标1.熟练掌握基本初等函数的导数公式; 2.掌握导数的四则运算法则;3.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数二. 预习内容1.基本初等函数的导数公式表 2.导数的运算法则函数 导数 y c =*()()n y f x x n Q ==∈sin y x=cos y x=()x y f x a == ()x y f x e == ()log a f x x=()ln f x x=导数运算法则复习五种常见函数y c =、y x =、2y x =、1y x=、y x=的导数公式填写下表(二)。
【提出问题,展示目标】我们知道,函数*()()ny f x x n Q ==∈的导数为'1n y nx -=,以后看见这种函数就可以直接按公式去做,而不必用导数的定义了。
那么其它基本初等函数的导数怎么呢?又如何解决两个函数加。
减。
乘。
除的导数呢?这一节我们就来解决这个问题。
(三)、【合作探究】 1.(1)分四组对比记忆基本初等函数的导数公式表函数 导数 y c = y x =2y x =1y x = y x = *()()ny f x x n Q ==∈函数导数 y c ='0y =*()()n y f x x n Q ==∈'1n y nx -= sin y x= 'cos y x= cos y x= 'sin y x=- ()x y f x a =='ln (0)x y a a a =⋅>(2)根据基本初等函数的导数公式,求下列函数的导数.(1)2y x =与2xy =(2)3xy =与3log y x =2.(1)记忆导数的运算法则,比较积法则与商法则的相同点与不同点导数运算法则1.[]'''()()()()f x g x f x g x ±=±2.[]'''()()()()()()f x g x f x g x f x g x ⋅=±3.[]'''2()()()()()(()0)()()f x f x g x f x g x g x g x g x ⎡⎤-=≠⎢⎥⎣⎦推论:[]''()()cf x cf x =(常数与函数的积的导数,等于: )提示:积法则,商法则, 都是前导后不导, 前不导后导, 但积法则中间是加号, 商法则中间是减号.(2)根据基本初等函数的导数公式和导数运算法则,求下列函数的导数.(1)323y xx =-+()x y f x e == 'xy e =()log a f x x='1()log ()(01)ln a f x xf x a a x a==>≠且()ln f x x='1()f x x=(2)sin y x x =⋅; (3)2(251)xy xx e =-+⋅;(4)4x x y =; 【点评】① 求导数是在定义域内实行的.② 求较复杂的函数积、商的导数,必须细心、耐心. (四).典例精讲例1:假设某国家在20年期间的年均通货膨胀率为5%,物价p (单位:元)与时间t (单位:年)有如下函数关系0()(15%)tp t p =+,其中0p 为0t =时的物价.假定某种商品的01p =,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)?分析:商品的价格上涨的速度就是: 解: 变式训练1:如果上式中某种商品的05p =,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)?例2日常生活中的饮水通常是经过净化的.随着水纯净度的提高,所需净化费用不断增加.已知将1吨水净化到纯净度为%x 时所需费用(单位:元)为5284()(80100)100c x x x=<<-求净化到下列纯净度时,所需净化费用的瞬时变化率:(1)90% (2)98%分析:净化费用的瞬时变化率就是: 解:比较上述运算结果,你有什么发现?三.反思总结:(1)分四组写出基本初等函数的导数公式表: (2)导数的运算法则:四.当堂检测1求下列函数的导数(1)2log y x = (2)2xy e =(3)32234y x x =-- (4)3cos 4sin y x x =-2.求下列函数的导数 (1)ln y x x = (2)ln xy x= 课后练习与提高1.已知函数()f x 在1x =处的导数为3,则()f x 的解析式可能为:A ()2(1)f x x =-B 2()2(1)f x x =- C 2()(1)3(1)f x x x =-+- D ()1f x x =-2.函数21y ax =+的图像与直线y x =相切,则a =A18B14C 12D 1 3.设函数1()n y x n N +*=∈在点(1,1)处的切线与x 轴的交点横坐标为nx ,则12nx x x ••⋅⋅⋅•=A l nB l 1n +C 1nn + D 14.曲线21xy xe x =++在点(0,1)处的切线方程为-------------------5.在平面直角坐标系中,点P 在曲线3103y x x =-+上,且在第二象限内,已知曲线在点P 处的切线的斜率为2,则P 点的坐标为------------ 6.已知函数32()f x x bx ax d =+++的图像过点P (0,2),且在点(1,(1))M f --处的切线方程为670x y -+=,求函数的解析式。
