二项式定理专题复习教学内容
二项式定理复习公开课
二项式定理学习任务:1.梳理二项式定理的相关知识点;2.归纳二项式定理的相关题型。
教学过程:一:知识梳理1.二项式定理二项式定理:(α+""=C%"+C""+……+/”+……C二项展开式的通项公式:小=Ca""",它表示第八1项二项式系数:二项展开式中各项的系数CtG……C2.二项式系数的性质(I)C;=1,C:=1,CW;;,C:=C:F(O:m、neN)(2)二项式系数先增后减中间项最大.n, n-I-1 —当n为偶数时,第5项的二项式系数最大,最大值为党,当n+∖〃+3n为奇数时,第亍项和第亏项的二项式系数最大,最大值为M-I 〃+1C了或a⑶各二项式系数和:cθ÷c>c>……C=2"+q+c+……=α+w+α+.•…=2“T二:题型归纳1二项展开式问题例1:在二项式(后+W的展开式中,常数项是,系数为有理数的项的个数是,2两个多项式积的展开式问题例2 (l+2x2)(l+x)4的展开式中X3的系数为A.12B.16C.20D.243三项展开式问题(X——+1)5例3'X 展开式中的常数项为A.1B.llC.-19D.514二项式系数和与系数和(X2--}n例4(1)若二项式∙X的展开式的二项式系数之和为8,则该展开式每一项的系数之和为A.-lB.lC.27D.-27⑵若Qx)7=<70+ α1(1 + x) ÷ α2 (1 + x)2 + %(1 + X)7,则%+4+ 4 的值为A.lB.2C.129D.21885二项式系数与系数的最值问题例5二项式我的展开式中只有第11项的二项式系数最大,则展开式中X的指数为整数的项的个数为A.3B.5C.6D.7例6,若沃展开式中前三项的系数和为163,求:⑴展开式中所有X的有理项;(2)展开式中系数最大的项.课堂小结:二项式定理的相关题型主要有:1.利用展开式通项求各种项的相关问题;2.二项式系数和与系数和问题(赋值法);3.二项式系数与系数最大问题。
高考数学总复习 二项式定理教案
河北省二十冶综合学校高中分校高考数学总复习 二项式定理教案教学目标:掌握二项式定理和二项展开式的通项公式,能解决二项展开式有关的简单问题教学重点:二项式定理及通项公式的掌握及运用教学难点:二项式定理及通项公式的掌握及运用教学过程:一、复习引入:⑴22202122222()2a b a ab b C a C ab C b +=++=++;⑵33223031222333333()33a b a a b ab b C a C a b C ab C b +=+++=+++ ⑶4()()()()()a b a b a b a b a b +=++++= 。
二、讲解新课:⑴()na b +的展开式的各项都是n 次式,即展开式应有下面形式的各项: n a ,n a b ,…,n r r a b -,…,n b ,⑵展开式各项的系数:每个都不取b 的情况有1种,即0n C 种,n a 的系数是0n C ;恰有1个取b 的情况有1n C 种,n a b 的系数是1n C ,……,恰有r 个取b 的情况有r n C 种,n r r ab -的系数是r n C ,……, 有n 都取b 的情况有n n C 种,nb 的系数是n n C ,∴二项式定理: 。
这个公式所表示的定理叫二项式定理,右边的多项式叫()n a b +的 ,⑶它有 项,各项的系数(0,1,)r n C r n =叫 ,⑷ 叫二项展开式的通项,用 表示,即通项 .⑸二项式定理中,设1,a b x ==,则 。
三、讲解范例:例1.展开41(1)x +. 例2.求12()x a +的展开式中的倒数第4项例3.(1)求9(3x+的展开式常数项;展示一,展开6展示二.课本37页4题(1)(2)展示三,课本37页4题(3)(4)展示四.(1)求7(12)x +的展开式的第4项的系数; (2)求91()x x -的展开式中3x 的系数及二项式系数 展示五,课本37页5题(1)展示六,课本37页5题(2)。
二项式定理复习教案
二项式定理复习教案三维目标一、知识与技能1.二项式定理:(a+b)n =0n C a n +1n C a n-1b+…+k n C a n-k b k +…+nn C b n (n ∈N*) 2.通项公式:1+k T =k n C an-k b k(k =0,1,2,…,n) 二、过程与方法 1.理解并掌握二项式定理,从项数、指数、系数、通项几个特征熟记它的展开式.2.能运用展开式中的通项公式求展开式中的特定项.三、情感、态度、价值观1.提高学生的归纳推理能力.2.进一步树立由特殊到一般的归纳意识.教学重点、难点重点:1.二项式定理及结构特征,2.展开式的通项公式难点:通项公式的灵活应用。
教学过程例1 .(1)求7)21(x +的展开式的倒数第4项,第4项二项式的系数及第四项系数;(2)7)1(x x -的展开式中x 3的系数. 此类问题一般由通项公式入手分析,要注意项的系数和二项式系数的概念区别.例2.若n的展开式中各项系数之和为64,则展开式的常数项为( ) A.-540 B.-162 C.162 D.540考查展开式各项系数与二项式系数的不同以及通项公式的应用.例3.设8878710(2)x a x a x a x a -=++++,则8710a a a a ++++= ,86420a a a a a ++++=考查赋值法的应用练习1. 41()n x 的展开式中,第3项的二项式系数比第2项的二项式系数大44,则展开式中不含x 的项是( )A 第3项B 。
第4项C 。
第7项 D.第8项2.若5(12)x -的展开式中,第2项小于第1 项且不小于第3项,则x 的取值范围是( )A .110x <-B 。
1010x -<≤C 。
11410x -≤<-D 。
104x -≤≤ 3.在56(1)(1)x x +-+展开式中,含3x 的项的系数是( )A .-5 B.5 C.-10 D.104.在10()x a -的展开式中,7x 的系数是15.则实数a 的值为 。
二项式定理复习小结公开课教案教学设计课件资料
二项式定理复习小结公开课教案教学设计课件资料一、教学目标1. 回顾和巩固二项式定理的概念、公式及应用。
2. 提高学生对二项式定理的理解和运用能力。
3. 培养学生的逻辑思维和团队合作能力。
二、教学内容1. 二项式定理的定义及公式。
2. 二项式定理的展开式。
3. 二项式定理的应用。
4. 复习重点知识点和常见题型。
5. 课堂练习和讨论。
三、教学方法1. 采用多媒体课件辅助教学,直观展示二项式定理的推导和应用。
2. 采用案例分析法,引导学生通过具体例子理解和掌握二项式定理。
3. 采用小组讨论法,鼓励学生相互交流、合作解决问题。
4. 采用问答法,教师提问,学生回答,及时检查学生的学习效果。
四、教学步骤1. 导入新课:通过复习导入,回顾二项式定理的概念和公式。
2. 讲解与演示:讲解二项式定理的推导过程,并通过多媒体课件展示。
3. 案例分析:分析典型例题,引导学生运用二项式定理解决问题。
4. 小组讨论:学生分组讨论,分享解题心得和经验。
5. 课堂练习:布置练习题,让学生巩固所学知识。
6. 总结与反思:教师引导学生总结二项式定理的重点知识点和常见题型。
五、教学评价1. 课堂练习:评价学生在课堂练习中的表现,检查掌握程度。
2. 小组讨论:评价学生在团队合作中的表现,培养团队合作能力。
3. 问答环节:评价学生的回答准确性,提高学生的逻辑思维能力。
4. 课后作业:布置课后作业,巩固所学知识,提高学生的自主学习能力。
六、教学资源1. 多媒体课件:包含二项式定理的定义、公式、展开式及应用案例。
2. 练习题:涵盖不同难度的题目,用于巩固知识和检查掌握程度。
3. 小组讨论材料:提供相关案例和问题,促进学生交流和合作。
4. 教学指导书:提供详细的教学步骤和指导,帮助教师顺利进行教学。
七、教学安排1. 课时:预计2课时(90分钟)。
2. 教学顺序:先回顾二项式定理的基本概念和公式,通过案例分析和小组讨论,让学生运用二项式定理解决问题。
高考数学复习知识点讲解教案第60讲 二项式定理
[解析] 设,则由题意得,解得 .
3.[教材改编] 已知 的展开式中各二项式系数的和为128,则展开式中 的系数是______.
672
[解析] 由题意得,则 ,则展开式的通项为,令,可得 ,所以展开式中的系数为 .
题组二 常错题
◆ 索引:对二项展开式的特点把握不准;不理解常数项、有理项等需满选B.
[总结反思]求几个多项式和的展开式中的特定项(系数),先分别求出每一个多项式的展开式中的特定项,再合并即可.
变式题 已知 ,则 的值为_____.
[解析] 令,可得,令 ,可得①,令 ,则②,所以① ②可得,所以 ,即 .
角度2 几个多项式积的展开式中的特定项(系数)问题
C
A.4 B. C. D.60
[解析] ,其展开式的通项为,令,可得,其中 的展开式的通项为,令,得 ,所以,故的系数为 .故选C.
(2) [2023·湖南郴州模拟] 若的展开式中 的系数为3,则 _ ___.
[解析] ,其展开式的通项为,,,, ,令,则,或, ,所以,即,因为,所以 .
和
[解析] 由题意知, 的展开式的通项为,,1,2, ,8,令,得 或8,所以,,故有理项是和 .
探究点二 二项式系数与各项的系数问题
角度1 二项式系数
例2(1) 已知 的展开式中第4项与第5项的二项式系数相等,则展开式中 的系数为( )
B
A. B.84 C. D.560
[解析] 因为的展开式中第4项与第5项的二项式系数相等,所以 ,则的展开式的通项为,令 ,则展开式中的系数为 .故选B.
变式题(1) 已知 ,则 ( )
D
A.30 B. C.17 D.
[解析] 根据二项式定理得,所以 ,,则 ,所以 .故选D.
