混凝土中钢筋腐蚀与防护

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

引言

混凝土中钢筋锈蚀已成为世界关注的大问题,被认为是当今影响混凝土结构耐久性的首要原因。钢筋锈蚀已经或正在给国民经济带来巨大经济损失。基于此,美国总结正反两个方面的经验教训,提出了“立足前期措施,着眼长远效益”,并强行实施基建工程管理中的“全寿命经济分析法”(LCCA)。目前,我国正处于基本建设高潮时期,国内外的经验教训应认真吸取,这已不是单纯技术问题。

一、钢筋腐蚀危害与对混凝土的破坏作用

1、钢筋锈蚀危害与经济损失

世界一些国家的腐蚀损失,平均可占国民经济总产值的2%~4%;其中,被认为与钢筋腐蚀有关者可占40%(至今我国尚无确切统计数据)。

美国1984年报道,仅就桥梁而言,57.5万座钢筋混凝土桥,一半以上出现钢筋腐蚀破坏,4 0%承载力不足和必须修复与加固处理,当年的修复费为54亿美元;1998年报道钢筋混凝土腐蚀破坏的修复费,一年要2?500亿美元,其中桥梁修复费为1?550亿美元(是这些桥初建费用的4倍 );还有报道说,到本世纪末,美国要花4?000亿美元用于修复和重建钢筋腐蚀破坏的工程。如此巨大的经济投入,引起美国朝野人士的震惊与高度重视,并制定法律法规,限制腐蚀破坏的发生和挽回部分经济损失。加拿大早期大量使用“防冰盐”,使钢筋混凝土桥梁等破坏严重。欧洲、英国、澳大利亚、海湾国家等,都有以氯盐为主的钢筋腐蚀破坏问题(英国修复费为每年50亿英镑)。韩国曾发生一系列建筑物破坏、倒塌事件,其中也与“盐害”有关。我国台湾重修澎湖大桥和不断发生的“海砂屋”事件,也是氯盐腐蚀钢筋所造成的。

混凝土耐久性已是当今世界的重大问题,在第二届国际混凝土耐久性会议上,梅塔教授指出:“当今世界混凝土破坏原因,按递减顺序是:钢筋锈蚀、冻害、物理化学作用”。他明确将“钢筋锈蚀”排在影响混凝土耐久性因素的首位。而来自海洋环境和使用“防冰盐”中的氯盐,又是造成钢筋锈蚀的主要原因。当然,混凝土中性化、冻融等也促进钢筋腐蚀破坏。此外,“碱集料反应”也在钢筋混凝土破坏中占一定的比例(本文暂不讨论)。

我国海港码头不能耐久,北方使用化冰盐,桥梁道路遭破坏。以北京立交桥为例,仅使用19 年的西直门立交桥(已重修),钢筋锈蚀破坏十分明显与严重。我国存在着广泛的腐蚀环境,北方地区使用化冰盐有增无减,而桥梁道路却未采取应有的防护措施(甚至“规范”中无防盐腐蚀要求);我国海岸线很长,而大规模的基本建设大都集中于沿海地区,以往的海港码头等工程,多数达不到设计寿命要求;特别是沿海一带河砂已呈短缺现象,滥用海砂则其害无穷;我国还有广泛的盐碱地(石油基地),其腐蚀条件更为苛刻;特别应该指出的是,我国工业环境中的建筑物,其钢筋锈蚀破坏十分普遍与严重,有调查报告表明,大多数工业建筑达不到设计寿命的年限,目前正在进入大规模修复的时期。因此,我国钢筋锈蚀破坏的形势是严峻的。

“立足前期措施、着眼长远效益”,这是美国经过正反两个方面的经验教训所得出的可贵结论。美国正在强行实施基建工程管理中的“全寿命经济分析法”(LCCA),其基本思想是,在设计施工阶段,不论是事先采取防护措施还是以后“坏了再修”,都要做出经济预算和比较,承建者要对工程的“全寿命”负责到底,这样可避免“短期行为”给后人带来的麻烦与巨大经济损失。“全寿命经济分析法”

