2020-2021天津市九年级数学上期末模拟试卷(及答案)

合集下载

2020-2021学年天津市河东区九年级上学期期末考试数学试卷及答案解析

2020-2021学年天津市河东区九年级上学期期末考试数学试卷及答案解析

2020-2021学年天津市河东区九年级上学期期末考试数学试卷一.选择题(共12小题,满分36分,每小题3分)1.(3分)下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .2.(3分)在一个不透明的袋子中共装有红、黄、蓝三种颜色的小球,这些球除颜色外都相同,其中有3个红球,5个黄球,若随机摸出一个红球的概率为14,则这个袋子中蓝球的个数是( )A .3个B .4个C .5个D .12个3.(3分)关于圆的性质有以下四个判断:①垂直于弦的直径平分弦,②平分弦的直径垂直于弦,③在同圆或等圆中,相等的弦所对的圆周角相等,④在同圆或等圆中,相等的圆周角所对的弦相等,则四个判断中正确的是( )A .①③B .②③C .①④D .②④4.(3分)如图,利用标杆BE 测量建筑物的高度,如果标杆BE =1.2m .测得AB =1.6m .BC=18.4m .则建筑物的高CD =( )A .13.8mB .15mC .18.4mD .20m5.(3分)不论m 取何值时,抛物线y =x 2﹣mx ﹣1与x 轴的交点有( )A .0个B .1个C .2个D .3个6.(3分)下列判断中,不正确的有( )A .三边对应成比例的两个三角形相似B .两边对应成比例,且有一个角相等的两个三角形相似C .斜边与一条直角边对应成比例的两个直角三角形相似D .有一个角是100°的两个等腰三角形相似7.(3分)在平面直角坐标系中,已知点A (﹣4,2),B (﹣6,﹣4),以原点O 为位似中心,相似比为12,把△ABO 缩小,则点B 的对应点B ′的坐标是( ) A .(﹣3,﹣2)B .(﹣12,﹣8)C .(﹣3,﹣2)或(3,2)D .(﹣12,﹣8)或(12,8)8.(3分)如图,将正方形ABCD 绕点A 顺时针旋转35°,得到正方形AEFG ,DB 的延长线交EF 于点H ,则∠DHE 的大小为( )A .90°B .95°C .100°D .105°9.(3分)如图,正方形ABCD 中,E 为CD 的中点,EF ⊥AE ,交BC 于点F ,则∠1与∠2的大小关系为( )A .∠1>∠2B .∠1<∠2C .∠1=∠2D .无法确定10.(3分)如图,隧道的截面由抛物线和长方形OABC 构成,长方形的长OA 是12m ,宽OC 是4m .按照图中所示的平面直角坐标系,抛物线可以用y =−16x 2+bx +c 表示.在抛物线型拱璧上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m .那么两排灯的水平距离最小是( )A .2mB .4mC .4√2 mD .4√3m11.(3分)二次函数y=ax2+bx的图象如图所示,若一元二次方程ax2+bx=﹣m有实数根,则m最大值为()A.3B.﹣3C.﹣6D.912.(3分)如图,一次函数y=kx+b(k≠0)与抛物线y=ax2(a≠0)交于A,B两点,且点A的横坐标是﹣2,点B的横坐标是3,则以下结论:①抛物线y=ax2(a≠0)的图象的顶点一定是原点;②x>0时,一次函数y=kx+b(k≠0)与抛物线y=ax2(a≠0)的函数值都随x的增大而增大;③AB的长度可以等于5;④当﹣3<x<2时,ax2+kx<b.其中正确的结论是()A.①②③B.①②④C.①③④D.①②③④二.填空题(共6小题,满分18分,每小题3分)13.(3分)正六边形的外接圆的半径与内切圆的半径之比为.14.(3分)经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大小相同,现有两辆汽车先后经过这个十字路口,则至少有一辆汽车向左转的概率是.15.(3分)已知,AB是⊙O的直径,C、D是⊙O上的两点,且AC=CD.连接BC,BD.如图,若∠CBD=20°,则∠A的大小为(度).16.(3分)一个扇形的弧长是65πcm ,半径是6cm ,则此扇形的圆心角是 度. 17.(3分)二次函数y =ax 2+bx +c (a ≠0)中的自变量x 与函数值y 的部分对应值如下表:x… −32 ﹣1 −12 0 12 1 32 … y … −54 ﹣2 −94 ﹣2 −54 0 74 … 则ax 2+bx +c =0的解为 .18.(3分)如图,将△ABC 放在每个小正方形的边长为1的网格中,点A 、B 、C 均在格点上.(1)边AC 的长等于 .(2)以点C 为旋转中心,把△ABC 顺时针旋转,得到△A 'B 'C ',使点B 的对应点B '恰好落在边AC 上,请在如图所示的网格中,用无刻度的直尺,作出旋转后的图形,并简要说明作图的方法(不要求证明).三.解答题(共7小题,满分66分)19.(8分)已知关于x 的一元二次方程:x 2+ax ﹣5=0的一个根是1,求a 的值及该方程的另一根.20.(8分)已知AB 是⊙O 的直径,点C ,D 是半圆O 的三等分点.连接AC ,DO .(Ⅰ)如图①,求∠BOD 及∠A 的大小;(Ⅱ)如图②,过点C 作CF ⊥AB 于点F ,交⊙O 于点H ,若⊙O 的半径为2.求CH 的长.21.(10分)如图,AB是⊙O的直径,直线AT切⊙O于点A,BT交⊙O于C,已知∠B=30°,AT=√3,求⊙O的直径AB和弦BC的长.22.(10分)小明妈妈在春节期间以160元/件的价格购进了一批商品,如果按标价200元/件出售,那么每天可以销售20件.为了尽快减少库存,小明妈妈决定采取降价促销措施,经试销发现,每件商品每降价1元,平均每天可多售出2件,若平均每天要盈利1200元,每件商品应降价多少元?为了满足降价要求,小明妈妈应打几折出售?23.(10分)如图有一座抛物线形拱桥,桥下面在正常水位是AB宽20m,水位上升3m就达到警戒线CD,这是水面宽度为10m.(1)在如图的坐标系中求抛物线的解析式.(2)若洪水到来时,水位以每小时0.2m的速度上升,从警戒线开始,再持续多少小时才能到拱桥顶?24.(10分)如图1.在Rt△ABC中,∠A=90°,AB=AC,点D、E分别在边AB、AC上,AD=AE.连接DC,点M、P、N分别为DE、DC、BC的中点.(1)图1中,线段PM与PN的数量关系是,位置关系是;(2)把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,判断△PMN的形状,并说明理由;(3)把△ADE绕点A在平面内自由旋转,若DE=2,BC=6,请直接写出△PMN面积的最大值.25.(10分)如图,抛物线y=ax2+bx+c经过点B(4,0),C(0,﹣2),对称轴为直线x=1,与x轴的另一个交点为点A.(1)求抛物线的解析式;(2)点M从点A出发,沿AC向点C运动,速度为1个单位长度/秒,同时点N从点B 出发,沿BA向点A运动,速度为2个单位长度/秒,当点M、N有一点到达终点时,运动停止,连接MN,设运动时间为t秒,当t为何值时,AMN的面积S最大,并求出S 的最大值;(3)点P在x轴上,点Q在抛物线上,是否存在点P、Q,使得以点P、Q、B、C为顶点的四边形是平行四边形,若存在,直接写出所有符合条件的点P坐标,若不存在,请说明理由.2020-2021学年天津市河东区九年级上学期期末考试数学试卷参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.(3分)下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .【解答】解:A 、是轴对称图形,又是中心对称图形,故此选项正确;B 、不是轴对称图形,不是中心对称图形,故此选项错误;C 、是轴对称图形,不是中心对称图形,故此选项错误;D 、不是轴对称图形,是中心对称图形,故此选项错误;故选:A .2.(3分)在一个不透明的袋子中共装有红、黄、蓝三种颜色的小球,这些球除颜色外都相同,其中有3个红球,5个黄球,若随机摸出一个红球的概率为14,则这个袋子中蓝球的个数是( )A .3个B .4个C .5个D .12个【解答】解:设袋子中蓝球有x 个,根据题意,得:33+5+x =14, 解得:x =4,即袋中蓝球有4个,故选:B .3.(3分)关于圆的性质有以下四个判断:①垂直于弦的直径平分弦,②平分弦的直径垂直于弦,③在同圆或等圆中,相等的弦所对的圆周角相等,④在同圆或等圆中,相等的圆周角所对的弦相等,则四个判断中正确的是( )A .①③B .②③C .①④D .②④ 【解答】解:垂直于弦的直径平分弦,所以①正确;平分弦(非直径)的直径垂直于弦,所以②错误;在同圆或等圆中,相等的弦所对的圆周角相等或互补,所以③错误;在同圆或等圆中,相等的圆周角所对的弦相等,所以④正确.故选:C .4.(3分)如图,利用标杆BE 测量建筑物的高度,如果标杆BE =1.2m .测得AB =1.6m .BC=18.4m .则建筑物的高CD =( )A .13.8mB .15mC .18.4mD .20m【解答】解:∵EB ⊥AC ,DC ⊥AC ,∴EB ∥DC ,∴△ABE ∽△ACD ,∴BE CD =AB AC ,∵BE =1.2,AB =1.6,BC =18.4,∴AC =20,∴1.2CD =1.620,∴CD =15.故选:B .5.(3分)不论m 取何值时,抛物线y =x 2﹣mx ﹣1与x 轴的交点有( )A .0个B .1个C .2个D .3个【解答】解:∵抛物线y =x 2﹣mx ﹣1,∴△=(﹣m )2﹣4×1×(﹣1)=m 2+4≥4>0,∴不论m 取何值时,抛物线y =x 2﹣mx ﹣1与x 轴的交点有2个,故选:C .6.(3分)下列判断中,不正确的有( )A .三边对应成比例的两个三角形相似B .两边对应成比例,且有一个角相等的两个三角形相似C .斜边与一条直角边对应成比例的两个直角三角形相似D .有一个角是100°的两个等腰三角形相似【解答】解:A 、三边对应成比例的两个三角形相似,故A 选项不合题意;B 、两边对应成比例,且夹角相等的两个三角形相似,故B 选项符合题意;C 、斜边与一条直角边对应成比例的两个直角三角形相似,故C 选项不合题意;D 、有一个角是100°的两个等腰三角形,则他们的底角都是40°,所以有一个角是100°的两个等腰三角形相似,故D 选项不合题意;故选:B .7.(3分)在平面直角坐标系中,已知点A (﹣4,2),B (﹣6,﹣4),以原点O 为位似中心,相似比为12,把△ABO 缩小,则点B 的对应点B ′的坐标是( ) A .(﹣3,﹣2)B .(﹣12,﹣8)C .(﹣3,﹣2)或(3,2)D .(﹣12,﹣8)或(12,8)【解答】解:∵以原点O 为位似中心,相似比为12,把△ABO 缩小,点B 的坐标为(﹣6,﹣4),∴点B 的对应点B ′的坐标为(﹣6×12,﹣4×12)或(6×12,4×12),即(﹣3,﹣2)或(3,2),故选:C .8.(3分)如图,将正方形ABCD 绕点A 顺时针旋转35°,得到正方形AEFG ,DB 的延长线交EF 于点H ,则∠DHE 的大小为( )A .90°B .95°C .100°D .105°【解答】解:∵将正方形ABCD 绕点A 顺时针旋转35°,得到正方形AEFG ,∴∠BAE =35°,∠E =90°,∠ABD =45°,∴∠ABH =135°,∴∠DHE =360°﹣∠E ﹣∠BAE ﹣∠ABH =360°﹣135°﹣35°﹣90°=100°, 故选:C .9.(3分)如图,正方形ABCD 中,E 为CD 的中点,EF ⊥AE ,交BC 于点F ,则∠1与∠2的大小关系为()A.∠1>∠2B.∠1<∠2C.∠1=∠2D.无法确定【解答】解:∵∠AED+∠CEF=90°,∠DAE+∠ADE=90°,∴∠DAE=∠CEF,∵∠ADE=∠ECF=90°,∴△ADE∽△ECF,且相似比为2,∴AE=2EF,AD=2DE,又∵∠ADE=∠AEF,∴△ADE∽△AEF,∴∠1=∠2.10.(3分)如图,隧道的截面由抛物线和长方形OABC构成,长方形的长OA是12m,宽OC是4m.按照图中所示的平面直角坐标系,抛物线可以用y=−16x2+bx+c表示.在抛物线型拱璧上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m.那么两排灯的水平距离最小是()A.2m B.4m C.4√2m D.4√3m【解答】解:根据题意,得OA=12,OC=4.