(完整word版)高考数学二项式定理专题复习专题训练)
二项式定理高考题(含答案)精选全文
精选全文完整版(可编辑修改)二项式定理高考题(含答案)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN2二项式定理 高考真题一、选择题1.(2012·四川高考理科·T1)相同7(1)x +的展开式中2x 的系数是( D )(A )42 (B )35 (C )28 (D )212.(2011·福建卷理科·T6)(1+2x )5的展开式中,x 2的系数等于( B )(A )80 (B )40 (C )20 (D )103.(2012·天津高考理科·T5)在5212x x ⎛⎫- ⎪⎝⎭的二项展开式中,x 的系数为 ( D ) (A)10 (B)-10(C)40 (D)-40 4.(2011.天津高考理科.T5)在6的二项展开式中,2x 的系数为 ( C )(A )154- (B )154(C )38- (D )38 5.(2012·重庆高考理科·T4)821⎪⎭⎫ ⎝⎛+x x 的展开式中常数项为( B ) (A)1635 (B)835 (C)435 (D)105 6.(2012·重庆高考文科·T4)5)31(x -的展开式中3x 的系数为( A )(A)270- (B)90- (C)90 (D)2707. (2013·大纲版全国卷高考理科·T7)()()8411++x y 的展开式中22x y 的系数是 ( D )A.56B.84C.112D.1688.(2011·新课标全国高考理科·T8)512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,则该展开式中常数项为( D ) (A )-40 (B )-20 (C )20(D )409. (2011·重庆高考理科·T4)n x )31(+(其中n N ∈且6≥n )的展开式中5x 与6x 的系数相等,则=n ( B ) (A)6 (B)7 (C)8(D)93 10.(2011·陕西高考理科·T4)6(42)x x --(x ∈R )展开式中的常数项是 (C )(A )20- (B )15- (C )15 (D )20二、填空题11. (2013·天津高考理科·T10)6x ⎛- ⎝ 的二项展开式中的常数项为 15 . 12.(2011·湖北高考理科·T11)18x ⎛ ⎝的展开式中含15x 的项的系数为 17 .13.(2011·全国高考理科·T13)20的二项展开式中,x 的系数与x 9的系数之差为 0 .14.(2011·四川高考文科·T13)91)x +(的展开式中3x 的系数是 84 (用数字作答).15.(2011·重庆高考文科·T11)6)21(x +的展开式中4x 的系数是 240 . 16.(2011·安徽高考理科·T12)设2121221021)1x a x a x a a x ++++=- (,则1110a a += 0 .17.(2011·广东高考理科·T10)72()x x x-的展开式中,4x 的系数是___84___ (用数字作答)18.(2011·山东高考理科·T14)若62x x ⎛- ⎝⎭的展开式的常数项为60,则常数a 的值为 4 .19.(2012·大纲版全国卷高考理科·T15)若n xx )1(+的展开式中第3项与第7项的二项式系数相等,则该展开式中21x的系数为__56_____. 20.(2013·安徽高考理科·T11)若8⎛+ ⎝x 的展开式中4x 的系数为7,则实数a ____12_____。
高考数学专题《二项式定理》练习
专题11.3 二项式定理1.(2021·河北·藁城新冀明中学高二月考)已知()1nx +=a 0+a 1x +a 2x 2+…+a n x n ,若a 0+a 1+a 2+…+a n =16,则自然数n 等于( )A .6B .5C .4D .32.(2021·福建宁德·高三期中)对任意实数x ,有423401234(2)(2)(2)(2)x a a x a x a x a x =+⋅-+⋅-+⋅-+⋅-,则3a =()A .6B .7C .8D .103.(2017·全国高考真题(理))(+)(2-)5的展开式中33的系数为( )A.-80B.-40C.40D.804.(2021·上海·闵行中学高三期中)62⎛⎫+ ⎪⎝⎭ax x 展开式的常数项为20,则实数a =_____________.5.(2021·上海·曹杨二中高三期中)在22nx x ⎛⎫+ ⎪⎝⎭的展开式中,二项式系数之和为256,则展开式中4x 项的系数为___________.6.(2021·广东福田·高三月考)已知多项式()()34432123411x x x a x a x a x a ++-=++++,则1a =________.7.(2021·浙江·模拟预测)已知()()()5455410212121x a x a x a x a =+++++++ ,则4a =___________.8.(2021·浙江·模拟预测)已知88018(1)x a a x a x +=+++…,2x 的系数为______;系数最大的项是第______项.9.(2020·上海市浦东中学高三月考)在1)2nx的二项式中,所有项的二项式系数之和为256,则常数项等于__________.10.(2021·山东师范大学附中高三月考)在二项式1nx x ⎛⎫- ⎪⎝⎭的展开式中恰好第3项的二项式系数最大,则展开式中的常数项是___________.1.(2021·河北·唐山市第十中学高三期中)若()()()()34520122201201220121111x x x x a a x a x a x ++++++++=++++ ,则3a 等于()x y x y x y 练基础练提升A .42012C B .32013C C .42013C D .52012C 2.【多选题】(2021·贵州遵义·高二期末(理))将杨辉三角中的每一个数rn C 都换成分数()11r n n C +,可得到如图所示的分数三角形,成为“莱布尼茨三角形”,从莱布尼茨三角形可以看出,存在x 使得()()111111r xr n n n n C n C nC -+=++,则x 的值是().11121213 16 1314 1121121415120 130 120 151613016016013016A .rB .1r -C .1r +D .2r +3.【多选题】(2021·湖北武汉·高三期中)已知二项式6ax ⎛⎝,则下列说法正确的是( )A .若2a =,则展开式的常数为60B .展开式中有理项的个数为3C .若展开式中各项系数之和为64,则3a =D .展开式中二项式系数最大为第4项4.(2021·全国·模拟预测)()6213x x x ⎛⎫-- ⎪⎝⎭的展开式中,2x 项的系数是___________.(用数字作答)5.(2021·浙江·学军中学高三期中)在nx ⎛⎝的展开式中,所有项的系数和为64,则n =___________.常数项的系数为___________.6.(2021·河南·高三月考(理))若512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为0,则该展开式的常数项为___________.7.(2021·全国·高二课时练习)在杨辉三角中,它的开头几行如图所示,则第______行会出现三个相邻的数的比为3:4:5.8.(2021·浙江·模拟预测)二项式61x ⎫⎪⎭的展开式中,常数项为___________,系数最大的项为______________.9.(2021·全国·高二课时练习)求31||2||x x ⎛⎫+- ⎪⎝⎭的展开式中的常数项.10.(2021·全国·高二课时练习)求3451920(1)(1)(1)(1)(1)x x x x x ++++++++++ 的展开式中含3x 的项.1.(2019·全国高考真题(理))(1+2x 2 )(1+x )4的展开式中x 3的系数为( )A .12B .16C .20D .242.(2020·北京高考真题)在52)-的展开式中,2x 的系数为( ).A .5-B .5C .10-D .103.(2020·全国高考真题(理))25()()x x y xy ++的展开式中x 3y 3的系数为( )A .5B .10C .15D .204.(2021·北京高考真题)341()x x-展开式中常数项为__________.5.(2021·浙江高考真题)已知多项式344321234(1)(1)x x x a x a x a x a -++=++++,则1a =___________,234a a a ++=___________.6.(2019·浙江高考真题)在二项式9)x +的展开式中,常数项是________;系数为有理数的项的个数是_______.练真题。
2024届高考数学复习:精选历年真题、好题专项(二项式定理)练习(附答案)
2024届高考数学复习:精选历年真题、好题专项(二项式定理)练习一. 基础小题练透篇1.已知(2x +1)n 的展开式中,第三项和第四项的二项式系数相等,则n =( ) A .7 B .6 C .5 D .42.[2023ꞏ上海市月考]在⎝⎛⎭⎫x -1x 7的二项展开式中,系数最大的是第( )项A .3B .4C .5D .63.[2023ꞏ福建省莆田第一中学高三考试]在⎝⎛⎭⎫x -2x 6的展开式中,常数项为( )A .80B .-80C .160D .-160 4.[2023ꞏ福建省福州第八中学高三训练](x +2y )(x -y )5的展开式中的x 3y 3项系数为( ) A .30 B .10 C .-30 D .-105.[2023ꞏ重庆市检测]若(x 2+1)(4x +1)8=a 0+a 1(2x +1)+a 2(2x +1)2+…+a 10(2x +1)10,则a 1+a 2+…a 10等于( )A .2B .1C .54D .-146.[2023ꞏ江西省联考]已知(x +1)4+(x -2)8=a 0+a 1(x -1)+a 2(x -1)2+…+a 8(x -1)8,则a 3=( )A .64B .48C .-48D .-647.[2023ꞏ湖南省高三第一次大联考]设(1+2x )n =a 0+a 1x +a 2x 2+…+a n x n ,若a 5=a 6,则n =( )A .6B .7C .8D .98.[2023ꞏ云南省昆明市高三检测]若(3x +x )n 的展开式的所有项的系数和与二项式系数和的比值是32,则展开式中x 3项的系数是__________.二. 能力小题提升篇1.[2023ꞏ辽宁省凤城市月考]在(x -1)n 的二项展开式中,仅有第6项的二项式系数最大,则n =( )A .8B .9C .10D .112.[2023ꞏ江苏省常州市高三模拟 ]若(1-ax +x 2)(1-x )8的展开式中含x 2的项的系数为21,则a =( )A .-3B .-2C .-1D .13.[2023ꞏ上海市一模]二项式(x +13x)30的展开式中,其中是有理项的项数共有( )A .4项B .7项C .5项D .6项4.[2023ꞏ吉林省吉林市月考]若二项式⎝⎛⎭⎫12-x n 的展开式中所有项的系数和为164 ,则展开式中二项式系数最大的项为( )A .-52 x 3B .154 x 4 C .-20x 3 D .15x 45.[2023ꞏ浙江省高三联考](x-23x)6的展开式的中间一项的系数是__________.(用数字作答).6.[2023ꞏ浙江嘉兴检测]已知⎝⎛⎭⎫3x 2+1x n展开式中的各二项式系数的和比各项系数的和小240,则n =__________;展开式中的系数最大的项是________.三. 高考小题重现篇1.[2020ꞏ北京卷]在(x -2)5的展开式中,x 2的系数为( ) A .-5 B .5 C .-10 D .102.[2019ꞏ全国卷Ⅲ](1+2x 2)(1+x )4的展开式中x 3的系数为( ) A .12 B .16 C .20 D .243.[2022ꞏ新高考Ⅰ卷]⎝⎛⎭⎫1-yx (x +y )8的展开式中x 2y 6的系数为________________(用数字作答).4.[2020ꞏ全国卷Ⅲ]⎝⎛⎭⎫x 2+2x 6的展开式中常数项是______(用数字作答).5.[2021ꞏ上海卷]已知二项式(x +a )5展开式中,x 2的系数为80,则a =________. 6.[2021ꞏ浙江卷]已知多项式(x -1)3+(x +1)4=x 4+a 1x 3+a 2x 2+a 3x +a 4,则a 1=________,a 2+a 3+a 4=________.四. 经典大题强化篇1.已知(2x -1)5=a 0x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5.求下列各式的值: (1)a 0+a 1+a 2+…+a 5; (2)|a 0|+|a 1|+|a 2|+…+|a 5|; (3)a 1+a 3+a 5.2.[2023ꞏ江西省景德镇一中考试]已知函数f (n ,x )=⎝⎛⎭⎫2m +m x n (m >0,x >0).(1)当m =2时,求f (7,x )的展开式中二项式系数最大的项;(2)若f (10,x )=a 0+a 1x +a 2x 2 +…+a 10x 10 ,且a 2=180,参考答案一 基础小题练透篇1.答案:C答案解析:因为(2x +1)n的展开式中,第三项和第四项的二项式系数相等,所以C 2n =C 3n ,由组合数的性质可得n =2+3=5.2.答案:C答案解析:在二项式⎝ ⎛⎭⎪⎫x -1x 7 的展开式中,通项公式为T r +1=C r 7 ·x 7-r ·⎝ ⎛⎭⎪⎫-1x r =(-1)r C r7 x 7-2r,故第r +1项的系数为(-1)r C r7 ,当r =0,2,4,6时,系数为正,因为C 07 <C 17 =C 67 <C 27 <C 47 ,所以当r =4时,系数最大的项是第5项. 3.答案:D答案解析:由于x ,1x互为倒数,故常数项为第4项,即常数项为C 36 x 3⎝ ⎛⎭⎪⎫-2x 3 =20×(-8)=-160.