二项式定理复习课的教学设计
二项式定理复习课的教学设计1、教学内容:高中数学理科选修2-3:《二项式定理复习课》2、教学对象分析:学生高二学习了《二项式定理》的全部内容,对这部分内容有了初步的了解,但遗忘率比较大,对二项式定理的题型已经生疏,因此让学生在老师的指导下,对《二项式定理》进行复习应用,巩固和加深。
在复习的过程中,渗透了《排列组合》等其它的内容,加强了知识点之间的联系,培养学生综合运用知识的能力。
3、教学内容分析:本节内容包括以下几部分:(1)二项式展开式的特点。
(2)二项式展开式项的系数和二项式式系数。
(3)二项式定理的四个应用。
教学目标:(1)知识目标:复习二项式定理,正确理解和区分二项式系数、通项、二项式项的系数等概念,会利用通项公式及二项式系数的性质解决有关计算问题.(2)能力目标:通过讲练结合使学生掌握二项式定理习题的一般解题方法,提高分析和解决问题的能力。
(3)情感目标:通过学生的主体活动,营造一种愉悦的情境,使学生自始至终处于积极思考的氛围中,不断获得成功的体验,从而对自己的数学学习充满信心。
教学重点: 二项式定理的应用教学难点 : 二项式定理及二项式系数性质的灵活应用教学方法:讲练结合 教学过程:1、知识回顾:(1)二项式定理:=+n b a )( (*N n ∈).二项式展开式的通项公式为=+1r T .(2)二项式系数:①n b a )(+展开式的二项式系数之和为 ,即=++++++n n k n n n n C C C C ......C 210②奇数项的系数之和等于 的系数之和,即=++...C 20n n C =2、热身练习:(1)(2x+1)4的展开式中3x 的系数是( )A .6B .32C .8D .48(2)、若n x x )1(+展开式的二项式系数之和为64,则展开式的常数项为 .(3)若9922109...)1(x a x a x a a x ++++=-,则129a a a +++= ( )A 、1-B 、0C 、1D 、2(4)1110除以9的余数是 ( )A.1B.2C.4D.8小结:题型一:求项的系数题型二:求特定项题型三:求展开式系数和题型四:整除问题3、综合例题: 例.已知二项式n x)121(4+(*N n ∈)展开式中,末三项的系数依次成等差数列,求此展开式中所有的有理项。
二项式定理复习教案
二项式定理【考纲要求】掌握二项式定理和二项式系数的性质,并能运用它们计算和论证一些简单问题。
【基础知识】1.二项式定理:n n n r r n r n n n n n n nn b C b a C b a C b a C a C b a ++++++=+--- 222110)( 2.二项式通项公式:r r n r n r b a C T -+=1 (r=0,1,2,…,n )3.二项式系数的性质: n b a )(+的展开式的二项式系数有如下性质:(1)在二项展开式中,与首末两项“等距离”的两项的二项式系数相等。
(2)如果二项式的幂指数是偶数,中间一项的二项式系数最大;如果二项式的幂指数是奇数,中间两项的二项式系数相等且最大。
(3) n n n n n n n n n nC C C C C C 212210=++++++-- (4)15314202-=+++=+++n n n n n n nC C C C C C (奇数项二项式系数之和等于偶数项二项式系数之和)4.二项展开式的系数a 0,a 1,a 2,a 3,…,a n 的性质:f(x )= a 0+a 1x +a 2x 2+a 3x 3……+a n xn ⑴ a 0+a 1+a 2+a 3……+a n =f(1)⑵ a 0-a 1+a 2-a 3……+(-1)n a n =f(-1)⑶ a 0+a 2+a 4+a 6……=2)1()1(-+f f ⑷ a 1+a 3+a 5+a 7……=2)1()1(--f f ⑸ a 0=f(0)⑹ |a 0|+|a 1|+|a 2|+|a 3|……+|a n |=5. 注意(1)奇数项、偶数项、奇次项、偶次项各自表示的意义。
(2)“某项”、“某项的二项式系数”、“某项的系数”之间的区别【课前练习】1、设S=(x -1)4+4(x -1)3+6(x -1)2+4(x -1)+1,它等于下式中的( )(A )(x -2)4 (B )(x -1)4 (C )x 4 (D )(x +1)42、100+展开所得关于x 的多项式中系数为有理数的共有( )项.(A )50 (B )17 (C )16 (D )153、31(||2)||x x +-展开式中的常数项是( ). (A )-20 (B )-12 (C )-8 (D )20法一:(|x |+||1x -2)3=(|x |+||1x -2)(|x |+||1x -2)(|x |+||1x -2) 得到常数项的情况有:①三个括号中全取-2,得(-2)3;②一个括号取|x |,一个括号取||1x ,一个括号取-2,得C 13C 12(-2)=-12, ∴常数项为(-2)3+(-12)=-20.解法二:(|x |+||1x -2)3=(||x -||1x )6. 设第r +1项为常数项,则T 1+r =C r 6·(-1)r ·(||1x )r ·|x |r -6=(-1)6·C r 6·|x |r 26-,得6-2r =0,r =3. ∴T 3+1=(-1)3·C 36=-204、设n 为自然数,则01122(1)2(1)n n k k n k n n n n n n C C C C ---++-++-等于( )(A ) (B )0 (C )-1 (D )15、(x +y )10展开式中有_______项;(x +y +z )10展开式中有_________项.6、(1-z )+ (1-z )2++ (1-z )10的展开式中z 2的系数是_________.7、(1-x 3)(1+x )10展开式中x 5的系数是_______.8、已知9(a x -的展开式中x 3项的系数为94,常数a 的值________. 【典型例题】例1、求(1+x -2x 2)5的展开式中x 4项的系数.例2、若(1+2x )n 中第6项与第8项的二项式系数相等,求按升幂排列的前3项。
高中数学选修2-3《二项式定理》复习课教案
二项式定理复习课新课标教材数学(选修2-3·北师大版)第一章§5.1《二项式定理》考纲要求及高考动向:2010年考试大纲(广东卷)对本节知识的要求是:1.理解二项式定理;2.会用二项式 定理解决与二项式定理有关的简单问题。
高考主要考查通项和二项展开式的应用,即求特定项以及展开式中的系数和等问题。
一、教学目标1、知识目标:掌握二项式定理及有关概念,通项公式,二项式系数的性质;2、思想方法目标:使学生领悟并掌握方程的思想方法,赋值法,构造法,并通过引申 变式提高学生的应变能力,创造能力及逻辑思维能力。
3、情感目标:通过学生的主体活动,营造一种愉悦的情境,使学生自始至终处于积极 思考的氛围中,不断获得成功的体验,从而对自己的数学学习充满信心。
二、教学重点与难点1、重点:二项式定理及有关概念2、难点:二项式定理的应用三、教学资源课本、复习资料、电脑、多媒体平台四、教法与学法1、教法:本节课的教法贯穿引导式教学原则,以“引导思考”为核心,通过例题及其 引申变式引导学生沿着积极的方向思维,逐步达到即定的教学目标,发展学生的逻辑思维能 力。
2、学法:根据学生思维的特点,遵循“教必须以学为主”的教学理念,让每一个学生 自主参与整堂课的知识构建。
在教学的各个环节中引导学生积极参与,进行类比迁移,对照 学习。
学生在教师营造的“自主学习”的环境里,生动活泼地获取知识,掌握规律、主动发 现、主动发展。
五、教学过程(一)教材复习1.二项式定理 01()()n n n r n r r n n n n n n a b C a C a b C a b C b n N -*+=+++++∈(1)展开式中共有n+1项(2)展开式的通项公式:r r n r n r b a C T -+=1,它表示的是展开式的第r+1项(3)二项式系数:2.二项式系数的性质(1)对称性:与首末两端“等距离”的两个二项式系数相等,即m n m n nC C -=(0,1,2,,)r n C r n =(2)增减性与最大值: 先增再减;当n 是偶数时,中间一项2nnC 取 得最大值;当n 是奇数时,中间两项12n n C -,12n n C +取得最大值。
《二项式定理》复习课件(理)
这个课件将帮助你复习《二项式定理》的基本概念、推导及证明过程、各种 形式、应用等。让我们开始吧!
基本概念
1 什么是二项式定理?
学习二项式定理最重要的第一步是了解其基本概念。
2 二项式展开
学会使用二项式定理将二项式展开成多项式。
公式推导及证明过程
了解二项式定理推导和证明的过程有助于理解其原理和逻辑。
三种形式
普通形式
通过公式进行计算,适用于简单的情况。
杨辉三角形式
利用杨辉三角形式的二项式定理,可以更好地组织和计算。
多项式形式
将二项式定理推广至多项式,扩展其应用范围。
组合数的定义及性质
1 什么是组合数?
了解组合数的定义是学习和应用二项式定理的基础。
2 组合数的性质
掌握组合数的一些常见性质,有助于在计算中快速应用。
杨辉三角的使用及性质
1 什么是杨辉三角?
学会使用杨辉性质
了解杨辉三角的性质有助于解决一些与二项式定理相关的问题。
二项式定理在计算中的应用
学习如何在计算中应用二项式定理,以快速求解复杂的表达式。
线性二项式
什么是线性二项式?