所以抛物线的顶点横坐标为6,即−b2a=b13=6,∴b=2,∵C(0,4),∴c=4,所以抛物线解析式为:y=−16x2+2x+4=−16(x﹣6)2+10当y=8时,8=−16(x﹣6)2+10,解得x1=6+2√3,x2=6﹣2√3.则x1﹣x2=4√3.所以两排灯的水平距离最小是4√3.故选:D.11.(3分)二次函数y=ax2+bx的图象如图所示,若一元二次方程ax2+bx=﹣m有实数根,则m最大值为()A.3B.﹣3C.﹣6D.9【解答】解:由图象可得,二次函数y=ax2+bx的最小值是y=﹣3,∵一元二次方程ax2+bx=﹣m有实数根,∴﹣m≥﹣3,解得,m≤3,∴m的最大值是3,故选:A.12.(3分)如图,一次函数y=kx+b(k≠0)与抛物线y=ax2(a≠0)交于A,B两点,且点A的横坐标是﹣2,点B的横坐标是3,则以下结论:①抛物线y=ax2(a≠0)的图象的顶点一定是原点;②x>0时,一次函数y=kx+b(k≠0)与抛物线y=ax2(a≠0)的函数值都随x 的增大而增大;③AB 的长度可以等于5;④当﹣3<x <2时,ax 2+kx <b .其中正确的结论是( )A .①②③B .①②④C .①③④D .①②③④【解答】解:①抛物线y =ax 2,利用顶点坐标公式得:顶点坐标为(0,0),本选项正确; ②根据图象得:直线y =kx +b (k ≠0)为增函数;抛物线y =ax 2(a ≠0)当x >0时为增函数,则x >0时,直线与抛物线函数值都随着x 的增大而增大,本选项正确; ③由A 、B 横坐标分别为﹣2,3,若AB =5,可得出直线AB 与x 轴平行,即k =0, 与已知k ≠0矛盾,故AB 不可能为5,本选项错误; ④直线y =﹣kx +b 与y =kx +b 关于y 轴对称,如图所示: 可得出直线y =﹣kx +b 与抛物线交点C 、D 横坐标分别为﹣3,2, 由图象可得:当﹣3<x <2时,ax 2<﹣kx +b ,即ax 2+kx <b ,本选项正确; 则正确的结论有①②④. 故选:B .二.填空题(共6小题,满分18分,每小题3分)13.(3分)正六边形的外接圆的半径与内切圆的半径之比为 2:√3 . 【解答】解:设正六边形的半径是r , 则外接圆的半径r ,内切圆的半径是正六边形的边心距,因而是√32r , 因而正六边形的外接圆的半径与内切圆的半径之比为2:√3. 故答案为:2:√3.14.(3分)经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大小相同,现有两辆汽车先后经过这个十字路口,则至少有一辆汽车向左转的概率是59.【解答】解:画树状图得:∵共有9种等可能的结果,至少有一辆汽车向左转的有5种情况, ∴至少有一辆汽车向左转的概率是:59.故答案为:59.15.(3分)已知,AB 是⊙O 的直径,C 、D 是⊙O 上的两点,且AC =CD .连接BC ,BD .如图,若∠CBD =20°,则∠A 的大小为 70 (度).【解答】解:∵AC =CD , ∴AĈ=CD ̂, ∴∠ABC =∠CBD =20°, ∵AB 是⊙O 的直径, ∴∠ACB =90°,∴∠A =90°﹣20°=70°. 故答案为70.16.(3分)一个扇形的弧长是65πcm ,半径是6cm ,则此扇形的圆心角是 36 度.【解答】解:设扇形的圆心角为n . 由题意:65π=nπ⋅6180,解得n =36°, 故答案为36.17.(3分)二次函数y =ax 2+bx +c (a ≠0)中的自变量x 与函数值y 的部分对应值如下表:x…−32﹣1−12012132…y…−54﹣2−94﹣2−54074…则ax2+bx+c=0的解为x=﹣2或1.【解答】解:∵二次函数y=ax2+bx+c(a≠0)过点(﹣1,﹣2),(0,﹣2),∴此抛物线的对称轴为:直线x=−1 2,∵此抛物线过点(1,0),∴此抛物线与x轴的另一个交点为:(﹣2,0),∴ax2+bx+c=0的解为:x=﹣2或1.故答案为:x=﹣2或1.18.(3分)如图,将△ABC放在每个小正方形的边长为1的网格中,点A、B、C均在格点上.(1)边AC的长等于5.(2)以点C为旋转中心,把△ABC顺时针旋转,得到△A'B'C',使点B的对应点B'恰好落在边AC上,请在如图所示的网格中,用无刻度的直尺,作出旋转后的图形,并简要说明作图的方法(不要求证明).【解答】解:(1)根据网格可知:AB=4,BC=3,∴AC=√AB2+BC2=5,故答案为:5;(2)取格点E,F,M,N,作直线EF,直线MN,MN与EF交于点A′,EF与AC交于点B′,连接CA′.△A'B'C即为所求.三.解答题(共7小题,满分66分)19.(8分)已知关于x的一元二次方程:x2+ax﹣5=0的一个根是1,求a的值及该方程的另一根.【解答】解:(1)∵关于x的一元二次方程x2+ax﹣5=0的一个根是1,∴12+a﹣5=0,解得a=4;(2)设方程的另一个根为x2,则x2+1=﹣4,解得:x2=﹣5.故方程的另一根为﹣5.20.(8分)已知AB是⊙O的直径,点C,D是半圆O的三等分点.连接AC,DO.(Ⅰ)如图①,求∠BOD及∠A的大小;(Ⅱ)如图②,过点C作CF⊥AB于点F,交⊙O于点H,若⊙O的半径为2.求CH 的长.【解答】解:(Ⅰ)如图①,连接OC,∵点C,D是半圆O的三等分点,∴∠AOC=∠COD=∠BOD,∵AB为直径,∴∠AOC=∠COD=∠BOD=13×180°=60°,∵OC=OA,∴△AOC为等边三角形,∴∠A=60°;即∠BOD及∠A的大小为60°,60°;(Ⅱ)如图②,连接OC,∵CF⊥AB,∴CF=HF,在Rt△OCF中,∵∠COF=60°,∴OF=12OC=1,∴CF=√3OF=√3,∴CH=2CF=2√3.21.(10分)如图,AB是⊙O的直径,直线AT切⊙O于点A,BT交⊙O于C,已知∠B=30°,AT=√3,求⊙O的直径AB和弦BC的长.【解答】解:连接AC,如图所示:∵直线AT切⊙O于点A,∴∠BAT=90°,在Rt△ABT中,∠B=30°,AT=√3,∴tan30°=ATAB,即AB=√3tan30°=3;∵AB是⊙O的直径,∴∠ACB=90°,在Rt△ABC中,∠B=30°,AB=3,∴cos30°=BC AB,则BC=AB•cos30°=3√3 2.22.(10分)小明妈妈在春节期间以160元/件的价格购进了一批商品,如果按标价200元/件出售,那么每天可以销售20件.为了尽快减少库存,小明妈妈决定采取降价促销措施,经试销发现,每件商品每降价1元,平均每天可多售出2件,若平均每天要盈利1200元,每件商品应降价多少元?为了满足降价要求,小明妈妈应打几折出售?【解答】解:设每件商品降价x元,则平均每天可以销售(20+2x)件,依题意,得:(200﹣x﹣160)(20+2x)=1200,整理,得:x2﹣30x+200=0,解得:x1=10,x2=20,又∵尽快减少库存,∴x =20, ∴200−x 200×10=9.答:每件商品应降价20元,为了满足降价要求,小明妈妈应打9折出售.23.(10分)如图有一座抛物线形拱桥,桥下面在正常水位是AB 宽20m ,水位上升3m 就达到警戒线CD ,这是水面宽度为10m . (1)在如图的坐标系中求抛物线的解析式.(2)若洪水到来时,水位以每小时0.2m 的速度上升,从警戒线开始,再持续多少小时才能到拱桥顶?【解答】解:(1)解:设所求抛物线的解析式为:y =ax 2(a ≠0), 由CD =10m ,可设D (5,b ),由AB =20m ,水位上升3m 就达到警戒线CD , 则B (10,b ﹣3),把D 、B 的坐标分别代入y =ax 2得: {25a =b 100a =b −3, 解得{a =−125b =−1.∴y =−125x 2; (2)∵b =﹣1,∴拱桥顶O 到CD 的距离为1m , ∴10.2=5(小时).所以再持续5小时到达拱桥顶.24.(10分)如图1.在Rt △ABC 中,∠A =90°,AB =AC ,点D 、E 分别在边AB 、AC 上,AD =AE .连接DC ,点M 、P 、N 分别为DE 、DC 、BC 的中点.(1)图1中,线段PM 与PN 的数量关系是 PM =PN ,位置关系是 PM ⊥PN ;(2)把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,判断△PMN的形状,并说明理由;(3)把△ADE绕点A在平面内自由旋转,若DE=2,BC=6,请直接写出△PMN面积的最大值.【解答】解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=12BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=12CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形.理由:如图2,连接CE,BD,由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,利用三角形的中位线得,PN=12BD,PM=12CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC =∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形;(3)若DE=2,BC=6,在Rt△ABC中,AB=AC,BC=6,∴AB=√22BC=3√2,同理:AD=√2由(2)知,△PMN是等腰直角三角形,PM=PN=12BD,∴PM最大时,△PMN面积最大,∴点D在BA的延长线上,∴BD=AB+AD=4√2,∴PM=2√2,∴S △PMN 最大=12PM 2=12×(2√2)2=4.25.(10分)如图,抛物线y =ax 2+bx +c 经过点B (4,0),C (0,﹣2),对称轴为直线x =1,与x 轴的另一个交点为点A .(1)求抛物线的解析式;(2)点M 从点A 出发,沿AC 向点C 运动,速度为1个单位长度/秒,同时点N 从点B 出发,沿BA 向点A 运动,速度为2个单位长度/秒,当点M 、N 有一点到达终点时,运动停止,连接MN ,设运动时间为t 秒,当t 为何值时,AMN 的面积S 最大,并求出S 的最大值;(3)点P 在x 轴上,点Q 在抛物线上,是否存在点P 、Q ,使得以点P 、Q 、B 、C 为顶点的四边形是平行四边形,若存在,直接写出所有符合条件的点P 坐标,若不存在,请说明理由.【解答】解:(1)依题意,将B (4,0),C (0,﹣2),对称轴为直线x =1,代入抛物线解析式,得{16a +4b +c =0c =−2−b 2a =1, 解得:{ a =14b =−12c =−2,∴抛物线的解析式为:y=14x2−12x−2;(2)∵对称轴为直线x=1,B(4,0).∴A(﹣2,0),则AB=6,当点N运动t秒时,BN=2t,则AN=6﹣2t,如图1,过点M作MD⊥x轴于点D.∵OA=OC=2,∴△OAC是等腰直角三角形,∴∠OAC=45°.又∵DM⊥OA,∴△DAM是等腰直角三角形,AD=DM,当点M运动t秒时,AM=t,∴MD2+AD2=AM2=t2,∴DM=√22t,∴S=(6−2t)⋅√22t⋅12=−√22(x−32)2+98√2,∴由二次函数的图象及性质可知,当t=32时,S最大值为9√28;(3)存在,理由如下:①当四边形CBQP为平行四边形时,CB与PQ平行且相等,∵B(4,0),C(0,﹣2),∴y B﹣y C=y Q﹣y P=2,x B﹣x C=x Q﹣x P=4,∵y P=0,∴y Q=2,将y=2代入y=14x2−12x−2,得x1=1+√17,x2=1−√17,∴当x Q=1+√17时,x P=﹣3+√17;当x Q=1−√17时,x P=﹣3−√17,∴P1(﹣3+√17,0),P2(﹣3−√17,0);②当四边形CQPB为平行四边形时,BP与CQ平行且相等,∵y P=y B=0,∴y Q=y C=﹣2,将y=﹣2代入y=14x2−12x−2,得x1=0(舍去),x2=2,∴x Q=2时,∴x P﹣x B=x Q﹣x C=2,∴x P=6,∴P3(6,0);③当四边形CQBP为平行四边形时,BP与CQ平行且相等,由②知,x Q=2,∴x B﹣x P=x Q﹣x C=2,∴x P=2,∴P4(2,0);综上所述,存在满足条件的点P有4个,分别是P1(﹣3+√17,0),P2(﹣3−√17,0),P3(6,0),P4(2,0).。