故选D. 4.答案:B答案解析:因为(x +2y )(x -y )5=x (x -y )5+2y (x -y )5,(x -y )5的通项为:T r +1=C r5 x 5-r (-y )r ,令r =3,则T 4=C 35 x 2(-y )3,令r =2,则T 3=C 25 x 3(-y )2,所以x 3y 3的系数为C 35 (-1)3+2C 25 (-1)2=-10+20=10. 故选B. 5.答案:D答案解析:令x =0,则a 0+a 1+a 2+…+a 10=(0+1)×(0+1)8=1,令x =-12,则a 0=⎝ ⎛⎭⎪⎫14+1 ×(-2+1)8=54 ,∴a 1+a 2+…+a 10=1-54 =-14 . 6.答案:C答案解析:由(x +1)4+(x -2)8=[(x -1)+2]4+[(x -1)-1]8=a 0+a 1(x -1)+a 2(x -1)2+…+a 8(x -1)8,得a 3·(x -1)3=C 14 ·(x -1)3·2+C 58 ·(x -1)3·(-1)5,∴a 3=8-C 58 =-48.故选C. 7.答案:C答案解析:(1+2x )n 展开式第r +1项T r +1=C r n (2x )r =C r n 2r x r,∵a 5=a 6,∴C 5n 25=C 6n 26,即C 5n =2C 6n ,∵n !5!(n -5)! =2×n !6!(n -6)! , 整理得n -5=3,∴n =8. 故选C.8.答案:15答案解析:令x =1,得所有项的系数和为4n ,二项式系数和为2n ,所以4n 2n =2n=32,即n =5,(3x +x )5的第r +1项为C r5 ·(3x )5-r·⎝ ⎛⎭⎪⎫x 12 r=C r 5 ·35-r ·x 5-r2 .令5-r2=3,得r =4,所以x 3项的系数是C 45 ×3=15.二 能力小题提升篇1.答案:C答案解析:因为在(x -1)n的二项展开式中,仅有第6项的二项式系数最大,即C 5n 最大,所以n =10.2.答案:C答案解析:(1-x )8展开式第r +1项T r +1=C r 8 18-r (-x )r =(-1)r C r 8 x r,(1-ax +x 2)(1-x )8的展开式中含x 2的项的系数为1·(-1)2C 28 -a ·(-1)C 18 +1·(-1)0C 08 ,所以1·(-1)2C 28 -a ·(-1)C 18 +1·(-1)0C 08 =21,解方程可得a =-1,故选C.3.答案:D答案解析:二项式(x +13x )30的展开式中,通项公式为C r 30 ·(x )30-r·(13x)r=C r30 ·x15-56r,0≤r ≤30,∴r =0,6,12,18,24,30时满足题意,共6项. 4.答案:A答案解析:令x =1可得⎝ ⎛⎭⎪⎫12-1 n=⎝ ⎛⎭⎪⎫-12 n =164 =⎝ ⎛⎭⎪⎫-12 6 ,所以n =6,展开式有7项,所以二项式⎝ ⎛⎭⎪⎫12-x 6 展开式中二项式系数最大的为第4项T 4=(-1)3C 36 ⎝ ⎛⎭⎪⎫12 6-3x 3=-52x 3. 5.答案:-16027答案解析:由二项式展开式可知,⎝⎛⎭⎪⎪⎫x 3-23x 6的展开式的中间一项的系数为C 36 ⎝ ⎛⎭⎪⎫13 3·(-2)3=-16027. 6.答案:4 108x 5答案解析:⎝ ⎛⎭⎪⎫3x 2+1x n 展开式中,各二项式系数的和比各项系数的和小240,即2n -(3+1)n =-240,化简得22n -2n -240=0,解得2n =16或2n=-15(不合题意,舍去),所以n =4.所以⎝ ⎛⎭3x 2+1x 4=81x 8+4×27x 5+6×9x 2+4×3x +1x4 ,展开式中的系数最大的项是108x 5.三 高考小题重现篇1.答案:C答案解析:由二项式定理得(x -2)5的展开式的通项T r +1=C r 5 (x )5-r (-2)r=C r 5 (-2)rx 5-r2 ,令5-r 2=2,得r =1,所以T 2=C 15 (-2)x 2=-10x 2,所以x 2的系数为-10.2.答案:A答案解析:展开式中含x 3的项可以由“1与x 3”和“2x 2与x ”的乘积组成,则x 3的系数为C 34 +2C 14 =4+8=12.3.答案:-28答案解析:因为⎝⎛⎭⎪⎫1-y x()x +y 8=()x +y 8-y x()x +y 8,所以⎝⎛⎭⎪⎫1-y x()x +y 8的展开式中含x 2y 6的项为C 68 x 2y 6-y xC 58 x 3y 5=-28x 2y 6,⎝ ⎛⎭⎪⎫1-y x ()x +y 8的展开式中x 2y 6的系数为-28. 4.答案:240答案解析:展开式的通项为T r +1=C r6 (x 2)6-r·⎝ ⎛⎭⎪⎫2x r=2r C r 6 x12-3r ,令12-3r =0,解得r =4,故常数项为24C 46 =240.5.答案:2答案解析:(x +a )5的展开式的通项为T r +1=C r 5 x 5-r a r ,令5-r =2,得r =3,则C 35 a 3=80,解得a =2.6.答案:5 10答案解析:(x -1)3展开式的通项T r +1=C r 3 x 3-r ·(-1)r ,(x +1)4展开式的通项T k +1=C k 4 x 4-k ,则a 1=C 03 +C 14 =1+4=5;a 2=C 13 (-1)1+C 24 =3;a 3=C 23 (-1)2+C 34 =7;a 4=C 33 (-1)3+C 44 =0.所以a 2+a 3+a 4=3+7+0=10.四 经典大题强化篇1.答案解析:(1)令x =1,得a 0+a 1+a 2+…+a 5=1.(2)令x =-1,得-35=-a 0+a 1-a 2+a 3-a 4+a 5.由(2x -1)5的通项T r +1=C r 5 (-1)r ·25-r ·x 5-r, 知a 1,a 3,a 5为负值,所以|a 0|+|a 1|+|a 2|+…+|a 5|=a 0-a 1+a 2-a 3+a 4-a 5=35=243. (3)由a 0+a 1+a 2+…+a 5=1,-a 0+a 1-a 2+…+a 5=-35,得2(a 1+a 3+a 5)=1-35,所以a 1+a 3+a 5=1-352=-121.2.答案解析:(1)当m =2时,f (7,x )=⎝ ⎛⎭⎪⎫1+2x 7 的展开式共有8项,二项式系数最大的项为第四项或第五项,所以T 4=C 37 ⎝ ⎛⎭⎪⎫2x 3 =280x3 或T 5=C 47 ⎝ ⎛⎭⎪⎫2x 4=560x4 .(2)①f (10,x )=⎝ ⎛⎭⎪⎫2m +m x 10 的通项公式为T r +1=C r 10 ⎝ ⎛⎭⎪⎫2m10-r⎝ ⎛⎭⎪⎫m x r=210-r ·m 2r -10·C r 10 x -r ,且f (10,x )=a 0+a 1x+a 2x2 +…+a n xn ,所以1x2 的系数为a 2=28C 210 m -6=180,解得m=2,所以f (10,x )的通项公式为T r +1=C r10 ⎝ ⎛⎭2x r=2r C r 10 x -r ,所以a r =2r C r10 ,当r =0时,a 0=1,令x =1,∑10i =1a i =310-1=59 048, ②设a r =2r C r10 为a i (0≤i ≤10)中的最大值,则⎩⎨⎧2r C r 10 ≥2r -1C r -110 2r C r 10 ≥2r +1C r +110, 解得⎩⎪⎨⎪⎧2(11-r )≥r r +1≥2(10-r ) ,即193 ≤r ≤223 ,r ∈N ,所以r =7,所以(a i )max =a 7=27C 710 =15 360.。
二项式定理习题(带答案)
(A)-540
(B)-162
(C)162
(D)540
33、A 解析:令 x=1,得 2n=64,得 n=6.设常数项为 Tr+1= Cr6(3 )6-r·(- )r
=Cr636-r·(-1)r·x3-r 令 3-r=0 得 r=3.∴常数项 T4=-540.
36、在
的二项展开式中,若只有 的系数最大,则
6、C7、C8、A9、A
16、3.若
的展开式中 的系数是(
A.14 )A
B.-14
B
C
C.42 D
D.-42
17、在
的展开式中 的系数是 ( )A.-14 B.14 C.-28 D.28
16、B 解析:(x-1)(x+1)8=(x-1)(1+x)8,∴含 x5 的项为 x·C x4+(-1)C x5=14x5,∴x5 的系数是 14,故选 B. 17、B 解析:(x-1)(x+1)8=(x-1)(1+x)8,∴含 x5 的项为 x·C x4+(-1)C x5=14x5,∴x5 的系数是 14,故选 B.
(3)二项式系数的和:
C
0 n
C1 nCຫໍສະໝຸດ 2 nCk n
C
n n
2n
奇数项的二项式系数的和等于偶数项的二项式系数和.即
C0n +C2n +
=C1n +C3n +
=2n-1
对称性 (2)二项式系数的三个性质 增减性和最值
二项式系数和
基本题型
(一)通项公式的应用
1、 (2x 1 )6 的展开式中第三项的二项式系数为________;第三项的系数为_______; x
(完整版)二项式定理高考题(带答案)
1.2018年全国卷Ⅲ理】的展开式中的系数为A. 10B. 20C. 40D. 80【答案】C【解析】分析:写出,然后可得结果详解:由题可得,令,则,所以故选C.2.【2018年浙江卷】二项式的展开式的常数项是___________.【答案】7【解析】分析:先根据二项式展开式的通项公式写出第r+1项,再根据项的次数为零解得r,代入即得结果.详解:二项式的展开式的通项公式为,令得,故所求的常数项为3.【2018年理数天津卷】在的展开式中,的系数为____________. 【答案】决问题的关键.4.【山西省两市2018届第二次联考】若二项式中所有项的系数之和为,所有项的系数的绝对值之和为,则的最小值为( )A. 2B.C.D. 【答案】B5.【安徽省宿州市2018届三模】的展开式中项的系数为__________.【答案】-132【解析】【解析】分析:分析:由题意结合二项式展开式的通项公式首先写出展开式,由题意结合二项式展开式的通项公式首先写出展开式,然后结合然后结合展开式整理计算即可求得最终结果.详解:的展开式为:,当,时,,当,时,,据此可得:展开式中项的系数为.6.【2017课标1,理6】621(1)(1)x x++展开式中2x 的系数为的系数为 A .15 B .20 C .30 D .35 【答案】C 【解析】试题分析:因为6662211(1)(1)1(1)(1)x x x x x++=⋅++⋅+,则6(1)x +展开式中含2x 的项为2226115C x x ⋅=,621(1)x x ⋅+展开式中含2x 的项为44262115C x x x⋅=,故2x 前系数为151530+=,选C. 情况,尤其是两个二项式展开式中的r 不同. 7.7.【【2017课标3,理4】()()52x y x y +-的展开式中x 3y 3的系数为的系数为A .80- B .40-C .40 D .80【答案】C 【解析】8.【2017浙江,13】已知多项式()1x +3()2x +2=5432112345xa x a x a x a x a +++++,则4a =________,5a =________.【答案计数. 9.【2017山东,理1111】】已知()13nx +的展开式中含有2x 项的系数是54,则n = . 【答案】4【解析】试题分析:由二项式定理的通项公式()1C3C 3rrr r rr nnx x +T ==⋅⋅,令2r =得:22C 354n⋅=,解得4n =.【考点】二项式定理10.【2015高考陕西,理4】二项式(1)()n x n N ++∈的展开式中2x 的系数为15,则n =( )A .4B .5C .6D .7 【答案】C【解析】二项式()1nx +的展开式的通项是1C rr r nx +T=,令2r =得2x 的系数是2C n,因为2x 的系数为15,所以2C 15n=,即2300n n --=,解得:6n =或5n =-,因为n +∈N ,所以6n =,故选C . 【考点定位】二项式定理.【名师点晴】【名师点晴】本题主要考查的是二项式定理,本题主要考查的是二项式定理,本题主要考查的是二项式定理,属于容易题.属于容易题.属于容易题.解题时一定要抓住重解题时一定要抓住重要条件“n +∈N ”,否则很容易出现错误.解本题需要掌握的知识点是二项式定理,即二项式()na b +的展开式的通项是1C kn kkk n ab -+T =.11.【2015高考新课标1,理10】25()x x y ++的展开式中,52x y 的系数为( )(A )10 (B )20 (C )30 (D )60 【答案】C12.【2015高考湖北,理3】已知(1)nx +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( )A.122 B.112 C .102D .92【答案】D【解析】因为(1)nx +的展开式中第4项与第8项的二项式系数相等,所以73nn C C =,解得10=n ,所以二项式10(1)x +中奇数项的二项式系数和为9102221=⨯.13.【2015高考重庆,理12】5312xx ⎛⎫+ ⎪⎝⎭的展开式中8x 的系数是________(用数字作答). 【答案】52【解析】二项展开式通项为71535215511()()()22k k kkkk k T C x C xx--+==,令71582k -=,解得2k =,因此8x 的系数为22515()22C =.14.【2015高考广东,理9】在4)1(-x 的展开式中,x 的系数为 . 【答案】6.【解析】由题可知()()()44214411r rr rrr r T CxC x--+=-=-,令412r-=解得2r =,所以展开式中x 的系数为()22416C -=,故应填入6.【名师点睛】涉及二项式定理的题,一般利用其通项公式求解.15.【2015高考天津,理12】在614xx ⎛⎫- ⎪⎝⎭ 的展开式中,2x 的系数为 . 