了解线性二项式的特点和求解方法,为更复杂的 问题打下基础。
解线性二项式的方程
学会求解线性二项式的方程,解决实际问题。
二项式定理拓展:多项式定理
了解如何将二项式定理推广到多项式,扩大其应用范围。
二项式定理专题讲义
二项式定理专题讲义一、知识梳理1.二项式定理2.(1)C 0n =1,C n n =1,C m n +1=C m -1n +C m n. (2)C m n =C n -m n . (3)当n 是偶数时,12n T +项的二项式系数最大;当n 是奇数时,12n T +与112n T +++1项的二项式系数相等且最大.(4)(a +b )n 展开式的二项式系数和:C 0n +C 1n +C 2n +…+C n n =2n .注意:二项展开式形式上的特点(1)项数为n +1.(2)各项的次数都等于二项式的幂指数n ,即a 与b 的指数的和为n .(3)字母a 按降幂排列,从第一项开始,次数由n 逐项减1直到零;字母b 按升幂排列,从第一项起,次数由零逐项增1直到n .(4)二项式的系数从C 0n ,C 1n ,一直到C n -1n ,C n n . 二、基础检测题组一:思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)C k n a n -k b k 是二项展开式的第k 项.( ) (2)二项展开式中,系数最大的项为中间一项或中间两项.( )(3)(a +b )n 的展开式中某一项的二项式系数与a ,b 无关.( )(4)(a -b )n 的展开式第k +1项的系数为C k n a n -k b k .( ) (5)(x -1)n 的展开式二项式系数和为-2n .( )题组二:教材改编2.(1+2x )5的展开式中,x 2的系数等于( )A .80B .40C .20D .103.若n xx )1(+展开式的二项式系数之和为64,则展开式的常数项为( )A .10B .20C .30D .120 4.若(x -1)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则a 0+a 2+a 4的值为( )A .9B .8C .7D .6 题组三:易错自纠5.(x -y )n 的二项展开式中,第m 项的系数是( )A .C m nB .C m +1n C .C m -1n D .(-1)m -1C m -1n 6.已知(x +1)10=a 1+a 2x +a 3x 2+…+a 11x 10.若数列a 1,a 2,a 3,…,a k (1≤k ≤11,k ∈N *)是一个单调递增数列,则k 的最大值是( )A .5B .6C .7D .87.(x y -y x )4的展开式中,x 3y 3项的系数为________.二、典型例题题型一:二项展开式命题点1:求二项展开式中的特定项或指定项的系数典例 (1))11(2x+(1+x )6的展开式中x 2项的系数为( ) A .15 B .20 C .30 D .35(2)(x 2+x +y )5的展开式中,x 5y 2项的系数为( )A .10B .20C .30D .60命题点2 已知二项展开式某项的系数求参数典例 (1)若(x 2-a )10)1(x x +的展开式中x 6的系数为30,则a 等于( )A.13B.12C .1D .2 (2)若52)1(xax +项的展开式中x 5项的系数为-80,则实数a =________. 思维升华:求二项展开式中的特定项,一般是化简通项公式后,令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等),解出项数k +1,代回通项公式即可.跟踪训练 (1)(x +y )(2x -y )5的展开式中x 3y 3的系数为( )A .-80B .-40C .40D .80(2)(x +a )10的展开式中,x 7项的系数为15,则a =______.(用数字填写答案)题型二:二项式系数的和与各项的系数和问题典例 (1)(a +x )(1+x )4的展开式中x 的奇数次幂项的系数之和为32,则a =____________.(2)若(x +2+m )9=a 0+a 1(x +1)+a 2(x +1)2+…+a 9(x +1)9,且(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=39,则实数m 的值为________.(3)若n x x )1(2-的展开式中含x 的项为第6项,设(1-3x )n =a 0+a 1x +a 2x 2+…+a n x n ,则a 1+a 2+…+a n 的值为________.思维升华:(1)“赋值法”普遍适用于恒等式,对形如(ax +b )n ,(ax 2+bx +c )m (a ,b ,c ∈R )的式子求其展开式的各项系数之和,常用赋值法.(2)若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )展开式中各项系数之和为f (1),奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2,偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2. 跟踪训练 (1)若二项式n x x )13(2-的展开式中各项系数的和是512,则展开式中的常数项为( )A .-27C 39B .27C 39 C .-9C 49D .9C 49(2)(1-3x )5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,则|a 0|+|a 1|+|a 2|+|a 3|+|a 4|+|a 5|等于( )A .1 024B .243C .32D .24题型三:二项式定理的应用典例 (1)设a ∈Z 且0≤a <13,若512 012+a 能被13整除,则a 等于( )A .0B .1C .11D .12(2)设复数x =2i 1-i(i 是虚数单位),则C 12 017x +C 22 017x 2+C 32 017x 3+…+C 2 0172 017x 2 017等于( ) A .iB .-iC .-1+iD .-1-i 思维升华:(1)逆用二项式定理的关键根据所给式子的特点结合二项展开式的要求,使之具备二项式定理右边的结构,然后逆用二项式定理求解.(2)利用二项式定理解决整除问题的思路①观察除式与被除式间的关系;②将被除式拆成二项式;③结合二项式定理得出结论.跟踪训练 (1)1-90C 110+902C 210-903C 310+…+(-1)k 90k C k 10+…+9010C 1010除以88的余数是( )A .-1B .1C .-87D .87(2)若(1-2x )2 018=a 0+a 1x +a 2x 2+…+a 2 018x 2 018,则a 12+a 222+…+a 2 01822 018=________.注意:二项展开式的系数与二项式系数典例 (1)若nx x )3(-展开式的各项系数绝对值之和为1 024,则展开式中含x 项的系数为________.(2)已知(x -m )7=a 0+a 1x +a 2x 2+…+a 7x 7的展开式中x 4项的系数是-35,则a 1+a 2+…+a 7=________. 四、反馈练习1.已知(1+x )n 的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( )A .29B .210C .211D .2122.在x 2(1+x )6的展开式中,含x 4项的系数为( )A .30B .20C .15D .103.使n x x )21(32+(n ∈N *)展开式中含有常数项的n 的最小值是( ) A .3B .4C .5D .64.(1+3x )n 的展开式中x 5与x 6的系数相等,则x 4的二项式系数为( )A .21B .35C .45D .28 5.(4x -2-x )6(x ∈R )展开式中的常数项是( )A .-20B .-15C .15D .206.若在(x +1)4(ax -1)的展开式中,x 4项的系数为15,则a 的值为( )A .-4 B.52 C .4 D.727.若(1+x )+(1+x )2+…+(1+x )n =a 0+a 1(1-x )+a 2(1-x )2+…+a n (1-x )n ,则a 0-a 1+a 2-a 3+…+(-1)n a n 等于( )A.34(3n -1) B.34(3n -2) C.32(3n -2) D.32(3n -1) 8.6)1(x xy +展开式中不含x 的项的系数为________.(用数字作答)9.若将函数f (x )=x 5表示为f (x )=a 0+a 1(1+x )+a 2(1+x )2+…+a 5(1+x )5,其中a 0,a 1,a 2,…,a 5为实数,则a 3=________.(用数字作答)10.若62)(x bax +的展开式中x 3项的系数为20,则log 2a +log 2b =________.11.在6)(x ax +(a >0)的展开式中,常数项的系数是60,则ʃa 0sin x d x 的值为________.12.若(1+x +x 2)6=a 0+a 1x +a 2x 2+…+a 12x 12,则a 2+a 4+…+a 12=________.(用数字作答)13.若)(x ax +5)12(x x -的展开式中各项系数的和为2,则该展开式的常数项为( )A .-40B .-20C .20D .40 14.9)432(-+y x 的展开式中,不含x 的各项系数之和为________.15.在(1+x )6(1+y )4的展开式中,记x m y n 项的系数为f (m ,n ),则f (3,0)+f (2,1)+f (1,2)+f (0,3)等于() A .45 B .60 C .120 D .210。
高三数学教案《二项式定理》优秀3篇
高三数学教案《二项式定理》优秀3篇1. 介绍本文档将介绍三篇优秀的高三数学教案,主题为《二项式定理》。
这些教案从不同的角度和方法讲解了二项式定理,帮助学生更好地理解和应用该定理,提高数学解题能力。
2. 教案一:《二项式定理初步认识》2.1 教学目标•了解二项式的定义和性质•掌握二项式展开的基本方法•能够灵活应用二项式定理解决实际问题2.2 教学内容1.二项式的定义和性质–介绍二项式的概念和表达形式–讲解二项式的性质,如二项式系数的对称性等2.二项式展开的基本方法–介绍二项式在展开时的基本方法–给出一些例题进行演示和练习3.实际问题的应用–利用二项式定理解决实际问题,如排列组合问题等–给出一些实际问题的例题和练习2.3 教学方法•讲授与演示相结合:通过讲解二项式的定义和性质,并用例题演示二项式展开的基本方法,加深学生对二项式定理的理解•提问与讨论:引导学生参与讨论,思考问题的解决方法,培养学生的分析和解决问题的能力•练习与巩固:给学生一定数量的练习题,巩固所学知识,并能够应用到实际问题中2.4 教学评价与反馈•教学评价:通过课堂上教师的观察、学生的表现及课后作业的完成情况,进行教学评价•教学反馈:及时给予学生反馈,并指导学生改正错误,提高学习效果3. 教案二:《二项式定理的证明与应用》3.1 教学目标•掌握二项式定理的证明方法•理解二项式定理的应用领域•提高数学推理和证明能力3.2 教学内容1.二项式定理的证明方法–讲解二项式定理的组合证明方法,如二项式系数的递推关系等–通过数学推理,证明二项式定理的正确性2.二项式定理的应用–介绍二项式定理在组合数学、概率论等领域的应用–给出一些应用题进行练习,提高学生的应用能力3.数学推理与证明–培养学生的数学推理和证明能力,通过解答证明题加深学生对二项式定理的理解3.3 教学方法•讲授与演示相结合:通过讲解二项式定理的证明方法,并演示具体的证明过程,加强学生对二项式定理的理解•课堂讨论:引导学生进行证明题的讨论和分析,提高学生的数学推理能力•练习与应用:给学生一些练习题,加深学生对二项式定理的应用理解3.4 教学评价与反馈•教学评价:通过课堂上的表现、学生的参与情况以及课后作业的完成情况综合评价学生的学习情况•教学反馈:及时给予学生反馈,并指导学生改进学习方法,提高学习效果4. 教案三:《二项式定理与三角恒等式》4.1 教学目标•掌握二项式定理与三角恒等式的联系和应用•理解二项式定理与三角恒等式在数学中的重要性•提高学生的综合应用能力4.2 教学内容1.二项式定理与三角恒等式的联系和应用–介绍二项式定理与三角恒等式之间的联系和应用–分析二项式展开式的三角形式及其与三角恒等式的关系2.二项式定理与三角恒等式的具体应用–给出一些具体的二项式展开题目,引导学生将其化简成三角恒等式形式–通过练习题,锻炼学生的综合应用能力4.3 教学方法•讲授与实例演示:通过讲解二项式定理与三角恒等式的联系,并给出具体的例题进行演示,加深学生对二项式定理和三角恒等式的理解•练习与应用:给学生一些练习题,锻炼学生将二项式展开式化简成三角恒等式形式的能力•问题探究与讨论:引导学生思考和探索二项式定理与三角恒等式之间的更多联系4.4 教学评价与反馈•教学评价:通过观察学生的课堂表现、参与讨论的情况以及课后作业的完成情况综合评价学生的学习情况•教学反馈:及时给予学生反馈,并指导学生改进问题解决的方法,提高学习效果5. 总结本文档介绍了三篇优秀的高三数学教案,主题为《二项式定理》。
二项式定理复习课的教学设计
二项式定理复习课的教学设计一、教学内容本节课的教学内容选自人教版高中数学必修一第二章《立体几何》中的二项式定理。
二项式定理是指:对于任意正整数n和实数a、b,都有(a+b)^n = C(n,0)a^n b^0 + C(n,1)a^(n1) b^1 + +C(n,n1)a^1 b^(n1) + C(n,n)a^0 b^n,其中C(n,k)表示从n个不同元素中取k个元素的组合数。
二、教学目标1. 理解二项式定理的定义及其推导过程;2. 掌握二项式定理的应用,能够运用二项式定理解决实际问题;3. 培养学生的逻辑思维能力和数学运算能力。
三、教学难点与重点1. 教学难点:二项式定理的推导过程及组合数的计算;2. 教学重点:二项式定理的应用。
四、教具与学具准备1. 教具:黑板、粉笔、投影仪;2. 学具:教材、练习本、文具。
五、教学过程1. 实践情景引入:让学生思考现实生活中存在的排队问题,如排队买票、排队就餐等,引出组合数的概念。
2. 知识回顾:复习组合数的计算公式,引导学生回顾已学的排列组合知识。
3. 二项式定理的推导:通过示例,引导学生理解二项式定理的推导过程,让学生体会数学的归纳思想。
4. 二项式定理的应用:通过例题,讲解二项式定理在实际问题中的应用,如概率计算、最值问题等。
5. 随堂练习:让学生独立完成教材中的练习题,巩固所学知识。
六、板书设计1. 二项式定理的定义;2. 二项式定理的推导过程;3. 二项式定理的应用示例;4. 组合数的计算公式。
七、作业设计1. 作业题目:教材P47练习题1、2、3;2. 答案:待学生完成作业后,教师批改并给予反馈。
八、课后反思及拓展延伸1. 课后反思:本节课的教学效果,学生对二项式定理的理解和应用程度;2. 拓展延伸:引导学生思考二项式定理在更广泛领域中的应用,如计算机科学、工程学等。
重点和难点解析一、教学难点:二项式定理的推导过程及组合数的计算1. 难点解析:二项式定理的推导过程涉及到数学归纳法,学生可能对归纳法的理解和应用存在困难。
二项式定理 复习课件
5.二项展开式的各项系数和、奇数项系数和与偶数项系数和的求法 一般地,若 f(x)=a0+a1x+a2x2+…+anxn,则 f(x)的展开式中 (1)各项系数之和为 f(1). (2)奇数项系数之和为 a0+a2+a4+…=f1+f-1.
