专题二项式定理的应

合集下载

二项式定理的应用教案人教版

二项式定理的应用教案人教版
学生对于如何将二项式定理应用于实际问题存在困难,需要通过生活实例和数学问题的结合来提高应用能力。
针对以上难点,教师应采取以下教学方法:
(1)通过具体实例讲解二项式定理的定义和通项公式,让学生在实际问题中体会二项式定理的应用。
(2)通过 step-by-step 的讲解,让学生理解二项式定理的证明过程,尤其是数学归纳法的证明过程。
4. 数据分析:学生能够从实际问题中收集和处理数据,运用二项式定理对数据进行分析,从而得出结论。
在教学过程中,我将注重引导学生参与课堂讨论,鼓励他们提出自己的观点和思路,培养学生的批判性思维和问题解决能力。同时,通过解决实际问题,提高学生的创新意识和实践能力,使他们在数学学习中获得持续发展的能力。
教学难点与重点
回顾旧知:
简要回顾上节课学习的整式乘法、因式分解等内容,帮助学生建立知识之间的联系。
提出问题,检查学生对旧知的掌握情况,为二项式定理新课学习打下基础。
(三)新课呈现(预计用时:25分钟)
知识讲解:
清晰、准确地讲解二项式定理的定义、通项公式及展开式,结合实例帮助学生理解。
突出二项式定理的重点,强调二项式定理的难点,通过对比、归纳等方法帮助学生加深记忆。
肯定学生的表现,鼓励他们继续努力。
布置作业:
根据本节课学习的二项式定理内容,布置适量的课后作业,巩固学习效果。
提醒学生注意作业要求和时间安排,确保作业质量。
知识点梳理
1. 二项式定理的定义与通项公式
- 二项式定理的定义:$(a+b)^n=\sum\limits_{k=0}^{n}C_{n}^{k}a^{n-k}b^{k}$
当堂检测:
1. 请简述二项式定理的定义和通项公式。
2. 请解释二项式定理的展开式,并给出一个具体的例子。

二项式定理应用题

二项式定理应用题

二项式定理应用题二项式定理是代数中的重要定理之一,常常被应用于各种数学问题的解决中。

下面我们将通过几个具体的应用题来更好地理解二项式定理在实际问题中的应用。

第一个应用题是关于展开式的计算。

假设我们需要计算$(a+b)^3$的展开式,根据二项式定理,展开式可表示为:$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$在这个展开式中,我们可以清晰地看到各个项的系数分别为1、3、3和1。

利用二项式定理,我们可以快速准确地计算出$(a+b)^3$的展开式,从而简化计算过程。

第二个应用题是关于排列组合的计算。

假设有5个人,需要从中选出3人组成一个委员会,那么不同的选委员会的方法有多少种呢?根据组合的定义,这个问题可以用排列组合的方法解决。

设从5个人中选出3人组成委员会的不同方法为组合数$C(5,3)$。

利用二项式定理中的组合公式,我们可以将组合数表示为:$$C(5,3) = \frac{5!}{3!(5-3)!} = 10$$因此,从5个人中选出3人组成委员会的不同方法有10种。

通过二项式定理的应用,我们可以快速计算出排列组合中的各种问题,提高计算效率。

第三个应用题是关于概率的计算。

假设一枚硬币投掷3次,求得正面朝上的次数为2的概率。

根据二项式定理中的概率公式,该问题可以表示为:$$P(X=2) = C(3,2) \times (\frac{1}{2})^2 \times (\frac{1}{2})^{3-2} =3 \times \frac{1}{4} \times \frac{1}{2} = \frac{3}{8}$$因此,投掷一枚硬币3次,正面朝上的次数为2的概率为$\frac{3}{8}$。