1.2.2导数的运算法则(一)
11.2.2 导数的运算法则(一)【学习目标】记住两个函数的和、差、积、商的导数运算法则,理解导数运算法则是把一个复杂函数求导数转化为两个或多个简单函数的求导问题;能通过运算法则求出导数后解决实际问题.【运算法则】(1)[]'±)()(x g x f = ;推广:[]'+++)()()(21n x f x f x f = ;(2)[]'⋅)()(x g x f = ;[]=')(x cf (c R ∈); (3)'⎥⎦⎤⎢⎣⎡)()(x g x f = . ='⎥⎦⎤⎢⎣⎡)(1x f . 【例证题】例1 求下列函数的导数(1)x x x y -+=23sin (2))23)(12(++=x x y (3)x y tan =(4)x e y x ln =(5)1+=x x y例2 求下列函数的导数(1)x x x y cos 32+= (2)21lg x x y -= (3)x x x x y 13223++-= (4))2)(cos 1(2x e x x y ++=例3 日常生活中的饮用水通常是经过净化的.随着水纯净度的提高,所需净化费用不断增加.已知将1吨水净化到纯净度为%x 时所需费用(单位:元)为).10080(1005284)(<<-=x xx c 求净化到下列纯度时,所需净化费用的瞬时变化率:(1)%90;(2)%98.例4 已知函数.ln x x y =(1) 求这个函数的导数;(2)这个函数在点1=x 处的切线方程.2 【作业】1、下列四组函数中导数相等的是( )x x f x f A ==)(1)(.与 x x f x x f B c o s )(s i n )(.-==与x x f x x f C sin )(cos 1)(.-=-=与 32)(21)(.22+-=-=x x f x x f D 与2、下列运算中正确的是( ))()().(22'+'='++x b x a c bx ax A )(2)(s i n )2.(s i n 22''-'='-x x x x B222)()(sin )sin .(xx x x x C '-'=' x x x x x x D c o s )(c o s c o s )(s i n )s i n .(c o s '+'='⋅ 3、设,sin 2x e y x -=则y '等于( )x e A x cos 2.- x e B x s i n 2.- x e C x s i n 2. )c o s (s i n 2.x x e D x +-4、对任意的x ,有,1)1(,4)(3-=='f x x f 则此函数解析式可以为( )4)(.x x f A = 2)(.4-=x x f B 1)(.4+=x x f C 4)(.x x f D -=5、函数1323+-=x x y 在点()1,1-处的切线方程为( )43.-=x y A 23.+-=x y B 34.+-=x y C 54.-=x y D 答案:1—5 、 、 、 、6、函数4532)(23+-+=x x x x f 的导数=')(x f , =-')3(f .7、已知函数,2813)(2x x x f +-=且,4)(0='x f 则=0x .8、过原点作曲线x e y =的切线,则切点坐标为 , 切线的斜率为 .9、求曲线xx y sin =在点)0,(πM 处的切线的方程.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2.2 导数的运算法则(一)知识要点1,两个函数的和(或差)的导数,等于这两个函数的导数的 ,即()()'u x v x ±=⎡⎤⎣⎦2,两个函数的积的导数,等于 ,加上 ,即()()'u x v x ⋅=⎡⎤⎣⎦ 。
特别地,()'cu x =⎡⎤⎣⎦ (其中c 为常数)。
3,两个函数的商的导数,等于 减去 ,再除以 。
即知识点一,直接求导例1,求下列函数的导数(1)23cos y x x x =+ (2)1x y x=+ (3)tan y x = (4)lg x y x e =-变式训练1,求下列函数的导数(1)23y x =(2)5314353y x x x =-++(2)2sin cos y x x x =+ (4)ln 1x y x =+知识点二,先变形再求导例2,求下列函数的导数(1)y =(2)cos 2sin cos x y x x =+(3))22sin cos 22x x y =- 变式训练2,求下列函数的导数 (1)2311y x x x x ⎛⎫=++ ⎪⎝⎭ (2)44sin cos 44x x y =+知识点三,导数的综合应用例3,已知函数21nx y x ⎛⎫= ⎪+⎝⎭过点11,9P ⎛⎫ ⎪⎝⎭,求函数在点P 处的切线方程。