2023届天津和平区天津市双菱中学数学九上期末监测模拟试题含解析

2023届天津和平区天津市双菱中学数学九上期末监测模拟试题含解析

2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题(每小题3分,共30分)1.图1所示矩形ABCD 中,BC=x ,CD=y ,y 与x 满足的反比例函数关系如图2所示,等腰直角三角形AEF 的斜边EF 过C 点,M 为EF 的中点,则下列结论正确的是A .当x=3时,EC <EMB .当y=9时,EC >EM C .当x 增大时,EC·CF 的值增大.D .当y 增大时,BE·DF 的值不变.2.如图,正方形ABCD 中,点E 是以AB 为直径的半圆与对角线AC 的交点.现随机向正方形ABCD 内投掷一枚小针,则针尖落在阴影区域的概率为( )A .18B .14C .13D .123.如图,ABC 中,D 、E 分别是BC 、AC 边上一点,F 是AD 、BE 的交点,2CE AE =,BF EF =,EN BC ∥交AD 于N ,若3BD =,则CD 长度为( )A .6B .7C .8D .94.以下是回收、绿色包装、节水、低碳四个标志,其中是中心对称图形的是( )A .B .C .D .5.若反比例函数2m y x +=的图象在每一个信息内y 的值随x 的增大而增大,则关于x 的函数()213y m x m =+++的图象经过( )A .第一、三象限B .第二、四象限C .第一、三、四象限D .第一、二、四象限 6.如图所示,将Rt △ABC 绕其直角顶点C 按顺时针方向旋转90°后得到Rt △DEC ,连接AD ,若∠B =65°,则∠ADE =( )A .20°B .25°C .30°D .35°7.在平面直角坐标系中,已知点A (﹣4,2),B (﹣6,﹣4),以原点O 为位似中心,相似比为12,把△ABO 缩小,则点A 的对应点A ′的坐标是( )A .(﹣2,1)B .(﹣8,4)C .(﹣8,4)或(8,﹣4)D .(﹣2,1)或(2,﹣1) 8.三角形两边的长分别是8和6,第三边的长是一元二次方程216600x x -+=的一个实数根,则该三角形的面积是( )A .24B .24或85C .48或165D .59.A B 、两地相距90km ,甲、乙两人从两地出发相向而行,甲先出发.图中12,l l 表示两人离A 地的距离()S km 与时间()t h 的关系,结合图象,下列结论错误的是( )A .1l 是表示甲离A 地的距离与时间关系的图象B .乙的速度是30/km hC .两人相遇时间在 1.2t h =D .当甲到达终点时乙距离终点还有45km10.抛物线y =x 2﹣4x+2不经过( )A .第一象限B .第二象限C .第三象限D .第四象限二、填空题(每小题3分,共24分)11.小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他绘制了如图2所示的图形.图2中留个形状大小都相同的四边形围成一个圆的内接六边形和一个小正六边形,若PQ 所在的直线经过点M ,PB=5cm ,小正六边形的面积为4932cm 2,则该圆的半径为________cm .12.抛物线y =﹣x 2+2x ﹣5与y 轴的交点坐标为_____.13.计算:()0324cos 60-︒=________.14.如图,△ABC 中,D 为BC 上一点,∠BAD =∠C ,AB =6,BD =4,则CD 的长为____.15.如图,在矩形ABCD中,DE⊥AC,垂足为E,且tan∠ADE=43,AC=5,则AB的长____.16.反比例函数2yx=和4yx=在第一象限的图象如图所示,点A在函数4yx=图像上,点B在函数2yx=图像上,AB∥y轴,点C是y轴上的一个动点,则△ABC的面积为_____.17.分解因式:2x y4y-=.18.如图,AC是矩形ABCD的对角线,⊙O是△ABC的内切圆,现将矩形ABCD按如图所示的方式折叠,使点D与点O重合,折痕为FG,点F,G分别在AD,BC上,连结OG,DG,若OG⊥DG,且⊙O的半径长为1,则BC+AB 的值______.三、解答题(共66分)19.(10分)如图,扇形OAB的半径OA=4,圆心角∠AOB=90°,点C是弧AB上异于A、B的一点,过点C作CD⊥OA于点D,作CE⊥OB于点E,连结DE,过点C作弧AB所在圆的切线CG交OA的延长线于点G.(1)求证:∠CGO=∠CDE;(2)若∠CGD=60°,求图中阴影部分的面积.20.(6分)已知关于x的方程x2-(2m+1)x+m(m+1)=0.(1)求证:方程总有两个不相等的实数根;(2)已知方程的一个根为x=0,求代数式(2m-1)2+(3+m)(3-m)+7m-5的值(要求先化简再求值).21.(6分)已知:点()A 1,4--和P 是一次函数y kx b =+与反比例函数m y x =图象的连个不同交点,点P 关于y 轴的对称点为P',直线AP 以及AP?分别与x 轴交于点M 和N .(1)求反比例函数m y x =的表达式; (2)若3PP'MN 2≥,求k 的取值范围.22.(8分)(1)如图1,在正方形ABCD 中,E 是AB 上一点,F 是AD 延长线上一点,且DF =BE ,求证:CE =CF ; (2)如图2,在正方形ABCD 中,E 是AB 上一点,G 是AD 上一点,如果∠GCE =45°,请你利用(1)的结论证明:GE =BE +GD ;(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,在直角梯形ABCD 中,AD ∥BC (BC >AD ),∠B =90°,AB =BC ,E 是AB 上一点,且∠DCE =45°,BE =4,DE=10, 求直角梯形ABCD 的面积.23.(8分)某商场经营某种品牌的玩具,购进时的单价30元,根据市场调查:在一段时间内,销售单价是40元时,销售是600件,而销售单价每涨1元,就会少售出10件玩具.(1)若设该种品脚玩具上x 元(0<x <60)元,销售利润为w 元,请求出w 关于x 的函数关系式;(2)若想获得最大利润,应将销售价格定为多少,并求出此时的最大利润.24.(8分)解方程(2x+1)2=3(2x+1)25.(10分)如图1,抛物线y=﹣x2+mx+n交x轴于点A(﹣2,0)和点B,交y轴于点C(0,2).(1)求抛物线的函数表达式;(2)若点M在抛物线上,且S△AOM=2S△BOC,求点M的坐标;(3)如图2,设点N是线段AC上的一动点,作DN⊥x轴,交抛物线于点D,求线段DN长度的最大值.26.(10分)有4张看上去无差别的卡片,上面分别写着1,2,3,4.(1)一次性随机抽取2张卡片,求这两张卡片上的数字之和为奇数的概率;(2)随机摸取1张后,放回并混在一起,再随机抽取1张,求两次取出的卡片上的数字之和等于4的概率.参考答案一、选择题(每小题3分,共30分)1、D【解析】试题分析:由图象可知,反比例函数图象经过(3,3),应用待定系数法可得该反比例函数关系式为9yx =,因此,当x=3时,y=3,点C与点M重合,即EC=EM,选项A错误;根据等腰直角三角形的性质,当x=3时,y=3,点C与点M重合时,EM=32当y=9时,99x1x=⇒=,即2,所以,EC<EM,选项B错误;根据等腰直角三角形的性质,2x,2y,即EC·2x2y2xy18==,为定值,所以不论x如何变化,EC·CF的值不变,选项C错误;根据等腰直角三角形的性质,BE=x,DF=y,所以BE·DF=x y xy9⋅==,为定值,所以不论y如何变化,BE·DF的值不变,选项D正确.故选D.考点:1.反比例函数的图象和性质;2.待定系数法的应用;3.曲线上点的坐标与方程的关系;4.等腰直角三角形的性质;5.勾股定理.2、B【分析】连接BE,如图,利用圆周角定理得到∠AEB=90°,再根据正方形的性质得到AE=BE=CE,于是得到阴影部分的面积=△BCE的面积,然后用△BCE的面积除以正方形ABCD的面积可得到镖落在阴影部分的概率.【详解】解:连接BE,如图,∵AB为直径,∴∠AEB=90°,而AC为正方形的对角线,∴AE=BE=CE,∴弓形AE的面积=弓形BE的面积,∴阴影部分的面积=△BCE的面积,∴镖落在阴影部分的概率=14.故选:B.【点睛】本题考查了几何概率:某事件的概率=这个事件所对应的面积除以总面积.也考查了正方形的性质.3、D【分析】根据AAS证明△BDF≌△ENF,得到NE=BD=1,再由NE∥BC,得到△ANE∽△ADC,根据相似三角形的对应边成比例即可得出结论.【详解】∵NE∥BC,∴∠ENF=∠BDF,∠NEF=∠DBF.∵BF=EF,∴△BDF≌△ENF,∴NE=BD=1.∵NE∥BC,∴△ANE ∽△ADC , ∴13NE AE AE DC AC AE EC ===+, ∴313DC =, ∴DC =2.故选:D .【点睛】本题考查了相似三角形的判定与性质.求出NE 的长是解答本题的关键.4、B【解析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,只有选项B 符合条件.故选B .5、D【分析】通过反比例函数的性质可得出m 的取值范围,然后根据一次函数的性质可确定一次函数图象经过的象限. 【详解】解:∵反比例函数2m y x+=的图象在每一个信息内y 的值随x 的增大而增大 ∴20m +<∴2m <-∴210,30m m +<+>∴关于x 的函数()213y m x m =+++的图象不经过第三象限. 故选:D .【点睛】本题考查的知识点是反比例函数的性质、一次函数的图象与系数的关系、一次函数的性质,掌握以上知识点是解此题的关键.6、A【分析】根据旋转的性质可得AC=CD ,∠CED=∠B ,再判断出△ACD 是等腰直角三角形,然后根据等腰直角三角形的性质求出∠CAD=45°,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】∵Rt △ABC 绕其直角顶点C 按顺时针方向旋转90°后得到Rt △DEC ,∴AC =CD ,∠CED =∠B =65°,∴△ACD 是等腰直角三角形,∴∠CAD =45°,由三角形的外角性质得:654520ADE CED CAD ∠=∠∠=︒︒=︒﹣﹣.故选:A .【点睛】本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.7、D【解析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k ,即可求得答案.【详解】∵点A (-4,2),B (-6,-4),以原点O 为位似中心,相似比为12,把△ABO 缩小, ∴点A 的对应点A′的坐标是:(-2,1)或(2,-1).故选D .【点睛】此题考查了位似图形与坐标的关系.此题比较简单,注意在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标比等于±k . 8、B【分析】由216600x x -+=,可利用因式分解法求得x 的值,然后分别从x=6时,是等腰三角形;与x=10时,是直角三角形去分析求解即可求得答案.【详解】∵216600x x -+=, ∴(x−6)(x−10)=0,解得:x 1=6,x 2=10,当x=6时,则三角形是等腰三角形,如图①,AB=AC=6,BC=8,AD 是高,∴22=25AB BD -,∴S △ABC =12 BC ⋅AD=12×8×255 当x=10时,如图②,AC=6,BC=8,AB=10,∵AC2+BC2=AB2,∴△ABC是直角三角形,∠C=90°,S△ABC=12BC⋅AC=12×8×6=24.∴该三角形的面积是:24或故选B.【点睛】此题考查勾股定理的逆定理,解一元二次方程-因式分解法,勾股定理,解题关键在于利用勾股定理进行计算.9、C【分析】根据图像获取所需信息,再结合行程问题量间的关系进行解答即可.【详解】解:A. 1l是表示甲离A地的距离与时间关系的图象是正确的;B. 乙用时3小时,乙的速度,90÷3=30/km h,故选项B正确;C.设甲对应的函数解析式为y=ax+b,则有:9020ba b=⎧⎨+=⎩解得:4590ab=-⎧⎨=⎩∴甲对应的函数解析式为y=-45x+90,设乙对应的函数解析式为y=cx+d,则有:3.5900.50c dc d+=⎧⎨+=⎩解得:3015cd=⎧⎨=-⎩即乙对应的函数解析式为y=30x-15则有:45903015y xy x=-+⎧⎨=-⎩解得:x=1.4h,故C选项错误;D. 当甲到达终点时乙距离终点还有90-40×1.4=45km,故选项D正确;故答案为C.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意、从图像中获取问题需要的条件以及数形结合的思想的应用是解答本题的关键.10、C【分析】求出抛物线的图象和x轴、y轴的交点坐标和顶点坐标,再根据二次函数的性质判断即可.【详解】解:y=x2﹣4x+4﹣2=(x﹣2)2﹣2,即抛物线的顶点坐标是(2,﹣2),在第四象限;当y=0时,x2﹣4x+2=0,解得:x=22,即与x轴的交点坐标是(2+2,0)和(2﹣2,0),都在x轴的正半轴上,a=1>0,抛物线的图象的开口向上,与y轴的交点坐标是(0,2),即抛物线的图象过第一、二、四象限,不过第三象限,故选:C.【点睛】本题考查了求函数图像与坐标轴交点坐标和顶点坐标,即求和x轴交点坐标就要令y=0、求与y轴的交点坐标就要令x=0,求顶点坐标需要配成顶点式再求顶点坐标二、填空题(每小题3分,共24分)11、1【分析】设两个正六边形的中心为O,连接OP,OB,过点O作OG⊥PM于点G,OH⊥AB于点H,如图所示:很容易证出三角形PMN是一个等边三角形,边长PM的长,,而且面积等于小正六边形的面积的32,故三角形PMN的面积很容易被求出,根据正六边形的性质及等腰三角形的三线和一可以得出PG的长,进而得出OG的长,,在Rt△OPG 中,根据勾股定理得OP的长,设OB为x,,根据正六边形的性质及等腰三角形的三线和一可以得出BH,OH的长,进而得出PH的长,在Rt△PHO中,根据勾股定理得关于x的方程,求解得出x的值,从而得出答案.【详解】解: 设两个正六边形的中心为O,连接OP,OB,过点O作OG⊥PM于点G,OH⊥AB于点H,如图所示:很容易证出三角形PMN是一个等边三角形,边长PM=73而且面积等于小正六边形的面积的32,故三角形PMN的面积为14734cm2,∵OG⊥PM,且O是正六边形的中心,∴PG=1273∴OG=7 2在Rt △OPG 中,根据勾股定理得 :OP 2=OG 2+PG 2,即227()2+=OP 2 ∴OP=7cm ,设OB 为x ,∵OH ⊥AB ,且O 是正六边形的中心,∴BH=12X,OH=2, ∴PH=5-12x ,在Rt △PHO 中,根据勾股定理得OP 2=PH 2+OH 2,即2221+5-x =722)() 解得:x 1=1,x 2=-3(舍)故该圆的半径为1cm .