通过二项式定理的运用,我们可以便捷地计算出各种概率相关的问题,为概率论的学习提供了便利。

通过以上几个应用题的讨论,我们可以看到二项式定理在代数、排列组合和概率等领域都有广泛的应用。

掌握二项式定理的具体运用,能够帮助我们更快更准确地解决各种数学问题,提高数学解题的效率,也为数学知识的学习提供了更多可能性。

高中数学之二项式定理应用基本方法三大方法总结到位

高中数学之二项式定理应用基本方法三大方法总结到位

高中数学之二项式定理应用基本方法三大方法总结到位二项式定理是高中数学中的重要内容,主要用于解决与二项式有关的问题。

以下是二项式定理应用的三大基本方法:
1. 展开式应用:利用二项式定理将二项式展开,可以得到其展开式。

对于形如 (a+b)^n 的二项式,其展开式中的每一项都可以根据二项式定理计算出来。

2. 系数提取:在解决某些问题时,可以通过提取二项式中的系数来简化问题。

例如,在求(a+b)^n 的展开式中某一项的系数时,可以通过提取适当的因
子来简化计算。

3. 等价转换:在解决与二项式有关的问题时,有时可以将问题等价转换为其他形式,从而利用二项式定理或其他已知公式进行求解。

例如,在求
(a+b)^n 的展开式中某一项的系数时,可以将问题等价转换为组合数问题,利用组合数的性质进行计算。

以上是二项式定理应用的三大基本方法,熟练掌握这些方法可以有效地解决与二项式有关的问题。

同时,要注意不断总结经验,探索更多应用二项式定理的技巧和方法。

专题39 二项式展开项的通项及应用--《2023年高考数学命题热点聚焦与扩展》【原卷版】

专题39  二项式展开项的通项及应用--《2023年高考数学命题热点聚焦与扩展》【原卷版】

【热点聚焦】二项展开式定理的问题是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式1r n r rr n T C a b -+=;(可以考查某一项,也可考查某一项的系数);(2)考查各项系数和和各项的二项式系数和; (3)二项式定理的应用.【重点知识回眸】1. 二项式定理()()011*nn n r n r rn nn n n n a b C a C a b C a b C b n N --+=+++++∈,这个公式所表示的定理叫做二项式定理,右边的多项式叫做()na b +的二项展开式,其中的系数rn C (0,1,2,3,,r n =)叫做二项式系数.式中的r n r rn C a b -叫做二项展开式的通项,用1r T +表示,即展开式的第1r +项;1r n r rr n T C a b -+=.2.二项展开式形式上的特点 (1)项数为1n +.(2)各项的次数都等于二项式的幂指数n ,即a 与b 的指数的和为n .(3)字母a 按降幂排列,从第一项开始,次数由n 逐项减1直到零;字母b 按升幂排列,从第一项起,次数由零逐项增1直到n .(4)二项式的系数从0n C ,1n C ,一直到1n n C -,nn C . 3. 二项式系数的性质(1)对称性:与首末两端“等距离”的两个二项式系数相等,即0n n n C C =,11n n n C C -=,,m n m n n C C -=.(2)增减性与最大值:二项式系数rn C ,当12n r +≤时,二项式系数是递增的;由对称性知:当12n r +>时,二项式系数是递减的. 当n 是偶数时,中间的一项2n nC 取得最大值. 当n 是奇数时,中间两项12n nC+ 和12n nC-相等,且同时取得最大值.(3)各二项式系数的和()na b +的展开式的各个二项式系数的和等于2n ,即012r nn n n n n C C C C +++++=,二项展开式中,偶数项的二项式系数的和等于奇数项的二项式系数的和,即02413512n n n n n n n C C C C C C -+++=+++=,(4)常用结论①0n C =1;②1nn C =;③m n m n n C C -=;④11m m m n n n C C C -+=+.4.二项式的应用(1)求某些多项式系数的和; (2)证明一些简单的组合恒等式;(3)证明整除性,①求数的末位;②数的整除性及求系数;③简单多项式的整除问题; (4)近似计算.当x 充分小时,我们常用下列公式估计近似值: ①()11nx nx +≈+;②()()21112nn n x nx x -+≈++;(5)证明不等式.【典型考题解析】热点一 二项式展开式的通项公式的应用【典例1】(2020·全国·高考真题(理))262()x x+的展开式中常数项是__________(用数字作答).【典例2】(2019·浙江·高考真题)在二项式9(2)x 的展开式中,常数项是________;系数为有理数的项的个数是_______.【典例3】(2022·山西·高三阶段练习)二项式()4x ay +的展开式中含22x y 项的系数为24,则=a ______.【典例4】(2022·全国·高考真题)81()y x y x ⎛⎫-+ ⎪⎝⎭的展开式中26x y 的系数为________________(用数字作答). 【总结提升】1.二项展开式中的特定项,是指展开式中的某一项,如第n 项、常数项、有理项等,求解二项展开式中的特定项的关键点如下:①求通项,利用(a +b )n 的展开式的通项公式T r +1=C r n an -r b r (r =0,1,2,…,n )求通项. ②列方程(组)或不等式(组),利用二项展开式的通项及特定项的特征,列出方程(组)或不等式(组).③求特定项,先由方程(组)或不等式(组)求得相关参数,再根据要求写出特定项.2.已知展开式的某项或其系数求参数,可由某项得出参数项,再由通项公式写出第k +1项,由特定项得出k 值,最后求出其参数.3.求解形如()()nma b c d ++的展开式问题的思路 (1)若n ,m 中一个比较小,可考虑把它展开得到多个,如222()()()(2)m m a b c d a ab b c d ++=+++,然后展开分别求解.(2)观察(a +b )(c +d )是否可以合并,如5752252()()[()()11]()11111()()x x x x x x x +-=+--=--;(3)分别得到(),()nma b c d ++的通项公式,综合考虑.4.求几个多项式积的展开式中的特定项(系数)问题,可先分别化简或展开为多项式和的形式,再分类考虑特定项产生的每一种情形,求出相应的特定项,最后进行合并即可. 热点二 形如()na b c ++的展开式问题【典例5】(2021·江西南昌·高三阶段练习)5144x x ⎛⎫++ ⎪⎝⎭的展开式中含3x -的项的系数为( ) A .1-B .180C .11520-D .11520【典例6】(2022·全国·高三专题练习)()52x y z +-的展开式中,22xy z 的系数是( ) A .120B .-120C .60D .30【典例7(2022·山东济南·模拟预测)()3221x x -+的展开式中,含3x 项的系数为______(用数字作答). 【规律方法】求三项展开式中某些特定项的系数的方法(1)通过变形先把三项式转化为二项式,再用二项式定理求解. (2)两次利用二项式定理的通项公式求解.(3)由二项式定理的推证方法知,可用排列、组合的基本原理去求,即把三项式看作几个因式之积,要得到特定项看有多少种方法从这几个因式中取因式中的量. 热点三 二项式系数的和与各项的系数和问题【典例8】(2022·全国·高三专题练习)已知012233C 2C 2C 2C 2C 243n nn n n n n +++++=,则123C C C C nn n n n ++++=( )A .31B .32C .15D .16【典例9】(2023·全国·高三专题练习)若9290129(2)(1)(1)(1)++=+++++⋅⋅⋅++x m a a x a x a x ,且()()22028139++⋅⋅⋅+-++⋅⋅⋅+a a a a a a 93=,则实数m 的值可以为( ) A .1或3-B .1-C .1-或3D .3-【典例10】(2022·北京四中高三开学考试)设多项式51010910910(1)(1)x x a x a x a x a ++-=++++,则9a =___________,0246810a a a a a a +++++=___________. 【规律方法】赋值法在求各项系数和中的应用(1)形如(ax +b )n ,(ax 2+bx +c )m (a ,b ,c ∈R )的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可.(2)对形如(ax +by )n (a ,b ∈R )的式子求其展开式各项系数之和,只需令x =y =1即可. (3)若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )展开式中各项系数之和为f (1). ①奇数项系数之和为a 0+a 2+a 4+…=.②偶数项系数之和为a 1+a 3+a 5+…=.热点四 二项式系数的性质【典例11】(2023·全国·高三专题练习)在()1nx +(*n ∈N )的展开式中,若第5项为二项式系数最大的项,则n 的值不可能是( ) A .7B .8C .9D .10【典例12】(2022·全国·高三阶段练习)已知()610ax a x ⎛⎫+> ⎪⎝⎭的展开式中含2x -的系数为60,则下列说法正确的是( )A .61ax x ⎛⎫+ ⎪⎝⎭的展开式的各项系数之和为1 B .61ax x ⎛⎫+ ⎪⎝⎭的展开式中系数最大的项为2240xC .61ax x ⎛⎫- ⎪⎝⎭的展开式中的常数项为160-D .61ax x ⎛⎫- ⎪⎝⎭的展开式中所有二项式的系数和为32【典例13】(2022·浙江·三模)在二项式4(2)+x 的展开式中,常数项是__________,二项式系数最大的项的系数是__________. 【规律方法】1.二项式系数最大项的确定方法(1)如果n 是偶数,则中间一项⎝ ⎛⎭⎪⎫第n2+1项的二项式系数最大;(2)如果n 是奇数,则中间两项⎝ ⎛⎭⎪⎫第n +12项与第n +12+1项的二项式系数相等并最大.2.展开式系数最大值的两种求解思路(1)由于展开式系数是离散型变量,因此在系数均为正值的前提下,求最大值只需解不等式(1)(1)2f f +-(1)(1)2f f --组⎩⎪⎨⎪⎧a k ≥a k -1,a k ≥a k +1即可求得答案.(2)由于二项展开式中的系数是关于正整数n 的式子,可以看作关于n 的数列,通过判断数列单调性的方法从而判断系数的增减性,并根据系数的单调性求出系数的最值. 热点五 二项式定理应用【典例14】(2022·全国·高三专题练习)“杨辉三角”是中国古代数学文化的瑰宝之一,最早出现在中国南宋数学家杨辉于1261年所著的《详解九章算法》一书中,法国数学家帕斯卡在1654年才发现这一规律.“杨辉三角”揭示了二项式系数在三角形数表中的一种几何排列规律,如图所示.则下列关于“杨辉三角”的结论正确的是( )A .222234510C C C C 165++++=B .在第2022行中第1011个数最大C .第6行的第7个数、第7行的第7个数及第8行的第7个数之和等于9行的第8个数D .第34行中第15个数与第16个数之比为2:3【典例15】(2023·全国·高三专题练习(理))设0122191919191919C C 7C 7C 7a =++++,则a 除以9所得的余数为______.【典例16】(2021·山东·高三阶段练习)某同学在一个物理问题计算过程中遇到了对数据100.98的处理,经过思考,他决定采用精确到0.01的近似值,则这个近似值是________.【规律方法】1.二项式定理应用的常见题型及求解策略(1)逆用二项式定理的关键是根据所给式的特点结合二项展开式的要求,使之具备二项式定理右边的结构,然后逆用二项式定理求解.(2)利用二项式定理解决整除问题的思路:①观察除式与被除式间的关系;②将被除式拆成二项式;③结合二项式定理得出结论.(3) 近似计算要首先观察精确度,然后选取展开式中若干项. 2.特别提醒: (1)分清是第项,而不是第项.(2)在通项公式中,含有、、、、、这六个参数,只有、、、是独立的,在未知、的情况下,用通项公式解题,一般都需要首先将通式转rn rr n C ab -1r +r 1r n r r r n T C a b -+=1r T +rn C a b n r a b n r n r化为方程(组)求出、,然后代入通项公式求解.(3)求二项展开式中的一些特殊项,如系数最大项,常数项等,通常都是先利用通项公式由题意列方程,求出,再求所需的某项;有时则需先求,计算时要注意和的取值范围以及 它们之间的大小关系.(4)在中,就是该项的二项式系数,它与,的值无关;而项的系数是指化简后字母外的数.(5)在应用通项公式时,要注意以下几点:①它表示二项展开式的任意项,只要与确定,该项就随之确定; ②是展开式中的第项,而不是第项;③公式中,,的指数和为且,不能随便颠倒位置; ④对二项式展开式的通项公式要特别注意符号问题.⑤在二项式定理的应用中,“赋值思想”是一种重要方法,是处理组合数问题、系数问题的经典方法.【精选精练】一、单选题1.(2022·全国·高三阶段练习(理))612x x ⎛⎫+ ⎪⎝⎭展开式中的常数项为( ) A .160 B .120 C .90D .602.(2022·全国·高三专题练习)()()52x y x y +-的展开式中的33x y 项系数为( ) A .30B .10C .-30D .-103.(2022·黑龙江哈尔滨·高三开学考试)在812x x ⎫⎪⎭的展开式中5x 的系数为( )A .454B .458-C .358D .74.(2022·湖南·高三开学考试)已知()522x a x x ⎛⎫+- ⎪⎝⎭的展开式中各项系数的和为3-,则该展开式中x 的系数为( ) A .0B .120-C .120D .160-5.(2022·全国·高三专题练习)设()011nn n x a a x a x +=++⋅⋅⋅+,若1263n a a a ++⋅⋅⋅+=,则展开式中系数最大的项是( ) A .315xB .320xC .321xD .335x6.(2023·全国·高三专题练习)511x x ⎛⎫+- ⎪⎝⎭展开式中,3x 项的系数为( )n r r n n r 1r n r r r n T C a b -+=rn C a b 1r T +n r 1r T +1r +r a b n a b ()na b -A .5B .-5C .15D .-15二、多选题7.(2023·全国·高三专题练习)62⎛⎫+ ⎪⎝⎭x x 的展开式中,下列结论正确的是( ) A .展开式共6项 B .常数项为160C .所有项的系数之和为729D .所有项的二项式系数之和为648.(2022·湖北·黄冈中学高三阶段练习)已知660(2)ii i x a x =+=∑,则( )A .123456666a a a a a a +++++=B .320a =C .135246a a a a a a ++>++D .1034562234a a a a a a +=+++9.(2022·河北张家口·三模)已知52(1)(0)b ax x b x ⎛⎫-+> ⎪⎝⎭的展开式中x 项的系数为30,1x 项的系数为M ,则下列结论正确的是( ) A .0a > B .323ab b -=C .M 有最大值10D .M 有最小值10-三、填空题10.(2022·全国·高三专题练习(文))“杨辉三角”是二项式系数在三角形中的一种几何排列,如图所示,在“杨辉三角”中,除每行两边的数都是1外,其余每个数都是其“肩上”的两个数之和,例如第4行的6为第3行中两个3的和.若在“杨辉三角”中从第二行右边的1开始按“锯齿形”排列的箭头所指的数依次构成一个数列:1,2,3,3,6,4,10,5,…,则在该数列中,第35项是______.11.(2022·河北·三河市第三中学高三阶段练习)在3nx x ⎛⎫+ ⎪⎝⎭的展开式中,所有二项式系数的和是16,则展开式中的常数项为 ____.12.(2022·全国·高三专题练习)(1)已知()31nx -的展开式中第2项与第5项的二项式系数相等,则n =__________.(2)1921C C n nn n --+=__________.13.(2019·浙江·高考真题)在二项式9(2)x 的展开式中,常数项是________;系数为有理数的项的个数是_______.14.(2022·浙江省春晖中学模拟预测)二项式3nx x ⎫⎝的展开式中共有11项,则n =___________,常数项的值为___________.15.(2022·全国·高三专题练习)在()413x +的展开式中,二项式系数之和为_________;各项系数之和为_________.(用数字作答) 四、解答题16.(2019·江苏·高考真题)设2*012(1),4,n n n x a a x a x a x n n +=++++∈N .已知23242a a a =. (1)求n 的值;(2)设(13)3n a =+*,a b ∈N ,求223a b -的值.。