变式训练3,某质点的运动规律是322s t t t =-+,求其最小速度m v水平基础题1.已知物体的运动方程是s =14t 4-4t 3+16t 2(t 表示时间,s 表示位移),则瞬时速度为0的时刻是( )A .0秒、2秒或4秒B .0秒、2秒或16秒C .2秒、8秒或16秒D .0秒、4秒或8秒2.(2010·新课标全国卷文,4)曲线y =x 3-2x +1在点(1,0)处的切线方程为( )A .y =x -1B .y =-x -1C .y =2x -2D .y =-2x -23.若函数f (x )=e x sin x ,则此函数图象在点(4,f (4))处的切线的倾斜角为( )A.π2B .0C .钝角D .锐角4.设f (x )=x 3-3x 2-9x +1,则不等式f ′(x )<0的解集为________.5.求下列函数的导数:(1)y =x (x 2+1x +1x 3);(2)y =(x +1)(1x-1); (3)y =sin 4x 4+cos 4x 4;(4)y =1+x 1-x +1-x 1+x. 水平提升题6.曲线y =x sin x 在点⎝⎛⎭⎫-π2,π2处的切线与x 轴、直线x =π所围成的三角形的面积为 ( )A.π22B .π2C .2π2 D.12(2+π)2 7.设f 0(x )=sin x ,f 1(x )=f 0′(x ),f 2(x )=f 1′(x ),…,f n +1(x )=f n ′(x ),n ∈N ,则f 2011(x )等于( )A .sin xB .-sin xC .cos xD .-cos x8.f (x )与g (x )是定义在R 上的两个可导函数,若f (x )、g (x )满足f ′(x )=g ′(x ),则f (x )与g (x )满足( )A .f (x )=g (x )B .f (x )-g (x )为常数C .f (x )=g (x )=0D .f (x )+g (x )为常数9.曲线y =cos x 在点P ⎝⎛⎭⎫π3,12处的切线的斜率为______.10.已知函数f (x )=ax +b e x 图象上在点P (-1,2)处的切线与直线y =-3x 平行,则函数f (x )的解析式是____________.11.已知两条曲线y =sin x 、y =cos x ,是否存有这两条曲线的一个公共点,使在这个点处,两条曲线的切线互相垂直?并说明理由.12.已知曲线C 1:y =x 2与C 2:y =-(x -2)2.直线l 与C 1、C 2都相切,求直线l 的方程. 提升拓展题13.求满足下列条件的函数f (x ):(1)f (x )是三次函数,且f (0)=3,f ′(0)=0,f ′(1)=-3,f ′(2)=0;(2)f ′(x )是一次函数,x 2f ′(x )-(2x -1)f (x )=1.14,求下列函数()f x 的导数(其中是可导函数)1(1)(2)y f y f x ⎛⎫== ⎪⎝⎭知识要点1,和(或差) ()()''u x v x ±2,第一个函数的导数乘第二个函数 第一个函数乘第二个函数的导数()()()()''u x v x u x v x ⋅+⋅ ()'cu x3,分子的导数与分母的积 分母的导数与分子的积 分母的平方()()()()()()()()()2'''0f x g x f x f x g x g x g x g x ⎡⎤-=≠⎢⎥⎣⎦典型例题例1,答案:(1)'6cos sin y x x x x =+-(2)()21'1y x =+(3)21'cos y x=(4)1'ln10x y e x =- 变式训练1,(1)'6y x =(2)42'43y x x =-+(3)()2'21sin cos y x x x x =-+(4)()2ln 1'1x x x y x x -+=+例2,答案:(1)21y x==- ()22'1y x =-(2)cos 2cos sin sin cos x y x x x x==-+ 'sin cos y x x =--(3))212sin cos 4sin 222x x y x x =-=--1'1cos 2y x x =-- 变式训练2,(1)232'3y x x =-(2)1'sin 4y x =-例3,答案:因为1921n ⎛⎫= ⎪+⎝⎭,所以2n =,221x y x ⎛⎫= ⎪+⎝⎭()32'21x y x =+,12'|27x y == 所以切线方程为22710x y -+=变式训练3,53m v = 作业练习1.[答案] D[解析] 显然瞬时速度v =s ′=t 3-12t 2+32t =t (t 2-12t +32),令v =0可得t =0,4,8.故选D.2.[答案] A[解析] 本题考查了导数的几何意义,切线方程的求法,在解题时应首先验证点是否在曲线上,然后通过求导得出切线的斜率,题目定位于简单题.由题可知,点(1,0)在曲线y =x 3-2x +1上,求导可得y ′=3x 2-2,所以在点(1,0)处的切线的斜率k =1,切线过点(1,0),根据直线的点斜式可得过点(1,0)的曲线y =x 3-2x +1的切线方程为y =x -1,故选A.3.