故答案为1.【点睛】本题以相机快门为背景,从中抽象出数学模型,综合考查了多边形、圆、三角形及解三角形等相关知识,突出考查数学的应用意识和解决问题的能力.试题通过将快门的光圈变化这个动态的实际问题化为静态的数学问题,让每个学生都能参与到实际问题数学化的过程中,鼓励学生用数学的眼光观察世界;在运用数学知识解决问题的过程中,关注思想方法,侧重对问题的分析,将复杂的图形转化为三角形或四边形解决,引导学生用数学的语言表达世界,用数学的思维解决问题.12、(0,﹣5)【分析】要求抛物线与y 轴的交点,即令x =0,解方程.【详解】解:把x =0代入y =﹣x 2+2x ﹣5,求得y =﹣5,则抛物线y =﹣x 2+2x ﹣5与y 轴的交点坐标为(0,﹣5).故答案为(0,﹣5).【点睛】本题考查了抛物线与y 轴的交点坐标,正确掌握令0x =或令0y =是解题的关键.13、-1【分析】根据零指数幂及特殊角的三角函数值计算即可.【详解】解:原式=1-4×12=-1,本题考查了实数的运算、零指数幂、特殊角的三角函数值,属于基础题,解答本题的关键是熟练每部分的运算法则.14、1【分析】利用角角定理证明△BAD∽△BCA,然后利用相似三角形的性质得到BA BDBC BA=,求得BC的长,从而使问题得解.【详解】解:∵∠BAD=∠C,∠B=∠B,∴△BAD∽△BCA,∴BA BD BC BA=.∵AB=6,BD=4,∴646 BC=,∴BC=9,∴CD=BC-BD=9-4=1.【点睛】本题考查相似三角形的判定与性质,熟记判定方法准确找到相似三角形对应边是本题的解题关键..15、3.【分析】先根据同角的余角相等证明∠ADE=∠ACD,在△ADC根据锐角三角函数表示用含有k的代数式表示出AD=4k和DC=3k,从而根据勾股定理得出AC=5k,又AC=5,从而求出DC的值即为AB.【详解】∵四边形ABCD是矩形,∴∠ADC=90°,AB=CD,∵DE⊥AC,∴∠AED=90°,∴∠ADE+∠DAE=90°,∠DAE+∠ACD=90°,∴∠ADE=∠ACD,∴tan∠ACD=tan∠ADE=43=ADCD,设AD=4k,CD=3k,则AC=5k,∴5k=5,∴k=1,∴CD=AB=3,本题考查矩形的性质和利用锐角三角函数解直角三角形,解决此类问题时需要将已知角的三角函数、已知边、未知边,转换到同一直角三角形中,然后解决问题.16、1【分析】设A(m ,4m ),B(m ,2m ),则AB=4m -2m ,△ABC 的高为m ,根据三角形面积公式计算即可得答案. 【详解】∵A 、B 分别为4y x=、2y x =图象上的点,AB ∥y 轴, ∴设A(m ,4m ),B(m ,2m), ∴S △ABC =12(4m -2m)m=1. 故答案为:1【点睛】本题考查反比例函数图象上点的坐标特征,熟知反比例函数图象上点的坐标都满足反比例函数的解析式是解题关键.17、()()y x 2x 2+-.【解析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式y 后继续应用平方差公式分解即可:()()()22x y 4y y x 4y x 2x 2-=-=+-. 考点:提公因式法和应用公式法因式分解.18、4+23【分析】如图所示:设圆O 与BC 的切点为M ,连接OM .由切线的性质可知OM ⊥BC ,然后证明△OMG ≌△GCD ,得到OM=GC=3,CD=GM=BC ﹣BM ﹣GC=BC ﹣3.设AB=a ,BC=a+3,AC=3a ,从而可求得∠ACB=20°,从而得到33AB BC =,故此可求得AB=31+,则BC=3+2.求得AB+BC=4+23. 【详解】解:解:如图所示:设圆0与BC 的切点为M ,连接OM .∵BC 是圆O 的切线,M 为切点,∴OM ⊥BC .∴∠OMG=∠GCD=90°.由翻折的性质可知:OG=DG .∵OG ⊥GD ,∴∠OGM+∠DGC=90°.又∵∠MOG+∠OGM=90°,∴∠MOG=∠DGC .在△OMG 和△GCD 中,90OMG DCG MOG DGC OG DG ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△OMG ≌△GCD .∴OM=GC=3.CD=GM=BC-BM-GC=BC-3.∵AB=CD ,∴BC-AB=3.设AB=a ,则BC=a+3.∵圆O 是△ABC 的内切圆,∴AC=AB+BC-3r .∴AC=3a . ∴12AB AC =. ∴∠ACB=20°.∴1,23AB BC AB ==+=,∴4AB BC +=+.故答案为:4+.考点:3、三角形的内切圆与内心;3、矩形的性质;2、翻折变换(折叠问题)三、解答题(共66分)19、(1)见解析;(2)图中阴影部分的面积为43π-【分析】(1)连接OC 交DE 于F ,根据矩形的判定定理证出四边形CEOD 是矩形,根据矩形的性质和等边对等角证出∠FCD=∠CDF,然后根据切线的性质可得∠OCG=90°,然后根据同角的余角相等即可证出结论;(2)根据题意,求出∠COD=30°,然后利用锐角三角函数求出CD和OD,然后根据扇形的面积公式和三角形的面积公式即可求出结论.【详解】证明:(1)连接OC交DE于F,∵CD⊥OA,CE⊥OB,∴∠CEO=∠AOB=∠CDO=90°,∴四边形CEOD是矩形,∴CF=DF=EF=OF,∠ECD=90°,∴∠FCD=∠CDF,∠ECF+∠FCD=90°,∵CG是⊙O的切线,∴∠OCG=90°,∴∠OCD+∠GCD=90°,∴∠ECF=∠GCD,∵∠DCG+∠CGD=90°,∴∠FCD=∠CGD,∴∠CGO=∠CDE;(2)由(1)知,∠CGD=∠CDE=60°,∴∠DCO=60°,∴∠COD=30°,∵OC=OA=4,∴CD=2,OD=3,∴图中阴影部分的面积=2304360π⋅⨯﹣12⨯2×343π﹣3.【点睛】此题考查的是矩形的判定及性质、切线的性质、锐角三角函数和求阴影部分的面积,掌握矩形的判定及性质、切线的性质、锐角三角函数和求阴影部分的面积是解决此题的关键.【解析】试题分析:(1)找出a ,b 及c ,表示出根的判别式,变形后得到其值大于1,即可得证.(2)把x=1代入方程即可求m 的值,然后化简代数式再将m 的值代入所求的代数式并求值即可.试题解析:(1)∵关于x 的一元二次方程x 2-(2m+1)x+m (m+1)=1.∴△=(2m+1)2-4m (m+1)=1>1,∴方程总有两个不相等的实数根;(2)∵x=1是此方程的一个根,∴把x=1代入方程中得到m (m+1)=1,∴m=1或m=-1,∵(2m-1)2+(3+m )(3-m )+7m-2=4m 2-4m+1+9-m 2+7m-2=3m 2+3m+2,把m=1代入3m 2+3m+2得:3m 2+3m+2=2;把m=-1代入3m 2+3m+2得:3m 2+3m+2=3×1-3+2=2. 考点:1.根的判别式;2.一元二次方程的解.21、(1)4y x =;(2) 2k ≥或10k ≤-. 【分析】(1)将点A (-1,-4)代入反比例函数解析式m y x =,即可得m 的值; (2)分两种情况讨论:当P 在第一象限或第三象限时,过点A 作AC PP?⊥于点C ,交x 轴于点B ,AMN APP'∆∆∽,通过相似的性质求出AC 的长,然后求出点P 的坐标,求出一次函数的解析式,即可求出k 的取值范围.【详解】解:(1)将点A (-1,-4)代入反比例函数解析式m y x =,即可得m=4, ∴反比例函数解析式是4y x=; (2)分两种情况讨论:当P 在第一象限时,如图1,当3PP'=MN 2时,过点A 作AC PP?⊥于点C ,交x 轴于点B ,∵MN//PP ,AC MN '⊥,∴AMN APP'∆∆∽,,∴AB MN 2AC PP'3==, ∴AC=6,把y=2代入4y x =中得x=2, ∴点P 的坐标是(2,2),∴224k b k b +=⎧⎨-+=-⎩, ∴22k b =⎧⎨=⎩, ∴一次函数的解析式为y=2x-2,当3PP'>MN 2时,AC>6,此时点P 的纵坐标大于2,k 的值变大,所以k>2, ∴2k ≥; 当P 在第三象限时,如图2,当3PP'=MN 2时,过点A 作AC PP?⊥于点C ,交x 轴于点B ,∵MN//PP ,AC MN '⊥,∴AMN APP'∆∆∽,,∴AB MN 2AC PP'3==, ∴AC=6,∴点P 的纵坐标是-10,把y=-10代入4y x =中得x= 25-, ∴点P 的坐标是(25-,-10), ∴21054k b k b ⎧-+=-⎪⎨⎪-+=-⎩,∴1014k b =-⎧⎨=-⎩, ∴一次函数的解析式为y=-10x-14, 当3PP'>MN 2时,AC>6,此时点P 的纵坐标小于-10,k 的值变小,所以k<-10,∴10k ≤-;综上所述,k 的取值范围2k ≥或10k ≤-.【点睛】本题是函数和相似三角形的综合题,难度较大.要紧盯着如何求点P 坐标这一突破口,通过相似求出线段的长,从而解决问题.22、(1)证明见解析;(2)证明见解析;(3)1.【分析】(1)根据正方形的性质,可直接证明△CBE ≌△CDF ,从而得出CE=CF ;(2)延长AD 至F ,使DF=BE ,连接CF ,根据(1)知∠BCE=∠DCF ,即可证明∠ECF=∠BCD=90°,根据∠GCE=45°,得∠GCF=∠GCE=45°,利用全等三角形的判定方法得出△ECG ≌△FCG ,即GE=GF ,即可得出答案GE=DF+GD=BE+GD ;(3)过C 作CF ⊥AD 的延长线于点F .则四边形ABCF 是正方形,设DF=x ,则AD=12-x ,根据(2)可得:DE=BE+DF=4+x ,在直角△ADE 中利用勾股定理即可求解.【详解】(1)如图1,在正方形ABCD 中,∵BC=CD ,∠B=∠CDF ,BE=DF ,∴△CBE ≌△CDF ,∴CE=CF ;(2)如图,延长AD 至F ,使DF=BE ,连接CF ,由(1)知△CBE ≌△CDF ,∴∠BCE=∠DCF ,∴∠BCE+∠ECD=∠DCF+∠ECD ,即∠ECF=∠BCD=90°,又∵∠GCE=45°,∴∠GCF=∠GCE=45°,∵CE=CF ,∠GCE=∠GCF ,GC=GC ,∴GE=GF,∴GE=DF+GD=BE+GD;(3)如图:过点C作CF⊥AD于F,∵AD∥BC,∠B=90°,∴∠A=90°,∵∠A=∠B=90°,FC⊥AD,∴四边形ABCF是矩形,且AB=BC=12,∴四边形ABCF是正方形,∴AF=12,由(2)可得DE=DF+BE,∴DE=4+DF,在△ADE中,AE2+DA2=DE2,∴(12−4)2+(12−DF)2=(4+DF)2,∴DF=6,∴AD=6,∴S四边形ABCD=12(AD+BC)×AB=12×(6+12)×12=1.【点睛】本题考查了全等三角形的判定和性质以及正方形的性质,解决本题的关键是注意每个题目之间的关系,正确作出辅助线.23、(1)w=﹣10x2+1300x﹣30000;(2)最大利润是1元,此时玩具的销售单价应定为65元.【分析】(1)利用销售单价每涨1元,就会少售出10件玩具,再结合每件玩具的利润乘以销量=总利润进而求出即可;(2)利用每件玩具的利润乘以销量=总利润得出函数关系式,进而求出最值即可.【详解】(1)根据题意得:w=[600﹣10(x﹣40)](x﹣30)=﹣10x2+1300x﹣30000;(2)w=[600﹣10(x﹣40)](x﹣30)=﹣10x2+1300x﹣30000=﹣10(x﹣65)2+1.∵a=﹣10<0,∴对称轴为x=65,∴当x=65时,W=1(元)答:商场销售该品牌玩具获得的最大利润是1元,此时玩具的销售单价应定为65元.【点睛】本题考查了二次函数的应用,得出w与x的函数关系式是解题的关键.24、x1=-12,x2=1【解析】试题分析:分解因式得出(2x+1)(2x+1﹣3)=0,推出方程2x+1=0,2x+1﹣3=0,求出方程的解即可.试题解析:解:整理得:(2x+1)2-3(2x+1)=0,分解因式得:(2x+1)(2x+1﹣3)=0,即2x+1=0,2x+1﹣3=0,解得:x1=﹣12,x2=1.点睛:本题考查了解一元一次方程和解一元二次方程的应用,解答此题的关键是把一元二次方程转化成解一元一次方程,题目比较典型,难度不大.25、(2)y=﹣x2﹣x+2;(2)(0,2)或(﹣2,2)或(1172-+,﹣2)或(1172--,﹣2);(3)2.【解析】(2)把点A、C的坐标分别代入函数解析式,列出关于系数的方程组,通过解方程组求得系数的值;(2)设M点坐标为(m,n),根据S△AOM=2S△BOC列出关于m的方程,解方程求出m的值,进而得到点P的坐标;(3)先运用待定系数法求出直线AC的解析式为y=x+2,再设N点坐标为(x,x+2),则D点坐标为(x,-x2-x+2),然后用含x的代数式表示ND,根据二次函数的性质即可求出线段ND长度的最大值.解:(2)A(﹣2,0),C(0,2)代入抛物线的解析式y=﹣x2+mx+n,得4202m nn--+=⎧⎨=⎩,解得12mn=-⎧⎨=⎩,∴抛物线的解析式为y=﹣x2﹣x+2.(2)由(2)知,该抛物线的解析式为y=﹣x2﹣x+2,则易得B(2,0),设M(m,n)然后依据S△AOM=2S△BOC列方程可得:1 2•AO×|n|=2×12×OB×OC,∴12×2×|﹣m2﹣m+2|=2,∴m2+m=0或m2+m﹣4=0,解得m=0或﹣2117-±,∴符合条件的点M的坐标为:(0,2)或(﹣2,2,﹣2,﹣2).(3)设直线AC的解析式为y=kx+b,将A(﹣2,0),C(0,2)代入得到202k bb-+=⎧⎨=⎩,解得12kb=⎧⎨=⎩,∴直线AC的解析式为y=x+2,设N(x,x+2)(﹣2≤x≤0),则D(x,﹣x2﹣x+2),ND=(﹣x2﹣x+2)﹣(x+2)=﹣x2﹣2x=﹣(x+2)2+2,∵﹣2<0,∴x=﹣2时,ND有最大值2.∴ND的最大值为2.点睛:本题考查二次函数的图象和性质.根据二次函数的性质并结合已知条件及图象进行分析是解题的关键.26、(1)23P=;(2)316P=.【分析】(1)先列出一次性随机抽取2张卡片的所有可能的结果,再找出两张卡片上的数字之和为奇数的结果,最后利用概率公式计算即可;(2)先列出两次抽取卡片的所有可能的结果,再找出两次取出的卡片上的数字之和等于4的结果,最后利用概率公式计算即可;【详解】(1)由题意得:一次性随机抽取2张卡片的所有可能的结果有6种,即(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),它们每一种出现的可能性相等从中可看出,两张卡片上的数字之和为奇数的结果有4种,即(1,2),(1,4),(2,3),(3,4)故所求的概率为4263P==;(2)两次抽取卡片的所有可能的结果有16种,列表如下:它们每一种出现的可能性相等从中可看出,两次取出的卡片上的数字之和等于4的结果有3种,即(3,1),(2,2),(1,3)故所求的概率为316 P .【点睛】本题考查了用列举法求概率,依据题意正确列举出事件的所有可能的结果是解题关键.。