二项式定理及其应用

二项式定理及其应用

二项式定理及其应用
二项式定理是数论中一个非常重要的理论,它描述了给定集合中选择k个元素的方式数量,其公式为(n)k= n! /(k!*(n-k)!)。

它最初是用来解释组合学中k阶排列数量的,有时也被称为古典二项定理。

二项式定理有许多实际应用,其中一个例子是组合推断,这是一种表明一个考试的概率的方法。

考生可以使用它来计算出他们可能会得到给定数量正确选择的概率。

另一个应用是游戏分析,二项式定理可以用来分析不同概率情况下游戏的有效性,例如抽支筹码或投掷骰子。

再一个应用例子是解决统计学中的聚类问题。

聚类是一种将相似的元素分组的过程,二项式定理可以用来计算不同类别间特征之间的相关性,从而帮助确定最佳分组选择。

另外,二项式定理还可用于仿真建模,可以帮助科学家预测某个实际现象的演变趋势。

二项式定理还可用于优化算法,例如遗传算法,其中需要计算可能出现不同情况的概率。

总之,二项式定理是一个非常重要和有用的理论,它在组合学中有广泛的应用,涉及到统计、概率和优化等领域。

这些应用不仅可以帮助
我们解决具体问题,还可以提供有用的信息,指导我们研究解决问题的有效方法。

二项式定理的应用与实例解析

二项式定理的应用与实例解析

二项式定理的应用与实例解析二项式定理是代数学中的重要概念之一,它在数学推理和实际问题求解中具有广泛的应用。

本文将介绍二项式定理的概念及其应用,并通过具体的实例进行解析,以帮助读者更好地理解和应用该定理。

一、二项式定理的概念二项式定理是指对于任意非负整数n和实数a、b,有以下的公式:(a + b)^n = C(n,0) * a^n * b^0 + C(n,1) * a^(n-1) * b^1 + C(n,2) * a^(n-2) * b^2 + ... + C(n,n) * a^0 * b^n其中,C(n, k)表示组合数,表示从n个元素中选取k个元素的组合数,计算公式为:C(n, k) = n! / (k! * (n-k)!)二、二项式定理的应用1. 概率计算二项式定理在概率计算中起到了重要作用。

例如,设有一枚正反面均匀的硬币,进行n次独立的抛掷,求正面出现k次的概率。

根据二项式定理,可以得到概率公式:P(X = k) = C(n, k) * p^k * (1-p)^(n-k)其中,p表示正面出现的概率。

2. 组合数学二项式定理在组合数学中应用广泛,可以用于求解组合数、排列数等问题。

例如,求集合中元素的子集个数,可以通过二项式定理计算:对于一个集合,它的子集个数为2^n个,其中n表示集合中元素的个数。

3. 计算多项式展开式系数二项式定理可以用于计算多项式展开式中各项的系数。

例如,对于多项式(a + b)^n,可以通过二项式定理的应用,直接得到展开式中各项的系数。

这对于计算多项式的展开式提供了效率和便利。

三、应用实例解析1. 概率计算实例假设有一枚硬币,进行10次独立抛掷,求正面出现2次的概率。

根据二项式定理的应用,可以得到:P(X = 2) = C(10, 2) * 0.5^2 * 0.5^8 = 45 * 0.25 * 0.00390625 = 0.04395因此,正面出现2次的概率约为0.044。

二项式定理及其应用

二项式定理及其应用

二项式定理及其应用二项式定理是数学中的一条重要定理,它揭示了如何展开和求解(x + y)ⁿ这种形式的表达式。

本文将介绍二项式定理的公式及其应用,并探讨其在数学和实际问题中的意义。

1. 二项式定理的公式二项式定理的公式如下所示:(x + y)ⁿ = C(n,0) · xⁿ · y⁰ + C(n,1) · xⁿ⁻¹ · y¹ + C(n,2) · xⁿ⁻² · y² + ... + C(n,n-1) · x · yⁿ⁻¹ + C(n,n) · x⁰ · yⁿ其中,C(n,k)表示从n个元素中选取k个元素的组合数,也可以表示为n! / (k! · (n-k)! )。

在展开(x + y)ⁿ时,每一项的系数就是组合数C(n,k),指数是x和y的幂次。

2. 二项式定理的应用2.1 二项式系数二项式定理中的组合数C(n,k)被称为二项式系数,它具有很多重要的性质。

其中最为著名的是杨辉三角形,每一行的数字都是由上一行相邻两个数字相加而来。

杨辉三角形也是计算二项式系数的一种常用方法。

2.2 展开式的应用二项式定理的展开式可以用于求解多项式的乘法、计算多项式在某一点的值等问题。

通过展开(x + y)ⁿ,可以直观地观察到每一项的系数和指数之间的关系,从而简化计算。

2.3 组合恒等式二项式定理可以通过一些代数推导得到一些有用的组合恒等式,如:- C(n,0) + C(n,1) + C(n,2) + ... + C(n,n) = 2ⁿ- C(n,0) - C(n,1) + C(n,2) - ... + (-1)ⁿ · C(n,n) = 0这些恒等式在组合数学、概率论等领域中有着重要的应用。

3. 二项式定理的意义二项式定理的意义不仅仅局限于数学领域,它在实际问题中也有广泛的应用。

二项式定理及其应用

二项式定理及其应用

二项式定理及其应用二项式定理是高中数学中的重要内容之一,在代数和组合数学中具有广泛的应用。

它可以帮助我们在求解各种数学问题时简化计算,提高效率。

本文将介绍二项式定理的基本概念、公式及其应用领域。

一、二项式定理的基本概念二项式定理是指对于任意实数a和b,以及任意正整数n,有以下公式成立:(a+b)^n = C(n,0) * a^n * b^0 + C(n,1) * a^(n-1) * b^1 + C(n,2) * a^(n-2) * b^2 + ... + C(n,n-1) * a^1 * b^(n-1) + C(n,n) * a^0 * b^n其中C(n,r)表示组合数,即从n个不同元素中取r个元素的组合数。

根据组合数的性质,可以得出C(n,r) = n! / (r! * (n-r)!)的计算公式。

二、二项式定理的公式1. 二项式展开式:根据二项式定理,可以将(a+b)^n展开为一系列单项式相加的形式。

每个单项式的系数即为组合数C(n,r),而a和b的幂分别为n-r和r。

例如,(a+b)^3 = C(3,0) * a^3 * b^0 + C(3,1) * a^2 *b^1 + C(3,2) * a^1 * b^2 + C(3,3) * a^0 * b^3。

2. 二项式系数:在二项式展开式中,各个单项式前的系数即为二项式系数。

二项式系数具有一些特殊性质,比如对称性和递推性。

例如,C(n,r) = C(n-1,r-1) + C(n-1,r)。

3. 常见的二项式定理公式:- (a+b)^2 = a^2 + 2ab + b^2- (a-b)^2 = a^2 - 2ab + b^2- (a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3- (a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3- ...三、二项式定理的应用领域二项式定理在代数和组合数学中有广泛的应用,以下列举其中几个常见的领域:1. 多项式的展开和化简:通过二项式定理,我们可以将高次多项式展开为各项系数的和,进而进行化简和计算。

二项式定理及其应用

二项式定理及其应用

二项式定理及其应用二项式定理是数学中非常基础的一个定理,它的重要性不亚于勾股定理和皮克定理。

在高中数学学习中,学生一定会接触到它,它被广泛应用于高中数学乃至进一步的数学学习中。

下面我们就来介绍一下什么是二项式定理以及它的应用。

一、二项式定理的定义二项式定理又称为二项式展开定理,是可以展开(a+b)^n的定理。

其中a、b为任意数,n为正整数。

它的一般形式为:(a+b)^n = C(n,0)·a^n·b^0 + C(n,1)·a^(n-1)·b^1 + … + C(n,k)·a^(n-k)·b^k + … + C(n,n)·a^0·b^n其中C(n,k)表示组合数。

二、组合数的定义组合数是数学中一个非常重要的概念,它的作用非常广泛,不仅仅在二项式定理中使用,还在概率论、统计学、组合数学等多个领域中都有应用。

组合数C(n,k)表示从n个不同元素中取出k个元素的组合数,公式为:C(n,k) = n!/(k!(n-k)!),其中0≤k≤n,n!表示n的阶乘。

三、二项式定理的应用1.幂的展开(a+b)^n = C(n,0)·a^n·b^0 + C(n,1)·a^(n-1)·b^1 + … + C(n,k)·a^(n-k)·b^k + … + C(n,n)·a^0·b^n中,幂的展开就是应用二项式定理的一个实际应用。

例如:(2x+3)^3 = C(3,0)·2^3·3^0 + C(3,1)·2^2·3^1 + C(3,2)·2^1·3^2 + C(3,3)·2^0·3^3 = 8x^3+36x^2+54x+272.排列组合排列组合问题是组合数学中的一个重要分支,可以通过二项式定理来解决。

二项式定理及其应用

二项式定理及其应用

二项式定理及其应用1. 引言二项式定理是数学中的一个重要定理,它描述了如何展开二项式的幂。

该定理在代数、组合数学、数论以及其他数学领域有着广泛的应用。

本文将介绍二项式定理的数学表达式、证明过程以及一些常见的应用。

2. 二项式定理的表达式二项式定理可以用以下的数学表达式来描述:$$(a + b)^n = C(n,0) \\cdot a^n \\cdot b^0 + C(n,1) \\cdot a^{n-1} \\cdot b^1+ ... + C(n,k) \\cdot a^{n-k} \\cdot b^k + ... + C(n,n) \\cdot a^0 \\cdot b^n$$ 其中,C(n,k)表示组合数,即从n个元素中选取k个元素的不同组合数量。

3. 二项式定理的证明为了证明二项式定理,我们可以使用数学归纳法。

首先,考虑当n=1时的情况:(a+b)1=a+b显然,上述等式成立。

假设当n=m时,二项式定理成立,即:$$(a + b)^m = C(m,0) \\cdot a^m \\cdot b^0 + C(m,1) \\cdot a^{m-1} \\cdotb^1 + ... + C(m,k) \\cdot a^{m-k} \\cdot b^k + ... + C(m,m) \\cdot a^0 \\cdot b^m$$ 我们需要证明当n=m+1时,二项式定理也成立。