[答案] C[解析] y ′|x =4=(e x sin x +e x cos x )|x =4=e 4(sin4+cos4)=2e 4sin(4+π4)<0,故倾斜角为钝角,选C.4.[答案] (-1,3)[解析] f ′(x )=3x 2-6x -9,由f ′(x )<0得3x 2-6x -9<0,∴x 2-2x -3<0,∴-1<x <3.5.[解析] (1)∵y =x ⎝⎛⎭⎫x 2+1x +1x 3=x 3+1+1x2, ∴y ′=3x 2-2x3;(3)∵y =sin 4x 4+cos 4x 4=⎝⎛⎭⎫sin 2x 4+cos 2x 42-2sin 2x 4cos 2x 4=1-12sin 2x 2=1-12·1-cos x 2=34+14cos x ,∴y ′=-14sin x ; (4)∵y =1+x 1-x +1-x 1+x=(1+x )21-x +(1-x )21-x =2+2x 1-x =41-x-2, ∴y ′=⎝⎛⎭⎫41-x -2′=-4(1-x )′(1-x )2=4(1-x )2.6.[答案] A[解析] 曲线y =x sin x 在点⎝⎛⎭⎫-π2,π2处的切线方程为y =-x ,所围成的三角形的面积为π22. 7.[答案] D[解析] f 0(x )=sin x ,f 1(x )=f 0′(x )=(sin x )′=cos x ,f 2(x )=f 1′(x )=(cos x )′=-sin x ,f 3(x )=f 2′(x )=(-sin x )′=-cos x ,f 4(x )=f 3′(x )=(-cos x )′=sin x ,∴4为最小正周期,∴f 2011(x )=f 3(x )=-cos x .故选D.8.[答案] B[解析] 令F (x )=f (x )-g (x ),则F ′(x )=f ′(x )-g ′(x )=0,∴F (x )为常数.9.[答案] -32[解析] ∵y ′=(cos x )′=-sin x ,∴切线斜率k =y ′|x =π3=-sin π3=-32. 10.[答案] f (x )=-52x -12e x +1 [解析] 由题意可知,f ′(x )|x =-1=-3,∴a +b e -1=-3,又f (-1)=2,∴-a +b e -1=2,解之得a =-52,b =-12e , 故f (x )=-52x -12e x +1. 11.[解析] 因为y =sin x 、y =cos x ,设两条曲线的一个公共点为P (x 0,y 0), ∴两条曲线在P (x 0,y 0)处的斜率分别为若使两条切线互相垂直,必须cos x 0·(-sin x 0)=-1,即sin x 0·cos x 0=1,也就是sin2x 0=2,这是不可能的,∴两条曲线不存有公共点,使在这个点处的两条切线互相垂直.12.[解析] 设l 与C 1相切于点P (x 1,x 21),与C 2相切于点Q (x 2,-(x 2-2)2).对于C 1:y ′=2x ,则与C 1相切于点P 的切线方程为y -x 21=2x 1(x -x 1),即y =2x 1x -x 21.①对于C 2:y ′=-2(x -2),与C 2相切于点Q 的切线方程为y +(x 2-2)2=-2(x 2-2)(x -x 2), 即y =-2(x 2-2)x +x 22-4.② ∵两切线重合,∴2x 1=-2(x 2-2)且-x 21=x 22-4,解得x 1=0,x 2=2或x 1=2,x 2=0.∴直线l 的方程为y =0或y =4x -4.13.则f ′(x )=3ax 2+2bx +c由f (0)=3,可知d =3,由f ′(0)=0可知c =0,由f ′(1)=-3,f ′(2)=0可建立方程组⎩⎪⎨⎪⎧ f ′(1)=3a +2b =-3f ′(2)=12a +4b =0, 解得⎩⎪⎨⎪⎧a =1b =-3, 所以f (x )=x 3-3x 2+3.(2)由f ′(x )是一次函数可知f (x )是二次函数,则可设f (x )=ax 2+bx +c (a ≠0)f ′(x )=2ax +b ,把f (x )和f ′(x )代入方程,得x 2(2ax +b )-(2x -1)(ax 2+bx +c )=1整理得(a -b )x 2+(b -2c )x +c =1若想对任意x 方程都成立,则需⎩⎪⎨⎪⎧ a -b =0b -2c =0c =1解得⎩⎪⎨⎪⎧ a =2b =2c =1, 所以f (x )=2x 2+2x +1.14,()()()2112222211111(1)'''''(2)''''11'11''1222'y f f f x x x x x y f f f x x f x x f --⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫==•=-• ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎡⎤==•⎢⎥⎣⎦=•++=•+•=解:。