【答案】1516【解析】614xx ⎛⎫- ⎪⎝⎭展开式的通项为6621661144r rr r r rr T C x C x x --+⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,由622r -=得2r =,所以222236115416T C x x ⎛⎫=-=⎪⎝⎭,所以该项系数为1516. 16.【2015高考新课标2,理15】4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =__________. 【答案】3【解析】由已知得4234(1)1464x x x x x +=++++,故4()(1)a x x ++的展开式中x 的奇数次幂项分别为4ax ,34ax ,x ,36x ,5x ,其系数之和为441+6+1=32a a ++,解得3a =.【考点定位】二项式定理.17.【2015高考湖南,理6】已知5ax x ⎛⎫- ⎪⎝⎭的展开式中含32x 的项的系数为30,则a =( )A.3B.3-C.6 D-6 【答案】D.18.【2015高考上海,理11】在10201511x x ⎛⎫++ ⎪⎝⎭的展开式中,2x 项的系数为 (结果用数值表示). 【答案】45【解析】因为10101019102015201520151111(1)(1)(1)x x x C x x x x ⎛⎫⎛⎫++=++=++++⎪ ⎪⎝⎭⎝⎭L ,所以2x 项只能在10(1)x +展开式中,即为8210C x ,系数为81045.C =19.(2016年北京高考)在6(12)x -的展开式中,2x 的系数为__________________.(用数字作答)字作答)【答案】60.20.(2016年山东高考)若(a x2+1x)5的展开式中x5的系数是—80,则实数a=_______. 【答案】-221.(2016年上海高考)在nxx⎪⎭⎫⎝⎛-23的二项式中,所有项的二项式系数之和为256,则常数项等于_________ 【答案】11222.(2016年四川高考)设i为虚数单位,则6(i)x+的展开式中含x4的项为的项为(A)-15x4(B)15x4(C)-20i x4(D)20i x4【答案】A23.(2016年天津高考)281()xx-的展开式中x2的系数为__________.(用数字作答)【答案】56-24.(2016年全国I高考)5(2)x x+的展开式中,x3的系数是的系数是 .(用数字填写答案)案) 【答案】10。
(完整版)高中数学二项式定理全章复习(题型完美版)
第十一讲二项式定理课程类型:□复习□预习□习题针对学员基础:□基础□中等□优秀本章主要内容:1•二项式定理的定义;2•二项式定理的通项公式;3•二项式定理的应用•本章教学目标:1•能用计数原理证明二项式定理(重点);2•能记住二项式定理和二项展开式的通项公式(重点);3•能解决与二项式定理有关的简单问题(重点、难点)•课外拓展 __________________________________________________________________________________________杨辉三角历史北宋人贾宪约1050年首先使用“贾宪三角”进行高次开方运算。
13世纪中国宋代数学家杨辉在《详解九章算术》里讨论这种形式的数表,并说明此表引自11世纪前半贾宪的《释锁算术》,并绘画了“古法七乘方图”。
故此,杨辉三角又被称为“贾宪三角”。
元朝数学家朱世杰在《四元玉鉴》(1303年)扩充了“贾宪三角”成“古法七乘方图”。
意大利人称之为“塔塔利亚三角形”以纪念在16世纪发现一元三次方程解的塔塔利亚。
在欧洲直到1623年以后,法国数学家帕斯卡在13岁时发现了“帕斯卡三角”。
布莱士•帕斯卡的著作Trait e du triangle arithm e tique (1655年)介绍了这个三角形。
帕斯卡搜集了几个关于它的结果,并以此解决一些概率论上的问题,影响面广泛,Pierre Raymond de Montmort (1708年)和亚伯拉罕•棣•美弗(1730年)都用帕斯卡来称呼这个三角形。
近年来国外也逐渐承认这项成果属于中国,所以有些书上称这是“中国三角形”(Chinese triangle)。
同与例題牆讲【知识与方法】一•二项式定理的定义在(a b)^(a ]b)(a「b);:(a「b)中,每个括号都能拿出a或b,所以每个括号有2种选择,n个括号n个就是2n种情况.a2b n J这一项,表达的意思是________________________________ ;所以,a2b n"共有____________ 个.例如:(x y)7中x3y4表示的就是,有3个括号拿x,剩下的4个括号拿y,所以x3y4共有C C:项, 即C;项.(a+ b)n的二项展开式本来共有_________ 项,合并之后共有_______ 项,其中各项的系数_________________ 叫做二项式系数.二•二项展开式的通项(a+ b)n的二项展开式的通项公式为_____________ ..注意:1.T r 1与C;的关系,例如第5项,应该是C4 ;2•二项式的展开式是按照前项降幕排列,例如(x 1)10与(1 X)10中的第4项是不同的;3. a的指数从n逐项减到0,是降幕排列。
(完整版)二项式定理(习题含答案)
(完整版)⼆项式定理(习题含答案)⼆项式定理⼀、求展开式中特定项 1、在的展开式中,的幂指数是整数的共有() A .项 B .项 C .项 D .项【答案】C 【解析】,,若要是幂指数是整数,所以0,6,12,18,24,30,所以共6项,故选C .3、若展开式中的常数项为.(⽤数字作答)【答案】10【解】由题意得,令,可得展⽰式中各项的系数的和为32,所以,解得,所以展开式的通项为,当时,常数项为, 4、⼆项式的展开式中的常数项为.【答案】112【解析】由⼆项式通项可得,(r=0,1,,8),显然当时,,故⼆项式展开式中的常数项为112.5、的展开式中常数项等于________.【答案】.【解析】因为中的展开式通项为,当第⼀项取时,,此时的展开式中常数为;当第⼀项取时,,此时的展开式中常数为;所以原式的展开式中常数项等于,故应填. 6、设,则的展开式中常数项是.【答案】 332,30x 4567()r r rrr r x C x x C T 6515303303011--+?==30......2,1,0=r =r 2531()x x+1x =232n =5n =2531()x x+10515r rr T C x -+=2r =2510C=82)x3488838122rrr r rr r x C xx C --+-=-=)()()(T 2=r 1123=T 41(2)(13)x x--1441(2)(13)x x--4(13)x -4C (3)r rx -204C 1=21x-14C (3)12x -=-12141420sin 12cos 2x a x dx π=-+()622x ??+ ?332=-()200sin 12cos sin cos (cos sin )202x a x dx x x dx x x πππ??=-+=+=-+= ??的展开式的通项为,所以所求常数项为.⼆、求特定项系数或系数和7、的展开式中项的系数是()A .B .C .D .【答案】A【解析】由通式,令,则展开式中项的系数是.8、在x (1+x )6的展开式中,含x 3项的系数是.【答案】15【解】的通项,令可得.则中的系数为15.9、在的展开式中含的项的系数是.【答案】-55【解析】的展开式中项由和两部分组成,所以的项的系数为. 10、已知,那么展开式中含项的系数为.【答案】135【解析】根据题意,,则中,由⼆项式定理的通项公式,可设含项的项是,可知,所以系数为.11、已知,则等于()A .-5B .5C .90D .180【答案】D 因为,所以等于选D.12、在⼆项式的展开式中,只有第5项的⼆项式系数最⼤,则________;展开式中的第4项=_______.6(=6663166((1)2r r r r r rr r T C C x ---+==-??3633565566(1)22(1)2T C C --=-??+-?332=-8()x 62x y 5656-2828-r r r y x C )2(88--2=r 62x y 56)2(228=-C ()61x +16r r r T C x +=2r =2615C =()61x x +3x 6(1)(2)x x -?-3x 6(1)(2)x x -?-3x 336)(2x C -226)(x -x C -?)(3x 552-2636-=-C C dx xn 16e 1=nx x )(3-2x 66e111ln |6e n dx x x=?==n x x )(3-1r n r r r n T C a b -+=2x 616(3)r rr r T C x -+=-2r =269135C ?=()()()()10210012101111x a a x a x a x +=+-+-++-L 8a 1010(1)(21)x x +=-+-8a8210(2)454180.C -=?=1)2nx =n【答案】,.【解析】由⼆项式定理展开通项公式,由题意得,当且仅当时,取最⼤值,∴,第4项为. 13、如果,那么的值等于()(A )-1 (B )-2 (C )0 (D )2 【答案】A【解析】令,代⼊⼆项式,得,令,代⼊⼆项式,得,所以,即,故选A .14、(﹣2)7展开式中所有项的系数的和为【答案】-1 解:把x=1代⼊⼆项式,可得(﹣2)7 =﹣1, 15、(x ﹣2)(x ﹣1)5的展开式中所有项的系数和等于【答案】0 解:在(x ﹣2)(x ﹣1)5的展开式中,令x=1,即(1﹣2)(1﹣1)5=0,所以展开式中所有项的系数和等于0. 16、在的展开式中,所有项的系数和为,则的系数等于.【答案】【解析】当时,,解得,那么含的项就是,所以系数是-270. 17、设,若,则.【答案】0. 【解析】由81937x -21()(2)33111()()22n r n r r r r r r r nn T C x x C x -++=-?=-4n =r n C 8n =119(163)333381()72C x x +-=-7270127(12)x a a x a x a x -=++++L 017a a a +++L 1x =7270127(12)x a a x a x a x -=++++L 70127(12)1 a a a a -=++++=-L 0x =7270127(12)x a a x a x a x -=++++L 70(10)1a -==12711a a a ++++=-L 1272a a a +++=-L *3)()n n N -∈32-1x 270-1=x ()322--=n5=n x1()x x C 1270313225-=-(sin cos )k x x dx π=-?8822108)1(x a x a x a a kx ++++=-K 1238a a a a ++++=0(sin cos )(cos sin )k x x dx x x ππ=-=--?,令得:,即再令得:,即所以18、设(5x ﹣)n 的展开式的各项系数和为M ,⼆项式系数和为N ,若M ﹣N=240,则展开式中x 的系数为 . 【答案】150解:由于(5x ﹣)n 的展开式的各项系数和M 与变量x ⽆关,故令x=1,即可得到展开式的各项系数和M=(5﹣1)n =4n .再由⼆项式系数和为N=2n ,且M ﹣N=240,可得 4n ﹣2n =240,即 22n ﹣2n ﹣240=0. 解得 2n =16,或 2n =﹣15(舍去),∴n=4. (5x ﹣)n 的展开式的通项公式为 T r+1=(5x )4﹣r ?(﹣1)r ?=(﹣1)r ?54﹣r ?.令4﹣=1,解得 r=2,∴展开式中x 的系数为(﹣1)r54﹣r=1×6×25=150,19、设,则.【答案】【解析】,所以令,得到,所以三、求参数问题20、若的展开式中第四项为常数项,则()A .B .C .D .【答案】B【解析】根据⼆项式展开公式有第四项为,第四项为常数,则必有,即,所以正确选项为B. 21、⼆项式的展开式中的系数为15,则()(cos sin )(cos0sin 0)2ππ=-----=1x =80128(121)a a a a -?=++++K 01281a a a a ++++=K 0x =80128(120)000a a a a -?=+?+? ++?K 01a =12380a a a a ++++=8877108)1(x a x a x a a x ++++=-Λ178a a a +++=L 255178a a a +++=L 87654321a a a a a a a a +-+-+-+-1-=x =82876543210a a a a a a a a a +-+-+-+-2551256-20887654321=-==+-+-+-+-a a a a a a a a a nn =456725333342)21()(---==n nn nxC xx C T 025=-n 5=n )()1(*N n x n ∈+2x =nA 、5B 、 6C 、8D 、10 【答案】B【解析】⼆项式的展开式中的通项为,令,得,所以的系数为,解得;故选B . 22、(a +x)4的展开式中x 3的系数等于8,则实数a =________.【答案】2【解析】∵,∴当,即时,. 23、若的展开式中的系数为10,则实数() A1 B .或1 C .2或 D .【答案】B.【解析】由题意得的⼀次性与⼆次项系数之和为14,其⼆项展开通项公式,∴或,故选B . 24、设,当时,等于()A .5B .6C .7D .8 【答案】C .【解析】令,则可得,故选C .四、其他相关问题25、20152015除以8的余数为( ) 【答案】7【解析】试题分析:先将幂利⽤⼆项式表⽰,使其底数⽤8的倍数表⽰,利⽤⼆项式定理展开得到余数.试题解析:解:∵20152015=2015=?20162015﹣?20162014+20162013﹣20162012+…+2016﹣,故20152015除以8的余数为﹣=﹣1,即20152015除以8的余数为7,)()1(*N n x n ∈+k n kn k x C T -+?=12=-k n 2-=n k 2x 152)1(22=-==-n n C C n n n 6=n 4r+14T =C r r r a x-43r -=1r =133324T =C 48,2ax ax x a ==∴=()()411x ax ++2x a =53-53-4(1)ax +14r r rr T C a x +=22144101C a C a a +=?=53-23(1)(1)(1)(1)n x x x x ++++++++2012n n a a x a x a x =++++012254n a a a a ++++=n 1x =2 312(21)22222225418721n nn n n +-++++==-=?+=?=-。