首先,考虑展开(a+b)m+1:$$(a + b)^{m+1} = (a + b) \\cdot (a + b)^m$$根据归纳假设,我们可以将(a+b)m展开为:$$(a + b)^m = C(m,0) \\cdot a^m \\cdot b^0 + C(m,1) \\cdot a^{m-1} \\cdotb^1 + ... + C(m,k) \\cdot a^{m-k} \\cdot b^k + ... + C(m,m) \\cdot a^0 \\cdot b^m$$ 将上述展开式代入$(a + b) \\cdot (a + b)^m$中,我们可以得到:$$(a + b) \\cdot (a + b)^m = (C(m,0) \\cdot a^m \\cdot b^0 + C(m,1) \\cdota^{m-1} \\cdot b^1 + ... + C(m,k) \\cdot a^{m-k} \\cdot b^k + ... + C(m,m) \\cdota^0 \\cdot b^m) \\cdot (a + b)$$将上式展开并合并同类项,我们可以得到:$$(a + b) \\cdot (a + b)^m = C(m,0) \\cdot a^{m+1} \\cdot b^0 + (C(m,1)\\cdot a^m \\cdot b^1 + C(m,0) \\cdot a^m \\cdot b^1) + ... + (C(m,k) \\cdota^{m-k+1} \\cdot b^k + C(m,k-1) \\cdot a^{m-k} \\cdot b^{k+1}) + ... + a^0 \\cdot C(m,m) \\cdot b^{m+1}$$我们可以通过重新排列项来证明上式等于展开式(a+b)m+1的每一项。

二项式定理及其应用

二项式定理及其应用

赋值法求解.
解 令x=1,则a0+a1+a2+a3+a4+a5+a6+a7=-1 ①
令x=-1,则a0-a1+a2-a3+a4-a5+a6-a7=37

(1)∵a0=
C
0 7
=1,∴a1+a2+a3+…+a7=-2.
(2)(①-②)÷2,
得a1+a3+a5+a7=
1 37 2
=-1 094.
(3)(①+②)÷2,得
点,转化为二项式来解决,转化的方法通常为集 项、配方、因式分解,集项时要注意结合的合理性 和简捷性. 3.求常数项、有理项和系数最大的项时,要根据通 项公式讨论对r的限制;求有理项时要注意到指数 及项数的整数性.
4.性质1是组合数公式Crn Cnnr 的再现,性质2是从 函数的角度研究的二项式系数的单调性,性质3是 利用赋值法得出的二项展开式中所有二项式系数的 和.
基础自测
1.二项式(a+2b)n展开式中的第二项的系数是8,则
它的第三项的二项式系数为
A.24
B.18 C.16
( D) D.6
解析 T2= C1n an1(2b)1 C1n 2an1b,
所以2n=8,n=4,所以
C
2 n
=
C
2 4
=6.
2.(2009·浙江理,4)在二项式 (x2 1的)5展开式中, x
1
2
∴8 2n·(n2n-=11)+,81 n(n-1),
解得n=8或n=1(不合题意,舍去),
Tk1
C8k
x
8k 2

二项式定理的应用

二项式定理的应用

二项式定理的应用1.利用赋值法进行求有关系数和。

二项式定理表示一个恒等式,对于任意的a,b,该等式都成立。

利用赋值法(即通过对a、b取不同的特殊值)可解决与二项式系数有关的问题,注意取值要有利于问题的解决,可以取一个值或几个值,也可以取几组值,解决问题时要避免漏项等情况。

设(1)令x=0,则(2)令x=1,则(3)令x=-1,则(4)(5)2.证明有关的不等式问题:有些不等式,可应用二项式定理,结合放缩法证明,即把二项展开式中的某些正项适当删去(缩小),或把某些负项删去(放大),使等式转化为不等式,然后再根据不等式的传递性进行证明。

①;②;()如:求证:1. 若,则_________.(用数字作答)【解析】令,则,,即.2.求证:对任何非负整数n,33n-26n-1可被676整除。

【思路点拨】注意到262=676,33n=27n=(26+1)n,用二项展开式去证明.当n=0时,原式=0,可被676整除.当n=1时,原式=0,也可被676整除.当n≥2时,原式.每一项都含262这个因数,故可被262=676整除综上所述,对一切非负整数n,33n-26n-1可被676整除.【总结升华】证明的关键在于将被除式进行恰当的变形,使其能写成二项式的形式,展开后的每一项中都会有除式这个因式,就可证得整除或求出余数.3.求证:3n>(n+2)·2n-1(n∈N+,且n>2).【思路点拨】利用二项式定理3n=(2+1)n展开证明.【解析】因为n∈N+,且n>2,所以3n=(2+1)n展开至少有四项.,所以3n>(n+2)·2n-1.概率要点一、随机变量和离散型随机变量1. “随机试验”的概念一般地,一个试验如果满足下列条件:a.试验可以在相同的情形下重复进行.b.试验的所有可能结果是明确可知的,并且不止一个.c.每次试验总是恰好出现这些可能结果中的一个,但在试验之前却不能肯定这次试验会出现哪一个结果.这种试验就是一个随机试验,为了方便起见,也简称试验.2.随机变量的定义一般地,如果随机试验的结果,可以用一个变量来表示,那么这样的变量叫做随机变量.要点诠释:(1)所谓随机变量,即是随机试验的试验结果和实数之间的一个对应关系,这种对应关系是人为建立起来的,但又是客观存在的。

