傅里叶级数和应用论文

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

傅里叶级数及其应用

专业:数学与应用数学

班级:

姓名:

目录

引言 (3)

1 傅立叶级数的计算 (5)

1.1 傅立叶级数的几何意义 (5)

1.2 傅里叶级数的敛散性问题 (10)

1.3 傅里叶级数的展开 (11)

1.4 关于傅里叶级数展开的个别简便算法 (16)

1.5 利用二元函数微分中值定理研究函数性质 (19)

2 傅里叶级数的相关定理及其应用 (21)

2.1 n元函数中值定理及其几何意义 (21)

2.2 利用n元函数微分中值定理研究函数的性质 (28)

3 微分中值定理在复数域上的推广 (32)

3.1 复数域上的中值定理 (32)

3.2 利用复数域内中值定理研究函数性质 (36)

结论 (39)

致谢 (40)

参考文献 (41)

为了更好地认识和应用微分中值定理,使微分中值定理能够最大的发挥其重要作用,在深刻理解和掌握教材内微分中值定理的基础上,将微分中值定理在n元函数以及复数域内推广及应用加以探讨.首先根据一元函数微分中值定理的内容,给出了罗尔定理、拉格朗日定理、柯西中值定理、泰勒中值定理公式的统一形式.而后又仿照一元函数微分中值定理的形式对教材中二元函数微分中值定理进行补充,给出了二元函数罗尔定理、柯西中值定理和二元函数泰勒中值定理的表述,并且构造“辅助函数”给出了证明过程,然后讨论了二元函数罗尔定理与拉格朗日定理的几何意义.接着通过对比一元函数与二元函数微分中值定理,给出了n元函数罗尔定理、拉格朗日定理、柯西中值定理和泰勒中值定理的表述形式,而后同样借助构造的“辅助函数”把n元函数转化为一元函数,进而给出了四个定理的证明,并通过几个典型例题验证了n元函数微分中值定理的可用性.最后从二元函数微分中值定理着手,给出了复数域上的罗尔定理、拉格朗日定理、柯西中值定理的表述形式,同时通过几个例题验证了复数域上微分中值定理的可用性.

关键词:

n元函数;微分中值定理;几何意义;复数域

In order to understand and make better use of the differential mean value theorem which can play a largest role in application, we explore the generalization and the application of the differential mean value theorem in n-variable functions and complex field based on the comprehension and mastery of the differential mean value theorem in textbook. At first, according to the differential mean value theorem of one-variable function, we give the uniform of Rolle theorem, Lagrange theorem, Cauchy mean value theorem, Taylor mean value theorem. Then we complement the differential mean value theorem of two-variable function in textbook following one- variable function, give the expressions of Rolle theorem, Cauchy mean value theorem, Taylor mean value theorem of two-variable function, constitute auxiliary function and give the proof procedure, discuss the geometric significance of the Rolle theorem and Lagrange theorem of two-variable function. Later, we give the expressions of the Rolle theorem, Lagrange theorem, Cauchy mean value theorem, Taylor mean value theorem of n- variable function by comparing the differential mean value theorem of one-variable function and two-variable function. Similarly, by constituting auxiliary function, we change n-variable function into one-variable function and give the proof of four theorems. Check the availability of the differential mean value theorem by some typical examples. At last, proceed from the differential mean value theorem of two-variable function, we give the expressions of Rolle theorem, Lagrange theorem, Cauchy mean value theorem

in complex field and check the availability of the differential mean value theorem by some typical examples at the same time.

Keywords:

n-variable function; differential mean value theorem; geometric significance; complex field

引言

微分中值定理是微分学的核心定理,它是联系函数与导数的桥梁,微分中值定理把函数在某个区间上的函数值与其导数值联系起来,应用局部状态的导数研究函数在区间上的“整体”性态,它是研究函数性态的重要工具.在大学四年的学习中,已经掌握了一些有关一元微分中值定理的内容,我们知道一元函数的罗尔定理,拉格朗日定理,柯西中值定理,泰勒中值定

相关文档
最新文档