高考专题 二项式定理(全解析)
1 / 4二项式定理一、选择题1.(求项的系数)5(2x +的展开式中,4x 的系数是( )A .40B .60C .80D .100【答案】C【解析】5(2x二项展开式的通项为5552155(2)2k k kkk kk T C x C x---+=⋅⋅=⋅⋅.令542k-=,得2k =. 因此,二项展开式中4x 的系数为235280C ⋅=,故选C .2.(知常数项求某一项的系数)若在(a +3x )(1−√x 3)8关于x 的展开式中,常数项为4,则x 2的系数是( ) A .56 B .-56 C .112 D .-112【答案】B【解析】由题意得(1−√x 3)8展开式的通项为T r+1=C 8r (−√x 3)r=(−1)r C 8r x r3,r =0,1,2,⋯,8, ∴(a +3x )(1−√x 3)8展开式的常数项为(−1)0C 8⋅a =a =4, ∴(4+3x )(1−√x 3)8展开式中x 2项为4⋅(−1)6C 86x 63+3x ⋅(−1)3C 83x 33=−56x 2∴展开式中x 2的系数是−56. 故选B3.(直常数项求参数)若6ax ⎛- ⎝展开式的常数项为60,则a 值为( )A .4B .4±C .2D .2±【答案】D【解析】因为6ax ⎛ ⎝展开式的通项为()()3666622166T 11k k k k k k k k k k C a x x C a x -----+=-=-,令3602k -=,则4k =,所以常数项为()44646160C a --=,即21560a =,所以2a =±. 故选D2 / 44.(奇数项系数的和)记6260126(1)(1)(1)...(1)x a a x a x a x -=+++++++,则0246a a a a +++=( )A .81B .365C .481D .728【答案】B【解析】令x=0得1=0126...a a a a ++++,令x=-2得601234563=a a a a a a a -+-+-+,所以0246a a a a +++=1+729=3652. 故选B5.(由系数二项式系数的和求参数)已知n的展开式中,各项系数的和与其各项二项式系数的和之比为64,则n 等于 A .4 B .5 C .6 D .7【答案】C【解析】二项式n的各项系数的和为()1+34n n=,二项式n的各项二项式系数的和为()1+12n n=, 因为各项系数的和与其各项二项式系数的和之比为64,所以4=2642n nn =,6n =,故选C .二、填空题6.(集合关系判断)若)22nx -展开式中只有第六项的二项式系数最大,则展开式中的常数项是____.【答案】180【解析】因为)22nx -展开式中只有第六项的二项式系数最大,所以10n =,展开式的通项公式为5510221101022r rrr rrr r TC xC x---+=⋅⋅⋅=⋅⋅,令5502r-=,解得3 / 42r,所以展开式的常数项为22101280C ⋅=.7.(求系数最大项)61x x ⎛⎫- ⎪⎝⎭的展开式中,系数最大的项为第__________项.【答案】3或5【解析】61x x ⎛⎫- ⎪⎝⎭的展开式中系数与二项式系数只有符号差异,又中间项的二项式系数最大,中间项为第4项其系数为负,则第3,5项系数最大. 8.(二项展开式系数的性质应用)在()()25132x x +-的展开式中,所有的奇次幂的系数和为__________.【答案】478- 【解析】设()()25223456701234567132x x a a x a x a x a x a x a x a x +-=+++++++令1x =,得:0123456716a a a a a a a a =+++++++……① 令1x =-,得:01234567972a a a a a a a a =-+-+-+-……② ①-②得:()13579562a a a a -=+++ 解得:1357478a a a a +++=- 本题正确结果:478-9.(二项式与数列)已知数列{}n a 满足11a k=,k *∈N ,[]n a 表示不超过n a 的最大整数(如[]1,61=,记[]n n b a =,数列{}n b 的前n 项和为n T ).①若数列{}n a 是公差为1的等差数列,则4T =__________; ②若数列{}n a 是公比为1k +的等比数列,则n T =__________.【答案】6 ()211nk kn k+--【解析】①若数列{}n a 是公差为1的等差数列,且11a k =,*2k k N ≥∈,,则11(1,)n a n n n k=+-∈-,所以[]1n n b a n ==-,则401236T =+++=;故填6.4 / 4②若数列{}n a 是公比为1k +的等比数列,且11a k=,*2k k N ≥∈,,则 1112131211(1)(1)n n n n n n n a k k C k C kk k------=⋅+=⋅+++⋅⋅⋅+,则213111n n k n n n b k C k C -----=++⋅⋅⋅+, 221311101(2)(33)()n n k n n n T k k k k C k C -----=+++++++⋅⋅⋅+++⋅⋅⋅+22223332341451[123(1)](1?)(1)n n n n C C C k C C C k---=+++⋅⋅⋅+-++++⋅⋅+++++⋅⋅⋅++⋅⋅⋅+3422(1))2n n n n n n n C k C k C k --=+++⋅⋅⋅+ 223321()n n n n n C k C k C k k =++⋅⋅⋅+ 21[(1)1]n k nk k =+--;故填21[(1)1]n k nk k+--. 10.(二项式与函数)已知二进制和十进制可以相互转化,例如65432108912021212020212=⨯+⨯+⨯+⨯+⨯+⨯+⨯,则十进制数89转化为二进制数为2(1011001).将n 对应的二进制数中0的个数,记为n a (例如:24(100)=,251(110011)=,289(1011001)=,则42a =,512a =,893a =),记()2n a f n =,则2018201820182019(2)(21)(22)...(21)f f f f ++++++-=__________. 【答案】20183【解析】由题意得20182018201820192212221++-,,,,共201920182018222-=个数中所有的数转换为二进制后,总位数都为2019,且最高位都为1而除最高位之外的剩余2018位中,每一位都是0或者1 设其中的数x ,转换为二进制后有k 个0(0k 2018≤≤) ∴()2kf x =在这20182个数中,转换为二进制后有k 个0的数共有2018kC 个 ∴()()()()201820182018201820192018022122 (2)12k kk f f f f C =++++++-=∑由二项式定理,()201820182018201802123k kk C ==+=∑。
(完整版)二项式定理练习题
二项式定理练习题一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在()103x -的展开式中,6x 的系数为( )A .610C 27-B .410C 27 C .610C 9-D .410C 92. 已知a 4b ,0b a =>+, ()n b a +的展开式按a 的降幂排列,其中第n 项与第n+1项相等,那么正整数n 等于( )A .4B .9C .10D .113.已知(n a a )132+的展开式的第三项与第二项的系数的比为11∶2,则n 是 ( )A .10B .11C .12D .13 4.5310被8除的余数是 ( ) A .1 B .2 C .3D .7 5. (1。
05)6的计算结果精确到0.01的近似值是( ) A .1.23 B .1。
24C .1。
33D .1.346.二项式n4x 1x 2⎪⎭⎫ ⎝⎛+ (n ∈N)的展开式中,前三项的系数依次成等差数列,则此展开式有理项的项数是( ) A .1B .2C .3D .47.设(3x 31+x 21)n 展开式的各项系数之和为t ,其二项式系数之和为h ,若t+h=272,则展开式的x 2项的系数是( )A .21B .1C .2D .38.在62)1(x x -+的展开式中5x 的系数为( )A .4B .5C .6D .79.nx x)(5131+展开式中所有奇数项系数之和等于1024,则所有项的系数中最大的值是( ) A .330 B .462 C .680 D .790 10.54)1()1(-+x x 的展开式中,4x 的系数为( )A .-40B .10C .40D .4511.二项式(1+sinx)n的展开式中,末尾两项的系数之和为7,且系数最大的一项的值为25,则x 在[0,2π]内的值为( )A .6π或3πB .6π或65πC .3π或32πD .3π或65π12.在(1+x )5+(1+x )6+(1+x )7的展开式中,含x 4项的系数是等差数列 a n =3n -5的 ( )A .第2项B .第11项C .第20项D .第24项二、填空题:本大题满分16分,每小题4分,各题只要求直接写出结果.13.92)21(xx -展开式中9x 的系数是 。
二项式定理训练题(含答案)
⼆项式定理训练题(含答案)⼆项式定理训练题⼀、单选题(共4题;共8分)1.若⼆项式的展开式中各项的系数和为243,则该展开式中含x项的系数为()A. 1B. 5C. 10D. 202.已知⼆项式的展开式中第2项与第3项的⼆项式系数之⽐是2︰5,则的系数为()A. 14B.C. 240D.3.若,则的值为()A. B. C. D.4.在(x2﹣x﹣2)5的展开式中,x3的系数为()A. ﹣40B. 160C. 120D. 200⼆、填空题(共13题;共15分)5.⼆项式的展开式中常数项为________.6.展开式中常数项为________.7.的展开式中,x3的系数为________.8.已知的展开式中各项系数和为2,则其展开式中常数项是________.9.的⼆项展开式中,含项的系数为________.10.若,则的展开式的第4项的系数为________.(⽤数字作答)11.⼆项式的展开式的各项系数之和为________,的系数为________.12.已知的展开式中的系数为108,则实数________.13.的展开式中,的系数是20,则________.14.展开式中的系数是15,则展开式的常数项为________,展开式中有理项的⼆项式系数和为________.15.在的展开式中,的系数是________.16.的展开式中的系数为________.17.在的展开式中,的系数为15,则实数________.三、解答题(共3题;共25分)18.已知展开式中各项系数和⽐它的⼆项式系数和⼤992,其中.(Ⅰ)求的值;(Ⅱ)求其展开式中的有理项.19.设.(1)求;(2)求及关于的表达式.20.已知⼆项式的⼆项展开式中所有奇数项的⼆项式系数之和为128.(1)求的展开式中的常数项;(2)在(1+x)+(1+x)2+(1+x)3+(1+x)4+…+(1+x) 的展开式中,求项的系数.(结果⽤数字作答)答案解析部分⼀、单选题1.【答案】C【解析】【解答】由令得,解得,⼆项式展开式的通项公式为,令,解得,故展开式中含x项的系数为.故答案为:C.【分析】令,结合展开式中各项的系数和为234列⽅程,求得n的值,再利⽤⼆项式展开式的通项公式,即可求得含x项的系数.2.【答案】C【解析】【解答】⼆项展开式的第项的通项公式为由展开式中第2项与第3项的⼆项式系数之⽐是2︰5,可得:.解得:.所以令,解得:,所以的系数为故答案为:C【分析】由⼆项展开式的通项公式为及展开式中第2项与第3项的⼆项式系数之⽐是2︰5可得:,令展开式通项中x的指数为3,即可求得,问题得解.3.【答案】C【解析】【解答】展开式的通项为:,故,,根据对称性知:.故答案为:C.【分析】计算,根据⼆项式系数的对称性即可得到答案.4.【答案】C【解析】【解答】∵(x2﹣x﹣2)5=(x+1)5(x﹣2)5,∴x3的系数为.故答案为:C.【分析】先把(x2﹣x﹣2)5变形为(x+1)5(x﹣2)5,再利⽤⼆项式定理中的通项公式求出结果.⼆、填空题5.【答案】60【解析】【解答】⼆项式的展开式的通项公式为,令,解得,所以该⼆项式展开式中常数项为,故答案为:60。
(完整word版)高中数学二项式定理练习题.doc