高考数学总复习必做二项式定理及其应用试题含解析

高考数学总复习必做二项式定理及其应用试题含解析

专题3 二项式定理及其应用【三年高考】1. 【2016年高考四川理数改编】设i 为虚数单位,则6()x i +的展开式中含x 4的项为 .【答案】-15x 4【解析】试题分析:二项式6()x i +展开的通项616r r rr T C xi -+=,令64r -=,得2r =,则展开式中含4x 的项为2424615C x i x =-.考点:二项展开式,复数的运算.【名师点睛】本题考查二项式定理及复数的运算,复数的概念及运算也是高考的热点,几乎是每年必考内容,属于容易题.一般来说,掌握复数的基本概念及四则运算即可.二项式6()x i +的展开式可以改为6()i x +,则其通项为66r rr C ix -,即含4x 的项为46444615C i x x -=-.2.【2016年高考北京理数】在6(12)x -的展开式中,2x 的系数为__________________.(用数字作答) 【答案】60. 【解析】试题分析:根据二项展开的通项公式16(2)rrrr T C x +=-可知,2x 的系数为226(2)60C -=,故填:60.考点:二项式定理.【名师点睛】1.所谓二项展开式的特定项,是指展开式中的某一项,如第n 项、常数项、有理项、字母指数为某些特殊值的项.求解时,先准确写出通项r rn rn r b aC T -+=1,再把系数与字母分离出来(注意符号),根据题目中所指定的字母的指数所具有的特征,列出方程或不等式来求解即可;2、求有理项时要注意运用整除的性质,同时应注意结合n 的范围分析.3.【2016高考新课标1卷】5(2x +的展开式中,x 3的系数是 .(用数字填写答案)【答案】10考点:二项式定理【名师点睛】确定二项展开式指定项的系数通常是先写出通项1r T +,再确定r 的值,从而确定指定项系数.4.【2016高考天津理数】281()x x-的展开式中x 2的系数为__________.(用数字作答)【答案】56- 【解析】试题分析:展开式通项为281631881()()(1)rr r r r r r T C x C x x--+=-=-,令1637r -=,3r =,所以7x 的338(1)56C -=-.故答案为56-.考点:二项式定理【名师点睛】1.求特定项系数问题可以分两步完成:第一步是根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n ≥r );第二步是根据所求的指数,再求所求解的项.2.有理项是字母指数为整数的项.解此类问题必须合并通项公式中同一字母的指数,根据具体要求,令其为整数,再根据数的整除性来求解.5.【2016高考山东理数】若(a x 2x)5的展开式中x 5的系数是—80,则实数a =_______.【答案】-2 【解析】试题分析:因为5102552155()r r rr r rr T C ax C a x x---+==,所以由510522r r -=⇒=,因此252580 2.C a a -=-⇒=-考点:二项式定理【名师点睛】本题是二项式定理问题中的常见题型,二项展开式的通项公式,往往是考试的重点.本题难度不大,易于得分.能较好的考查考生的基本运算能力等.6.【2015高考湖南,理6】已知5的展开式中含32x 的项的系数为30,则a =____________.【答案】16【解析】r rrrr xa C T -+-=2551)1(,令1=r ,可得6305-=⇒=-a a .7.【2015高考新课标1,理10】25()x x y ++的展开式中,52x y 的系数为_________.【答案】30【解析】在25()x x y ++的5个因式中,2个取因式中2x 剩余的3个因式中1个取x ,其余因式取y,故52x y 的系数为212532C C C =30.8.【2015高考湖北,理3】已知(1)n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为______________. 【答案】92【解析】因为(1)n x +的展开式中第4项与第8项的二项式系数相等,所以73nn C C =,解得10=n ,所以二项式10(1)x +中奇数项的二项式系数和为9102221=⨯. 9.【2015高考新课标2,理15】4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =__________. 【答案】3【解析】由已知得4234(1)1464x x x x x +=++++,故4()(1)a x x ++的展开式中x 的奇数次幂项分别为4ax ,34ax ,x ,36x ,5x ,其系数之和为441+6+1=32a a ++,解得3a =.10.【2015高考上海,理11】在10201511x x ⎛⎫++ ⎪⎝⎭的展开式中,2x 项的系数为 (结果用数值表示). 【答案】45【解析】因为10101019102015201520151111(1)(1)(1)x x x C x x x x ⎛⎫⎛⎫++=++=++++⎪ ⎪⎝⎭⎝⎭,所以2x项只能在10(1)x +展开式中,即为8210C x ,系数为81045.C = 11.【2014高考湖北卷理第2题】若二项式7)2(x a x +的展开式中31x的系数是84,则实数=a _______.【答案】1【解析】因为r r r r rrrx a C xax C 2777772)()2(+---⋅⋅⋅=⋅⋅,令327-=+-r ,得2=r ,所以84227227=⋅⋅-a C ,解得1=a .14. 【2014山东高考理第14题】 若26()bax x+的展开式中3x 项的系数为20,则22b a +的最小值 . 【答案】2【解析】26()b ax x+展开式的通项为266123166()()r rr r r r rr b T C ax a b C xx---+==,令1233,r -=得3r =,所以,由6333620ab C -=得1ab =,从而2222a b ab +≥=,当且仅当a b =时,22a b +的最小值为2.13. 【2014全国1高考理第13题】()()8x y x y -+的展开式中27x y 的系数为________.(用数字填写答案) 【答案】20-14.【2014高考安徽卷理第13题】设n a ,0≠是大于1的自然数,na x ⎪⎭⎫⎝⎛+1的展开式为n n x a x a x a a ++++ 2210.若点)2,1,0)(,(=i a i A i i 的位置如图所示,则______=a .【答案】3 【解析】由图易知0121,3,4a a a ===,则12212113,()4nn a C a C a a====,即23(1)42nan n a ⎧=⎪⎪⎨-⎪=⎪⎩,解得3a =.【2017年高考命题预测】纵观近几年各地高考,我们可以发现对二项式定理的考查,重点是二项式定理的通项公式、二项式系数及项的系数;以考查基本概念、基础知识为主,如系数和、求某项的系数、求常数项、求有理项、求所含参数的值或范围等;难度不大,属于中档题和容易题,题型为选择题或填空题.二项式定理是高考数学相对独立的内容,二项式定理的知识在高考中经常以客观题的形式出现,多为课本例题、习题迁移的改编题,难度不大,个别题有一定的难度,重点考查运用二项式定理去解决问题的能力和逻辑划分,化归转化等思想方法.为此,只要我们把握住二项式定理及其系数性质,会把实际问题化归为数学模型问题或方程问题去解决,就可顺利获解.预测2017年高考仍可能以二项式的通项,二项式系数,展开式系数为主,可单独考查本节知识,也可出现与其他章节知识结合的小综合.如可能与定积分结合出题,试题难度中等.复习建议:⑴ 运用二项式定理一定要牢记通项1r n r rr n T C a b -+=,注意()n a b +与()nb a +虽然相同,但具体到它们展开式的某一项时是不相同的,我们一定要注意顺序问题.另外二项展开式的二项式系数与该项的(字母)系数是两个不同的概念,前者只指rn C ,而后者是字母外的部分.⑵ 对于二项式系数问题,应注意以下几点:①求二项式所有项的系数和,可采用“特殊值取代法”,通常令字母变量的值为1;②关于组合恒等式的证明,常采用“构造法”——构造函数或构造同一问题的两种算法;③证明不等式时,应注意运用放缩法.⑶ 求二项展开式中指定的项,通常是先根据已知条件求r ,再求1r T +,有时还需先求n ,再求r ,才能求出1r T +.⑷ 有些三项展开式问题可以变形为二项式问题加以解决;有时也可以通过组合解决,但要注意分类清楚,不重不漏.⑸ 对于二项式系数问题,首先要熟记二项式系数的性质,其次要掌握赋值法,赋值法是解决二项式系数问题的一个重要手段.⑹ 近似计算要首先观察精确度,然后选取展开式中若干项.⑺ 用二项式定理证明整除问题,一般将被除式变为有关除式的二项式的形式再展开,常采用“配凑法”“消去法”配合整除的有关知识来解决.【2017年高考考点定位】本节内容高考的重点就是利用二项式定理的通项公式、二项式系数及项的系数;以考查基本概念、基础知识为主,如系数和、求某项的系数、求常数项、求有理项、求所含参数的值或范围等,题型既有选择题也有填空题,难度中等偏下,而小题目综合化是这部分内容的考查一种趋势.【考点】二项式定理 【备考知识梳理】 1. 二项式定理()()011*nn n r n r rn nn n n n a b C a C a b C a b C b n N --+=+++++∈,这个公式所表示的定理叫做二项式定理,右边的多项式叫做()na b +的二项展开式,其中的系数rn C (0,1,2,3,,r n =)叫做二项式系数.式中的rn rr n C ab -叫做二项展开式的通项,用1r T +表示,即展开式的第1r +项;1r n r rr n T C a b -+=.2.二项展开式形式上的特点:(1)项数为1n +.(2)各项的次数都等于二项式的幂指数n ,即a 与b 的指数的和为n .(3)字母a 按降幂排列,从第一项开始,次数由n 逐项减1直到零;字母b 按升幂排列,从第一项起,次数由零逐项增1直到n .(4)二项式的系数从0n C ,1nC ,一直到1n n C -,n n C .3. 二项式系数的性质:(1)对称性:与首末两端“等距离”的两个二项式系数相等,即0n n n C C =,11n n n C C -=,,m n m n n C C -=.(2)增减性与最大值:二项式系数rn C ,当12n r +≤时,二项式系数是递增的;由对称性知:当12n r +>时,二项式系数是递减的.当n 是偶数时,中间的一项2n nC 取得最大值.当n 是奇数时,中间两项12n nC + 和12n nC-相等,且同时取得最大值.(3)各二项式系数的和:()na b +的展开式的各个二项式系数的和等于2n ,即012rnn n n n n C C C C +++++=,二项展开式中,偶数项的二项式系数的和等于奇数项的二项式系数的和,即02413512n n n n n n n C C C C C C -+++=+++=,4.注意:(1).分清r n rr n C ab -是第1r +项,而不是第r 项.(2).在通项公式1r n r rr n T C a b -+=中,含有1r T +、rn C 、a 、b 、n 、r 这六个参数,只有a 、b 、n 、r 是独立的,在未知n 、r 的情况下,用通项公式解题,一般都需要首先将通式转化为方程(组)求出n 、r ,然后代入通项公式求解.(3).求二项展开式中的一些特殊项,如系数最大项,常数项等,通常都是先利用通项公式由题意列方程,求出r ,再求所需的某项;有时则需先求n ,计算时要注意n 和r 的取值范围以及 它们之间的大小关系. (4) 在1r n r r r n T C a b -+=中,rn C 就是该项的二项式系数,它与a ,b 的值无关;而1r T +项的系数是指化简后字母外的数.5.二项式的应用:(1)求某些多项式系数的和;(2)证明一些简单的组合恒等式;(3)证明整除性,①求数的末位;②数的整除性及求系数;③简单多项式的整除问题;(4)近似计算.当x 充分小时,我们常用下列公式估计近似值:①()11nx nx +≈+;②()()21112nn n x nx x -+≈++;(5)证明不等式.【规律方法技巧】1.在应用通项公式时,要注意以下几点:①它表示二项展开式的任意项,只要n 与r 确定,该项就随之确定;②1r T +是展开式中的第1r +项,而不是第r 项;③公式中,a ,b 的指数和为n 且a ,b 不能随便颠倒位置;④ 对二项式()na b -展开式的通项公式要特别注意符号问题.⑤在二项式定理的应用中,“赋值思想”是一种重要方法,是处理组合数问题、系数问题的经典方法.2. 二项定理问题的处理方法和技巧:⑴运用二项式定理一定要牢记通项1r n r rr n T C a b -+=,注意()na b +与()nb a +虽然相同,但具体到它们展开式的某一项时是不同的,一定要注意顺序问题,另外二项展开式的二项式系数与该项的(字母)系数是两个不同的概念,前者只指rn C ,而后者是字母外的部分.前者只与n 和r 有关,恒为正,后者还与a ,b 有关,可正可负. ⑵ 对于二项式系数问题,应注意以下几点:①求二项式所有项的系数和,可采用“特殊值取代法”,通常令字母变量的值为1;②关于组合恒等式的证明,常采用“构造法”——构造函数或构造同一问题的两种算法;③证明不等式时,应注意运用放缩法.⑶ 求二项展开式中指定的项,通常是先根据已知条件求r ,再求1r T +,有时还需先求n ,再求r ,才能求出1r T +.⑷ 有些三项展开式问题可以变形为二项式问题加以解决;有时也可以通过组合解决,但要注意分类清楚,不重不漏.⑸ 对于二项式系数问题,首先要熟记二项式系数的性质,其次要掌握赋值法,赋值法是解决二项式系数问题的一个重要手段.⑹ 近似计算要首先观察精确度,然后选取展开式中若干项.⑺ 用二项式定理证明整除问题,一般将被除式变为有关除式的二项式的形式再展开,常采用“配凑法”“消去法”配合整除的有关知识来解决.多项式乘法的进位规则:在求系数过程中,尽量先化简,降底数的运算级别,尽量化成加减运算,在运算过程可以适当注意令值法的运用,例如求常数项,可令0x =.在二项式的展开式中,要注意项的系数和二项式系数的区别.3. 排列组合在二项展开式中的应用:()na b +展开式可以由次数、项数和系数来确定.(1)次数的确定:从n 个相同的a b +中各取一个(a 或b )乘起来,可以构成展开式中的一项,展开式中项的形式是p qma b ,其中,,p q N p q n ∈+=.(2)项数的确定:满足条件,,p q N p q n ∈+=的(),p q 共1n +组.即将()na b +展开共2n项,合并同类项后共1n +项.(3)系数的确定:展开式中含p q a b (p q n +=)项的系数为p n C (即p 个a ,q 个b 的排列数)因此()na b +展开式中的通项是:1r n r r r n T C a b -+=(0,1,2,3,,r n =),()()011*nn n r n r rn nn n n n a b C a C a b C a b C b n N --+=+++++∈这种方法比数学归纳法推导二项式定理更具一般性和创造性,不仅可二项展开,也可三项展开,四项展开等.4. 求几个二项式积的展开式中某项的系数或特定项时,一般要根据这几个二项式的结构特征进行分类搭配,分类时一般以一个二项式逐项分类,分析其他二项式应满足的条件,然后再求解结果.5. “赋值法”普遍适用于恒等式,是一种重要的方法,对形如()nax b +、()2nax bx c++(,,a b c R ∈)的式子求其展开式的各项系数之和,常用赋值法,只需令1x =即可;对形如()nax by + (,a b R ∈)的式子求其展开式各项系数之和,只需令1x y ==即可.“赋值法”是求二项展开式系数问题常用的方法,注意取值要有利于问题的解决,可以取一个值或几个值,也可以取几组值,解题易出现漏项等情况,应引起注意.例:若()2012n n f x a a x a x a x =++++,则()f x 展开式中各项系数之和为()1f ,奇数项系数之和为()()024112f f a a +-+++=,偶数项系数之和为()()135112f f a a --+++=,令0x =,可得()00a f =.6. 求展开式系数最大项:如求()nax b + (,a b R ∈)的展开式系数最大的项,一般是采用待定系数法,设展开式各项系数分别为1231,,,,n A A A A +,且第k 项系数最大,应用11k k k k A A A A -+≥⎧⎨≥⎩从而解出k 来,即得.7. (1)利用二项式定理解决整除问题时,关键是进行合理地变形构造二项式,应注意:要证明一个式子能被另一个式子整除,只要证明这个式子按二项式定理展开后的各项均能被另一个式子整除即可.(2)求余数问题时,应明确被除式()f x 与除式()g x (()0g x ≠),商式()q x 与余式的关系及余式的范围.(3)展开式中常数项、有理项的特征是通项中未知数的指数分别为零和整数.解决这类问题时,先要合并通项中同一字母的指数,再根据上述特征进行分析.(4)有关求二项展开式中的项、系数、参数值或取值范围等,一般要利用通项公式,运用方程思想进行求值,通过解不等式(组)求取值范围. 【考点针对训练】 1.已知n +的展开式的前三项的系数成等差数列;(1)求n 展开式中所有的有理项;(2)求22)nx 展开式中系数的绝对值最大的项。