天津市2020-2021学年人教版九年级期末数学上册试卷 含解析

天津市2020-2021学年人教版九年级期末数学上册试卷  含解析

九年级(上)期末数学试卷一.选择题(共12小题)1.已知⊙O的半径为6cm,点P到圆心O的距离为6cm,则点P和⊙O的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定2.下列图形中,可以看作是中心对称图形的是()A.B.C.D.3.半径为3的圆中,30°的圆心角所对的弧的长度为()A.2πB.πC.πD.π4.同时掷两个质地均匀的骰子,观察向上一面的点数,两个骰子的点数相同的概率是()A.B.C.D.5.如图,△ABC与△DEF是位似图形,相似比为2:3,已知AB=3,则DE的长为()A.B.C.D.6.如图,AB为⊙O的直径,C,D为⊙O上的两点,且C为的中点,若∠BAD=20°,则∠ACO的度数为()A.30°B.45°C.55°D.60°7.如图所示,小正方形的边长均为1,则下列选项中阴影部分的三角形与△ABC相似的是()A.B.C.D.8.直线y=﹣4x+1与抛物线y=x2+2x+k只有一个交点,则k的值为()A.0 B.2 C.6 D.109.如图,已知在Rt△ABC中,∠ACB=90°,CD⊥AB于D,则下列结论错误的是()A.CD•AC=AB•BC B.AC2=AD•ABC.BC2=BD•AB D.AC•BC=AB•CD10.顺次连接边长为6cm的正六边形的不相邻的三边的中点,又形成一个新的正三角形,则这个新的正三角形的面积等于()A.cm2B.36cm2C.18cm2D.cm211.如图,将△ABC绕点A逆时针旋转,旋转角为α(0°<α<180°),得到△ADE,这时点B,C,D恰好在同一直线上,下列结论一定正确的是()A.AB=ED B.EA⊥BCC.∠B=90°﹣D.∠EAC=90°+12.如图,边长都为4的正方形ABCD和正三角形EFG如图放置,AB与EF在一条直线上,点A与点F重合.现将△EFG沿AB方向以每秒1个单位的速度匀速运动,当点F与B重合时停止.在这个运动过程中,正方形ABCD和△EFG重叠部分的面积S与运动时间t的函数图象大致是()A.B.C.D.二.填空题(共6小题)13.从一副没有“大小王”的扑克牌中随机抽取一张,点数为“6”的概率是.14.如图所示,写出一个能判定△ABC∽△DAC的条件.15.如图,在△ABC中,DE∥BC,且DE把△ABC分成面积相等的两部分.若AD=4,则DB 的长为.16.已知:如图,PA,PB,DC分别切⊙O于A,B,E点,若PA=l0cm,则△PCD的周长为.17.二次函数y=x2+bx+c中,函数y与自变量x的部分对应值如表,则m的值为.x﹣2 ﹣1 0 1 2 3 4y7 2 ﹣1 ﹣2 m 2 718.如图,在边长为1的正方形ABCD中,将射线AC绕点A按顺时针方向旋转α度(0<α≤360°),得到射线AE,点M是点D关于射线AE的对称点,则线段CM长度的最小值为.三.解答题(共7小题)19.解方程:x2﹣7x﹣30=0.20.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.随机摸取一个小球然后放回,再随机摸取一个小球.利用树形图或列表求下列事件的概率:(1)两次取出的小球的标号相同;(2)两次取出的小球标号的和等于4.21.在△ABC中,∠C=90°,以边AB上一点O为圆心,OA为半径的圆与BC相切于点D,分别交AB,AC于点E,F.(1)如图①,连接AD,若∠CAD=25°,求∠B的大小;(2)如图②,若点F为的中点,⊙O的半径为2,求AB的长.22.如图①,E是平行四边形ABCD的边AD上的一点,且=,CE交BD于点F.(Ⅰ)若BF=15,求DF的长;(Ⅱ)如图②,若延长BA和CE交于点P,AB=8,能否求出AP的长?若能,求出AP的长;若不能,说明理由.23.如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤AM,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.(1)若a=20米,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;(2)若a=70米,求矩形菜园ABCD面积的最大值.24.在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,若△ABC固定不动,△AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合).(1)求证:△ABE∽△DCA;(2)在旋转过程中,试判断等式BD2+CE2=DE2是否始终成立,若成立,请证明;若不成立,请说明理由.25.在平面直角坐标系中,将二次函数y=ax2(a>0)的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与x轴交于点A、B(点A在点B的左侧),OA=1,经过点A的一次函数y=kx+b(k≠0)的图象与y轴正半轴交于点C,且与抛物线的另一个交点为D,△ABD的面积为5.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点E在一次函数的图象下方,求△ACE面积的最大值,并求出此时点E的坐标;(3)若点P为x轴上任意一点,在(2)的结论下,求PE+PA的最小值.参考答案与试题解析一.选择题(共12小题)1.已知⊙O的半径为6cm,点P到圆心O的距离为6cm,则点P和⊙O的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定【分析】根据点与圆的位置关系进行判断.【解答】解:∵⊙O的半径为6cm,P到圆心O的距离为6cm,即OP=6,∴点P在⊙O上.故选:B.2.下列图形中,可以看作是中心对称图形的是()A.B.C.D.【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,根据中心对称图形的概念求解.【解答】解:A、不是中心对称图形,故本选项不合题意;B、是中心对称图形,故本选项符合题意;C、不中心对称图形,故本选项不合题意;D、不中心对称图形,故本选项不合题意.故选:B.3.半径为3的圆中,30°的圆心角所对的弧的长度为()A.2πB.πC.πD.π【分析】根据弧长公式l=,计算即可.【解答】解:弧长==,故选:D.4.同时掷两个质地均匀的骰子,观察向上一面的点数,两个骰子的点数相同的概率是()A.B.C.D.【分析】利用列表法展示所以36种等可能的结果数,找出向上一面的两个骰子的点数相同的占6种,然后根据概率公式进行计算.【解答】解:列表如下:共有6×6=36种等可能的结果数,其中向上一面的两个骰子的点数相同的占6种,所以向上一面的两个骰子的点数相同的概率==.故选:D.5.如图,△ABC与△DEF是位似图形,相似比为2:3,已知AB=3,则DE的长为()A.B.C.D.【分析】根据位似变换的定义、相似三角形的性质列式计算即可.【解答】解:∵△ABC与△DEF是位似图形,相似比为2:3,∴△ABC∽△DEF,∴=,即=,解得,DE=,故选:B.6.如图,AB为⊙O的直径,C,D为⊙O上的两点,且C为的中点,若∠BAD=20°,则∠ACO的度数为()A.30°B.45°C.55°D.60°【分析】根据垂径定理的推论,即可求得:OC⊥AD,由∠BAD=20°,即可求得∠AOC的度数,又由OC=OA,即可求得∠ACO的度数【解答】解:∵AB为⊙O的直径,C为的中点,∴OC⊥AD,∵∠BAD=20°,∴∠AOC=90°﹣∠BAD=70°,∵OA=OC,∴∠ACO=∠CAO===55°,故选:C.7.如图所示,小正方形的边长均为1,则下列选项中阴影部分的三角形与△ABC相似的是()A.B.C.D.【分析】根据网格中的数据求出AB,AC,BC的长,求出三边之比,利用三边对应成比例的两三角形相似判断即可.【解答】解:根据题意得:AB==,AC=2,BC==,∴BC:AC:AB=1::,A、三边之比为1::,图中的三角形(阴影部分)与△ABC相似;B、三边之比:2:3,图中的三角形(阴影部分)与△ABC不相似;C、三边之比为1::2,图中的三角形(阴影部分)与△ABC不相似;D、三边之比为2::,图中的三角形(阴影部分)与△ABC不相似.故选:A.8.直线y=﹣4x+1与抛物线y=x2+2x+k只有一个交点,则k的值为()A.0 B.2 C.6 D.10【分析】直线y=﹣4x+1与抛物线y=x2+2x+k只有一个交点,则把y=﹣4x+1代入二次函数的解析式,得到的关于x的方程中,判别式△=0,据此即可求解.【解答】解:根据题意得:x2+2x+k=﹣4x+1,即x2+6x+(k﹣1)=0,则△=36﹣4(k﹣1)=0,解得:k=10.故选:D.9.如图,已知在Rt△ABC中,∠ACB=90°,CD⊥AB于D,则下列结论错误的是()A.CD•AC=AB•BC B.AC2=AD•ABC.BC2=BD•AB D.AC•BC=AB•CD【分析】根据三角形的面积公式判断A、D,根据射影定理判断B、C.【解答】解:由三角形的面积公式可知,CD•AB=AC•BC,A错误,符合题意,D正确,不符合题意;∵Rt△ABC中,∠ACB=90°,CD⊥AB,∴AC2=AD•AB,BC2=BD•AB,B、C正确,不符合题意;故选:A.10.顺次连接边长为6cm的正六边形的不相邻的三边的中点,又形成一个新的正三角形,则这个新的正三角形的面积等于()A.cm2B.36cm2C.18cm2D.cm2【分析】作AP⊥GH于P,BQ⊥GH于Q,由正六边形和等边三角形的性质求出GH=PG+PQ+QH =9cm,由等边三角形的面积公式即可得出答案.【解答】解:如图所示:作AP⊥GH于P,BQ⊥GH于Q,如图所示:∵△GHM是等边三角形,∴∠MGH=∠GHM=60°,∵六边形ABCDEF是正六边形,∴∠BAF=∠ABC=120°,正六边形ABCDEF是轴对称图形,∵G、H、M分别为AF、BC、DE的中点,△GHM是等边三角形,∴AG=BH=3cm,∠MGH=∠GHM=60°,∠AGH=∠FGM=60°,∴∠BAF+∠AGH=180°,∴AB∥GH,∵作AP⊥GH于P,BQ⊥GH于Q,∴PQ=AB=6cm,∠PAG=90°﹣60°=30°,∴PG=AG=cm,同理:QH=cm,∴GH=PG+PQ+QH=9cm,∴△GHM的面积=GH2=cm2;故选:A.11.如图,将△ABC绕点A逆时针旋转,旋转角为α(0°<α<180°),得到△ADE,这时点B,C,D恰好在同一直线上,下列结论一定正确的是()A.AB=ED B.EA⊥BCC.∠B=90°﹣D.∠EAC=90°+【分析】由旋转的性质可得AB=AD,∠BAD=α,由等腰三角形的性质可求解.【解答】解:∵将△ABC绕点A逆时针旋转,旋转角为α,∴AB=AD,∠BAD=α,∴∠B==90°﹣,故选:C.12.如图,边长都为4的正方形ABCD和正三角形EFG如图放置,AB与EF在一条直线上,点A与点F重合.现将△EFG沿AB方向以每秒1个单位的速度匀速运动,当点F与B重合时停止.在这个运动过程中,正方形ABCD和△EFG重叠部分的面积S与运动时间t的函数图象大致是()A.B.C.D.【分析】根据题意和函数图象可以写出各段对应的函数解析式,从而可以判断哪个选项中的图象符合题意,本题得以解决.【解答】解:当0≤t≤2时,S==,即S与t是二次函数关系,有最小值(0,0),开口向上,当2<t≤4时,S=﹣=,即S与t是二次函数关系,开口向下,由上可得,选项C符合题意,故选:C.二.填空题(共6小题)13.从一副没有“大小王”的扑克牌中随机抽取一张,点数为“6”的概率是.【分析】让点数为6的扑克牌的张数除以没有大小王的扑克牌总张数即为所求的概率.【解答】解:∵没有大小王的扑克牌共52张,其中点数为6的扑克牌4张,∴随机抽取一张点数为8的扑克,其概率是,故答案为.14.如图所示,写出一个能判定△ABC∽△DAC的条件AC2=DC•BC(答案不唯一).【分析】已知有公共角∠C,由相似三角形的判定方法可得出答案.【解答】解:已知△ABC和△DCA中,∠ACD=∠BAC;如果△ABC∽△DAC,需满足的条件有:①∠DAC=∠B或∠ADC=∠BAC;②AC2=DC•BC;故答案为:AC2=DC•BC(答案不唯一).15.如图,在△ABC中,DE∥BC,且DE把△ABC分成面积相等的两部分.若AD=4,则DB 的长为4.【分析】由平行于BC的直线DE把△ABC分成面积相等的两部分,可知△ADE与△ABC相似,且面积比为,则相似比为,的值为,可求出AB的长,则DB的长可求出.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∵DE把△ABC分成面积相等的两部分,∴S△ADE=S四边形DBCE,∴=,∴=,∵AD=4,∴AB=4.∴DB=AB﹣AD=4﹣4.故答案为:4﹣4.16.已知:如图,PA,PB,DC分别切⊙O于A,B,E点,若PA=l0cm,则△PCD的周长为20cm.【分析】根据切线长定理由PA、PB分别切⊙O于A、B得到PB=PA=10cm,由于DC与⊙O相切于E,再根据切线长定理得到CA=CE,DE=DB,然后三角形周长的定义得到△PDC 的周长=PD+DC+PC=PD+DB+CA+PC,然后用等线段代换后得到三角形PDC的周长等于PA+PB.【解答】解:∵PA、PB分别切⊙O于A、B,∴PB=PA=10cm,∵CA与CE为⊙的切线,∴CA=CE,同理得到DE=DB,∴△PDC的周长=PD+DC+PC=PD+DB+CA+PC∴△PDC的周长=PA+PB=20cm,故答案为20cm.17.二次函数y=x2+bx+c中,函数y与自变量x的部分对应值如表,则m的值为﹣1 .x﹣2 ﹣1 0 1 2 3 4y7 2 ﹣1 ﹣2 m 2 7【分析】二次函数的图象具有对称性,从函数值来看,函数值相等的点就是抛物线的对称点,由此可推出抛物线的对称轴,根据对称性求m的值.【解答】解:根据图表可以得到,点(﹣2,7)与(4,7)是对称点,点(﹣1,2)与(3,2)是对称点,∴函数的对称轴是:x=1,∴横坐标是2的点与(0,﹣1)是对称点,∴m=﹣1.18.如图,在边长为1的正方形ABCD中,将射线AC绕点A按顺时针方向旋转α度(0<α≤360°),得到射线AE,点M是点D关于射线AE的对称点,则线段CM长度的最小值为﹣1 .【分析】由轴对称的性质可知AM=AD,故此点M在以A圆心,以AD为半径的圆上,故此当点A、M、C在一条直线上时,CM有最小值.【解答】解:如图所示:连接AM.∵四边形ABCD为正方形,∴AC===.∵点D与点M关于AE对称,∴AM=AD=1.∴点M在以A为圆心,以AD长为半径的圆上.如图所示,当点A、M、C在一条直线上时,CM有最小值.∴CM的最小值=AC﹣AM′=﹣1,故答案为:﹣1.三.解答题(共7小题)19.解方程:x2﹣7x﹣30=0.【分析】先分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:x2﹣7x﹣30=0,(x﹣10)(x+3)=0,x﹣10=0,x+3=0,x1=10,x2=﹣3.20.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.随机摸取一个小球然后放回,再随机摸取一个小球.利用树形图或列表求下列事件的概率:(1)两次取出的小球的标号相同;(2)两次取出的小球标号的和等于4.【分析】(1)先画树状图展示所有16种等可能的结果数,其中两次摸出的小球标号相同的占4种,然后根据概率的概念计算即可;(2)由(1)可知有16种等可能的结果数,其中两次取出的小球标号的和等于4的有3种,进而可求出其概率.【解答】解:(1)如图,随机地摸出一个小球,然后放回,再随机地摸出一个小球,共有16种等可能的结果数,其中两次摸出的小球标号相同的有4种,所有两次摸出的小球标号相同的概率为=;(2)因为两次取出的小球标号的和等于4的有3种,所以其概率为.21.在△ABC中,∠C=90°,以边AB上一点O为圆心,OA为半径的圆与BC相切于点D,分别交AB,AC于点E,F.(1)如图①,连接AD,若∠CAD=25°,求∠B的大小;(2)如图②,若点F为的中点,⊙O的半径为2,求AB的长.【分析】(1)连接OD,由在△ABC中,∠C=90°,BC是切线,易得OD∥AC,即可求得∠CAD=∠BAD,继而求得答案;(2)首先连接OE,OD,由(1)得:OD∥AC,由点F为的中点,易得△AOF是等边三角形,继而求得答案.【解答】解:(1)连接OD,∵OA为半径的圆与BC相切于点D,∴OD⊥BC,∴∠ODB=90°,∵在△ABC中,∠C=90°,∴∠ODB=∠C,∴OD∥AC,∴∠CAD=∠ADO=25°,∵OA=OD,∴∠OAD=∠ODA=25°,∴∠BOD=2∠OAD=50°,∴∠B=90°﹣∠BOD=40°;(2)连接OF,OD,由(1)得:OD∥AC,∴∠AFO=∠FOD,∵OA=OF,点F为的中点,∴∠A=∠AFO,∠AOF=∠FOD,∴∠A=∠AFO=∠AOF=60°,∴∠B=90°﹣∠A=30°,∵OA=OD=2,∴OB=2OD=4,∴AB=OA+OB=6.22.如图①,E是平行四边形ABCD的边AD上的一点,且=,CE交BD于点F.(Ⅰ)若BF=15,求DF的长;(Ⅱ)如图②,若延长BA和CE交于点P,AB=8,能否求出AP的长?若能,求出AP的长;若不能,说明理由.【分析】(Ⅰ)由DE∥BC,可得,由此即可解决问题;(Ⅱ)由PB∥DC,可得,可得PA的长.【解答】解:(Ⅰ)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵,∴,又∵BF=15,∴,∴;(Ⅱ)解:能.∵四边形ABCD是平行四边形,∴PB∥DC,AB=DC=8,∴,∴,∴PA=.23.如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤AM,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.(1)若a=20米,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;(2)若a=70米,求矩形菜园ABCD面积的最大值.【分析】(1)设AB=xm,则BC=(100﹣2x)m,列方程求解即可;(2)设AB=xm,由题意得关于x的二次函数,利用二次函数的性质即可解决问题.【解答】解:(1)设AB=xm,则BC=(100﹣2x)m,由题意得:x(100﹣2x)=450解得:x1=5,x2=45当x=5时,100﹣2x=90>20,不合题意舍去;当x=45时,100﹣2x=10<20答:AD的长为10m;(2)设AB=xm,则S=x(100﹣x)=﹣(x﹣50)2+1250,(0<x≤70)∴x=50时,S的最大值是1250.答:当x=50时,矩形菜园ABCD面积的最大值为1250.24.在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,若△ABC固定不动,△AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合).(1)求证:△ABE∽△DCA;(2)在旋转过程中,试判断等式BD2+CE2=DE2是否始终成立,若成立,请证明;若不成立,请说明理由.【分析】(1)由图形得∠BAE=∠BAD+45°,由外角定理,得∠CDA=∠BAD+45°,可得∠BAE=∠CDA,根据∠B=∠C=45°,证明两个三角形相似;(2)将△ACE绕点A顺时针旋转90°至△ABH位置,证明△EAD≌△HAD转化DE、EC,使所求线段集中在Rt△BHD中利用勾股定理解决.【解答】(1)证明:∵∠BAE=∠BAD+45°,∠CDA=∠BAD+45°,∴∠BAE=∠CDA,又∠B=∠C=45°,∴△ABE∽△DCA;(2)解:成立.如图,将△ACE绕点A顺时针旋转90°至△ABH位置,则CE=BH,AE=AH,∠ABH=∠C=45°,旋转角∠EAH=90°.连接HD,在△EAD和△HAD中,,∴△EAD≌△HAD(SAS).∴DH=DE.又∠HBD=∠ABH+∠ABD=90°,∴BD2+BH2=HD2,即BD2+CE2=DE2.25.在平面直角坐标系中,将二次函数y=ax2(a>0)的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与x轴交于点A、B(点A在点B的左侧),OA=1,经过点A的一次函数y=kx+b(k≠0)的图象与y轴正半轴交于点C,且与抛物线的另一个交点为D,△ABD的面积为5.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点E在一次函数的图象下方,求△ACE面积的最大值,并求出此时点E的坐标;(3)若点P为x轴上任意一点,在(2)的结论下,求PE+PA的最小值.【分析】(1)先写出平移后的抛物线解析式,经过点A(﹣1,0),可求得a的值,由△ABD的面积为5可求出点D的纵坐标,代入抛物线解析式求出横坐标,由A、D的坐标可求出一次函数解析式;(2)作EM∥y轴交AD于M,如图,利用三角形面积公式,由S△ACE=S△AME﹣S△CME构建二次函数,利用二次函数的性质即可解决问题;(3)作E关于x轴的对称点F,过点F作FH⊥AE于点H,交x轴于点P,则∠BAE=∠HAP=∠HFE,利用锐角三角函数的定义可得出EP+AP=FP+HP,此时FH最小,求出最小值即可.【解答】解:(1)将二次函数y=ax2(a>0)的图象向右平移1个单位,再向下平移2个单位,得到的抛物线解析式为y=a(x﹣1)2﹣2,∵OA=1,∴点A的坐标为(﹣1,0),代入抛物线的解析式得,4a﹣2=0,∴,∴抛物线的解析式为y=,即y=.令y=0,解得x1=﹣1,x2=3,∴B(3,0),∴AB=OA+OB=4,∵△ABD的面积为5,∴=5,∴y D=,代入抛物线解析式得,,解得x1=﹣2,x2=4,∴D(4,),设直线AD的解析式为y=kx+b,∴,解得:,∴直线AD的解析式为y=.(2)过点E作EM∥y轴交AD于M,如图,设E(a,),则M(a,),∴=,∴S△ACE=S△AME﹣S△CME===,=,∴当a=时,△ACE的面积有最大值,最大值是,此时E点坐标为().(3)作E关于x轴的对称点F,连接EF交x轴于点G,过点F作FH⊥AE于点H,交x 轴于点P,∵E(),OA=1,∴AG=1+=,EG=,∴,∵∠AGE=∠AHP=90°∴sin,∴,∵E、F关于x轴对称,∴PE=PF,∴PE+AP=FP+HP=FH,此时FH最小,∵EF=,∠AEG=∠HEF,∴=,∴.∴PE+PA的最小值是3.。