2 (3)偶数项系数之和为 a1+a3+a5+…=f1-f-1.
2
3.求形如(a+b+c)n的展开式中特定项的四步骤
第一步
把三项的和a+b+c看作(a+b)与c两项的和
第二步
根据二项式定理求出[(a+b)+c]n的展开式的通项
第三步
对特定项的次数进行分析,弄清特定项是由 (a+b)n-r的展开式中哪些项和cr相乘得到的
第四步
把相乘后的项相加减即可得到特定项
4.赋值法的应用 二项式定理给出的是一个恒等式,对于形如(ax+b)n 中,可将 x 设定为 一些特殊的值.在使用赋值法时,令 x 等于多少,应视具体情况而定,一般 取“1,-1 或 0”.如: (1)形如(ax+b)n(a,b∈R)的式子,求其展开式的各项系数之和,只需 令 x=1 即可. (2)形如(ax+by)n(a,b∈R)的式子,求其展开式的各项系数之和,只需 令 x=y=1 即可.
通项公式 二项式系数 二项展开式每一项中的 C0n,C1n,…,Cnn.叫做二项式系数 项的系数 一项中所有的数字因数称为这一项的系数.
2.二项式系数的性质
性质
性质描述
对称性
与首末两端“等距离”的两个二项式系数相等,即 Cmn =Cnn-m
增减性
n+1 二项式 当 k< 2 时,二项式系数是递增的.
3.常用结论 (1)Cn0+Cn1+Cn2+…+Cnn=2n. (重要) (2)Cn0+Cn2+Cn4+…=Cn1+Cn3+Cn5+…=2n-1. (3)Cn1+2Cn2+3C3n+…+nCnn=n2n-1. (4)(Cn0)2+(C1n)2+(C2n)2+…+(Cnn)2=C2nn.
二项式定理复习小结公开课教案教学设计课件资料
二项式定理复习小结公开课教案教学设计课件资料一、教学目标:1. 帮助学生回顾和巩固二项式定理的概念、公式及其应用。
2. 提高学生对二项式定理的理解和运用能力,培养学生的逻辑思维和运算能力。
3. 激发学生的学习兴趣,培养学生的合作意识和团队精神。
二、教学内容:1. 二项式定理的定义和公式。
2. 二项式定理的证明。
3. 二项式定理的应用。
4. 复习常见的问题和解题方法。
5. 课堂练习和讨论。
三、教学过程:1. 导入:通过一个实际问题引入二项式定理的概念,激发学生的兴趣。
2. 讲解:回顾二项式定理的定义和公式,引导学生理解其含义和应用。
3. 证明:讲解二项式定理的证明过程,帮助学生理解其内在逻辑。
4. 应用:通过实例展示二项式定理在实际问题中的应用,引导学生学会运用。
6. 练习:布置课堂练习题,让学生动手实践,巩固所学知识。
7. 讨论:组织学生进行小组讨论,分享解题心得和经验。
四、教学资源:1. 课件:制作精美的课件,展示二项式定理的概念、公式和应用。
2. 练习题:准备一些具有代表性的练习题,帮助学生巩固知识。
3. 讨论材料:提供一些相关的研究材料,供学生课后进一步探讨。
五、教学评价:1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 练习题:检查学生课堂练习题的完成情况,评估学生的掌握程度。
3. 小组讨论:评估学生在讨论中的表现,包括观点阐述、沟通交流等。
4. 课后反馈:收集学生的课后反馈意见,了解教学效果。
六、教学策略:1. 采用问题驱动的教学方法,引导学生主动探究二项式定理的内涵和外延。
2. 利用多媒体课件辅助教学,提高学生的学习兴趣和效果。
3. 组织小组合作学习,培养学生的团队协作能力和交流沟通能力。
4. 注重个体差异,给予每个学生充分的关注和指导,提高课堂互动性。
七、教学步骤:1. 回顾上节课的内容,检查学生对二项式定理的理解和掌握程度。
2. 讲解二项式定理的证明,引导学生理解其数学原理。
二项式定理复习课
二项式定理复习课课标要求:1.能用计数原理证明二项式定理。
2.会用二项式定理解决与二项展开式有关的简单问题。
学习目标:1.进一步理解、掌握二项式定理及二项展开式的通项公式。
2.会用二项式定理解决二项展开式中系数和及系数的最值问题。
3.更加熟悉、喜欢二项式定理,进一步提高运算能力。
重点难点:重点:二项式定理及二项展开式的通项公式。
难点:用二项式解决与二项展开式有关的简单问题。
一、导入新课:问题:(1)今天是星期五,那么七天后的这一天是星期几呢?(2)如果是十五天后的这一天呢?(3)如果是8100天后的这一天呢?二、要点梳理:1.二项式定理:(a+b)n= c n0a n b0+c n1a n-1b1+…+c n r a n-r b r+…+c n n a0b n(n N+)2.二项展开式的结构特征3.二项式系数的性质三、教学过程:考点一:二项式定理的正用、逆用例1(1)用二项式定理展开(1+x)n=____________(2)化简:C n0·2n-C n1·2n-1+…+(-1)k C n k2n-k+…+(-1)n C n n=_________ 互动探究:1.化简:(x-1)5+C51(x-1)4+C52(x-1)3+C53(x-1)2+C54(x-1)1考点二:求二项展开式中特定项的系数或特定项例2:已知在(3x-123x)n展开式中,第五项的二项式系数与第三项的二项式系数的比是14:3(1)求n(2)求含x2项的系数(3)求常数项(4)求展开式中的所有有理项互动探究:2.若(2x+ax)7展开式中1x3的系数为84,则实数a=()A.2B.4C.1D.33.(2014年新课标I)(x-y)(x+y)8展开式中x2y7的系数为________考点三.二项式系数与各项系数例3.若(1+2x)n展开式中各项的二项式系数和为64(1)求n(2)求二项式系数最大项(3)求展开式各项系数和(4)奇次项的系数和(5)偶次项的系数和互动探究:4.若(2+x)10=a0+a1(1+x)+a2(1+x)2+a3(1+x)3+…+a10(1+x)10求a0+a1+a2+a3+…+a10=______5.若(3+2x)2012=a0+a1x+a2x2+…+a2012x2012求(a0+a2+a4+…+a2012)2-(a1+a3+a5+…+a2011)2的值6.已知(a+b)n的展开式中只有第五项的二项式系数最大,则n=( )A.11B.10C.9D.87.若(1-2x)2016=a0+a1x+a2x2+a3x3+…+a2016x2016,则a12+a222+a323+…+a201622016=( ) A.0 B.1 C.-1 D.-2。
高中数学高考《二项式定理》专题复习导学讲义
第3讲 二项式定理知 识 梳 理1.二项式定理(1)0≤k ≤n 时,C k n 与C n -k n 的关系是C k n =C n -kn .(2)二项式系数先增后减中间项最大当n 为偶数时,第n 2+1项的二项式系数最大,最大值为C n2n ;当n 为奇数时,第n +12项和n +32项的二项式系数最大,最大值为C n -12n 或C n +12n .(3)各二项式系数和:C 0n +C 1n +C 2n +…+C nn =2n , C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=2n -1. 辨 析 感 悟1.二项式定理的理解(1)C r n an -r b r 是(a +b )n 的展开式中的第r 项.(×) (2)在(1-x )9的展开式中系数最大的项是第5项和第6项.(×) (3)(教材习题改编)在⎝ ⎛⎭⎪⎫x -2x 6的二项展开式中,常数项为-160.(√)2.二项式系数的性质(4)(a +b )n 的展开式中某一项的二项式系数与a ,b 无关.(√)(5)若(3x -1)7=a 7x 7+a 6x 6+…+a 1x +a 0,则a 7+a 6+…+a 1的值为128.(×) (6)(2013·安徽卷改编)若⎝ ⎛⎭⎪⎪⎫x +a 3x n 的展开式中,仅有第5项的二项式系数最大,且x 4的系数为7,则实数a =12.(√) [感悟·提升]1.二项式定理(a +b )n =C 0n a n +C 1n a n -1b +…+C r n a n -r b r +…+C n n b n (n ∈N *)揭示二项展开式的规律,一定牢记通项公式T r +1=C r n an -r b r 是展开式的第r +1项,不是第r 项,如(1).2.二项式系数与展开式项的系数的异同一是在T r +1=C r n a n -r b r 中,C r n 是该项的二项式系数,与该项的(字母)系数是两个不同的概念,前者只指C r n ,而后者是字母外的部分,前者只与n 和r 有关,恒为正,后者还与a ,b 有关,可正可负,如(2)就是混淆两个概念的区别.二是二项式系数的最值与增减性与指数n 的奇偶性有关,当n 为偶数,中间一项的二项式系数最大,如(6);当n 为奇数时,中间两项的二项式系数相等,且同时取得最大值.考点一 通项公式及其应用【例1】 (1)(2013·浙江卷)设二项式⎝ ⎛⎭⎪⎪⎫x -13x 5的展开式中常数项为A ,则A =________.(2)(2013·新课标全国Ⅱ卷改编)已知(1+ax )(1+x )5的展开式中x 2的系数为5,则a 等于________. 解析 (1)T r +1=C r 5(x )5-r⎝⎛⎭⎪⎪⎫-13x r =C r 5(-1)r x 52-5r 6,令52-56r =0,得r =3,∴A =-C 35=-10.(2)(1+ax )(1+x )5=(1+x )5+ax (1+x )5,又(1+x )5中含有x 与x 2的项为T 2=C 15x ,T 3=C 25x 2. ∴展开式中x 2的系数为C 25+a ·C 15=5,∴a =-1. 答案 (1)-10 (2)-1规律方法 (1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n ≥r ,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项. (2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解. 