二项式定理的基本概念和应用

二项式定理的基本概念和应用

二项式定理的基本概念和应用二项式定理,又称为“二项式展开定理”,是数学中的一个重要定理,它描述了一个二项式的幂的展开式。

本文将对二项式定理的基本概念和应用进行探讨,希望能够对读者理解和应用该定理起到一定的帮助。

1. 二项式定理的基本概念二项式定理是指将一个二项式的幂展开成一系列项的规律。

表达式的形式如下:$(a + b)^n = \sum_{k=0}^{n}C_n^k \cdot a^{n-k} \cdot b^k$其中,$(a + b)^n$表示一个二项式的幂,$C_n^k$表示组合数,即从n个元素中选取k个元素的组合数。

2. 二项式定理的证明二项式定理的证明可以通过多种方法进行,其中较为常见的有以下两种方法:数学归纳法和组合数学方法。

这里简要介绍一下数学归纳法的证明思路。

首先,在n=1的情况下,二项式定理成立:$(a + b)^1 = a^1 + b^1$接下来,假设当n=m时,二项式定理也成立,即$(a + b)^m = \sum_{k=0}^{m}C_m^k \cdot a^{m-k} \cdot b^k$我们需要证明当n=m+1时,定理也成立。

通过展开$(a + b)^{m+1}$,我们可以得到:$(a + b)^{m+1} = (a + b)^m \cdot (a + b)$根据假设得到的等式,我们将其代入上述公式:$(a + b)^{m+1} = \left(\sum_{k=0}^{m}C_m^k \cdot a^{m-k} \cdotb^k\right) \cdot (a + b)$我们可以对上述公式进行分配律的展开:$(a + b)^{m+1} = \left(\sum_{k=0}^{m}C_m^k \cdot a^{m-k+1} \cdot b^k\right) + \left(\sum_{k=0}^{m}C_m^k \cdot a^{m-k} \cdotb^{k+1}\right)$我们可以对上述等式进行一些变换和合并得到:$(a + b)^{m+1} = \sum_{k=0}^{m}\left(C_m^k \cdot a^{m-k+1} \cdot b^k + C_m^k \cdot a^{m-k} \cdot b^{k+1}\right)$进一步化简,我们得到:$(a + b)^{m+1} = \sum_{k=0}^{m}\left((C_m^k + C_m^{k-1}) \cdota^{m-k+1} \cdot b^k\right)$我们可以观察到$(C_m^k + C_m^{k-1})$的表达式,它可以化简成组合数的形式:$C_{m+1}^k$,于是上述等式可以再次化简为:$(a + b)^{m+1} = \sum_{k=0}^{m+1}\left(C_{m+1}^k \cdot a^{m+1-k} \cdot b^k\right)$因此,根据数学归纳法,我们可以得出结论:对于任意的非负整数n,二项式定理都成立。

二项式定理的应用

二项式定理的应用

二项式定理的应用
二项式定理是数学里一项重要公式,它涉及到n阶伯努利数列、排列组合等概念。

它可以用于解决统计、概率论等学科中的问题,也被用来解释在某些情况下选项的可能结果数量。

本文将讨论二项式定理在高等教育中的重要应用,以及如何更好地利用它来提高教学质量。

高等教育涉及到复杂的教学情况,在这种情况下,二项式定理可以帮助我们更高效地掌握知识点。

例如,在研究生课堂上,二项式定理可以使学生对一个课题的所有可能分析途径有更深入的认识,从而提高学习效率。

此外,它还可以帮助教师展示知识点,让学生更直观地理解微妙的教学概念。

在考试或者考核中,二项式定理也有着相当重要的应用,它可以帮助学生在解决实际问题的过程中搭建完整的逻辑框架,加深对知识点的理解。

因此,高校在考核期间可以合理安排有关二项式定理的题目,让学生在解决问题的过程中加深对概念的理解,以及熟悉二项式定理的所有应用。

此外,在科学研究方面,二项式定理也起着重要作用。

一个专业研究者熟练掌握二项式定理后,可以更好地研究具有难以置信属性的问题,以及解决复杂的解空间中所存在的其他问题,从而充分发挥二项式定理的威力。

综上所述,二项式定理为高校和高等教育提供了有价值的指导和帮助,不仅可以提高学生的学习效率,而且可以帮助教师展示知识点,从而更好地让学生掌握这些观念。

在高校中,教学组织者可以要求教师在教学过程中把二项式定理作为一项重要的教学工具,从而提高教学质量。

二项式定理及其实际问题应用

二项式定理及其实际问题应用

二项式定理及其实际问题应用二项式定理是初中数学中一个重要的概念,它被广泛应用于解决实际问题。

本文将简要介绍二项式定理的概念和公式,并且给出几个实际问题的应用案例。

一、二项式定理的概念与公式二项式定理是指形如以下的公式:(a+b)^n = C(n,0)a^n*b^0 + C(n,1)a^(n-1)*b^1 + C(n,2)a^(n-2)*b^2 + ... + C(n,n)a^0*b^n其中,a和b是任意实数,n是一个非负整数,C(n,m)表示组合数,表示从n个元素中选取m个元素的组合数。

二项式定理中的每一项都可以看作是组合数和幂指数的乘积。

二项式定理的公式可以递归地进行推导,也可以用组合数的公式进行证明。

它是代数学中的一个重要定理,也是高等数学和概率统计中的基础概念之一。

二、实际问题的应用案例1. 走廊的问题假设有一条由n个砖块组成的走廊,每个砖块的宽度为a,长度为b。

我们想知道从走廊的一端走到另一端有多少种不同的走法。

根据二项式定理,我们可以得到答案:一共有(a+b)^n 种不同的走法。

这个问题可以帮助我们理解二项式定理中幂指数的含义,即表示每一步走的选择。

2. 掷硬币的问题设想我们有一枚硬币,抛掷n次,求得正面朝上的次数和反面朝上的次数之和为m的概率是多少。

使用二项式定理,可以得到答案:概率为C(n,m) * (0.5)^n。

这个问题可以帮助我们理解组合数的含义,即表示从n次抛硬币中选取m次正面朝上的可能性。

3. 扑克牌的问题假设我们有一副扑克牌,求从中选取k张牌的不同组合数。

根据二项式定理,我们可以得到答案:一共有C(52,k)种不同的选牌方式。

这个问题可以帮助我们理解组合数的应用,即表示从一定数量的元素中选取特定数量的元素的方式。

三、总结二项式定理是一个重要的数学定理,它在解决实际问题中有着广泛的应用。

通过对走廊问题、掷硬币问题和扑克牌问题的分析,我们可以看到二项式定理在实际生活中的实用性。

二项式定理及应用

二项式定理及应用

莱西市数学公开课教案课ffi:二顼戒定理及应用 课型:宣习谋教学目标:I 、知识目标:(1)理解并掌握二项或定理,从项数、指数、系数、通项几个待征熟记它的 展开式。

(2)使学生学握二项武定理习题的一般解题方法,熟练二项或定理的应用。

2、能力目标:(1)教给学生怎样记忆数学公武,从而优化记忆品质。

(2)进行化归思想、整体思想的渗透,培养学生的发敷思维和逆向思维能力。

3、情感目标:通过对二项式定理的篦习,使学生感觉到能学握数学的部分容,有息识地让学 生演练一些历年高考试題,使学生体验到成功,树立学好数学的信心。

教学車点:能利用二项式定理解决相关问题 教学难点:二项展开武系数的性质及应用 教学方法:讲练结合 教 具:多媒体 教学过程: 一、课前练习1、设n 为自然数,则©:2"—(7:2心+・・・+ (—1)人(7;;2心+・・・+ (—1)“(7;;等于 ....................................................................................... (D ) S) (3) 0 (Q -1(Z?) 1展开式中,各项系数的和与其各项二项武系数的和之比为64,则n 等于(C )4、(2007)已知(1-x)5 = ao+aix+a 2x 2+a3x 3+a 4x 4+a 5x 5/则(Qo+ch+cuHoi+ch+Ch)二 N 鱼 小结:1、二项式定理的逆用不可忽视。