2020-2021学年天津市南开区九年级上学期数学期末试卷及答案

2020-2021学年天津市南开区九年级上学期数学期末试卷及答案

2020-2021学年天津市南开区九年级上学期数学期末试卷及答案一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 下面图形中,既是中心对称图形又是轴对称图形的是()A. B.C. D.【答案】C【解析】【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】A、不是轴对称图形,是中心对称图形,故本选项不合题意;B、不是轴对称图形,是中心对称图形,故本选项不合题意;C、既是轴对称图形,又是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项不合题意.故选:C.【点睛】本题考查轴对称图形与中心对称图形的识别,理解基本定义是解题关键.2. 下列事件中,是随机事件的是()A. 画一个三角形,其内角和是180°B. 投掷一枚正六面体骰子,朝上一面的点数为5C. 在只装了红色卡片的袋子里,摸出一张白色卡片D. 明天太阳从东方升起【答案】B【解析】【分析】在一定条件下,可能发生也可能不发生的事件,称为不确定事件;事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的,据此逐项判断即可.【详解】解:、画一个三角形,其内角和是,是必然事件;A180、投掷一枚正六面体骰子,朝上一面的点数为5,属于随机事件;B、在只装了红色卡片的袋子里,摸出一张白色卡片,是不可能事件;C 、明天太阳从东方升起,是必然事件;D 故选:B .【点睛】本题主要考查随机事件的概念:随机事件是可能发生,也可能不发生的事件.3. 对于反比例函数y=,下列判断正确的是( ) 3xA. 图象经过点(-1,3)B. 图象在第二、四象限C. 不论x 为何值,y>0D. 图象所在的第一象限内,y 随x 的增大而减小【答案】D【解析】【分析】根据反比例函数的性质:当k >0,双曲线的两支分别位于第一、第三象限,k y x=在每一象限内y 随x 的增大而减小,以及凡是反比例函数经过的点横纵坐标之积进行分k =析即可.【详解】A 、,该选项错误;133k -⨯=-≠B 、∵,∴图象在第一、三象限,该选项错误;30k =>C 、∵,∴当时,,该选项错误;30k =>0x >0y >D 、∵,∴图象所在的第一象限内,y 随x 的增大而减小,该选项正确; 30k =>故选:D .【点睛】本题主要考查了反比例函数的性质,关键是掌握反比例函数的性质:(1)k y x=反比例函数的图象是双曲线;(2)当k >0,双曲线的两支分别位于第一、第三象限,在每一象限内y 随x 的增大而减小;(3)当k <0,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大.注意:反比例函数的图象与坐标轴没有交点.4. 如图,四边形ABCD 是正方形,点E 、F 分别在线段BC 、DC 上,∠BAE=25°,若线段AE 绕点A 逆时针旋转后与线段AF 重合,则旋转的角度是( )A. 25°B. 40°C. 90°D. 50° 【答案】B【解析】【分析】证明Rt△ABE≌Rt△ADF(HL ),可得∠BAE=∠DAF=25°,求出∠EAF 即可解决问题.【详解】解:∵四边形ABCD 是正方形,∴AB=AD ,∠BAD=∠B=∠D=90°由旋转不变性可知:AE =AF ,在Rt△ABE 和Rt△ADF 中,, AB AD AE AF =⎧⎨=⎩∴Rt△ABE≌Rt△ADF(HL ),∴∠BAE=∠DAF=25°,∴∠EAF=90°﹣25°﹣25°=40°,∴旋转角为40°,故选:B .【点睛】本题考查了正方形的性质,旋转的性质,全等三角形的判定与性质,求出Rt△ABE 和Rt△ADF 全等是解题的关键,也是本题的难点.5. 如图,在△ABC 中,DE∥BC,AD =6,DB =3,AE =4,则AC 的长为( )A. 2B. 4C. 6D. 8【答案】C【解析】 【分析】根据平行线分线段成比例定理,可得,解比例方程可求出EC ,最后即AD AE DB EC=可求出AC . 【详解】∵DE∥BC, ∴,即, AD AE DB EC =643EC=解得:EC =2,∴AC=AE+EC =4+2=6;故选C .【点睛】此题考查的是平行线分线段成比例定理,掌握平行线分线段成比例定理及推论和比例的基本性质是解决此题的关键.6. 如图,AB 是⊙O 的直径,C ,D 是⊙O 上位于AB 异侧的两点.下列四个角中,一定与∠ACD 互余的角是( )A. ∠ADCB. ∠ABDC. ∠BACD. ∠BAD【答案】D【解析】 【分析】由圆周角定理得出∠ACB=∠ACD+∠BCD=90°,∠BCD=∠BAD,得出∠ACD+∠BAD=90°,即可得出答案.【详解】解:连接BC ,如图所示:∵AB 是⊙O 的直径,∴∠ACB=∠ACD+∠BCD=90°,∵∠BCD=∠BAD,∴∠ACD+∠BAD=90°,故选:D .【点睛】此题考查了圆周角定理:同弧所对的圆周角相等,直径所对的圆周角是直角,正确掌握圆周角定理是解题的关键.7. 已知是反比例函数上的三点,若,()()()112233,,,,,A x y B x y C x y 2y x=123x x x <<,则下列关系式不正确的是 ( )213y y y <<A. B. C. D. 120x x <130x x <230x x <120x x +<【答案】A【解析】【分析】根据反比例函数和x 1<x 2<x 3,y 2<y 1<y 3,可得点A ,B 在第三象限,点C 2y x=在第一象限,得出x 1<x 2<0<x 3,再选择即可.【详解】解:∵反比例函数中,2>0, 2y x=∴在每一象限内,y 随x 的增大而减小,∵x 1<x 2<x 3,y 2<y 1<y 3,∴点A ,B 在第三象限,点C 在第一象限,∴x 1<x 2<0<x 3,∴x 1•x 2>0,x 1•x 3<0,x 2•x 3<0,x 1+x 2<0,故选:A .【点睛】本题考查了反比例函数图象上点的坐标特征,解答此题的关键是熟知反比例函数的增减性,本题是逆用,难度有点大.8. 已知k 1<0<k 2,则函数y=k 1x 和的图像大致是( ) 2k y x =A. B. C. D.【答案】D【解析】【详解】∵k 1<0<k 2,∴直线过二、四象限,并且经过原点;双曲线位于一、三象限.故选D .9. 如图,切于点切于点交于点,下列结论中不一定成PA O ,A PB O B PO ,O C 立的是( )A. B. 平分PA PB =PO APB ∠C.D.AB OP ⊥2PAB APO ∠=∠【答案】D【解析】 【分析】利用切线长定理证明△PAG≌△PBG 即可得出.【详解】解:连接OA ,OB ,AB ,AB 交PO 于点G ,由切线长定理可得:∠APO=∠BPO,PA =PB ,又∵PG=PG,∴△PAG≌△PBG,从而AB⊥OP.因此A .B .C 都正确.无法得出AB =PA =PB ,可知:D 是错误的.综上可知:只有D 是错误的.故选:D .【点睛】本题考查了切线长定理、全等三角形的判定和性质,关键是利用切线长定理解答.10. 已知二次函数y =x 2﹣(m﹣2)x +4图象的顶点在坐标轴上,则m 的值一定不是( )A. 2B. 6C. ﹣2D. 0【答案】D【解析】【分析】先把二次函数的解析式化为顶点式,再利用该函数图象的顶点在坐标轴上,可以得到关于 的方程,解方程从而可得答案. m 【详解】解:∵二次函数 ()()22222244,24m m y x m x x --⎛⎫=--+=--+ ⎪⎝⎭∴该函数的顶点坐标为 ()222,4,22m m ⎡⎤---+⎢⎥⎢⎥⎣⎦∵二次函数图象的顶点在坐标轴上, ()224y x m x =--+∴或, 202-=m ()22404m --+=当时, 202-=m 2,m =当时, ()22404m --+=()2216,m -=或24m ∴-=24,m -=-或6m ∴=2,m =-综上:或或2m =6m = 2.m =-故选:D .【点睛】本题考查的是二次函数的性质,掌握二次函数的顶点坐标在坐标轴上的坐标特点是解题的关键.11. 如图,⊙O 的半径为1,点 O 到直线 的距离为2,点 P 是直线上的一个动点,PA 切⊙O a a 于点 A ,则 PA 的最小值是( )A. 1 C. 2【答案】B【解析】 【分析】因为PA 为切线,所以△OPA 是直角三角形.又OA 为半径为定值,所以当OP 最小时,PA 最小.根据垂线段最短,知OP=2时PA 最小.运用勾股定理求解.【详解】解:作OP⊥a 于P 点,则OP=2.根据题意,在Rt△OPA 中,故选:B .【点睛】此题考查了切线的性质及垂线段最短等知识点,如何确定PA 最小时点P 的位置是解题的关键,难度中等偏上.12. 如图是抛物线y 1=ax 2+bx +c (a≠0)的一部分,抛物线的顶点坐标A (1,3),与x 轴的一个交点为B (4,0),直线y 2=mx +n (m≠0)与抛物线交于A 、B 两点,结合图象分析下列结论:①2a+b =0;②abc>0;③方程ax 2+bx +c =3有两个相等的实数根;④当1<x <4时,有y 2<y 1;⑤抛物线与x 轴的另一个交点是(﹣1,0).其中正确的是( )A. ①②③B. ②④C. ①③④D. ①③⑤【答案】C【解析】 【分析】根据抛物线对称轴方程对①进行判断;由抛物线开口方向得到a <0,由对称轴位置可得b >0,由抛物线与y 轴的交点位置可得c >0,于是可对②进行判断;根据顶点坐标对③进行判断;根据函数图象得当1<x <4时,一次函数图象在抛物线下方,则可对④进行判断;根据抛物线的对称性对⑤进行判断.【详解】∵抛物线的顶点坐标A (1,3),∴抛物线的对称轴为直线x ==1, 2b a∴2a+b =0,所以①正确;∵抛物线开口向下,∴a<0,∴b=﹣2a>0,∵抛物线与y 轴的交点在x 轴上方,∴c>0,∴abc<0,所以②错误;∵抛物线的顶点坐标A (1,3),∴x=1时,二次函数有最大值,∴方程ax 2+bx +c =3有两个相等的实数根,所以③正确;∵抛物线y 1=ax 2+bx +c 与直线y 2=mx +n (m≠0)交于A (1,3),B 点(4,0), ∴当1<x <4时,y 2<y 1,所以④正确.∵抛物线与x 轴的一个交点为(4,0),而抛物线的对称轴为直线x =1,∴抛物线与x 轴的另一个交点为(﹣2,0),所以⑤错误;故选:C .【点睛】本题主要考查了二次函数的图像、一次函数图像、二次函数的图象与系数的关系等知识,考查知识点较多,解答的关键在于读懂图象信息,掌握二次函数知识,灵活运用所学知识解决问题.二、填空题(本大题共6小题,每小题3分,共18分13. 已知,则________. 45a b =a b=【答案】 54【解析】【分析】由分式的基本性质进行化简,即可得到答案. 【详解】解:由,得. 45a b =54a b =故答案为:. 54【点睛】本题考查了分式的性质,解题的关键是掌握分式的性质进行解题.14. 现有4条线段,长度依次是2、4、6、7,从中任选三条,能组成三角形的概率是__________.【答案】.12【解析】【分析】找出所有的可能情况组合以及能构成三角形的情况数,即可求出所求的概率.【详解】解:从长度分别为2、4、6、7的四条线段中任选三条有如下4种情况:2、4、6;2、4、7;2、6、7;4、6、7;能组成三角形的结果有2个(2、6、7,4、6、7,), ∴能构成三角形的概率为 2142=故答案为.12【点睛】本题考查了树状图法以及三角形的三边关系;如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=. m n 15. 下列y 关于x 的函数中,y 随x 的增大而增大的有_____.(填序号)①y=﹣2x+1,②y ,③y=(x+2)2+1(x >0),④y=﹣2(x﹣3)2﹣1(x <0) 1x =【答案】③④【解析】【分析】根据一次函数、二次函数、反比例函数的性质即可一一判断.【详解】解:y 随x 的增大而增大的函数有③④,故答案为③④.【点睛】本题主要考查一次函数、二次函数、反比例函数的性质,解决本题的关键是熟练掌握一次函数,二次函数,反比例函数图像性质.16. 如图,菱形的顶点C 的坐标为,顶点A 在x 轴的正半轴上.反比例函数OABC (3,4)的图象经过顶点B ,则k 的值为__. (0)k y x x=>【答案】32【解析】【分析】根据点C 的坐标以及菱形的性质求出点B 的坐标,然后利用待定系数法求出k 的值.【详解】∵C(3,4),,∴CB=OC=5,则点B 的横坐标为3+5=8,故B 的坐标为:(8,4),将点B 的坐标代入y=得, k x 4=, k 8解得:k=32.故答案为32.【点睛】本题考查了菱形的性质以及利用待定系数法求反比例函数解析式,解答本题的关键是根据菱形的性质求出点B 的坐标.17. 如图,正六边形ABCDEF 的边长为2,以点A 为圆心,AB 的长为半径,作扇形ABF ,则图中阴影部分的面积为_____(结果保留根号和π).【答案】π 43【解析】 【分析】设正六边形的中心为点O ,连接OD 、OE ,作OH⊥DE 于H ,根据正多边形的中心角公式求出∠DOE,求出OH 和正六边形ABCDEF 的面积,再求出∠A,利用扇形面积公式求出扇形ABF 的面积,即可得出结果.【详解】解:设正六边形的中心为点O ,连接OD 、OE ,作OH⊥DE 于H ,如图所示:∠DOE==60°, 3606∴OD=OE =DE =2,∴正六边形ABCDEF 的面积==, 12∠A=, ()621801206-⨯︒=︒∴扇形ABF 的面积, 2120243603ππ⨯==∴图中阴影部分的面积, 43π=-故答案为:. 