中曾有以下例举:工程处在氯盐腐蚀环境中,钢筋混凝土结构物设计寿命为40年,前期实施措施(采用钢筋阻锈剂),附加费用为0.85美元/m2(混凝土面板);若前期无措施,则15~20年开始修复,40年内累积费用为4.8美元/ m2(5倍于前者)。可见,推行“全寿命经济分析法”和倡导工程前期(设计、施工阶段)采取防钢筋腐蚀的措施,已经不是单纯的技术问题,其重大意义和长远经济效益是不可低估的。

2、钢筋腐蚀破坏的主要表征

混凝土中的钢筋一旦具备了腐蚀条件,锈蚀便会发生和发展。钢筋锈蚀是一个电化学过程,由铁变成氧化铁,其体积发生膨胀,根据最终产物的不同,可膨胀2~7倍。

钢筋锈蚀破坏的主要破坏特征可归纳为:

(1)混凝土顺钢筋开裂

混凝土具有较好的抗压性能,但其抗折、抗裂性差,尤其钢筋表面混凝土缺乏足够的厚度时,钢筋锈蚀产物体积发生膨胀,足以使钢筋表面发生混凝土顺钢筋开裂。大量试验研究和工程实践表明,钢筋表面锈层厚度很薄时(如20~40μm),便可导致混凝土顺钢筋开裂。换言之,钢筋锈蚀导致混凝土开裂是容易发生的。设计、施工、使用、管理及维护人员,认识到这一点十分重要。欲使混凝土不发生顺钢筋开裂,提高结构物的耐久性,其着眼点就是要最大限度地阻止钢筋生锈,而不应立足于锈蚀发生后再采取补救措施。

混凝土一旦发生顺钢筋开裂,腐蚀介质更容易到达钢筋表面,钢筋锈蚀的速度将会大大加快。研究和工程实践表明,这时钢筋锈蚀的速度,有可能快于裸露于大气中的钢筋。这是由于裂缝处更易促成电化学腐蚀的发生和发展。由此引出两个重要观念:一是要阻止钢筋生锈,二是钢筋锈蚀一旦发生或初见混凝土顺钢筋开裂时,就立即采取防护措施。这是被提高了的新认识,对于防钢筋锈蚀破坏、提高结构物的耐久性具有重要指导意义,更具有巨大经济价值。

(2)“握裹力”下降与丧失

初见混凝土发生顺钢筋开裂时,结构物物理力学性能、承载能力等,可能还没有发生明显变化(这是人们不重视初始顺钢筋开裂的重要原因之一)。然而,随着裂缝的不断加宽,混凝土与钢筋之间的粘结力(握裹力)也随之下降(下降速度取决于钢筋锈蚀速度),滑移增大,构件变形。当“握裹力”丧失到一定限度时,局部或整体失效便会发生。这时的钢筋锈蚀程度也并不一定十分严重。那些对“握裹力”敏感的构件,更具重要性。

(3)钢筋断面损失

混凝土中钢筋锈蚀,一般分为局部腐蚀(如坑蚀)和全面腐蚀(均匀腐蚀),常常是局部腐蚀为主而造成钢筋断面损失,其损失率达到极限时,构件便会发生破坏。应该说明的是,从钢筋锈蚀、混凝土顺钢筋开裂到构件破坏,是一个复杂的演变过程,不仅取决于钢筋锈蚀的发展速度,也取决于构件的承载能力及钢筋的受力状态等。故有时钢筋锈蚀并不十分严重,构件就破坏了,而有时钢筋出现明显的断面损失,构件却还在支撑着(有些人认为“钢筋锈蚀无大妨害”就是依此为证)。对于钢筋断面损失与构件承载能力之间的关系,尚待进一步研究。

(4)钢筋应力腐蚀断裂

处在应力状态下的钢筋(包括预应力),在遭受腐蚀时有可能发生突然断裂。世界上曾发生过此类事故,如钢筋混凝土桥梁突然倒塌,建筑物突然断裂等。柏林议会大厦屋顶突然塌落,即与钢筋应力腐蚀断裂有关。

相关文档
最新文档