2、求二项茨系数和、二项展开式各项系数和或部分项系数和用賦 值法3、研究特定项用通项公式设计目的:篦习基础知识,体验二项式定理习题的一般解題方法,锻炼逆向思维能力,让学生演练一些历 年高考试题,体验到成功,树立学好数学的信心。

二、:&习提问:I •二项式定理:(a + b)n = C :k” + C\a n ~l b + C ;a n '2b 2 + …+ C r n a n ~T b r + …+ C ;;b"教师强调展开氏的特点: ⑴ 项数n+1项 (2)二项或系数依次为C 影(3)指数的特点l)a 的指数由 —0(降需)。

例析二项式定理的六种应用

例析二项式定理的六种应用

本文对二项式定理常见的六种应用进行总结,希望对同学们的学习有所帮助.一、求展开式中指定项例1 (x-1x)8的展开式中,常数项为   .(用数字作答)解:Tr+1=Cr8x8-r(-1x)r=(-1)rCr8x8-2r,由题意知,8-2r=0,r=4,即展开式的第5项为常数项,T5=C48=70.评析:直接利用通项公式进行求解,令x的幂指数等于0即可.例2 (|x|2+1|x|+2)5的展开式中整理后的常数项为    .解:(|x|2+1|x|+2)5=(|x2|+|1x|)10Tr+1=Cr10(|x2|)10-r(|1x|)r=Cr10(12)10-r(|x|)10-2r由题意知,(|x|2+1|x|)=0,r=5,即展开式的第6项为常数项,T6=C510(12)5=6322.评析:多项展开式往往化归为二项展开式,再利用通项公式去求解.本题亦可把(|x|2+1|x|)看作一个整体,再利用二项式定理展开.例3 (x+3x)12的展开式中,含x的正整数幂的项数共有    .解:设展开式中第r+1项的幂为正整数,则Tr+1=Cr12(x)12-r(3x)r=Cr12x12-r2+r3=Cr12x6-r6.依题意,r是6的倍数,且0≤r≤12,所以r共有3个值.即(x+3x)12的展开式中,含x的正整数幂的项数共有3个.小结:在求展开式中某个指定项时,利用二项展开式的通项公式求解是常规办法.首先要知道指定项都有哪些特点,再根据题意具体求解.例如常数项就是x的指数为0,而有理项就是x的指数为整数.二、求展开式中的系数或系数和例4 (x-2y)10的展开式中x6y4项的系数是    .解:Tr+1=Cr10x10-r(-2y)r由题意知,10-r=6,r=4,即展开式中x6y4项的系数为C410(2)4=840.评析:注意区别某一项的系数和它的二项式系数.例5 在(1-x)5+(1-x)6+(1-x)7+(1-x)8的展开式中,含x3的项的系数是    .法一:由等比数列求和公式得:原式=(1-x)5[1-(1-x)4]1-(1-x)=(1-x)5-(1-x)9x.要求展开式中含x3的项的系数.即求(1-x)5中的x4的系数与(1-x)9中x4的系数的差.而(1-x)5中含x4的项为T5=C45?1?(-x)4=5x4,(1-x)9中含x4的项为T5=C49?15?(-x)4=126x4,所以在(1-x)5+(1-x)6+(1-x)7+(1-x)8的展开式中,含x3的项的系数是5-126=-121.法二:(1-x)n的二项展开式通项为Tr+1=Crn(-x)r,令r=3得x3的系数为-C3n,故本题所求的项的系数为-(C35+C36+C37+C38)=-121.例6 (1)若(x+1x)n的展开式中第3项与第7项的二项式系数相等,则该展开式中1x2的系数为    ;(2)求(2x+1x)4的展开式中各项的二项式系数和及各项系数和.解:(1)因为展开式中的第3项和第7项的二项式系数相同,即C2n=C6n,所以n=6+2=8,所以展开式的通项为Tk+1=Ck8?x8-k?(1x)k=Ck8x8-2k,令8-2k=-2,解得k=5,所以T6=C58?(1x)2,所以1x2的系数为C58=56.(2)该展开式的各项二项式系数和为:C04+C14+C24+C34+C44=24=16.令二项式中变量x=1,得各项系数之和为34=81.小结:二项式系数和项的系数是二项式定理的基本概念,两者本质区别为:展开式中第r+1项的二项式系数是Crn(r=0,1,2,…,n),而第r+1项的系数是指经过化简整理后该项未知数前的最简系数(含正负).三、证明整除或余数问题例7 试证大于(1+3)2n(n∈N)的最小整数能被2n+1整除.证明:因为-1<1-3<0,所以(1-3)2n∈(0,1).由二项式定理可得(1+3)2n+(1-3)2n=2(3n+C22n3n-1+…)是偶数,记为2k(k∈N),则大于(1+3)2n的最小整数为2k.又因为2k=(1+3)2n+(1-3)2n=[(1+3)2]n+[(1-3)2]n=2n[(2+3)n+(2-3)n],由二项式定理知(2+3)n+(2-3)n是偶数,记为2k1(k1∈N),所以2k=2n+1k1.即命题得证.评析:本题的难点在于如何表示题中的最小整数.由(1+3)2n联想到其对偶式(1-3)2n∈(0,1),然后考虑二者之和即可.二项式定理在其中的用处为利用其展开式证明二者之和为偶数.例8 当n∈N*时,求证:32n+2-8n-9能被64整除.证明:32n+2-8n-9=9n+1-8n-9=(1+8)n+1-8n-9=C0n+1+C1n+1?8+C2n+1?82+C3n+1?83+…+Cnn+1?8n+Cn+1n+1?8n+1-8n-9 =1+(n+1)?8+C2n+1?82+C3n+1?83+…+Cnn+1?8n+Cn+1n+1?8n+1-8n-9=82(C2n+1+8C3n+1+…+8n-2?Cnn+1+8n-1?Cn+1n+1),因为C2n+1+8C3n+1+…+8n-2?Cnn+1+8n-1?Cn+1n+1是整数.所以32n+2-8n-9能被64整除.例9 今天是星期日,再过10100天后是星期几?解:10100=10050=(98+2)50=C0509850+C1509849×2+…+C495098×249+C5050250,因为前50项都能被7整除,只需考查250除以7所得余数.250=4×248=4×816=4×(7+1)16=4[C016716+C116715+…+C15167+C1616].于是得余数为4,故10100天后是星期四.小结:证明整除性问题,或求余数问题.关键是找准指数式中的底数和除数的联系,将指数式分拆成与除数有关联的两个数的和或差,再用二项式定理展开,要注意余数为非负数且不大于除数.四、求近似值例10 求(0.997)5的近似值(精确到0.001).分析:(0.997)5=(1-0.003)5,简单构造二项式定理模型,展开按精确度要求取前两项计算便得符合条件的结果.解:(0.997)5=(1-0.003)5=1-C150.003+C25(0.003)2-…-C55(0.003)5≈1-5×0.003=0.985.例11 某地现有耕地10000公顷.规划10年后粮食单产比现在增加22%,人均粮食占有量比现在提高10%.结果人口年增长率为1%,那么耕地平均每年至多只能减少多少公顷(精确到1公顷)?(粮食单产=总产量/耕地面积,人均粮食占有量=总产量/总人口数).解:设耕地平均每年至多只能减少x公项,又设该地区现有人口为P人,粮食单产为M 吨/公顷.依题意得不等式M×(1+22%)×(104-10x)P×(1+1%)10≥M×104P×(1+10%)化简得x≤103×[1-1.1×(1+0.01)101.22].因为103×[1-1.1×(1+0.01)101.22]=103×[1-1.11.22×(1+C110×0.01+C210×0.012+…)]≈103×[1-1.11.22×1.1045]≈4.1所以x≤4(公顷)答:按规则该地区耕地平均每年至多只能减少4公顷.小结:求近似值问题常用二项式定理展开,根据精确度决定所取项数.五、证明恒等式或不等式例12 证明:C0n+32C2n+34C4n+…+3nCnn=2?4n-1+2n-1(n为偶数,n∈N*).证明:因为n为偶数,所以(1+3)n=C0n+3C1n+32C2n+…+3nCnn,(1-3)n=C0n-3C1n+32C2n-…+3nCnn两式相加得4n+2n=2(C0n+32C2n+34C4n+…+3nCnn),所以C0n+32C2n+34C4n…+3nCnn=2?4n-1+2n-1.例13 求证C1n+2C2n+…+nCnn=n2n-1.证明:由二项式定理有:(1+x)n=xn+C1nxn-1+…+Cn-1nx+Cnn.对上式以x为自变量求导得:n(1+x)n-1=nxn-1+C1n(n-1)xn-2+C2n(n-1)xn-3+…+Cn-1n.取x=1有n2n-1=n+(n-1)C1n+(n-2)C2n+…+Cn-1n.又因组合数性质:Cmn=Cn-mn得n?2n-1=nCnn+(n-1)Cn-1n+(n-2)Cn-2n+…+2C2n+C1n,∴原式得证.小结:关于组合恒等式的证明,关键在于熟悉二项式定理的展开形式及结构特点,要善于把所证问题用数学方法合理的转化为二项式定理的表达式形式.例14 求证:2≤(1+1n)n≤3-12n-1,(n∈N*).证明:由二项式定理得(1+1n)n=C0n+C1n1n+C2n1n2+…+Cnn1nn=1+1+C2n1n2+…≥2.又(1+1n)n=C0n+C1n1n+C2n1n2+…+Cnn1nn=2+12!(1-1n)+13!(1-1n)(1-2n)+…+1n!(1-1n)(1-2n)?…?(1-n-1n)≤2+12!+13!+…+1n!≤2+12+122+123+…+12n-1=3-12n-1.例15 设a,b∈R+,n∈N,求证:an+bn2≥a+b2n.分析:设a=s+d,b=s-d,(s,d∈R+且s>d),则a+b=2s,再用二项式定理解题.证明:设a=s+d,b=s-d,(s,d∈R+且s>d),于是有an+bn=(s+d)n+(s-d)n=2[C0nsn+C2nsn-2d2+…]≥2sn.又因为a+b=2s,所以an+bn2≥2sn2=sn=a+b2n.即题目得证. 评析:此题表面看似与二项式定理无关,但换元后便露出其本质.它的结论也可以写成nan+bn2≥a+b2.二项式定理是证明这一不等式简捷且有效的方法.例16 设a,b∈R+,且1a+1b=1.求证:对每个n∈N*都有(a+b)n-an-bn≥22n-2n+1.分析:因为a,b∈R+,且1a+1b=1,所以ab≥2,(a+b)n-an-bn=12[(an-1b+abn-1)C1n+(an-2b2+a2bn-2)C2n+…+(abn-1+an-1b)Cn-1n],再利用均值不等式求证.证明:由1=1a+1b≥2abab≥2,及二项式定理得(a+b)n-an-bn=C0nan+C1nan-1b+…+Cn-1nabn-1+Cnnbn-an-bn=C1nan-1b+C2nan-2b2+…+Cn-2na2bn-2+Cn-1nabn-1=12[(an-1b+abn-1)C1n+(an-2b2+a2bn-2)C2n+…+(abn-1+an-1b)Cn-1n]≥(ab)n(C1n+C2n+…+Cn-1n)≥2n(2n-2)=22n-2n+1.小结:利用二项式定理证明不等式,是二项式定理的一个重要应用.一般情况,在二项式展开式中取舍若干项,即可将相等关系转化为不等关系,从而获得相关不等式.特别在有关幂不等式和组合不等式方面有独特作用.六、在求值问题中的应用例17 已知等式(x2+2x+2)5=a0+a1(x+1)+a2(x+1)2+…+a9(x+1)9+a10(x+1)10,其中ai(i=0,1,2,…,10)为实常数,求:(1)∑10n=1an的值;(2)∑10n=1nan的值.解:(1)令x=-1,得a0=1;令x=0,得a0+a1+a2+…+a9+a10=25=32.故∑10n=1an=a1+a2+…+a10=31.(2)等式(x2+2x+2)5=a0+a1(x+1)+a2(x+1)2+…+a9(x+1)9+a10(x+1)10两边对x求导,得5(x2+2x+2)4?(2x+2)=a1+2a2(x+1)+…+9a9(x+1)8+10a10(x+1)9.在5(x2+2x+2)4?(2x+2)=a1+2a2(x+1)+…+9a9(x+1)8+10a10(x+1)9中,令x=0,整理得∑10n=1nan=a1+2a2+…+9a9+10a10=5?25=160.评析:“取特殊值法”是解决二项式系数问题常用的方法――根据题目要求,灵活赋给字母不同的值.第二问要先利用导数得到nan的形式,然后再赋值求解.例18 用{x}表示实数x的小数部分,若a=(513+18)99,则a{a}的值为多少?解:令b=(513-18)99,因为(513-18)∈(0,1),所以b∈(0,1),由二项式定理有a=(513+18)99=C099(513)99+C199(513)98×18+…+Cr99(513)99-r×18r+…+C9899(513)×1898+C99991899,b=(513-18)99=C099(513)99-C199(513)98×18+…+(-1)rCr99(513)99-r×18r+…+C9899(513)×1898-C99991899,因为a-b=2[C199(513)98×18+…+C99991899]是正整数,所以{a}=b,所以a{a}=(513+18)99(513-18)99=[(513+18)(513-18)]99=1.评析:此题表面看较为困难,但若能发现0<513-18<1,且(513+18)(513-18)=1,巧妙构造b=(513-18)99来替代{a},问题便能迎刃而解.本题所用方法与例7相同.(作者:李苇,江苏省黄桥中学)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题:二项式定理的应用
[考点搜索]
1. 已知二项式,探求二项展开式中 的特殊项.
2. 已知三项式,求展开式中某一项 或某一项的系数.
3. 求展开式中某些项的系数和与差. 4. 二项展开式定理和二项展开式的 性质的综合应用.
1. 已知二项式,探求二项展开式中的特殊项.
[例1]
在 x2
1
9