选修 2-3 1.3.1 二项式定理一、选择题1.二项式 (a + b)2n 的展开式的项数是 ( )A .2nB .2n +1C .2n - 1D .2(n +1)2.(x -y)n 的二项展开式中,第 r 项的系数是 ()A .C rr +1nB .C nr -1D .(- 1) r -1 r -1C .C n C n.在 - 10 的展开式中, x 6的系数是 ( )3 (x 3)64A .- 27C 10B .27C 106 4C .- 9C 10D .9C 104.(2010 全·国Ⅰ理, 5)(1+2x)3(1- 3x)5 的展开式中 x 的系数是 ( )A .- 4B .- 2C .2D .45.在 2x 3+ 12 n ∈ * 的展开式中,若存在常数项,则n 的最小值是 ( )x (n N )A .3B .5C .8D .10.在 - 3 + x) 10的展开式中 x 5的系数是 ( )6 (1 x )(1 A .- 297 B .- 252C .297D .2077.(2009 北·京 )在 x 2-1 n的展开式中,常数项为 15,则 n 的一个值可以是x()A .3B .4C .5D .6a 53的系数为 10,则实数 a 等于8.(2010 陕·西理, 4)(x +x ) (x ∈R)展开式中 x ()19.若 (1+ 2x)6 的展开式中的第 2 项大于它的相邻两项,则 x 的取值范围是()11 1 1A.12< x < 5B.6<x <51 21 2C.12< x < 3D.6<x <5.在3120的展开式中,系数是有理数的项共有 ()102x - 2A .4 项B .5 项C .6 项D .7 项二、填空题. + + 2·- x) 10 的展开式中, x 5 的系数为 ____________. 11 (1 x x ) (1. + 2 - x) 5 的展开式中 x 3的系数为 ________. 12 (1 x) (12 + 1 63 5 .若 x 的二项展开式中 x 的系数为 ,则 a =________(用数字作答 ).13 ax 2. ·宁理,辽 + + 2-1 6 的展开式中的常数项为 ________. 14 (201013)(1x x )(xx)三、解答题15.求二项式 (a +2b)4的展开式.16. m 、 n ∈ N * ,f(x)= (1+x)m +(1+x)n 展开式中 x 的系数为 19,求 x 2 的系数的最小值及此时展开式中 x 7 的系数.17.已知在 (3x -1)n 的展开式中,第 6 项为常数项.3(1)求 n ;(2)求含 x 2 的项的系数; (3)求展开式中所有的有理项.118.若x +4n 展开式中前三项系数成等差数列.求:展开式中系数最 2 x大的项.1.[答案 ]B2[答案 ] D 3 [ 答案 ] D[ 解析 ]r 10- r(- 3) r.令 10-r = 6,∵ T r +1 =C 10x解得 r = 4.∴系数为 (-4443) C 10=9C 10. 4[答案 ] C[ 解析 ] (1+ 2 x)3(1- 3 x)5=(1 +6 x + 12x + 8x x)(1-3x)5,故(1+ 2 33 5 3 (- 3 3 0=- 10x + 12x = 2x ,所以 x 的系数为 x) (1- x) 的展开式中含 x 的项为 1×C 5 x) + 12xC 5 2.5[答案 ] Br3 n - r1 rn - rr 3n - 5r[ 解析 ] T r +1= C n (2x ) (x 2) = 2·C n x .令 3n -5r =0,∵ 0≤r ≤ n ,r 、 n ∈ Z .∴n 的最小值为 5.6[答案 ] D[ 解析 ] x 5 应是 (1+ x)10 中含 x 5 项与含 x 2 项. ∴其系数为 C 5 + C 2 (- 1)= 207.10107[答案 ] D[ 解析 ] r2 n - r1 rr r 2n -3rr通项 T r + 1=C 10( x ) (- x ) = (- 1) C n x,常数项是 15,则 2n = 3r ,且 C n = 15,验证 n =6时, r =4 合题意,故选 D.8[答案 ] D [ 解析 ]r r a 5- rr 5- r 2r - 5 ,令 2r -5=3, ∴r = 4,C 5·x ( x ) = C 5·a x4由 C 5·a = 10,得 a =2.9[答案 ]AT 2>T 11[ 解析 ] 由C 62x>1∴1< x <1.T 2>T 3 得 1 2 2C 62x>C 6(2x) 12510[ 答案 ]Ar320- r- 1 r 2 r320- r r20-r[ 解析 ] T r +1= C 20( 2x) 2 = - 2·( 2) C 20·x ,∵系数为有理数,20- r∴( 2)r与 2 3 均为有理数,∴ r 能被 2 整除,且 20- r 能被 3 整除,故 r 为偶数, 20-r 是 3 的倍数, 0≤r ≤ 20.∴ r = 2,8,14,20.11[答案 ] - 16212[ 答案 ] 5[ 解析 ] 解法一: 先 形 (1+x)2(1 -x)5=(1 -x)3·(1- x 2) 2= (1-x)3(1 +x 4- 2x 2) ,展开式中 x 3 的系数 -1+ (- 2) ·C 1( -1)= 5;3331222 1-1)= 5.解法二: C 5( -1) +C 2 ·C 5(- 1) +C 2C 5( 13[ 答案 ] 232 31 320 35 3[ 解析 ] C 6(x ) ·(ax) = a 3 x= 2x , ∴a =2.14[ 答案 ] -51[ 解析 ] (1+ x +x 2)(x - x )61 1 1 =(x -x)6+ x (x - x )6+x 2(x -x )6,1 6 1 1r 6 rr rr 6 2r∴要找出 (x - x )中的常数 ,x 的系数, x 2 的系数, T r + 1=C 6x- (- 1) x -r= C 6( -1) x-,令 6- 2r =0, ∴r = 3,令 6- 2r =- 1,无解.令 6- 2r =- 2,∴ r =4.∴常数 -34C6+ C 6=- 5. 15[ 解析 ] 根据二 式定理n0 n 1 n -1k n - k kn n(a +b) = C n a + C n a b + ⋯+ C n a b + ⋯+ C n b n 得40 41 32 22 3 3 4 4 4 3 2 2 3 4(a +2b) =C 4 a + C 4a (2b)+ C 4a (2b) + C 4a(2b) + C 4(2b) =a +8a b + 24a b +32ab +16b .16[ 解析 ] 由 m + n =19,∵m , n ∈ N *.m =1 m =2 m = 18∴ , , ⋯,n = 1 . n =18 n = 1722 2 = 1 2 1 2 2 - 19m +171. x 的系数 C m +C n 2(m -m)+ 2 (n -n)= m∴当 m =9 或 10 , x2的系数取最小7 的系数 7781,此 xC 9+C 10= 156. 17[ 解析 ] r 3 x) n - r ·(- 1 r(1)T r +1 =C n ·( )2 3xr1 n - r1 ·x - 1 ) r=C n ·(x )·(-332=( -1)r ·C r ·xn - 2r. n23∵第 6 常数 ,n -2r∴r = 5 时有 = 0, ∴n = 10.3n -2r1(2)令3 =2,得 r =2( n -6)= 2,∴所求的系数为 2 1 2 45 C 10(- ) =4 .210- 2r∈Z(3)根据通项公式,由题意得:30≤ r ≤ 10r ∈Z10-2r= k(k ∈ Z),则 10- 2r =3k , 令310-3k 3 即 r =2 =5-2k.∵r ∈ Z ,∴ k 应为偶数, ∴ k 可取 2,0,- 2,∴r = 2,5,8,∴ 第 3 项、第 6 项与第 9 项为有理项.21 22 51 5它们分别为 C 10·(-2)·x ,C 10(-2) ,C 8 ·(-1)8·x - 2. 102rn - r1 r[ 解析 ]x) · 4 . 通项为: T r +1= C n ·( x 22 11 1由已知条件知: C n +C n ·2n ·,解得: n = 8.2 = 2C 2 记第 r 项的系数为 t r ,设第 k 项系数最大,则有:t k ≥ t k + 1 且 t k ≥ t k - 1.又 t =C r - 1·2-r +1,于是有:r8k 1 ·2-k +1 k·2-k C 8-≥C 8k 1 ·2-k +1k 2 ·2- k + 2 C 8-≥C 8-8! × 2≥ 8!( k -1)! ·(9 -k) ! ,k ! (8-k)! 即8!8!≥( k -1)! ·(9 -k) ! × 2.(k - 2)!·(10- k) !2≥1,9- kk∴解得 3≤ k ≤4.12≥.37 ∴系数最大项为第 3 项 T3= 7·x5和第 4 项 T4=7·x4.。
高中数学二项式定理经典练习题专题训练(含答案)
⾼中数学⼆项式定理经典练习题专题训练(含答案)⾼中数学⼆项式定理经典练习题专题训练姓名班级学号得分说明:1、本试卷包括第Ⅰ卷(选择题)和第Ⅱ卷(⾮选择题)两部分。
满分100分。
考试时间90分钟。
2、考⽣请将第Ⅰ卷选择题的正确选项填在答题框内,第Ⅱ卷直接答在试卷上。
考试结束后,只收第Ⅱ卷第Ⅰ卷(选择题)⼀.单选题(每题,3分,39分)1.已知在的展开式中,第6项为常数项,则n为()A.10B.9C.8D.72、的展开式中第三项的系数是()A.B.C.15D.3、的展开式中常数项是()A.14B.-14C.42D.-424.设a=cos2xdx,则(a-)6展开式中含x2项的系数是()A.-192B.-190C.192D.1905.在(x-1)6的⼆项展开式中,x3的系数是()A.-20B.20C.15D.-156.在的⼆项展开式中,x2的系数为()A.B.C.D.7.在(1-2x)(1+x)5的展开式中,x3的系数是()A.20B.-20C.10D.-108.在⼆项式()n的展开式中,各项系数之和为M,各项⼆项式系数之和为N,且M+N=64,则展开式中含x2项的系数为()A.-90B.90C.10D.-109、展开式中含x项的系数是()A.-28B.28C.-56D.5610.(x-1)10展开式中系数最⼤的项是()A.第五项和第六项B.第六项C.第五项和第七项D.第四项和第七项11.在(ax-1)6的⼆项展开式中,若中间项的系数是160,则实数a的值为()A.2B.C.D.-212.若(1+x)n=1+6x+15x2+20x3+15x4+6x5+x6,则n等于()A.4B.5C.6D.713.设a=,则⼆项式的展开式中的常数项为()A.120B.-120C.-240D.240第Ⅱ卷(⾮选择题)⼆.填空题(14-25题,每题3分,26-30题5分,共61分)14.已知(x2-)n)的展开式中第三项与第五项的系数之⽐为,则展开式中常数项是______.15.已知的展开式中x3的系数为,则x3的⼆项式系数为______,常数a的值为______.16.(x2-)5展开式中的常数项为______.17.(1+2x)3(1-x)4展开式中x2的系数为______.18、的展开式中x的系数是______.19.f(x)是(1-2x)6展开式的第五项,则f(x)=______,所有⼆项式系数的和为______.20、的展开式中的第四项是______.21.(x-)4的展开式中的常数项为______.22、的展开式中x2的系数为______.23.若(2x2-)n(n∈N×)展开式中含有常数项,则n的最⼩值是______.24.⼆项式(2-)6展开式中常数项是______.25.设a=(cosx-sinx)dx,则⼆项式(x2+)6展开式中不含x6项的系数和是______.26.(x+)9展开式中x3的系数是______.(⽤数字作答)27.已知(-x2+6x-9)n的展开式中所有的项的系数的和为16,则展开式中的常数项为______.28.(1-)4展开式中的系数是______.29.在的展开式中,x2的系数为______(⽤数字作答).30.⼆项式的展开式中,x3项的系数为______.参考答案⼀.单选题(共__⼩题)1.已知在的展开式中,第6项为常数项,则n为()A.10B.9C.8D.7答案:A解析:解:∵在的展开式中,第6项为??为常数项,则n=10,故选:A.2、的展开式中第三项的系数是()A.B.C.15D.答案:B解析:解:的展开式中第三项是故第三项的系数15×=故选B3、的展开式中常数项是()A.14B.-14C.42D.-42答案:A解析:解:展开式的通项为=令得r=6故常数项为2C76=14故选A4.设a=cos2xdx,则(a-)6展开式中含x2项的系数是()A.-192B.-190C.192D.190答案:A解析:解:∵,∵f(-x)=f(x)∴f(x)为偶函数,故∵=∴⼜∴a=cos2xdx=2∵==由⼆项式定理得展开式中含有x2的项为:∴展开式中x2的系数为-192故选A.5.在(x-1)6的⼆项展开式中,x3的系数是()A.-20B.20C.15D.-15答案:A解析:解:设(x-1)6的⼆项展开式的通项为T r+1,则T r+1=?x6-r(-1)r,令6-r=3得r=3,∴x3的系数是(-1)3?=-20.故选A.6.在的⼆项展开式中,x2的系数为()A.B.C.D.答案:B解析:解:⼆项式的⼆项展开式的通项公式为=T r+1=??=(-1)r??32r-6?.令x的系数=2,解得=r=1,故x2的系数为-1×6×=-,故选B.7.在(1-2x)(1+x)5的展开式中,x3的系数是()A.20B.-20C.10D.-10答案:D解析:解:在(1-2x)(1+x)5的展开式中,x3的系数是=1×+(-2)?=-10,故选D.8.在⼆项式()n的展开式中,各项系数之和为M,各项⼆项式系数之和为N,且M+N=64,则展开式中含x2项的系数为()A.-90B.90C.10D.-10答案:A解析:解:∵⼆项式()n的展开式中,令x=1得:各项系数之和M=2n,⼜各项⼆项式系数之和为N,故N=2n,⼜M+N=64,∴2×2n=64,∴n=5.设⼆项式()5的展开式的通项为T r+1,则T r+1=?35-r?(-1)r?,令-(5-r)+r=2得:r=3.∴展开式中含x2项的系数为?(-1)3?35-3=-90.故选A.9、展开式中含x项的系数是()A.-28B.28C.-56D.56答案:B解析:解:展开式的通项为令解得r=2故展开式中含x项的系数是C82=28;故选B.10.(x-1)10展开式中系数最⼤的项是()A.