【训练1】(1)(2013·大纲全国卷改编)(1+x )8(1+y )4的展开式中x 2y 2的系数是________. (2)设二项式⎝ ⎛⎭⎪⎫x -a x 6(a >0)的展开式中x 3的系数为A ,常数项为B ,若B =4A ,则a的值是________.解析 (1)∵(1+x )8的通项为C k 8x k ,(1+y )4的通项为C t 4y t,∴(1+x )8(1+y )4的通项为C k 8C k 4x k y t ,令k =2,t =2,得x 2y 2的系数为C 28C 24=168.(2)⎝⎛⎭⎪⎫x -a x 6展开式的通项T r +1=(-a )r C r 6x 6-32r , ∴A =(-a )2C 26,B =(-a )4C 46,由B =4A ,得(-a )4C 46=4(-a )2C 26,解之得a =±2. 又a >0,所以a =2. 答案 (1)168 (2)2学生用书第161页【例2】 (1)(2014·青岛模拟)设(1+x )n =a 0+a 1x +a 2x 2+…+a n x n ,若a 1+a 2+…+a n =63,则展开式中系数最大的项是________.(2)若⎝ ⎛⎭⎪⎫x +1x n 的展开式中第3项与第7项的二项式系数相等,则该展开式中1x 2的系数为________.审题路线 (1)先赋值求a 0及各项系数和,进而求得n 值,再运用二项式系数性质与通项公式求解.(2)根据二项式系数性质,由C 2n =C 6n ,确定n 的值,求出1x 2的系数. 解析 (1)∵(1+x )n =a 0+a 1x +a 2x 2+…+a n x n , 令x =0,得a 0=1.令x =1,则(1+1)n =a 0+a 1+a 2+…+a n =64,∴n =6, 又(1+x )6的展开式二项式系数最大项的系数最大,∴(1+x )6的展开式系数最大项为T 4=C 36x 3=20x 3. (2)由题意知,C 2n =C 6n ,∴n =8.∴T r +1=C r 8·x 8-r ·⎝ ⎛⎭⎪⎫1x r=C r 8·x 8-2r, 当8-2r =-2时,r =5,∴1x 2的系数为C 58=C 38=56. 答案 (1)20x 3 (2)56规律方法 (1)第(1)小题求解的关键在于赋值,求出a 0与n 的值;第(2)小题在求解过程中,常因把n 的等量关系表示为C 3n =C 7n ,而求错n 的值.(2)求解这类问题要注意:①区别二项式系数与展开式中项的系数,灵活利用二项式系数的性质;②根据题目特征,恰当赋值代换,常见的赋值方法是使得字母因式的值或目标式的值为1,-1.【训练2】 (1)二项式⎝ ⎛⎭⎪⎫x +2x 2n 的展开式中只有第6项的二项式系数最大,则展开式中常数项是________.(2)若(1-2x )2014=a 0+a 1x +a 2x 2+…+a 2014x 2014(x ∈R ),则a 12+a 222+a 323+…+a 201422014的值为________.解析 (1)由二项式系数的性质,得n =10,∴T r +1=C r 10(x )10-r ⎝ ⎛⎭⎪⎫2x 2r =2r C r 10·x 5-52r , 令5-52r =0,则r =2,从而T 3=4C 210=180. (2)令x =0,得a 0=(1-0)2013=1. 令x =12,则a 0+a 12+a 222+…+a 201422014=0, ∴a 12+a 222+…+a 201422014=-1. 答案 (1)180 (2)-1考点三 二项式定理的应用【例3】 (2012·湖北卷改编)设a ∈Z ,且0≤a <13,若512 012+a 能被13整除,则a =________.解析 512 012+a =(52-1)2 012+a=C 02 012·522 012-C 12 012·522 011+…+C 2 0112 012×52·(-1)2 011+C 2 0122 012·(-1)2 012+a , ∵C 02 012·522 012-C 12 012·522 011+…+C 2 0112 012×52·(-1)2 011能被13整除. 且512 012+a 能被13整除,∴C 2 0122 012·(-1)2 012+a =1+a 也能被13整除. 因此a 可取值12. 答案 12规律方法 (1)本题求解的关键在于将512 012变形为(52-1)2 012,使得展开式中的每一项与除数13建立联系.(2)用二项式定理处理整除问题,通常把底数写成除数(或与余数密切相关联的数)与某数的和或差的形式,再用二项式定理展开,但要注意两点:一是余数的范围,a =cr +b ,其中余数b ∈[0,r ),r 是除数,切记余数不能为负,二是二项式定理的逆用.【训练3】 1-90C 110+902C 210-903C 310+…+(-1)k 90k C k 10+…+9010C 1010除以88的余数是________.解析 1-90C 110+902C 210+…+(-1)k 90k C k 10+…+9010C 1010=(1-90)10=8910=(88+1)10=8810+C 110889+…+C 91088+1,∵前10项均能被88整除,∴余数是1.答案 11.二项展开式的通项T k +1=C k n an -k b k是展开式的第k +1项,这是解决二项式定理有关问题的基础.在利用通项公式求指定项或指定项的系数要根据通项公式讨论对k 的限制.2.因为二项式定理中的字母可取任意数或式,所以在解题时根据题意,给字母赋值,是求解二项展开式各项系数和的一种重要方法.3.二项式定理的应用主要是对二项展开式正用、逆用,要充分利用二项展开式的特点和式子间的联系.创新突破9——二项式的和与积问题【典例】 (2014·济南质检)⎝ ⎛⎭⎪⎫x +a x ⎝ ⎛⎭⎪⎫2x -1x 5的展开式中各项系数的和为2,则该展开式中常数项为________.突破:展开式的常数项来源于:①“x +a x ”中的x 与⎝ ⎛⎭⎪⎫2x -1x 5展开式中含1x 的项相乘;②a x 与⎝ ⎛⎭⎪⎫2x -1x 5展开式中含x 的项相乘.解析 在⎝ ⎛⎭⎪⎫x +a x ⎝ ⎛⎭⎪⎫2x -1x 5中,令x =1,得(1+a )(2-1)5=1+a =2,∴a =1.∵⎝ ⎛⎭⎪⎫2x -1x 5展开式的通项T r +1=C r 5(2x )5-r ⎝ ⎛⎭⎪⎫-1x r =C r 5·25-r (-1)r ·x 5-2r . ①令5-2r =1,得2r =4,即r =2,因此⎝ ⎛⎭⎪⎫2x -1x 5展开式中x 的系数为C 2525-2·(-1)2=80.②令5-2r =-1,得2r =6,即r =3,因此⎝ ⎛⎭⎪⎫2x -1x 5展开式中1x 的系数为C 3525-3·(-1)3=-40. ∴⎝ ⎛⎭⎪⎫x +1x ⎝ ⎛⎭⎪⎫2x -1x 5展开式中常数项为80-40=40. 答案 40[反思感悟] 对于求多个二项式的和或积的展开式中某项的系数问题,要注意排列、组合知识的运用,还要注意有关指数的运算性质.对于三项式问题,一般是通过合并其中的两项或进行因式分解,转化成二项式定理的形式去求解. 【自主体验】(1+2x )3(1-x )4展开式中x 项的系数为________.解析 (1+2x )3(1-x )4展开式中的x 项的系数为两个因式相乘而得到,即第一个因式的常数项和一次项分别乘以第二个因式的一次项与常数项,它为C 03(2x )0·C 14(-x )1+C 13(2x )1·C 0414(-x )0,其系数为C 03·C 14(-1)+C 13·2=-4+6=2. 答案 2基础巩固题组 (建议用时:40分钟)一、填空题1.(2014·西安调研)若(1+3)4=a +b 3(a ,b 为有理数),则a +b =________.解析 (1+3)4=1+C 14·3+C 24·(3)2+C 34(3)3+(3)4=28+163,由题设a =28,b =16,故a +b =44. 答案 442.(2013·辽宁卷改编)使⎝⎛⎭⎪⎫3x +1x x n (n ∈N *)的展开式中含有常数项的最小的n 为________. 解析T r +1=C r n (3x )n -r ⎝ ⎛⎭⎪⎫1x x r =C r n 3n -r xn -52r ,当T r +1是常数项时,n -52r =0,当r =2,n =5时成立. 答案 53.已知⎝ ⎛⎭⎪⎫x -a x 8展开式中常数项为1 120,其中实数a 是常数,则展开式中各项系数的和是________.解析 由题意知C 48·(-a )4=1 120,解得a =±2,令x =1,得展开式各项系数和为(1-a )8=1或38. 答案 1或384.已知(x +1)10=a 1+a 2x +a 3x 2+…+a 11x 10.若数列a 1,a 2,a 3,…,a k (1≤k ≤11,k ∈Z )是一个单调递增数列,则k 的最大值是________.解析 由二项式定理知a n =C n -110(n =1,2,3,…,n ).又(x +1)10展开式中二项式系数最大项是第6项.∴a 6=C 510,则k 的最大值为6. 答案 65.若(1+mx )6=a 0+a 1x +a 2x 2+…+a 6x 6,且a 1+a 2+…+a 6=63,则实数m 的值为________.解析 令x =0,得a 0=(1+0)6=1,令x =1,得(1+m )6=a 0+a 1+a 2+…+a 6,又a 1+a 2+a 3+…+a 6=63,∴(1+m )6=64=26,∴m =1或m =-3. 答案 1或-36.(2013·四川卷)二项式(x +y )5的展开式中,含x 2y 3的项的系数是________(用数字作答).解析 T r +1=C r 5x5-r y r(r =0,1,2,3,4,5),依题意,r =3, ∴含x 2y 3的系数为C 35=5×4×33×2×1=10.答案 107.(a +x )4的展开式中x 3的系数等于8,则实数a =______.