43π【点睛】本题考查的是正多边形和圆、扇形面积计算,掌握正多边形的中心角、内角的计算公式、扇形面积公式是解题的关键.18. 如图,在由小正方形组成的网格中,△ABC 的顶点都在格点上,请借助网格,仅用无刻度的直尺在网格中作出△ABC 的高AH ,并简要说明作图方法(不要求证明):_____.【答案】取格点M ,N ,分别连接BM ,CN ,BM ,CN 交于点E ,连接AE 并延长交BC 于点H ,则AH 即为所求.【解析】【分析】取格点M ,N ,分别连接BM ,CN ,BM ,CN 交于点E ,连接AE 并延长交BC 于点H ,根据三角形的三条高线交于一点可得AH 即为所求.【详解】如图,取格点M ,N ,分别连接BM ,CN ,BM ,CN 交于点E ,连接AE 并延长交BC 于点H ,则AH 即为所求.∵BM⊥AC,CN⊥AB,∴AH⊥BC.故答案为:取格点M ,N ,分别连接BM ,CN ,BM ,CN 交于点E ,连接AE 并延长交BC 于点H ,则AH 即为所求.【点睛】本题考查了作图—基本作图,解题关键是掌握三角形的三条高线交于一点.三、解答题(本大题共7小题,共66分,解答应写出文字说明、演算步骤或推理过程)19. 有4个完全相同的小球,把它们分别标号为1、2、3、4,放在一个口袋中,随机的摸出一个小球然后放回,再随机的摸出一个小球.(1)采用树形图法(或列表法)列出两次摸球出现的所有可能结果,并回答两次摸球出现的所有可能结果共有几种.(2)求两次摸出的球的标号相同的概率;(2)求两次摸出的球的标号的和等于4的概率.【答案】(1)树状图见解析,两次摸球出现的所有可能结果共有16种;(2);(3) 14316【解析】【分析】(1)画出树状图,然后统计一下所有情况即可;(2)根据树状图,统计出两次摸出的球的标号相同种数,利用概率公式列式计算即可得解;(3)根据树状图两次摸出的球的标号的和等于4有3次,根据概率公式列式进行计算即可得解.【详解】解:(1)画树状图如下:两次摸球出现的所有可能结果共有16种;(2)两次摸出的球的标号相同有4种, 所以,(两次摸出的球的标号相同); P 41164==(3)两次摸出的球的标号的和等于4有3次, 所以,(两次摸出的球的标号的和等于4). P 316=【点睛】本题考查画树状图,求概率问题,掌握树状图的画法,审清抽出后是否放回,会用树状图统计总体情况,与需要的具体情况,会用概率公式求出现的机会.20. 如图,A 、B 是双曲线上的点,点A 的坐标是(1,4),B 是线段AC 的中点. k y x=(1)求k 的值;(2)求△OAC 的面积.【答案】(1)4;(2)6.【解析】【分析】(1)将点A 的坐标代入求出k 的值;(2)根据中点得出点B 的纵坐标为2,然后求出横坐标,得出点B 和点C 的坐标求出三角形的面积.【详解】解:(1)将A (1,4)代入 得 k=4; k y x=(2)作AD⊥x 轴于点D ,BE⊥x 轴于点E ,∴AD//BE,∵A(1,4),∴AD=4,OD=1.又∵B 为AC 的中点,∴E 为DC 的中点,∴,CE=DE 122BE AD ==∴B 点的纵坐标为2,则有B 点坐标为(2,2).∴DE=CE=2-1=1,即OC=3,∴C(3,0)∴△OAC 的面积是 =6. 1342⨯⨯【点睛】本题考查了反比例函数图象上点的坐标特征,三角形的面积,难度适中.准确作出辅助线是解题的关键.21. 如图,在等边三角形ABC 中,点E 为CB 边上一点(与点C 不重合),点F 是AC 边上一点,若AB =5,BE =2,∠AEF=60°,求AF 的长度.【答案】 195【解析】【分析】先利用等边三角形的性质得∠B=∠C=60°,AC =BC =AB =5,再利用三角形外角性质得∠BAE=∠CEF,则可判断△ABE∽△ECF,于是可利用相似比计算出CF 的长,然后计算AC﹣CF 即可.【详解】∵△ABC 为等边三角形,∴∠B=∠C=60°,AC =BC =AB =5,∵BE=2,∴CE=3,∵∠AEC=∠BAE+∠B,即∠AEF+∠CEF=∠BAE+∠B,而∠AEF=60°,∠B=60°,∴∠BAE=∠CEF,∵∠B=∠C,∴△ABE∽△ECF, ∴=,即=, BE CF AB EC 2CF 53∴CF=, 65∴AF=AC﹣CF=5﹣=. 65195【点睛】本题考查了等边三角形的性质、相似三角形的判定与性质、相似比、线段的和差等知识,解答本题的关键是通过已知条件找到△ABE∽△ECF.22. 在△ABC 中,,以边AB 上一点O 为圆心,OA 为半径的圈与BC 相切于点D ,90︒∠=C 分别交AB ,AC 于点E ,F(I )如图①,连接AD ,若,求∠B 的大小;25CAD ︒∠=(Ⅱ)如图②,若点F 为的中点,的半径为2,求AB 的长. AD O【答案】(1)∠B=40°;(2)AB= 6.【解析】【分析】(1)连接OD ,由在△ABC 中, ∠C=90°,BC 是切线,易得AC∥OD ,即可求得∠CAD=∠ADO ,继而求得答案;(2)首先连接OF,OD,由AC∥OD 得∠OFA=∠FOD ,由点F 为弧AD 的中点,易得△AOF 是等边三角形,继而求得答案.【详解】解:(1)如解图①,连接OD,∵BC 切⊙O 于点D,∴∠ODB=90°,∵∠C=90°,∴AC∥OD,∴∠CAD=∠ADO,∵OA=OD,∴∠DAO=∠ADO=∠CAD=25°,∴∠DOB=∠CAO=∠CAD+∠DAO=50°,∵∠ODB=90°,∴∠B=90°-∠DOB=90°-50°=40°;(2)如解图②,连接OF,OD,∵AC∥OD,∴∠OFA=∠FOD,∵点F为弧AD的中点,∴∠AOF=∠FOD,∴∠OFA=∠AOF,∴AF=OA,∵OA=OF,∴△AOF为等边三角形,∴∠FAO=60°,则∠DOB=60°,∴∠B=30°,∵在Rt△ODB中,OD=2,∴OB=4,∴AB=AO+OB=2+4=6.【点睛】本题考查了切线的性质,平行线的性质,等腰三角形的性质,弧弦圆心角的关系,等边三角形的判定与性质,含30°角的直角三角形的性质.熟练掌握切线的性质是解(1)的关键,证明△AOF为等边三角形是解(2)的关键.23. 如图,一段长为45m的篱笆围成一个一边靠墙的矩形花园,墙长为27m,设花园的面积为sm2,平行于墙的边为xm.若x不小于17m,(1)求出s关于x的函数关系式;(2)求s的最大值与最小值.【答案】(1)S =﹣x 2+x (17≤x≤27);(2)最大值是m 2,最小值是238m 2 1245220258【解析】 【分析】(1)由于平行于墙的边为xm ,则垂直于墙的一面长为(45﹣x)m ,由面积公式12写出S 与x 的函数关系式,进而求出x 的取值范围;(2)根据二次函数的性质,即可求得当x 取何值时,这个花园的面积有最大值,最大值是多少,根据|27﹣|<|17﹣|,得到x =17时,S 最小,把x =17代入解析式求出最小452452值.【详解】解:(1)平行于墙的边为xm ,矩形菜园的面积为ym 2.则垂直于墙的一面长为(45﹣x)m ,12根据题意得:S =x (45﹣x)=﹣x 2+x (17≤x≤27); 1212452(2)∵S=﹣x 2+x =﹣(x 2﹣45)=﹣(x﹣)2+(17≤x≤27), 12452121245220258∵17≤x≤27,a =﹣<0,12∴当x =m 时,S 取得最大值,此时S =m 2, 45220258∵|27﹣|<|17﹣|, 452452∴x=17m 时,S 取得最小值,此时S =238m 2, 答:S 的最大值是m 2,最小值是238m 2. 20258【点睛】本题考查二次函数的应用,解答本题的关键是明确题意,列出相应的二次函数解析式,利用二次函数的性质和数形结合的思想解答.24. 平面直角坐标系中,四边形OABC 是正方形,点A ,C 在坐标轴上,点B (,),P 是66射线OB 上一点,将绕点A 顺时针旋转90°,得,Q 是点P 旋转后的对应点.AOP ABQ(1)如图(1)当OP = 时,求点Q 的坐标;(2)如图(2),设点P (,)(),的面积为S. 求S 与的函数关系x y 06x <<APQ △x 式,并写出当S 取最小值时,点P 的坐标;(3)当BP+BQ = 时,求点Q 的坐标(直接写出结果即可)【答案】(1);(2),;(3).(8,4)Q 2618S x x =-+(3,3)P (13,1)Q -【解析】【分析】(1)先根据正方形的性质、解直角三角形可得,,再根据2OG PG ==4AG =三角形全等的判定定理与性质可得,从而可得,由此2,4AH PG QH AG ====8OH =即可得出答案;(2)先根据正方形的性质得出,,再根据旋转的性质、勾股定理可得OG PG x ==x y =,,然后根据直角三角形的面积公式可得S 与2221236AP x x =-+,90AP AQ PAQ =∠=︒x 的函数关系式,最后利用二次函数的解析式即可得点P 的坐标;(3)先根据旋转的性质、正方形的性质得出,,从而得出点P BP OP +=OB =在OB 的延长线上,再根据线段的和差可得,然后同(1)的方法可得OP BP ==,,最后根据三角形全等的性质、线段的和差可得7OG PG ===APG QAH ≅ ,由此即可得出答案.1,13QH OH ==【详解】(1)如图1,过P 点作轴于点G ,过Q 点作轴于点HPG x ⊥QHx ⊥∵四边形OABC 是正方形∴45AOB ∠=︒∵(6,6)B ∴6OA =在中,, Rt OPG sin 452PG OP =⋅︒==2OG PG ==∴4AG OA OG =-=∵绕点A 顺时针旋转得到AOP 90︒ABQ ∴, ,AQ AP BQ OP ==PAG BAQ ∠=∠90APG PAG QAH BAQ ∠+∠=∠+∠=︒APG QAH ∴∠=∠在和中,APG QAH 90AGP QHA APG QAH AP QA ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴()APG QAH AAS ≅ ∴2,4AH PG QH AG ====∴628OH OA AH =+=+=则点Q 的坐标为;(8,4)Q (2)如图2,过P 点作轴于点GPG x ⊥∵绕点A 顺时针旋转得到AOP 90︒ABQ ∴,90AP AQ PAQ =∠=︒∵(,),45P x y POG ∠=︒∴,OG PG x ==x y =∴6AG OA OG x =-=-在中,由勾股定理得:Rt APG △22222(6)AP AG PG x x =+=-+整理得:2221236AP x x =-+∴ 226181122AP AQ A x P S x =⋅==-+整理得:2(3)9S x =-+06x << 由二次函数的性质可知,当时,S 随x 的增大而减小;当时,S 随x 的∴03x <≤36x <<增大而增大则当时,S 取得最小值,最小值为93x =此时3==y x 故点P 的坐标为;(3,3)P (3)∵绕点A 顺时针旋转得到AOP 90︒ABQ ∴OP BQ =∵BP BQ +=∴BP OP +=∵四边形OABC 是正方形,且边长6OA AB ==对角线∴OB ==<∴点P 在OB 的延长线上∴2BP OP OP OB OP OP +=-+=-=解得OP =BP OP OB ∴=-=如图3,过P 点作轴于点G ,过Q 点作轴于点H PG x ⊥QHx ⊥同(1)可得:, 7OG PG ===APG QAH ≅ ,761QH AG OG OA ∴==-=-=7AH PG ==6713OH OA AH ∴=+=+=则点Q 的坐标为.(13,1)Q -【点睛】 本题考查了正方形的性质、旋转的性质、解直角三角形、三角形全等的判定定理与性质、二次函数的性质等知识点,较难的是题(3),正确得出点P 的位置是解题关键.25. 在平面直角坐标系中,设二次函数,其中;22y x x a a =---0a >(1)若函数y 的图象经过点(1,﹣2),求函数y 的解析式;(2)若抛物线与x 轴的两交点坐标为A ,B (A 点在B 点的左侧),与y 轴的交点为C ,满足OC =2OB 时,求的值.a (3)已知点和在函数y 的图象上,若m <n ,求的取值范围.0(,)P x m (1,)Q n 0x 【答案】(1);(2);(3);2y x x 2=--2a =001x <<【解析】【分析】(1)根据待定系数法,可得函数解析式;(2)由二次函数图象上点的坐标特征,得点A 、B 、C 的坐标,根据OC =2OB ,求的值;a (3)根据二次函数的性质,可得答案.【详解】(1)函数 的图象经过点(1,﹣2),得 22y x x a a =---22a a --=-整理得:,∴ 得:或;(2)(1)0a a +-=2a =-1a =又由题知,,∴ ;0a >1a =∴ 函数y 的解析式:;2y x x 2=--(2)当时,整理得:;0y =220x x a a ---=()(1)0x a x a +--=解得:或;1x a =-21x a =+图象与x 轴的交点是A ,B ,(,0)a -(1,0)a +当时,,即C ;0x =2y a a =--2(0,)a a --∵OC=2OB , ∴;221a a a --=+∵,0a >∴,22(1)a a a +=+整理得:,∴ ,220a a --=(2)(1)0a a -+=解得:或(舍去);2a =1a =-∴;2a =(3)当P 在对称轴的左侧(含顶点)时,y 随x 的增大而减小,(1,n )与(0,n )关于对称轴对称,由m <n ,得: 0<≤;0x 12当时P 在对称轴的右侧时,y 随x 的增大而增大,由m <n ,得<<1,120x 综上所述:当m <n 时,的取值范围:0<<1;0x 0x ∴ 的取值范围:0<<1.0x 0x 【点睛】本题主要考查二次函数的解析式及基本性质,重点理解对称轴的应用及对应一元二次方程的求解.。