第五项和第六项B.第六项C.第五项和第七项D.第四项和第七项答案:C解析:解:由于(x-1)10展开式的通项公式为?x10-r?(-1)r,故当r=4,或r=6时,展开式中系数最⼤为,即第五项和第七项得系数最⼤,故选C.11.在(ax-1)6的⼆项展开式中,若中间项的系数是160,则实数a的值为()A.2B.C.D.-2答案:D解析:解:在(ax-1)6的⼆项展开式中,中间项是第四项,由通项公式求得中间项的系数是?a3?(-1)3=160,∴a=-2,故选D.12.若(1+x)n=1+6x+15x2+20x3+15x4+6x5+x6,则n等于()A.4B.5C.6D.7答案:C解析:解:∵(1+x)n=1+6x+15x2+20x3+15x4+6x5+x6,∴n=6.故选C.13.设a=,则⼆项式的展开式中的常数项为()A.120B.-120C.-240D.240答案:D解析:解:∵a==(x3-x2)=4-0=4,则⼆项式=的通项公式为T r+1=?(-1)r?46-r?x12-3r,令12-3r=0,求得=r=4,可得展开式中的常数项为?42=210,故选:D.⼆.填空题(共__⼩题)14.已知(x2-)n)的展开式中第三项与第五项的系数之⽐为,则展开式中常数项是______.答案:45解析:解:第三项的系数为C n2,第五项的系数为C n4,由第三项与第五项的系数之⽐为可得n=10,则T i+1=C10i(x2)10-i(-)i=(-1)i C10i=,令40-5r=0,解得r=8,故所求的常数项为(-1)8C108=45,故答案为:45.15.已知的展开式中x3的系数为,则x3的⼆项式系数为______,常数a的值为______.答案:841解析:解:设的展开式的通项为T r+1,则T r+1=?a9-r??x-(9-r)+r,令2r-9=3,解得r=6,∴x3的⼆项式系数为==84;⼜的展开式中x3的系数为,∴×a3×84=,∴a3=1,∴a=1.故答案为:84,1,116.(x2-)5展开式中的常数项为______.答案:40解析:解:(x2-)5展开式中的通项公式为=T r+1=?x10-2r?(-2)r?x-3r=(-2)r??x10-5r,令10-5r=0,r=2,故展开式的常数项为=4?=40,故答案为=40.17.(1+2x)3(1-x)4展开式中x2的系数为______.答案:-6解析:解:∵(1+2x)3(1-x)4展开式中x2项为C3013(2x)0?C4212(-x)2+C3112(2x)1?C4113(-x)1+C3212(2x)2?C4014(-x)0∴所求系数为C30?C42+C31?2?C41(-1)+C32?22?C4014=6-24+12=-6.故答案为:-6.18、的展开式中x的系数是______.答案:-4解析:解:∵=(1-x)4,它的展开式的通项公式为=T r+1=?(-x)r,令r=1,可得展开式中x的系数是-4,故答案为-4.19.f(x)是(1-2x)6展开式的第五项,则f(x)=______,所有⼆项式系数的和为______.答案:240x464解析:解:(1-2x)6展开式的第五项为?(-2x)4=240x4,∴f(x)=240x4.所有⼆项式系数的和为=2n=26=64,故答案为=240x4、64.20、的展开式中的第四项是______.答案:-解析:解:T4=故答案为:-21.(x-)4的展开式中的常数项为______.答案:6解析:解:的通项为=(-1)r C4r x4-2r令4-2r=0得r=2∴展开式的常数项为T3=C42=6故答案为622、的展开式中x2的系数为______.答案:7解析:解:因为的展开式的通项公式为:=,当8-2r=2,即r=3时,的展开式中x2的系数为:=7.故答案为:7.23.若(2x2-)n(n∈N×)展开式中含有常数项,则n的最⼩值是______.答案:5解析:解:展开式的通项T r+1=(-1)r2n-r C n r x2n-5r其中r=0,1,2,3…n令2n-5r=0得到当r=2时n最⼩为5故答案为524.⼆项式(2-)6展开式中常数项是______.答案:-160解析:解:因为=20×8×(-1)=-160.所以展开式中常数项是-160.故答案为:-160.25.设a=(cosx-sinx)dx,则⼆项式(x2+)6展开式中不含x6项的系数和是______.答案:161解析:解:由于a=(cosx-sinx)dx=(sinx+cosx)=-1-1=-2,∴(x2+)6=(x2-)6的通项公式为=T r+1=?(-2)r?x12-2r,令12-2r=6,求得r=3,故含x6项的系数为-×23=-160.由于所有项的系数和为(1-2)6=1,故不含x6项的系数和1+160=161,故答案为:161.26.(x+)9展开式中x3的系数是______.(⽤数字作答)答案:84解析:解:写出(x+)9通项,∵要求展开式中x3的系数∴令9-2r=3得r=3,∴C93=84故答案为:84.27.已知(-x2+6x-9)n的展开式中所有的项的系数的和为16,则展开式中的常数项为______.答案:81解析:解:在(-x2+6x-9)n的展开式中,令x=1,可得所有项系数的和为(-4)n=16,n=2,展开式中的常数项为:-9×(-9)=81.故答案为:81.28.(1-)4展开式中的系数是______.答案:-8解析:解:(1-)4展开式的通项公式为T r+1=?(-2)r?x-r,令-r=-1,可得r=1,故展开式中的系数是?(-2)=-8,故答案为:-8.29.在的展开式中,x2的系数为______(⽤数字作答).答案:-14解析:解:展开式的通项令得r=1故x2的系数为(-2)×C71=-14故答案为-1430.⼆项式的展开式中,x3项的系数为______.答案:20解析:解:⼆项式展开式的通项为T r+1=C6r?x6-r?(-)r=(-1)r?C6r?,令=3,解可得r=2,当r=2时,T3=(-1)2?C62?x3=20x3,即x3项的系数为20;故答案为20.。
高考数学精品试题:二项式定理
专题内容:二项式定理一、典型例题例1、已知()()511ax x ++的展开式中3x 的系数为15,则a 的值为( ) A .34 B .13 C .12 D .1 例2、已知二项式()*12N n x n x ⎛⎫-∈ ⎪⎝⎭的展开式中第2项与第3项的二项式系数之比是2:5,则展开式的常数项为( )A .14B .240C .60D .240- 例3、设()5234512345612x a a x a x a x a x a x +=+++++,则5a = ;123a a a ++= 。
二、课堂练习1、91x ⎫⎪⎭展开式中的常数项为( ) A .84 B .84- C .28D .28- 2、在()n x y -的展开式中,第3项与第8项的二项式系数相等,则展开式中系数最大的项是( )A .第6项B .第5项C .第5,6项D .第4,5项 3、若312n x x ⎛⎫+ ⎪⎝⎭的展开式中所有项系数和为81,则该展开式的常数项为( ) A .10 B .8 C .6 D .44、()25y x x x y ⎛⎫ ⎪⎭+⎝+的展开式中33x y 的系数为( ) A.5 B.10 C.15 D.205、若多项式()()()910210019101...11x x a a x a x a x +=+++++++,则9a = ( )A. 9B. 10C. -9D. -10【布置作业】1、的展开式中的中间项为( ) A . B . C . D .2、的展开式中各项的二项式系数之和为32,且各项系数和为243,则展开式中的系数为( ) A .20B .30C .40D .80 3、使()的展开式中含有常数项的最小的( ) A .4B .5C .6D .7 4、二项式的展开式中有理项的个数为( ) A .5 B .6C .7D .8 5、已知,设,则( )A .1023B .1024C .1025D .1026 6、在的展开式中,只有第7项的二项式系数最大,则展开式常数项是( ) A . B . C . D .287、的展开式中的常数项是__________. 8、的展开式中第四项的系数为120,所有奇数项的二项式系数之和为512,则实数a 的值为______.9、的展开式中项的系数为___________(用数字表示).10、已知的展开式中,的系数是240,则实数的值为______. 11、的展开式中所有二项式系数的最大值是_____(用数字作答). 12、已知的展开式中第4项与第8项的二项式系数相等,且展开式的各项系数之和为1024,则该展开式中系数最大的项为_________. 13、若的展开式中第3项与第8项的系数相等,则展开式中二项式系数最大的项为第_______项 14、若二项式的展开式中第项与第项的系数相同,则其常数项是___________. 8312x x ⎛⎫- ⎪⎝⎭35883358x -7-437x --3()n a x x+3x 13n x x x -⎛⎫+ ⎪⎝⎭n +∈N n 102x x ⎛⎫+ ⎪⎝⎭46n n C C =()()()()201234111n n n x a a x a x a x -=+-+-++-12n a a a +++=31()2n x x -552552-28-()51212x x ⎛⎫+- ⎪⎝⎭4n a x x ⎛⎫+ ⎪⎝⎭25(1()2)x x +-4x ()61ax -2x a ()61x +21(0)nax a x ⎛⎫-< ⎪⎝⎭1()n x x +1n x x ⎛⎫+ ⎪⎝⎭()*n ∈N 5615、设a∈Z,且0≤a≤16,若42021+a能被17整除,则a的值为_____.。
高考数学复习题库 二项式定理
高考数学复习题库二项式定理一.选择题1.二项式6的展开式中的常数项是( )A.20B.-20C.160D.-160 解析二项式(2x-)6的展开式的通项是Tr+1=C·(2x)6-r·r=C·26-r·(-1)r·x6-2r.令6-2r=0,得r=3,因此二项式(2x-)6的展开式中的常数项是C·26-3·(-1)3=-160. 答案 D2.若二项式n的展开式中第5项是常数项,则正整数n的值可能为( ). A.6 B.10 C.12 D.15 解析 Tr+1=C()n-rr=(-2)rCx,当r=4时,=0,又n∈N*,∴n=12. 答案 C3.(1-t)3dt的展开式中x的系数是( )A.-1B.1C.-4D.4 解析 (1-t)3dt==-+,故这个展开式中x的系数是-=1.答案 B4.已知8展开式中常数项为1120,其中实数a是常数,则展开式中各项系数的和是( ). A.28 B.38 C.1或38 D.1或28 解析由题意知C·(-a)4=1120,解得a=±2,令x=1,得展开式各项系数和为(1-a)8=1或38. 答案 C5.设n的展开式的各项系数之和为M,二项式系数之和为N,若M-N=240,则展开式中x的系数为( ). A.-150 B.150 C.300 D.-300 解析由已知条件4n-2n=240,解得n=4, Tr+1=C(5x)4-rr=(-1)r54-rCx4-,令4-=1,得r=2,T3=150x. 答案 B6.2n展开式的第6项系数最大,则其常数项为( )A.120B.252C.210D.45 解析根据二项式系数的性质,得2n=10,故二项式2n的展开式的通项公式是 Tr+1=C()10-r·r=Cx5--,根据题意5--=0,解得r=6,故所求的常数项等于C=C=210.正确选项为C. 答案 C7.在(x-)2 006的二项展开式中,含x的奇次幂的项之和为S,当x=时,S等于( ). A.23 008 B.-23 008 C.23 009 D.-23 009 解析 (x-)2 006=x2 006+Cx2 005(-)+Cx2 004(-)2+…+(-)2 006,由已知条件S=-C()2 006-C()2 006-…-C()2 006=-22 005·21 003=-23 008. 答案 B二.填空题8.(1+x)3(1+)3的展开式中的系数是________. 解析利用二项式定理得(1+x)33的展开式的各项为Cxr·Cx-n=CCxr-n,令r-n=-1,故可得展开式中含项的是++=,即(1+x)33的展开式中的系数是15. 答案159. 设x6=a0+a1(x-1)+a2(x-1)2+a3(x-1)3+a4(x-1)4+a5(x-1)5+a6(x-1)6,则a3=________. 解析 x6=[1+(x-1)]6,故a3=C=20. 答案2010.若(1+x+x2)6=a0+a1x+a2x2+…+a12x12,则a2+a4+…+a12=________. 解析令x =1,则a0+a1+a2+…+a12=36,令x=-1,则a0-a1+a2-…+a12=1,∴a0+a2+a4+…+a12=. 令x=0,则a0=1,∴a2+a4+…+a12=-1=364. 答案36411.已知(1+x+x2)n 的展开式中没有常数项,n∈N*且2≤n≤8,则n=________. 解析 n展开式中的通项为 Tr+1=Cxn-rr =Cxn-4r(r=0,1,2,…,8),将n=2,3,4,5,6,7,8逐个检验可知 n=5. 答案 n=512.若(cosφ+x)5的展开式中x3的系数为2,则sin=________. 解析由二项式定理得,x3的系数为Ccos2φ=2,∴cos2φ=,故sin=cos2φ=2cos2φ-1=-. 答案-三.解答题13.若n的展开式中各项系数和为1 024,试确定展开式中含x的整数次幂的项. 解析令x=1,则22n=1 024,∴n=5. Tr+1=C(3x)5-rr=C·35-r·,含x的整数次幂即使为整数, r=0.r=2.r=4,有3项,即 T1=243x5,T3=270x2, T5=15x-1.14.在杨辉三角形中,每一行除首末两个数之外,其余每个数都等于它肩上的两数之和.(1)试用组合数表示这个一般规律:(2)在数表中试求第n行(含第n行)之前所有数之和;(3)试探究在杨辉三角形的某一行能否出现三个连续的数,使它们的比是3∶4∶5,并证明你的结论.第0行1第1行11第2行121第3行1331第4行14641第5行15101051第6行1615201561 … … 解析(1)C=C+C(2)1+2+22+…+2n=2n+1-1(3)设C∶C∶C=3∶4∶5 由=,得=即3n-7r+3=0① 由=,得=即4n-9r-5=0② 解①②联立方程组得 n=62,r=27 即C∶C∶C=3∶4∶5.15.已知等差数列2,5,8,…与等比数列2,4,8,…,求两数列公共项按原来顺序排列构成新数列{Cn}的通项公式. 解析等差数列2,5,8,…的通项公式为an=3n-1,等比数列2,4,8,…的通项公式为bk =2k ,令3n-1=2k ,n∈N*,k ∈N*,即n ===,当k =2m-1时,m∈N*, n=∈N*, Cn=b2n-1=22n-1(n∈N*).16.已知f(x)=.(1)试证:f(x)在(-∞,+∞)上为单调递增函数;(2)若n∈N*,且n≥3,试证:f(n)>. 证明(1)任取x1,x2∈(-∞,+∞).设x1<x2, f(x1)-f(x2)=-==,由x1<x2则2x1<2x2,∴2x1-2x2<0.因此f(x1)-f(x2)<0,即f(x1)<f(x2),因此f(x)在(-∞,+∞)上单调递增.(2)当n∈N*且n≥3,要证f(n)>,即>,只须证2n>2n+1,∵2n=C+C+C+…+C>C+C+C=2n+1.∴f(n)>.。