r
(1)
r
C1r0
10
x
3 2
r
.
此项系数为(1)r C1r0,故每项系数的绝对值与 对应的二项式
系数相等,由二项式系数性质 ,展开式中中间一项即第 六项的二
项式系数最大为 C150,但第6项系数为 C150,显然不是最大的.又因
第5项和第7项的系数相等且为 C140 C160,再由二项式系数的增减
[例1]
在 x2
1
9
的展开式中,求 :
2x
(1) 第6项; (2) 第3项的系数; (3) 含x9的项; (4) 常数项.
(3) 设第r
1项含x 9项, 则Tr 1
C9r
(
x
2
)9r
1 2x
r
1 2
r
C9r
x183r
(*)
令18 3r
9, 则r
3,即第4项含x 9 . T
4
1 2
C2 n2
1
C43 C42 C52 L
C2 n2
1
C53 C52 LC2 n2源自1LC3 n3
1
n(n2 6n 11) 6
1. 已知二项式,探求二项展开式中的特殊项.
练习

x
1
n
展开式中前三
24 x
项系数成等差数列,求 :
(1) 展开式中含x的一次幂的项; (2) 展开式中所有含x的有理项; (3) 展开式中系数最大的项.
中,

:
2x
(1) 第6项; (2) 第3项的系数; (3) 含x9的项; (4) 常数项.
[解析]
(1)T6
C95 (x2 )4
1 2x
5
63 16
x3,即第6项为
63 16
x3.
(2)
T3
C92
(
x
2
)
7
1 2x
2
36
x14
1 4x2
9 x12 ,
故第3项的系数为9.
1. 已知二项式,探求二项展开式中的特殊项.
性规律可知C140即为最大项.因此,系数最大的项为第 5项和第7项.
T5 (1)4 C140x106 210x4
T7 (1)6 C160x109 210x
点评:利用二项式定理求展开式的某一项或指定项的系数,实际上就 是对二项展开式的通项公式的考查,此类问题是高考考查的重点.
1. 已知二项式,探求二项展开式中的特殊项.
[例3] 求 x 1 15展开式的常数项.
[解析]
法一
:
x
x
1 x
15
x
1 x
5 1 ,
它的展开式通项为
Tr 1
C5r
x
1 x
5r
(1) r
(0
r
5)
当r 5时,T6 C55 1(1)5 1
当0
r
5时,
x
1
5r
的展开式的通项为
x
Tk1
C5kr
x 5r k
1 x
k
C5kr
x5r2k (0 k
5 r)
0 r 5且r Z, r只能取1或3,相应的k值分别为2或1,
即kr
1, 2,
r k
3,
1.
常数项为C51
C42
(1)1
C53
C21
(1)3
(1)
51.
2. 已知三项式,求展开式中某一项或某一项的系数.
[例3] 求 x 1 15展开式的常数项.
[练习]
在1 x3 (1 x)4 1 x5 (1 x)n2展
开式中, 含x 2的项的系数是多少?
解1Q (1 x)3 (1 x)4 L (1 x)n2 (1 x)3[1 (1 x)n ] 1 (1 x)
(1 x)3 (1 x)n3
x
x2项的系数为: C33
C3 n3
1
C3 n3
C33
)r x
C8r
2r
4 3 r
x 4 ,
令4 3 r 1,得r 4. 4
x的一次项为Tr 1
C84
24
x
35 8
x.
练习 1. 已知若二项x式,241探x求n二展项开式展中开前式三中项的系特数殊成项等. 差数列,求 :
(1) 展开式中含x的一次幂的项;
(2) 展开式中所有含x的有理项;
(3) 展开式中系数最大的项.
x
(解法二)由于本题只有 5次, 也可以直接展开
x
1 x
5 1
,即
x
1 x
5 1
x
1 x
5
5
x
1 x
4
10
x
1 x
3
10
x
1 x
2
5 x
1 x
1.
由x 1 的对称性知,只有在x 1 的偶次幂中,某展开式才会出现
3
C93
x
9
21 2
x9.
(4)由(*)式,令18 3r 0, r 6,即第7项为常数项,
T7
1 2
6
C96
21 ,常数项为 21 .
16
16
1. 已知二项式,探求二项展开式中的特殊项.
[例2] 二项式 [解析] Tr1
x
1 x
10
的展开式,
C1r0x10r
1 x
系数最大的项为_____
于是CC88kk
2k 2k
C8k 1 2k 1 C8k 1 2k 1
2k
3
2
7
系数最大项为第 3项和第4项, 分别是T3 7x 5 ,T4 7x 4 .
2. 已知三项式,求展开式中某一项或某一项的系数.
[例3]
求 x 1 15展开式的常数项. x
2. 已知三项式,求展开式中某一项或某一项的系数.
由(1)Tr1 C8r (
x )8r
( 1 24
)r x
C8r
2r
4 3r
x 4
(2) 令4 3 r Z(且0 r 8),
4
r
0,4,8,即有理项为 T1
x4 ,T5
35 8
x,T9
1 256 x2
.
(3)记第Tr1项系数为tr1,设第tk 1最大,则有tk 1 t(k 1)1,且tk 1 t(k 1)1
(n
3)(n
2)(n+1)-6 6
n3
6n2 6
11n
n(n2
6n 6
11)
1. 已知二项式,探求二项展开式中的特殊项.
[练习] 在1 x3 (1 x)4 1 x5 (1 x)n2展开式中,
含x2的项的系数是多少?
解2:x2的系数为
C32 C42 C52 L
C2 n2
C33 C32 C42 C52 L
1. 已知二项式,探求二项展开式中的特殊项.
练习 若
x
1 24
x
n
展开式中前三项系数成
等差数列, 求
:
(1) 展开式中含x的一次幂的项;
(2) 展开式中所有含x的有理项;
(3) 展开式中系数最大的项.
[解析]
(1)由条件Cn0
Cn2
1 22
2Cn1
1 2
,
得n
8.
Tr1 C8r (
x )8r
( 1 24
相关文档
最新文档