解析 (a +x )4的展开式中的通项T r +1=C r 4a 4-r x r,当r =3时,有C 34·a =8,所以a =2. 答案 28.设⎝ ⎛⎭⎪⎫5x -1x n 的展开式的各项系数之和为M ,二项式系数之和为N ,若M -N =240,则展开式中含x 的项为________. 解析 由已知条件4n -2n =240,解得n =4, T r +1=C r 4(5x )4-r ⎝ ⎛⎭⎪⎫-1x r =(-1)r 54-r C r 4x 4-3r 2, 令4-3r2=1,得r =2,T 3=150x . 答案 150x 二、解答题9.已知二项式(3x +1x )n 的展开式中各项的系数和为256. (1)求n ;(2)求展开式中的常数项.解 (1)由题意得C 0n +C 1n +C 2n +…+C nn =256,∴2n =256,解得n =8.(2)该二项展开式中的第r +1项为 T r +1=C r 8(3x )8-r·⎝ ⎛⎭⎪⎫1x r =C r8·x 8-4r 3, 令8-4r 3=0,得r =2,此时,常数项为T 3=C 28=28.10.若(2+x +x 2)⎝ ⎛⎭⎪⎫1-1x 3的展开式中的常数项为a ,求⎠⎛0a (3x 2-1)d x .解 ∵⎝⎛⎭⎪⎫1-1x 3=1-3x +3x 2-1x 3,∴(2+x +x 2)⎝ ⎛⎭⎪⎫1-1x 3的展开式中的常数项为a =2×1+1×(-3)+1×3=2.因此⎠⎛0a (3x 2-1)d x =(x 3-x )⎪⎪⎪a0=(x 3-x )⎪⎪⎪20=6.能力提升题组 (建议用时:25分钟)一、填空题1.(2013·陕西卷)设函数f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫x -1x 6,x <0,-x ,x ≥0,则当x >0时,f [f (x )]表达式的展开式中常数项为________. 解析 当x >0时,f (x )=-x <0, 所以f [f (x )]=f (-x )=⎝ ⎛⎭⎪⎫1x -x 6,T r +1=C r 6x -12(6-r )·(-x 12)r =(-1)r C r6x -3+r 2+r 2, 由r -3=0,得r =3.所以f [f (x )]表达式的展开式中常数项为(-1)3C 36=-20. 答案 -202.若将函数f (x )=x 5表示为f (x )=a 0+a 1(1+x )+a 2(1+x )2+…+a 5(1+x )5,其中a 0,a 1,a 2,…,a 5为实数,则a 3=________.解析 f (x )=x 5=(1+x -1)5,它的通项为T r +1=C r 5(1+x )r ·(-1)5-r ,T 4=C 35·(-1)2(1+x )3=10(1+x )3, ∴a 3=10. 答案 103.若(1+x +x 2)6=a 0+a 1x +a 2x 2+…+a 12x 12,则a 2+a 4+…+a 12=________. 解析 令x =1,则a 0+a 1+a 2+…+a 12=36, 令x =-1,则a 0-a 1+a 2-…+a 12=1, ∴a 0+a 2+a 4+…+a 12=36+12.令x =0,则a 0=1,∴a 2+a 4+…+a 12=36+12-1=364.答案 364二、解答题4.已知(a 2+1)n展开式中的各项系数之和等于⎝ ⎛⎭⎪⎫165x 2+1x 5的展开式的常数项,而(a 2+1)n 的展开式的系数最大的项等于54,求正数a 的值.解 ⎝⎛⎭⎪⎫165x 2+1x 5展开式的通项为T r +1=C r 5⎝ ⎛⎭⎪⎫165x 25-r ·⎝ ⎛⎭⎪⎫1x r =⎝ ⎛⎭⎪⎫1655-r C r 5x 20-5r 2,令20-5r =0,得r =4,故常数项T 5=C 45×165=16.又(a 2+1)n 展开式的各项系数之和为2n ,由题意得2n =16,∴n =4.∴(a 2+1)4展开式中系数最大的项是中间项T 3,从而C 24(a 2)2=54,解得a = 3.方法强化练——计数原理 (对应学生用书P359)(建议用时:60分钟)一、填空题1.A ,B ,C ,D ,E 五人并排站成一排,如果B 必须站在A 的右边(A ,B 可以不相邻),那么不同的排法共有________.解析 可先排C ,D ,E 三人,共A 35种排法,剩余A 、B 两人只有一种排法,由分步乘法计数原理满足条件的排法共A 35=60种.答案 60种2.(2014·重庆质检)(1+3x )n (其中n ∈N 且n ≥6)的展开式中x 5与x 6的系数相等,则n 等于________.解析 (1+3x )n 的展开式中含x 5的项为C 5n (3x )5=C 5n 35x 5,展开式中含x 6的项为C 6n36x 6.由两项的系数相等得C 5n ·35=C 6n ·36,解得n =7. 答案 73.(2014·济南调研)只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,则这样的四位数有________.解析 由题意知,1,2,3中必有某一个数字重复使用2次,第一步确定谁被使用2次,有3种方法;第二步把这2个相等的数放在四位数不相邻的两个位置上,也有3种方法;第三步将余下的2个数放在四位数余下的2个位置上,有2种方法.故共可组成3×3×2=18个不同的四位数.答案 18个4.组合式C 0n -2C 1n +4C 2n -8C 3n +…+(-2)n C n n 的值等于________.解析 在(1+x )n =C 0n +C 1n x +C 2n x 2+…+C n n x n 中,令x =-2,得原式=(1-2)n =(-1)n .答案 (-1)n5.若⎝ ⎛⎭⎪⎫x -12n 的展开式中第3项的二项式系数是15,则展开式中所有项系数之和为________.解析 由题意知C 2n =n (n -1)2=15,所以n =6,则⎝ ⎛⎭⎪⎫x -12n =⎝ ⎛⎭⎪⎫x -126,令x =1得所有项系数之和为⎝ ⎛⎭⎪⎫126=164. 答案 1646.(2014·杭州检测)甲、乙两人计划从A ,B ,C 三个景点中各选择两个游玩,则两人所选景点不全相同的选法共有________.解析 甲、乙各选两个景点有C 23C 23=9种方法,其中,入选景点完全相同的有3种.∴满足条件要求的选法共有9-3=6(种).答案 6种7.若(x -1)8=a 0+a 1(1+x )+a 2(1+x )2+…+a 8(1+x )8,则a 6=________.解析 (x -1)8=[(x +1)-2]8=a 0+a 1(1+x )+a 2(1+x )2+…+a 8(1+x )8,∴a 6=C 28(-2)2=4C 28=112.答案 1128.(2014·长沙模拟)已知x ,y 满足⎩⎨⎧ x -y +2≥0,x +y -2≤0,0≤y <2(x ∈Z ,y ∈Z ),每一对整数(x ,y )对应平面上一个点,则过这些点中的其中3个点可作不同的圆的个数为________.如图所示,阴影中的整点部分为x ,y 满足的区域,其中整数点(x ,y )共有8个,从中任取3个有C 38=56种取法.其中三点共线的有1+C 35=11(种).故可作不同的圆的个数为45.答案 459.(2014·广州调研)已知a =2⎠⎛0πcos ⎝ ⎛⎭⎪⎫x +π6d x ,则二项式⎝ ⎛⎭⎪⎫x 2+a x 5的展开式中x 的系数为________.解析 a =2⎠⎛0πcos ⎝ ⎛⎭⎪⎫x +π6d x =2sin ⎝ ⎛⎭⎪⎫x +π6⎪⎪⎪π0=-2,则⎝ ⎛⎭⎪⎫x 2+a x 5=⎝ ⎛⎭⎪⎫x 2-2x 5,∴T r +1=C r 5x 2(5-r )⎝ ⎛⎭⎪⎫-2x r =(-2)r C r 5x 10-3r . 令10-3r =1,得r =3.∴展开式中x 的系数为(-2)3C 35=-80.答案 -8010.(2014·衡水中学模拟)用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻,这样的六位数的个数是________.解析 先将3,5排列,有A 22种排法;再将4,6插空排列,有2A 22种排法;最后将1,2插入3,4,5,6形成的空中,有C 15种排法.由分步乘法计数原理知,共有A 22·2A 22·C 15=40种.11.⎝⎛⎭⎪⎪⎫2x +13x n 的展开式中各项系数之和为729,则该展开式中二项式系数最大的项等于________.解析 依题意,令x =1,有3n =729,则n =6,∴展开式第4项的二项式系数最大,则T 4=C 36(2x )3⎝ ⎛⎭⎪⎪⎫13x 3=160x 2. 答案 160x 212.(2014·郑州调研)某商店要求甲、乙、丙、丁、戊五种不同的商品在货架上排成一排,其中甲、乙两种必须排在一起,而丙、丁两种不能排在一起,不同的排法共有________种.解析 甲、乙作为元素集团,内部有A 22种排法,“甲乙”元素集团与“戊”全排列有A 22种排法.将丙、丁插在3个空档中有A 23种方法.∴由分步计数原理,共有A 22A 22A 23=24种排法.答案 2413.(2013·新课标全国Ⅰ卷)设m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m +1展开式的二项式系数的最大值为b ,若13a =7b ,则m =________.解析 由二项式系数的性质,得a =C m 2m ,b =C m 2m +1=C m +12m +1,又13a =7b ,因此13C m 2m=7C m 2m +1,解得m =6.答案 614.甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是________(用数字作答).解析 当每个台阶上各站1人时有A 33C 37种站法,当两个人站在同一个台阶上时有C 23C 17C 16种站法,因此不同的站法种数有A 33C 37+C 23C 17C 16=210+126=336(种). 