高考数学《二项式定理》真题含答案
高考数学《二项式定理》真题含答案一、选择题1.(x +1)6的展开式中的第二项为( )A .6xB .15x 2C .6x 5D .15x 4答案:C2.⎝⎛⎭⎫x 2-2x 3 5 的展开式中的常数项为( ) A .80 B .-80C .40D .-40答案:C解析:由二项展开式通项知T k +1=(-2)k C k 5 ·(x 2)5-k ⎝⎛⎭⎫1x 3 k=(-2)k C k 5 x 10-5k ,令10-5k =0,得k =2.∴常数项为T 3=(-2)2C 25 =40.3.(多选)已知(a +2b )n 的展开式中第6项的二项式系数最大,则n 的值可能为( )A .8B .9C .10D .11答案:BCD4.若(x +2)⎝⎛⎭⎫a x -x 5 展开式中的常数项为80,则a =( )A .-2B .2C .±2D .4答案:B解析:⎝⎛⎭⎫a x -x 5 的展开式的通项公式为T k +1=C k 5 ·(-1)k ·a 5-k ·x 2k -5,显然,2k -5为奇数,故(x +2)⎝⎛⎭⎫a x -x 5 展开式中的常数项为C 25 ·a 3=80,所以a =2. 5.若(x -2y )6的展开式中的二项式系数和为S ,x 2y 4的系数为P ,则P S为( ) A .152 B .154C .120D .240答案:B解析:由题意得S =26=64,P =C 46 (-2)4=15×16=240,∴P S =24064 =154. 6.在二项式⎝⎛⎭⎫x +3x n 的展开式中,各项系数之和为A ,各项二项式系数之和为B ,且A +B =72,则展开式中常数项的值为( )A .6B .9C .12D .18答案:B解析:在⎝⎛⎭⎫x +3x n的展开式中令x =1,得A =4n ,各项二项式系数之和为B =2n ,由 4n +2n =72,得n =3,∴⎝⎛⎭⎫x +3x n =⎝⎛⎭⎫x +3x 3 ,其通项为T k +1=C k 3 (x )3-k ⎝⎛⎭⎫3x k =3k C k 3 x 3-3k 2,令3-3k 2=0,得k =1,故展开式的常数项为T 2=3C 13 =9. 7.⎝⎛⎭⎫x +y 2x (x +y )5的展开式中x 3y 3的系数为( ) A .5 B .10C .15D .20答案:C解析:要求⎝⎛⎭⎫x +y 2x (x +y )5的展开式中x 3y 3的系数,只要分别求出(x +y )5的展开式中x 2y 3和x 4y 的系数再相加即可,由二项式定理可得(x +y )5的展开式中x 2y 3的系数为C 35 =10,x 4y 的系数为C 15 =5,故⎝⎛⎭⎫x +y 2x (x +y )5的展开式中x 3y 3的系数为10+5=15.故选C. 8.设S =(x -1)4+4(x -1)3+6(x -1)2+4(x -1)+1,则S =( )A .(x -2)4B .(x -1)4C .x 4D .(x +1)4答案:C解析:S =C 04 (x -1)4+C 14 (x -1)3+C 24 (x -1)2+C 34 (x -1)1+C 44 (x -1)0=(x -1+1)4=x 4.9.(多选)已知(2+x )(1-2x )5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5+a 6x 6,则( )A .a 0的值为2B .a 5的值为16C .a 1+a 2+a 3+a 4+a 5+a 6的值为-5D .a 1+a 3+a 5的值为120答案:ABC解析:对于A ,令x =0,得a 0=2×1=2,故A 正确;对于B ,(1-2x )5的展开式的通项T k +1=C k 5 (-2x )k =(-2)k C k 5 x k ,所以a 5=2×(-2)5C 55 +1×(-2)4C 45 =-64+80=16,故B 正确;对于C ,令x =1,得(2+1)(1-2×1)5=a 0+a 1+a 2+a 3+a 4+a 5+a 6 ①,即a 1+a 2+a 3+a 4+a 5+a 6=-3-a 0=-3-2=-5,故C 正确;对于D ,令x =-1,得(2-1)[1-2×(-1)]5=a 0-a 1+a 2-a 3+a 4-a 5+a 6 ②,由①②解得a 1+a 3+a 5=-123,故D 不正确.综上所述,选ABC.二、填空题10.[2024·全国甲卷(理)](13+x )10的展开式中,各项系数中的最大值为______. 答案:5解析:方法一 二项式(13 +x )10的展开式的通项为T k +1=C k 10 (13)10-k x k . 由⎩⎨⎧Ck 10 (13)10-k >C k -110 (13)11-k ,C k 10 (13)10-k >C k +110 (13)9-k ,解得294 <k <334. 又k ∈N *,所以k =8.所以所求系数的最大值为C 810 (13 )2=5.方法二 展开式中系数最大的项一定在下面的5项中:C 510 (13 )5x 5,C 610 (13)4x 6,C 710 (13 )3x 7,C 810 (13 )2x 8,C 910 (13 )1x 9,计算可得,所求系数的最大值为C 810 (13)2=5. 11.在二项式(2 +x )9的展开式中,常数项是________,系数为有理数的项的个数是______________.答案:162 5解析:该二项展开式的第k +1项为T k +1=C k 9 (2 )9-k x k ,当k =0时,第1项为常数项,所以常数项为(2 )9=162 ;当k =1,3,5,7,9时,展开式的项的系数为有理数,所以系数为有理数的项的个数为5.12.在(x -1x)7的展开式中,系数最大的是第________项. 答案:5解析:二项式⎝⎛⎭⎫x -1x 7的展开式的通项为T k +1=C k 7 ·x 7-k ·(-1)k x -k =(-1)k C k 7 x 7-2k ,故第k +1项的系数为(-1)k C k 7 ,当k =0,2,4,6时,系数为正,因为C 07 <C 67 <C 27 <C 47 ,所以当k =4时,系数最大,是第5项.。
(完整版)高考数学二项式定理专题复习(专题训练)
(a
x )n
Cn0a n x0
Cn1a n 1x
C
2 n
a
n
2 x2
L
C
n n
a
0
x
n
a0 a1x 1 a 2 x 2
( x a)n
Cn0a 0 xn
Cn1ax n 1
C
2 n
a
2
x
n
2
L
C
n n
a
n
x
0
an xn L
a2 x2
令 x 1, 则 a0 a1 a2 a3L an (a 1)n
①
令 x 1,则 a0 a1 a2 a3 L an (a 1)n
②
① ②得 , a0 a2 a4 L
n
n
an (a 1) ( a 1) (奇数项的系数和 )
2
① ②得 , a1 a3 a5L
an ( a 1)n (a 1)n (偶数项的系数和 ) 2
L anx n a1x1 a0
( 5)二项式系数的最大项 :如果二项式的指数 n 是偶数时,则中间项为第 ( n 1)项的二项式 2
( 6)系数的最大、最小项的求法:求 (a bx) n 展开式中最大、最小项,一般采用待定系数
法。设展开式中各项系数分别为 A1 , A2 , , An 1 ,设第 r 1 项系数最大,应有:
Ar 1 Ar 且 Ar 1 Ar 2 ;如果设第 r 1 项系数最小,应有 Ar 1 Ar 且 Ar 1 Ar 2 ,从而解出 r 的范围。
与 (b a)n 的二项展开式是不同的。
( 3)二项式项数共有 (n 1) 项,是关于 a 与 b 的齐次多项式。
( 4)二项式系数:展开式中各项的系数为
2025高考数学一轮复习-10.3-二项式定理-专项训练【含答案】
10.3-二项式定理-专项训练-专项训练基础巩固练1.在 的展开式中,常数项为()A.256B.240C.192D.1602.(2023镇江调研)的展开式中,含 -32的项是()A.第8项B.第7项C.第6项D.第5项3.计算2n-1C 1+2n-2C 2+2n-3C 3+…+C =()A.3nB.2×3nC.3n-1D.3n-2n4.已知(x-2)9=a0+a1(x+1)+a2(x+1)2+…+a9(x+1)9,则a8=()A.27B.-27C.324D.-3245.(多选题)(2023无锡月考)对于二项式 -的展开式,下列结论正确的有()A.各项系数之和为0B.二项式系数的最大值为C85C.不存在常数项D.x的系数为-286.(多选题)若(36x5-2x)n的展开式中有且仅有三个有理项,则正整数n的取值可能为()A.4B.6C.7D.87.38被5除所得的余数是.8.在二项式x的展开式中,只有第6项的二项式系数最大,则n=,含x2的项的系数是.9.在下面两个条件中任选一个条件,补充在后面问题中的横线上,并完成解答.条件①:展开式前三项的二项式系数的和等于37;条件②:第3项与第7项的二项式系数相等.问题:在二项式(2x-1)n的展开式中,已知.(1)求展开式中二项式系数最大的项.(2)设(2x-1)n=a n x n+a n-1x n-1+…+a2x2+a1x+a0,求a1+a2+a3+…+a n的值.(3)求1x-1)n的展开式中x2的系数.综合提升练10.(2023南京月考)已知 的展开式中第3项、第4项、第5项之和大于25,则 的取值范围是()A.(1,+∞)B.(8,+∞)C.(27,+∞)D.(343,+∞)11.(2023南通调研)在1+ 的展开式中,x 2项的系数为()A.45 B.90 C.120 D.112.(多选题)已知(1+2x )n +a (3-x )7=a 0+a 1x+…+a 6x 6(a ≠0),则()A.n=6B.a=128C. 037+ 136+…+ 63D.a 1+2a 2+…+6a 6=-6413.已知(2x+my )(x-y )5的展开式中x 2y 4的系数为-20,则m 的值为.14.(2023连云港期中)已知(2x-1)100=a 0+a 1x+a 2x 2+…+a 100x 100,记n=a 1+2a 2+3a 3+…+100a 100,则n=.15.已知(1+2x )n =a 0+a 1x+a 2x 2+…+a n x n ,n ∈N *,其中a 2=60.(1)求(a 0+a 1+a 2+…+a n )[a 0-a 1+a 2-…+(-1)n a n ]的值;(2)设(1+2)n =a+2b (其中a ,b 为正整数),求a 2-2b 2的值.创新应用练16.(多选题)已知(p+x )n =a 0+a 1x+a 2x 2+…+a n-1x n-1+a n x n (p>0,n ∈N *且n ≥2),其中log 2a 0=12,log 2a 1-log 2a n-1=10,则()A.np=24B.a 0+a 1+a 2+…+a n =1C.∑ 0 C - =2-1212D.a 1+2a 2+22a 3+…+2n-1a n =223-211参考答案1.C2.B3.BC4.AB5.BCD6 357 238.解(1)根据题意,得 - 200, + +40+60 1100,解得 600, 400.(2)将10000元存入“A ”的利息为10000×2.8%=280(元);将10000元存入“B ”的利息为10000×4.2%=420(元);将10000元存入“C ”的利息为10000×4.82%=482(元).所以这3名市民2023年理财的平均年化收益率为280+420+48230000 100%=3.94%.(3)由600∶400=3∶2,得抽取的这5人中使用“A ”的有3人,使用“B ”的有2人.设这5人中,使用“A ”的分别为A 1,A 2,A 3,使用“B ”的分别为B 1,B 2,则从5人中随机选取2人的样本空间Ω={(A 1,A 2),(A 1,A 3),(A 2,A 3),(B 1,B 2),(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2)},共有10个样本点,其中2人都使用“B ”的样本点为(B 1,B 2),只有1个样本点,所以这2人都使用“B ”的概率为P=110 9.A 10.D 11.BC 12 31313 5914.解(1)厨余垃圾投放正确的概率约为“厨余垃圾”箱里厨余垃圾量厨余垃圾总量=500500+50+50 56 (2)设“生活垃圾投放错误”为事件A ,则事件 表示“生活垃圾投放正确”.事件 的概率约为“厨余垃圾”箱里厨余垃圾量、“可回收物”箱里可回收物量与“其他垃圾”箱里其他垃圾量总和除以生活垃圾总量,即P ( )=500+240+601000=0.8,所以P (A )=1-0.8=0.2.(3)当a=450,b=c=0时,s 2取得最大值.因为 13(a+b+c )=150,所以s 2=13 [(450-150)2+(0-150)2+(0-150)2]=45000.15.ACD 16.AB。