答案 33615.(2014·无锡质检)(x 2+2)⎝ ⎛⎭⎪⎫1x 2-15的展开式的常数项是________. 解析 二项式⎝ ⎛⎭⎪⎫1x 2-15展开式的通项为: T r +1=C r 5⎝ ⎛⎭⎪⎫1x 25-r ·(-1)r =C r 5·x 2r -10·(-1)r .当2r -10=-2,即r =4时,有x 2·C 45x -2·(-1)4=C 45×(-1)4=5;当2r -10=0,即r =5时,有2·C 55x 0·(-1)5=-2. ∴展开式中的常数项为5-2=3.答案 316.将6位志愿者分成4个组,其中两个组各2人,另两个组各1人.分赴世博会的四个不同场馆服务,不同的分配方案种数有________.解析 将6位志愿者分为2名,2名,1名,1名四组,有C 26C 24A 22=12×15×6=45种分组方法.将四组分赴四个不同场馆有A 44种方法.∴根据分步乘法计数原理,不同的分配方案有45·A 44=1 080种方法.答案 1 080二、解答题17.已知⎝ ⎛⎭⎪⎫12+2x n , (1)若展开式中第5项,第6项与第7项的二项式系数成等差数列,求展开式中二项式系数最大项的系数;(2)若展开式前三项的二项式系数和等于79,求展开式中系数最大的项.解 (1)∵C 4n +C 6n =2C 5n ,∴n 2-21n +98=0.∴n =7或n =14,当n =7时,展开式中二项式系数最大的项是T 4和T 5.∴T 4的系数为C 37⎝ ⎛⎭⎪⎫12423=352, T 5的系数为C 47⎝ ⎛⎭⎪⎫12324=70, 当n =14时,展开式中二项式系数最大的项是T 8.∴T 8的系数为C 714⎝ ⎛⎭⎪⎫12727=3 432. (2)∵C 0n +C 1n +C 2n =79,∴n 2+n -156=0.∴n =12或n =-13(舍去).设T k +1项的系数最大,∵⎝ ⎛⎭⎪⎫12+2x 12=⎝ ⎛⎭⎪⎫1212(1+4x )12, ∴⎩⎨⎧C k 124k ≥C k -1124k -1,C k 124k ≥C k +1124k +1. ∴9.4≤k ≤10.4,∴k =10.∴展开式中系数最大的项为T 11,T 11=C 1012·⎝ ⎛⎭⎪⎫122·210·x 10=16 896x 10. 18.(1)3人坐在有八个座位的一排上,若每人的左右两边都要有空位,则不同坐法的种数为多少?(2)现有10个保送上大学的名额,分配给7所学校,每校至少有1个名额,问名额分配的方法共有多少种?解 (1)由题意知有5个座位都是空的,我们把3个人看成是坐在座位上的人,往5个空座的空档插.由于这5个空座位之间共有4个空,3个人去插,共有A 34=24种.(2)法一 每个学校至少一个名额,则分去7个,剩余3个名额分到7所学校的方法种数就是要求的分配方法种数.分类:若3个名额分到一所学校有7种方法;若分配到2所学校有C 27×2=42种;若分配到3所学校有C 37=35种.∴共有7+42+35=84种方法.法二 10个元素之间有9个间隔,要求分成7份,相当于用6块档板插在9个间隔中,共有C 69=84种不同方法.所以名额分配的方法共有84种.。
二项式定理复习教案
二项式定理专题复习{b n}实验班补充题1.已知数列{}na满足12,a=且对任意*n N∈,恒有12(1)n nna n a+=+(1)求数列{}na的通项公式;(2)设区间1[,]33(1)n na an n++中的整数个数为,nb求数列{}nb的通项公式。
2.已知整数n≥4,集合{}1,2,3,,M n=⋅⋅⋅的所有3个元素的子集记为312,,,nCA A A⋅⋅⋅.(1)当5n=时,求集合3512,,,CA A A⋅⋅⋅中所有元素之和.(2)设im为iA中的最小元素,设nP=312nCm m m++⋅⋅⋅+,试求nP.课堂随练1. 93)(xx-的展开式中:(1)4x的系数为_____________(2)有理项为_____________(3)是否包含常数项?2. (1+x+x2)·(1-x)10的展开式中,x5的系数为__________.3.(1)若对于任意实数,x y都有554322345 012345 (2)(2)(2)(2)(2)(2)x y a x y a x y y a x y y a x y y a x y y a y -=++++++++++则012345a a a a a a+++++=(2)(1)nax by++()0,0>>ba展开式中不含x的项的系数和为81,不含y的项的系数和为16 ,则=+ba_______.4.()2023yx-的展开式中,系数绝对值最大的项是第______项。
()5021+的展开式中,数值最大的项是第________项5.111100-末尾连续零的个数是个6.(1)证明:=++++nnnnnnCCCC...3232112-⋅nn(2)证明:当5*≥∈nNn且时,22nn>7.设)(xf是定义在R上的函数,且1110)1()1()1()()(--+-=nnnnxxnfCxxnfCxg222)1()()1()2(xxnnfCxxnfC nnnnn-++-+-(1)若1)(=xf,求)(xg;(2)若,)(xxf=求)(xg。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二项式定理知识点、题型与方法归纳一.知识梳理1.二项式定理:)()(*110N n b C b a C b a C a C b a n n n r r n r n n n n n n ∈+++++=+--ΛΛ.其中),,2,1,0(n r C rn Λ=叫二项式系数.式中的r rn r n b aC -叫二项展开式的通项,用1+r T 表示,即通项rr n r n r b a C T -+=1.2.二项展开式形式上的特点: (1)项数为n +1;(2)各项的次数都等于二项式的幂指数n ,即a 与b 的指数的和为n .(3)字母a 按降幂排列,从第一项开始,次数由n 逐项减1直到零;字母b 按升幂排列,从第一项起,次数由零逐项增1直到n .(4)二项式的系数从C 0n ,C 1n ,一直到C n -1n ,C n n .3.二项式系数的性质:(1)对称性:与首末两端“等距离”的两个二项式系数相等.即r n r n n C C -=(2)增减性与最大值:二项式系数C k n ,当k <n +12时,二项式系数逐渐增大.由对称性知它的后半部分是逐渐减小的;当n 是偶数时,中间一项2nn C 取得最大值;当n 是奇数时,中间两项1122n n nnCC-+=取得最大值.(3)各二项式系数和:C 0n +C 1n +C 2n +…+C r n +…+C n n=2n ; C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=2n -1. 一个防范运用二项式定理一定要牢记通项T r +1=C r n an -r b r,注意(a +b )n 与(b +a )n 虽然相同,但具体到它们展开式的某一项时是不同的,一定要注意顺序问题,另外二项展开式的二项式系数与该项的(字母)系数是两个不同的概念,前者只指C r n ,而后者是字母外的部分.前者只与n 和r 有关,恒为正,后者还与a ,b 有关,可正可负. 两种应用(1)通项的应用:利用二项展开式的通项可求指定的项或指定项的系数等.(2)展开式的应用:利用展开式①可证明与二项式系数有关的等式;②可证明不等式;③可证明整除问题;④可做近似计算等. 三条性质(1)对称性;(2)增减性;(3)各项二项式系数的和; 二.题型示例【题型一】求()nx y +展开特定项例1:(1+3x )n (其中n ∈N *且n ≥6)的展开式中x 5与x 6的系数相等,则n =( ) BA.6B.7C.8D.9例2:⎝⎛⎭⎫x y -y x 8的展开式中x 2y 2的系数为________.(用数字作答) 70 【题型二】求()()m na b x y +++展开特定项例1:在(1-x )5+(1-x )6+(1-x )7+(1-x )8的展开式中,含x 3的项的系数是( ) D A .74B .121C .-74D .-121【题型三】求()()mna b x y +⋅+展开特定项例1:已知(1+ax )(1+x )5的展开式中x 2的系数为5,则a =( ) DA.-4B.-3C.-2D.-1例2:在(1+x )6(1+y )4的展开式中,记x m y n 项的系数为f (m ,n ),则f (3,0)+f (2,1)+f (1,2)+f (0,3)=( ) C A .45 B .60C .120D .210例3:若数列{}n a 是等差数列,且6710a a +=,则在1212()()()x a x a x a ---L 的展开式中,11x 的系数为___.60-【题型四】求()nx y z ++展开特定项例1:求⎝⎛⎭⎫x 2+1x +25(x >0)的展开式经整理后的常数项.解:⎝⎛⎭⎫x 2+1x +25在x >0时可化为⎝ ⎛⎭⎪⎫x 2+1x 10,因而T r +1=C r 10⎝⎛⎭⎫1210-r ()x 10-2r ,则r =5时为常数项,即C 510·⎝⎛⎭⎫125=6322.例2:若将10)(z y x ++展开为多项式,经过合并同类项后它的项数为( ).DA .11B .33C .55D .66解:展开后,每一项都形如a b cx y z ,其中10a b c ++=,该方程非负整数解的对数为210266C +=。