(完整word)高中数学二项式定理全章复习(题型完美版).doc
第十一讲二项式定理课程类型:□复习□预习□习题针对学员基础:□基础□中等□优秀授课班级授课日期学员月日组本章主要内容:1.二项式定理的定义;2.二项式定理的通项公式;3.二项式定理的应用.本章教学目标:1.能用计数原理证明二项式定理(重点 );2.能记住二项式定理和二项展开式的通项公式(重点 );3.能解决与二项式定理有关的简单问题(重点、难点 ).课外拓展杨辉三角历史北宋人贾宪约1050 年首先使用“贾宪三角”进行高次开方运算。
13 世纪中国宋代数学家杨辉在《详解九章算术》里讨论这种形式的数表,并说明此表引自11 世纪前半贾宪的《释锁算术》,并绘画了“古法七乘方图”。
故此,杨辉三角又被称为“贾宪三角”。
元朝数学家朱世杰在《四元玉鉴》(1303 年)扩充了“贾宪三角”成“古法七乘方图”。
意大利人称之为“塔塔利亚三角形”以纪念在16 世纪发现一元三次方程解的塔塔利亚。
在欧洲直到1623 年以后,法国数学家帕斯卡在13 岁时发现了“帕斯卡三角”。
布莱士·帕斯卡的著作Traité du triangle arithm é tique (1655 年)介绍了这个三角形。
帕斯卡搜集了几个关于它的结果,并以此解决一些概率论上的问题,影响面广泛,Pierre Raymond de Montmort(1708 年)和亚伯拉罕·棣·美弗(1730 年)都用帕斯卡来称呼这个三角形。
近年来国外也逐渐承认这项成果属于中国,所以有些书上称这是“中国三角形” (Chinese triangle)。
【知识与方法】一.二项式定理的定义在 (a b)n(a b)( a b) ( a b) 中,每个括号都能拿出 a 或b,所以每个括号有 2 种选择, n 个括号n个就是 2 n种情况 . a 2b n 2这一项,表达的意思是_________________________ ;所以, a 2b n 2共有 ________个 .例如: ( x y)7 中 x 3 y 4 表示的就是,有3 个括号拿 x ,剩下的4 个括号拿y ,所以 x 3 y 4 共有 C 73 C 44 ,即 C 73 .(a + b)n 的二 展开式本来共有_______ ,合并之后共有_______ ,其中各 的系数______________叫做二 式系数. 二.二 展开式的通(a + b)n 的二 展开式的通 公式 __________.. 注意: 1.T r 1与 C n r 的关系,例如第 5 , 是 C n 4 ;2.二 式的展开式是按照前 降 排列,例如 (x 1) 10 与 (1 x)10 中的第 4 是不同的;3. a 的指数从 n 逐 减到 0,是降 排列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二项式定理1.二项式定理:)*()(011111100N n b a C b a C b a C b a C b a n n n n n n n nn n n ∈++⋅⋅⋅++=+---. 2.二项式定理的说明:(1)()n a b +的二项展开式是严格按照a 的降次幂(指数从n 逐项减到0)、b 的升次幂(数从0逐项减到n )排列的,其顺序不能更改,且各项关于a 、b 的指数之和等于n 。
所以()n a b +与()n b a +的二项展开式是不同的。
(3)二项式项数共有(1)n +项,是关于a 与b 的齐次多项式。
(4)二项式系数:展开式中各项的系数为1-r n C ,1,...,3,2,1+=n r . (5)二项式通项:展开式中的第r 项记作r T ,)(1,...,3,2,1111+==--+-n r b a C T r r n r n r ,共有(1)n +项。
(6)正确区分二项式系数与项的系数:二项式系数依次是012,,,,,,.r nn n n n n C C C C C ⋅⋅⋅⋅⋅⋅项的系数是a 与b 的系数(包括二项式系数)。
如:nn r r n n n n n n n n b C b a C b a C b a C a C b a )()()()()(----n r 2221110+⋅⋅⋅++⋅⋅⋅+++=---的 第2项的二次项系数为1n C ,而第2项的系数为1n C -.(7)常见二项式:令1,,a b x ==)*()1(111100N n x C x C x C x C x nn n n n n nn n ∈++⋅⋅⋅++=+--; 令1,,a b x ==-)*()1()1(221100N n x C x C x C x C x n n n n n nn n ∈-+⋅⋅⋅++-=-. 3.二项式系数的性质:(1)对称性:与首末两端“等距离”的两个二项式系数相等:即kn n k n n n n n n n C C C C C C --=⋅⋅⋅==,,,110 .(2)二项式系数和:令1a b ==,则二项式系数的和为:n n n n n n n C C C C 2110=++⋅⋅⋅++-,变形有:12321-=+⋅⋅⋅+++n n n n n n C C C C . (3)15314202-=⋅+⋅⋅+++=⋅+⋅⋅+++n n n nn n n C C C C C C ; (4)求奇数项的系数和与偶数项的系数和: 已知n n n x a x a x a x a a x a 22332102...)(2++++=+,则奇数项的系数和:n a a a a 2420...+++=_______________________________; 偶数项的系数和:12531...-+++n a a a a =_______________________________; (5)二项式系数的最大项:如果二项式的指数n 是偶数时,则中间项为第)(12+n项的二项式系数2nn C 取得最大值;如果二项式的指数n 是奇数时,则中间项有两项,分别为第21+n 项和第23+n 项,对应的二项式系数12n n C -,12n nC+同时取得最大值。
22212n n n nn b a C T =+,1-2121-221n n n nn baC T ++=,121-21223+++=n n nnn b a C T .(6)系数的最大、最小项的求法:求()n a bx +展开式中最大、最小项,一般采用待定系数法。
设展开式中各项系数分别为121,,,n A A A +⋅⋅⋅,设第1r +项系数最大,应有:r r A A ≥+1且21++≥r r A A ;如果设第1r +项系数最小,应有211+++≤≤r r r r A A A A 且,从而解出r 的范围。
4.怎么求展开式中含的系数,其中且?解:把视为二项式,先找出含有的项,另一方面在中含有的项为,故在中含n c b a )(++r q p c b a ,,,N r q p ∈n r q p =++n n c b a c b a ])[()(++=++r C r r n rnC b a C -+)(r n b a -+)(q b q p q r n q q r n q r n b a C b a C ----=n c b a )(++的项为:,其系数为. r q p c b a r q p q r n r n c b a C C -rr q p n p n q r n r n C C C p q r n q r n q r n r n r n C C --==---⋅-=!!!!)!(!)!()!(!!5.近似计算的处理方法:当a 的绝对值很小(趋近于0)且n 不大时,常用近似公式,因为这时展开式的后面部分n n n n n n n n a C a C a C a C ++⋅⋅⋅++--113322很小,可以忽略不计。
类似地,有.但使用这两个公式时应注意a 的条件,以及对计算精确度的要求。
若精确度要求较高,则可以使用更精确的公式:. 二项式定理常考题型题型一:二项式定理的逆用 题型二:求二项展开式的特定项 (1)求单个二项式指定幂的系数(2)求多个二项式乘积的展开式指定幂的系数 (3)利用通项公式求常数项 (4)求有理项 (5)求中间项题型三:求二项式系数或展开式系数最大或最小项 (1)一般的系数最大或最小问题 (2)特殊的系数最大或最小问题 (3)系数绝对值最大的项 (4)二项式系数最大的项 题型四:赋值法求值 题型五:整除性na a n +≈+1)1(na a n -≈-1)1(22)1(1)1(x n n nx x n -++≈+题型六:证明不等式题型七:利用二项式定理求近似值例 1.已知C 0n +2C 1n +22C 2n +…+2n C n n =729,则C 1n +C 3n +C 5n 的值等于_________例2.二项式(3x +32)n (n ∈N *)展开式中只有一项的系数为有理数,则n 可能取值为( )A.6 B.7 C.8 D.9例3.若展开式前三项的二项式系数和等于79,求1(2)2n x +的展开式中系数最大的项。
例4.已知等式x 4=(x +1)4+b 1(x +1)3+b 2(x +1)2+b 3(x +1)+b 4,则b 1,b 2,b 3,b 4的值分别为______________例 5.若n 是正整数,则122117777---⋅+⋅⋅⋅+⋅+⋅+n n n n n n n C C C 除以9的余数是________例6.证明:(1)()N n n n n ∈≥>,322 (2)当N n ∈且n >1,求证:3)11(2<+<n n例7.(2002全国)据2002年3月5日九届人大五次会议《政府工作报告》:“2001年国内生产总值达到95933亿元,比上年增长7.3%”,如果“十·五”期间(2001年—2005年)每年的国内生产总值都按此年增长率增长,那么到“十·五”末我国国内年生产总值约为( ) A.115000亿元 B.120000亿元 C.127000亿元D.135000亿元 变式训练:1.设二项式1)n x的展开式的各项系数的和为p ,所有二项式系数的和为s ,若272p s +=,则n 等于______________2.在(1+x )3+(1+x )4+…+(1+x )2007的展开式中,x 3的系数等于_____________3.把1+(1+x )+(1+x )2+…+(1+x )n展开成关于x 的多项式,其各项系数和为a n ,则2312lim 2n +-+∞→n n a 等于______________ 4.(2016浦东新区一模)二项式n xx )21(+的展开式前三项系数成等差数列,则_____5.已知(x +1)10=a 1+a 2x +a 3x 2+…+a 11x 10.若数列a 1,a 2,a 3,…,a k (1≤k≤11,k ∈Z )是一个单调递增数列,则k 的最大值是________6.若 5.在⎝⎛⎭⎪⎪⎫1x +51x 3n 的展开式中,所有奇数项的系数之和为1 024,则中间项系数是______7.在(x -1)(x -2)(x -3)(x -4)(x -5)的展开式中,含x 4的项的系数是________8.⎝ ⎛⎭⎪⎫x +2x 2n 展开式中只有第6项的二项式系数最大,则n 等于________ 9.已知0>a ,若26(1)(1)x ax ++的展开式中各项系数的和为1458,则该展开式中2x 项的系 数为___________10.(2011上海十三校二模)在二项式(x +3x )n的展开式中,各项系数之和为A ,各项二项式系数之和为B ,且A +B =72,则n =________11.(2015闸北区二模)若二项式展开式中只有第四项的系数n =n ⎛⎝nx ⎛⎝最大,则这个展开式中任取一项为有理项的概率是____________ 12.(2010辽宁)261(1)()x x x x++-的展开式中的常数项为_________ 13.(2000北京)求的展开式中有理项共有________项。
14.(2015全国)的展开式中,的系数为__________ 15.(2x -1)(x +y )5的展开式中,x 3y 3的系数为_______________ 16.(1+ax +by )n 展开式中不含x 的项的系数绝对值的和为243,不含y 的项的系数绝对值的和为32,则a ,b ,n 的值可能为( ) A.a =2,b =-1,n =5 B.a =-2,b =-1,n =6 C.a =-1,b =2,n =6 D.a =1,b =2,n =5 17.已知,则的值是__________18.多项式x 10=a 0+a 1(x -1)+a 2·(x -1)2+…+a 10(x -1)10,则a 8的值为_________19.若多项式1010221010)1(...)1()1()2(+++++++=+x a x a x a a x ,则820...a a a +++的值为( ) A .509B.510C.511D.102220.设10992210101022101020)1()1()21(x x b x b x b b x a x a x a a x x ++⋅⋅⋅+++++⋅⋅⋅+++=++,则=9a ________21.已知(1-2x )7=a 0+a 1x +a 2x 2+…+a 7x 7,求: (1)a 1+a 2+…+a 7; (2)a 1+a 3+a 5+a 7; (3)a 0+a 2+a 4+a 6;103)1(x x -25()x x y ++52x y(4)|a 0|+|a 1|+|a 2|+…+|a 7|.21.=++++⋅⋅⋅+++=0101102103107108109101098732C C C C C C C S _____________ 22.(2012湖北)设a ∈Z ,且0≤a <13,若512012+a 能被13整除,则a =_______23.数10101031032102110909090901C C C C ⋅+⋅⋅⋅+⋅-⋅+⋅-除以88的余数是_________24.求6998.2的近似值(精确到小数后第三位)。