例3:(x 2+x +y )5的展开式中,x 5y 2的系数为( ) A .10 B .20 C .30 D .60解析 易知T r +1=C r 5(x 2+x )5-r y r ,令r =2,则T 3=C 25(x 2+x )3y 2,对于二项式(x 2+x )3,由T t +1=C t 3(x 2)3-t x t =C t 3x 6-t ,令t =1,所以x 5y 2的系数为C 25C 13=30.【题型五】二项式展开逆向问题例1:(2013·广州毕业班综合测试)若C 1n +3C 2n +32C 3n +…+3n -2C n -1n +3n -1=85,则n 的值为( ) A.3 B.4 C.5 D.6解:由C 1n +3C 2n +…+3n -2C n -1n +3n -1=13[(1+3)n -1]=85,解得n =4.故选B. 【题型六】赋值法求系数(和)问题例1:已知(1-2x )7=a 0+a 1x +a 2x 2+…+a 7x 7.求:(1)a 1+a 2+…+a 7; (2)a 1+a 3+a 5+a 7;(3)a 0+a 2+a 4+a 6; (4)||a 0+||a 1+||a 2+…+||a 7.解:令x =1,则a 0+a 1+a 2+a 3+a 4+a 5+a 6+a 7=-1.①令x =-1,则a 0-a 1+a 2-a 3+a 4-a 5+a 6-a 7=37.② (1)∵a 0=C 07=1,∴a 1+a 2+a 3+…+a 7=-2.(2)(①-②)÷2,得a 1+a 3+a 5+a 7=-1-372=-1094.③(3)(①+②)÷2,得a 0+a 2+a 4+a 6=-1+372=1093.④(4)∵(1-2x )7的展开式中,a 0,a 2,a 4,a 6大于零,而a 1,a 3,a 5,a 7小于零, ∴||a 0+||a 1+||a 2+…+||a 7=(a 0+a 2+a 4+a 6)-(a 1+a 3+a 5+a 7),∴所求即为④-③(亦即②),其值为2187.点拨:①“赋值法”普遍运用于恒等式,是一种处理二项式相关问题比较常用的方法.对形如(ax +b )n ,(ax 2+bx +c )m (a ,b ,c ∈R )的式子求其展开式各项系数之和,只需令x =1即可;对形如(ax +by )n (a ,b ∈R )的式子求其展开式各项系数之和,只需令x =y =1即可.②若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )展开式中各项系数之和为f (1),奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2,偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2.例2:设⎝⎛⎭⎫22+x 2n =a 0+a 1x +a 2x 2+…+a 2n x 2n ,则(a 0+a 2+a 4+…+a 2n )2-(a 1+a 3+a 5+…+a 2n -1)2=________. 解:设f (x )=⎝⎛⎭⎫22+x 2n ,则(a 0+a 2+a 4+…+a 2n )2-(a 1+a 3+a 5+…+a 2n -1)2=(a 0+a 2+a 4+…+a 2n -a 1-a 3-a 5-…-a 2n -1)(a 0+a 2+a 4+…+a 2n +a 1+a 3+a 5+…+a 2n -1)=f (-1)·f (1) =⎝⎛⎭⎫22-12n ·⎝⎛⎭⎫22+12n =⎝⎛⎭⎫-122n =⎝⎛⎭⎫14n . 例3:已知(x +1)2(x +2)2014=a 0+a 1(x +2)+a 2(x +2)2+…+a 2016(x +2)2016,则a 12+a 222+a 323+…+a 201622016的值为______.解:依题意令x =-32,得⎝⎛⎭⎫-32+12⎝⎛⎭⎫-32+22014=a 0+a 1⎝⎛⎭⎫-32+2+a 2⎝⎛⎭⎫-32+22+…+a 2016⎝⎛⎭⎫-32+22016,令x =-2得a 0=0,则a 12+a 222+a 323+…+a 201622016=⎝⎛⎭⎫122016.【题型七】平移后系数问题例1:若将函数f (x )=x 5表示为f (x )=a 0+a 1(1+x )+a 2(1+x )2+…+a 5(1+x )5, 其中a 0,a 1,a 2,…,a 5为实数,则a 3=____________.解法一:令x +1=y ,(y -1)5=a 0+a 1y +a 2y 2+…+a 5y 5,故a 3=C 25(-1)2=10.解法二:由等式两边对应项系数相等.即:⎩⎪⎨⎪⎧a 5=1,C 45a 5+a 4=0,C 35a 5+C 34a 4+a 3=0,解得a 3=10.解法三:对等式:f (x )=x 5=a 0+a 1(1+x )+a 2(1+x )2+…+a 5(1+x )5两边连续对x 求导三次得:60x 2=6a 3+24a 4(1+x )+60a 5(1+x )2,再运用赋值法,令x =-1得:60=6a 3,即a 3=10.故填10. 【题型八】二项式系数、系数最大值问题例1:⎝⎛⎭⎫x +12x n的展开式中第五项和第六项的二项式系数最大,则第四项为________. 解析 由已知条件第五项和第六项二项式系数最大,得n =9,⎝⎛⎭⎫x +12x 9展开式的第四项为T 4=C 39·(x )6·⎝⎛⎭⎫12x 3=212.例2:把(1-x )9的展开式按x 的升幂排列,系数最大的项是第________项 A .4B .5C .6D .7解析 (1-x )9展开式中第r +1项的系数为C r 9(-1)r,易知当r =4时,系数最大,即第5项系数最大,选B.例3:(1+2x )n 的展开式中第6项与第7项的系数相等,求展开式中二项式系数最大的项和系数最大的项.解:T 6=C 5n (2x )5,T 7=C 6n (2x )6,依题意有C 5n ·25=C 6n ·26,解得n =8.所以(1+2x )8的展开式中,二项式系数最大的项为T 5=C 48·(2x )4=1 120x 4.设第r +1项系数最大,则有⎩⎪⎨⎪⎧C r 8·2r ≥C r -18·2r -1,C r 8·2r ≥C r +18·2r +1,解得5≤r ≤6.所以r =5或r =6,所以系数最大的项为T 6=1 792x 5或T 7=1 792x 6.点拨:(1)求二项式系数最大项:①如果n 是偶数,则中间一项⎝⎛⎭⎫第n2+1项的二项式系数最大;②如果n 是奇数,则中间两项(第n +12项与第n +12+1项)的二项式系数相等并最大.(2)求展开式系数最大项:如求(a +bx )n (a ,b ∈R )的展开式系数最大的项,一般是采用待定系数法,列出不等式组⎩⎪⎨⎪⎧A r ≥A r -1,A r ≥A r +1,从而解出r ,即得展开式系数最大的项.【题型九】两边求导法求特定数列和例1:若(2x -3)5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,则a 1+2a 2+3a 3+4a 4+5a 5=________.解析 原等式两边求导得5(2x -3)4·(2x -3)′=a 1+2a 2x +3a 3x 2+4a 4x 3+5a 5x 4,令上式中x =1,得a 1+2a 2+3a 3+4a 4+5a 5=10. 【题型十】整除问题例1:设a ∈Z ,且0≤a <13,若512 012+a 能被13整除,则a =( ) A .0 B .1 C .11 D .12 解析 512 012+a =(52-1)2 012+a=C 02 012·522 012-C 12 012·522 011+…+C 2 0112 012×52·(-1)2 011+C 2 0122 012·(-1)2 012+a , ∵C 02 012·522 012-C 12 012·522 011+…+C 2 0112 012×52·(-1)2 011能被13整除. 且512 012+a 能被13整除,∴C 2 0122 012·(-1)2 012+a =1+a 也能被13整除. 因此a 可取值12.例2:已知m 是一个给定的正整数,如果两个整数a ,b 除以m 所得的余数相同,则称a 与b 对模m 同余,记作a ≡b (mod m ),例如:5≡13(mod 4).若22015≡r (mod 7),则r 可能等于( )A.2013B.2014C.2015D.2016解:22015=22×23×671=4×8671=4(7+1)671=4(7671+C 16717670+…+C 6706717+1).因此22015除以7的余数为4.经验证,只有2013除以7所得的余数为4.故选A. 三.自我检测1、(2013·青岛一检)“n =5”是“⎝⎛⎭⎪⎫2x +13x n(n ∈N *)的展开式中含有常数项”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2、已知C 0n +2C 1n +22C 2n +23C 3n +…+2n C n n =729,则C 1n +C 2n +C 3n +…+C n n 等于( )A .63B .64C .31D .323、组合式C 0n -2C 1n +4C 2n -8C 3n +…+(-2)n C n n 的值等于 ( )A .(-1)nB .1C .3nD .3n -14、若(1+x +x 2)6=a 0+a 1x +a 2x 2+…+a 12x 12,则a 2+a 4+…+a 12=________.5、已知(1+x )10=a 0+a 1(1-x )+a 2(1-x )2+…+a 10(1-x )10,则a 8=( ) A .-180B .180C .45D .-456、(1+2x )3(1-x )4展开式中x 项的系数为 ( ) A .10B .-10C .2D .-27、(1+x )8(1+y )4的展开式中x 2y 2的系数是________.8、在3450(1)(1)(1)x x x ++++++L 的展开式中,3x 的系数为( )A. 351CB. 450CC. 451CD. 447C9、在(x +1)(2x +1)…(nx +1)(n ∈N *)的展开式中一次项系数为( )A .C 2nB .C 2n +1 C .C n -1n D.12C 3n +1 10、(2015·安徽合肥二检)(x 2-x +1)10展开式中x 3项的系数为________。