2020-2021学年天津市东丽区九年级(上)期末数学试卷

2020-2021学年天津市东丽区九年级(上)期末数学试卷

2020-2021学年天津市东丽区九年级(上)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)下列图形中既是中心对称图形又是轴对称图形的是()A.B.C.D.2.(3分)抛物线y=2x2﹣4x+1的对称轴是()A.直线x=﹣1B.直线x=1C.直线x=﹣2D.直线x=2 3.(3分)下列描述的事件为必然事件的是()A.汽车累积行驶10000km,从未出现故障B.购买1张彩票,中奖C.任意画一个三角形,其内角和是180°D.明天一定会下雪4.(3分)下列一元二次方程中,有两个不相等实数根的是()A.x2﹣x+=0B.x2+2x+4=0C.x2﹣x+2=0D.x2﹣2x=0 5.(3分)已知⊙O的半径是6cm,则⊙O中最长的弦长是()A.6cm B.12cm C.16cm D.20cm6.(3分)如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,若∠CDA=118°,则∠C的度数为()A.32°B.33°C.34°D.44°7.(3分)往直径为52cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽AB =48cm,则水的最大深度为()A.8cm B.10cm C.16cm D.20cm8.(3分)将抛物线y=x2向上平移3个单位长度,再向右平移5个单位长度,所得到的抛物线为()A.y=(x+3)2+5B.y=(x﹣3)2+5C.y=(x+5)2+3D.y=(x﹣5)2+3 9.(3分)一个不透明的袋子中装有9个小球,其中6个红球、3个绿球,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球.则摸出的小球是红球的概率是()A.B.C.D.10.(3分)半径为3的正六边形的周长为()A.18B.C.D.11.(3分)国家统计局统计数据显示,我国快递业务收入逐年增加.2017年至2019年我国快递业务收入由5000亿元增加到7500亿元.设我国2017年至2019年快递业务收入的年平均增长率为x,则可列方程为()A.5000(1+2x)=7500B.5000×2(1+x)=7500C.5000(1+x)2=7500D.5000+5000(1+x)+5000(1+x)2=750012.(3分)如图,抛物线y=ax2+bx+4交y轴于点A,交过点A且平行于x轴的直线于另一点B,交x轴于C,D两点(点C在点D右边),对称轴为直线x=,连接AC,AD ,BC.若点B关于直线AC的对称点恰好落在线段OC上,下列结论中错误的是()A.点B坐标为(5,4)B.AB=ADC.a=﹣D.OC•OD=16二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)一元二次方程x2﹣2x=0的两根分别为.14.(3分)掷两枚质地均匀的硬币,两枚硬币全部反面朝上的概率是15.(3分)如图,在Rt△ABC中,∠C=90°,AC=4,BC=3.若以AC所在直线为轴,把△ABC旋转一周,得到一个圆锥,则这个圆锥的侧面积等于.16.(3分)若抛物线y=3x2﹣4x﹣k与x轴没有交点,则k的取值范围为.17.(3分)如图,在△ABC中,∠BAC=108°,将△ABC绕点A按逆时针方向旋转得到△AB'C'.若点B'恰好落在BC边上,且AB'=CB',则∠C'的度数为.18.(3分)如图所示的扇形AOB中,OA=OB=2,∠AOB=90°,C为上一点,∠AOC =30°,连接BC,过C作OA的垂线交AO于点D,则图中阴影部分的面积为.三、解答题(本大题共7小题,共66分,解答应写出文字说明、演算步骤或推理过程)19.(8分)解方程:10x2﹣5x﹣=x2﹣5x+.20.(8分)一个不透明的口袋中有三个完全相同的小球,小球上分别写有数字4、5、6,随机摸取1个小球然后放回,再随机摸取一个小球.(1)用画树状图或列表的方法表示出可能出现的所有结果;(2)求两次抽出数字之和为奇数的概率.21.(10分)如图,点E是正方形ABCD的边DC上一点,把△ADE顺时针旋转△ABF的位置.(Ⅰ)旋转中心是点,旋转角度是度;(Ⅱ)若连接EF,则△AEF是三角形,并证明你的结论.22.(10分)如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AC与BD相交于点F,BE是半圆O所在圆的切线,与AC的延长线相交于点E.(Ⅰ)若AD=BC,证:△CBA≌△DAB;(Ⅱ)若BE=BF,∠DAC=32°,求:∠EAB的度数.23.(10分)某超市经销一种商品,每千克成本为50元,经试销发现,该种商品的每天销售量y(千克)与销售单价x(元/千克)满足一次函数关系,其每天销售单价,销售量的四组对应值如下表所示:55606570销售单价x(元/千克)销售量y(千克)70605040(1)求y(千克)与x(元/千克)之间的函数表达式;(2)为保证某天获得600元的销售利润,则该天的销售单价应定为多少?(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?24.(10分)已知,点O是等边△ABC内的任一点,连接OA,OB,OC.(Ⅰ)如图1所示,已知∠AOB=150°,∠BOC=120°,将△BOC绕点C按顺时针方向旋转60°得△ADC.①求∠DAO的度数;②用等式表示线段OA,OB,OC之间的数量关系,并证明.(Ⅱ)设∠AOB=α,∠BOC=β.①当α,β满足什么关系时,OA+OB+OC有最小值?并说明理由;②若等边△ABC的边长为1,请你直接写出OA+OB+OC的最小值.25.(10分)如图,抛物线y=﹣x2+2x+c与x轴正半轴,y轴正半轴分别交于点A,B,且OA=OB,点G为抛物线的顶点.(1)求抛物线的解析式及点G的坐标;(2)点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,点Q为抛物线上点M,N之间(含点M,N)的一个动点,求点Q的纵坐标y Q的取值范围.2020-2021学年天津市东丽区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)下列图形中既是中心对称图形又是轴对称图形的是()A.B.C.D.【分析】据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【解答】解:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;B、此图形旋转180°后能与原图形重合,此图形是中心对称图形,也是轴对称图形,故此选项正确;C、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,不是轴对称图形,故此选项错误.故选:B.【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.2.(3分)抛物线y=2x2﹣4x+1的对称轴是()A.直线x=﹣1B.直线x=1C.直线x=﹣2D.直线x=2【分析】将题目中的抛物线化为顶点式,即可得到该抛物线的对称轴,本题得以解决.【解答】解:∵抛物线y=2x2﹣4x+1=2(x﹣1)2﹣1,∴该抛物线的对称轴是直线x=1,故选:B.【点评】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.3.(3分)下列描述的事件为必然事件的是()A.汽车累积行驶10000km,从未出现故障B.购买1张彩票,中奖C.任意画一个三角形,其内角和是180°D.明天一定会下雪【分析】事先能肯定它一定会发生的事件称为必然事件,据此进行判断即可.【解答】解:A.汽车累积行驶10000km,从未出现故障,是随机事件,不合题意;B.购买1张彩票,中奖,是随机事件,不合题意;C.任意画一个三角形,其内角和是180°,是必然事件,符合题意;D.明天一定会下雪,是随机事件,不合题意;故选:C.【点评】此题主要考查了随机事件,正确掌握随机事件的定义是解题关键.4.(3分)下列一元二次方程中,有两个不相等实数根的是()A.x2﹣x+=0B.x2+2x+4=0C.x2﹣x+2=0D.x2﹣2x=0【分析】分别求出每个方程判别式的值,根据判别式的值与方程的解的个数间的关系得出答案.【解答】解:A.此方程判别式Δ=(﹣1)2﹣4×1×=0,方程有两个相等的实数根,不符合题意;B.此方程判别式Δ=22﹣4×1×4=﹣12<0,方程没有实数根,不符合题意;C.此方程判别式Δ=(﹣1)2﹣4×1×2=﹣7<0,方程没有实数根,不符合题意;D.此方程判别式Δ=(﹣2)2﹣4×1×0=4>0,方程有两个不相等的实数根,符合题意;故选:D.【点评】本题主要考查根的判别式,解题的关键是掌握一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac的关系:①当Δ>0时,方程有两个不相等的两个实数根;②当Δ=0时,方程有两个相等的两个实数根;③当Δ<0时,方程无实数根.5.(3分)已知⊙O的半径是6cm,则⊙O中最长的弦长是()A.6cm B.12cm C.16cm D.20cm【分析】利用圆的直径为圆中最长的弦求解.【解答】解:∵圆的直径为圆中最长的弦,∴⊙O中最长的弦长为12cm.故选:B.【点评】本题考查了圆的认识:熟练掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).6.(3分)如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,若∠CDA=118°,则∠C的度数为()A.32°B.33°C.34°D.44°【分析】连接OD,根据切线的性质可得∠ODC=90°,再根据圆周角定理即可求出∠C 的度数.【解答】解:如图,连接OD,∵CD与⊙O相切于点D,∴∠ODC=90°,∵∠CDA=118°,∴∠ODA=∠CDA﹣∠ODC=118°﹣90°=28°,∵OD=OA,∴∠OAD=∠ODA=28°,∴∠DOC=2∠ODA=56°,∴∠C=90°﹣∠DOC=34°,故选:C.【点评】本题考查了切线的性质,圆周角定理,解决本题的关键是掌握切线的性质.7.(3分)往直径为52cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽AB =48cm,则水的最大深度为()A.8cm B.10cm C.16cm D.20cm【分析】连接OB,过点O作OC⊥AB于点D,交⊙O于点C,先由垂径定理求出BD的长,再根据勾股定理求出OD的长,进而可得出CD的长.【解答】解:连接OB,过点O作OC⊥AB于点D,交⊙O于点C,如图所示:∵AB=48cm,∴BD=AB=×48=24(cm),∵⊙O的直径为52cm,∴OB=OC=26cm,在Rt△OBD中,OD===10(cm),∴CD=OC﹣OD=26﹣10=16(cm),故选:C.【点评】本题考查了垂径定理、勾股定理等知识;根据题意作出辅助线,构造出直角三角形是解答此题的关键.8.(3分)将抛物线y=x2向上平移3个单位长度,再向右平移5个单位长度,所得到的抛物线为()A.y=(x+3)2+5B.y=(x﹣3)2+5C.y=(x+5)2+3D.y=(x﹣5)2+3【分析】根据“上加下减,左加右减”的原则进行解答即可.【解答】解:由“上加下减”的原则可知,将抛物线y=x2向上平移3个单位所得抛物线的解析式为:y=x2+3;由“左加右减”的原则可知,将抛物线y=x2+3向右平移5个单位所得抛物线的解析式为:y=(x﹣5)2+3;故选:D.【点评】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.9.(3分)一个不透明的袋子中装有9个小球,其中6个红球、3个绿球,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球.则摸出的小球是红球的概率是()A.B.C.D.【分析】利用概率公式可求解.【解答】解:∵从袋子中随机摸出一个小球有9种等可能的结果,其中摸出的小球是红球有6种,∴摸出的小球是红球的概率是=,故选:A.【点评】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A 可能出现的结果数÷所有可能出现的结果数.10.(3分)半径为3的正六边形的周长为()A.18B.C.D.【分析】根据正六边形的半径等于边长进行解答即可.【解答】解:∵正六边形的半径等于边长,∴正六边形的边长a=3,正六边形的周长l=6a=18,故选:A.【点评】本题考查的是正六边形的性质,解答此题的关键是熟知正六边形的边长等于半径.11.(3分)国家统计局统计数据显示,我国快递业务收入逐年增加.2017年至2019年我国快递业务收入由5000亿元增加到7500亿元.设我国2017年至2019年快递业务收入的年平均增长率为x,则可列方程为()A.5000(1+2x)=7500B.5000×2(1+x)=7500C.5000(1+x)2=7500D.5000+5000(1+x)+5000(1+x)2=7500【分析】根据题意可得等量关系:2017年的快递业务量×(1+增长率)2=2019年的快递业务量,根据等量关系列出方程即可.【解答】解:设我国2017年至2019年快递业务收入的年平均增长率为x,由题意得:5000(1+x)2=7500,故选:C.【点评】此题主要考查了由实际问题抽象出一元二次方程,关键是掌握平均变化率的方法,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.12.(3分)如图,抛物线y=ax2+bx+4交y轴于点A,交过点A且平行于x轴的直线于另一点B,交x轴于C,D两点(点C在点D右边),对称轴为直线x=,连接AC,AD ,BC.若点B关于直线AC的对称点恰好落在线段OC上,下列结论中错误的是()A.点B坐标为(5,4)B.AB=ADC.a=﹣D.OC•OD=16【分析】由抛物线y=ax2+bx+4交y轴于点A,可得点A的坐标,然后由抛物线的对称性可得点B的坐标,由点B关于直线AC的对称点恰好落在线段OC上,可知∠ACO=∠ACB,再结合平行线的性质可判断∠BAC=∠ACB,从而可知AB=AD;过点B作BE ⊥x轴于点E,由勾股定理可得EC的长,则点C坐标可得,然后由对称性可得点D的坐标,则OC•OD的值可计算;由勾股定理可得AD的长,由双根式可得抛物线的解析式,根据以上计算或推理,对各个选项作出分析即可.【解答】解:∵抛物线y=ax2+bx+4交y轴于点A,∴A(0,4),∵对称轴为直线x=,AB∥x轴,∴B(5,4).故A无误;如图,过点B作BE⊥x轴于点E,则BE=4,AB=5,∵AB∥x轴,∴∠BAC=∠ACO,∵点B关于直线AC的对称点恰好落在线段OC上,∴∠ACO=∠ACB,∴∠BAC=∠ACB,∴BC=AB=5,∴在Rt△BCE中,由勾股定理得:EC=3,∴C(8,0),∵对称轴为直线x=,∴D(﹣3,0)∵在Rt△ADO中,OA=4,OD=3,∴AD=5,∴AB=AD,故B无误;设y=ax2+bx+4=a(x+3)(x﹣8),将A(0,4)代入得:4=a(0+3)(0﹣8),∴a=﹣,故C无误;∵OC=8,OD=3,∴OC•OD=24,故D错误.综上,错误的只有D.故选:D.【点评】本题考查了二次函数的性质、等腰三角形的判定与性质及勾股定理,熟练掌握二次函数的相关性质并数形结合是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)一元二次方程x2﹣2x=0的两根分别为x1=0,x2=2.【分析】利用因式分解法求解可得.【解答】解:∵x2﹣2x=0,∴x(x﹣2)=0,∴x=0或x﹣2=0,解得x1=0,x2=2.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.14.(3分)掷两枚质地均匀的硬币,两枚硬币全部反面朝上的概率是【分析】根据概率公式知,掷两枚质地均匀的硬币,有4种情况,两枚硬币全部反面朝上的概率是.【解答】解:根据题意可得:掷两枚质地均匀的硬币,有4种情况,则两枚硬币全部反面朝上的概率是.故本题答案为:.【点评】本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.15.(3分)如图,在Rt△ABC中,∠C=90°,AC=4,BC=3.若以AC所在直线为轴,把△ABC旋转一周,得到一个圆锥,则这个圆锥的侧面积等于15π.【分析】运用公式s=πlr(其中勾股定理求解得到的母线长l为5)求解.【解答】解:由已知得,母线长l=5,底面圆的半径r为3,∴圆锥的侧面积是s=πlr=5×3×π=15π.故答案为:15π.【点评】本题考查了圆锥的计算,要学会灵活的运用公式求解.16.(3分)若抛物线y=3x2﹣4x﹣k与x轴没有交点,则k的取值范围为k<﹣.【分析】由抛物线与x轴没有交点,可得出一元二次方程3x2﹣4x﹣k=0没有实数根,进而可得出Δ<0,解之即可得出k的取值范围.【解答】解:∵抛物线y=3x2﹣4x﹣k与x轴没有交点,∴一元二次方程3x2﹣4x﹣k=0没有实数根,∴△=(﹣4)2﹣4×3×(﹣k)<0,∴k<﹣.故答案为:k<﹣.【点评】本题考查了抛物线与x轴的交点,牢记“Δ=b2﹣4ac<0时,抛物线与x轴没有交点”是解题的关键.17.(3分)如图,在△ABC中,∠BAC=108°,将△ABC绕点A按逆时针方向旋转得到△AB'C'.若点B'恰好落在BC边上,且AB'=CB',则∠C'的度数为24°.【分析】由旋转的性质可得∠C=∠C',AB=AB',由等腰三角形的性质可得∠C=∠CAB',∠B=∠AB'B,由三角形的外角性质和三角形内角和定理可求解.【解答】解:∵AB'=CB',∴∠C=∠CAB',∴∠AB'B=∠C+∠CAB'=2∠C,∵将△ABC绕点A按逆时针方向旋转得到△AB'C',∴∠C=∠C',AB=AB',∴∠B=∠AB'B=2∠C,∵∠B+∠C+∠CAB=180°,∴3∠C=180°﹣108°,∴∠C=24°,∴∠C'=∠C=24°,故答案为:24°.【点评】本题考查了旋转的性质,等腰三角形的性质,灵活运用这些的性质解决问题是本题的关键.18.(3分)如图所示的扇形AOB中,OA=OB=2,∠AOB=90°,C为上一点,∠AOC =30°,连接BC,过C作OA的垂线交AO于点D,则图中阴影部分的面积为.【分析】根据扇形的面积公式,利用图中阴影部分的面积=S扇形BOC﹣S△OBC+S△COD进行计算.【解答】解:∵∠AOB=90°,∠AOC=30°,∴∠BOC=60°,∵扇形AOB中,OA=OB=2,∴OB=OC=2,∴△BOC是等边三角形,∵过C作OA的垂线交AO于点D,∴∠ODC=90°,∵∠AOC=30°,∴OD=OC=,CD=OC=1,∴图中阴影部分的面积=S扇形BOC﹣S△OBC+S△COD=﹣+=π﹣.故答案为π﹣.【点评】本题考查了扇形面积的计算,求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.也考查了等边三角形的判定和性质.三、解答题(本大题共7小题,共66分,解答应写出文字说明、演算步骤或推理过程)19.(8分)解方程:10x2﹣5x﹣=x2﹣5x+.【分析】整理后利用因式分解法求解即可.【解答】解:整理得9x2﹣1=0,∴(3x+1)(3x﹣1)=0,∴3x+1=0或3x﹣1=0,∴x1=﹣,x2=.【点评】本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键.20.(8分)一个不透明的口袋中有三个完全相同的小球,小球上分别写有数字4、5、6,随机摸取1个小球然后放回,再随机摸取一个小球.(1)用画树状图或列表的方法表示出可能出现的所有结果;(2)求两次抽出数字之和为奇数的概率.【分析】(1)列表可得所有等可能结果;(2)从所列的等可能结果中找到符合条件的结果数,再根据概率公式求解即可.【解答】解:(1)列表如下:4564(4,4)(5,4)(6,4)5(4,5)(5,5)(6,5)6(4,6)(5,6)(6,6)(2)所有等可能的结果有9种,其中之和为奇数的情况有4种,∴两次抽出数字之和为奇数的概率为.【点评】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.21.(10分)如图,点E是正方形ABCD的边DC上一点,把△ADE顺时针旋转△ABF的位置.(Ⅰ)旋转中心是点A,旋转角度是90度;(Ⅱ)若连接EF,则△AEF是等腰直角三角形,并证明你的结论.【分析】(Ⅰ)根据旋转变换的性质解决问题即可.(Ⅱ)利用旋转变换的性质解决问题即可.【解答】解:(Ⅰ)旋转中心是点A,旋转角度是90度.故答案为:A,90.(Ⅱ)由旋转的性质可知,∠DAE=∠BAF,AE=AF,∵四边形ABCD是正方形,∴∠BAD=90°,∴△AEF是等腰直角三角形.故答案为:等腰直角.【点评】本题考查作图﹣旋转变换,正方形的性质等知识,解题的关键是理解题意灵活运用所学知识解决问题,属于中考常考题型.22.(10分)如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AC与BD相交于点F,BE是半圆O所在圆的切线,与AC的延长线相交于点E.(Ⅰ)若AD=BC,证:△CBA≌△DAB;(Ⅱ)若BE=BF,∠DAC=32°,求:∠EAB的度数.【分析】(1)根据圆周角定理得到∠ACB=∠ADB=90°,根据全等三角形的判定定理即可得到结论;(2)根据等腰三角形的性质得到∠E=∠BFE,根据切线的性质得到∠ABE=90°,根据三角形的内角和即可得到结论.【解答】(1)证明:∵AB是半圆O的直径,∴∠ACB=∠ADB=90°,在Rt△CBA与Rt△DAB中,,∴Rt△CBA≌Rt△DAB(HL);(2)解:∵BE=BF,由(1)知BC⊥EF,∴∠E=∠BFE,∵BE是半圆O所在圆的切线,∴∠ABE=90°,∴∠E+∠BAE=90°,由(1)知∠D=90°,∵∠AFD=∠BFE,∴∠AFD=∠E,∵∠DAF=90°﹣∠AFD,∠BAF=90°﹣∠E,∴∠EAB=∠DAC=32°.【点评】本题考查了切线的性质,全等三角形的判定和性质,圆周角定理,正确的识别图形是解题的关键.23.(10分)某超市经销一种商品,每千克成本为50元,经试销发现,该种商品的每天销售量y(千克)与销售单价x(元/千克)满足一次函数关系,其每天销售单价,销售量的四组对应值如下表所示:55606570销售单价x(元/千克)销售量y(千克)70605040(1)求y(千克)与x(元/千克)之间的函数表达式;(2)为保证某天获得600元的销售利润,则该天的销售单价应定为多少?(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?【分析】(1)利用待定系数法来求一次函数的解析式即可;(2)依题意可列出关于销售单价x的方程,然后解一元二次方程组即可;(3)利用每件的利润乘以销售量可得总利润,然后根据二次函数的性质来进行计算即可.【解答】解:(1)设y与x之间的函数表达式为y=kx+b(k≠0),将表中数据(55,70)、(60,60)代入得:,解得:.∴y与x之间的函数表达式为y=﹣2x+180.(2)由题意得:(x﹣50)(﹣2x+180)=600,整理得:x2﹣140x+4800=0,解得x1=60,x2=80.答:为保证某天获得600元的销售利润,则该天的销售单价应定为60元/千克或80元/千克.(3)设当天的销售利润为w元,则:w=(x﹣50)(﹣2x+180)=﹣2(x﹣70)2+800,∵﹣2<0,∴当x=70时,w最大值=800.答:当销售单价定为70元/千克时,才能使当天的销售利润最大,最大利润是800元.【点评】本题考查了待定系数法求一次函数的解析式、一元二次方程和二次函数在实际问题中的应用,理清题中的数量关系是解题的关键.24.(10分)已知,点O是等边△ABC内的任一点,连接OA,OB,OC.(Ⅰ)如图1所示,已知∠AOB=150°,∠BOC=120°,将△BOC绕点C按顺时针方向旋转60°得△ADC.①求∠DAO的度数;②用等式表示线段OA,OB,OC之间的数量关系,并证明.(Ⅱ)设∠AOB=α,∠BOC=β.①当α,β满足什么关系时,OA+OB+OC有最小值?并说明理由;②若等边△ABC的边长为1,请你直接写出OA+OB+OC的最小值.【分析】(Ⅰ)①根据旋转变换的性质、四边形内角和为360°计算即可;②连接OD,根据勾股定理解答;(Ⅱ)①将△AOC绕点C按顺时针方向旋转60°得△A′O′C,连接OO′,根据等边三角形的性质解答;②根据等边三角形的性质计算.【解答】解:(Ⅰ)①∵∠AOB=150°,∠BOC=120°,∴∠AOC=90°,由旋转的性质可知,∠OCD=60°,∠ADC=∠BOC=120°,∴∠DAO=360°﹣60°﹣90°﹣120°=90°,故答案为:90°;②线段OA,OB,OC之间的数量关系是OA2+OB2=OC2.如图1,连接OD.∵△BOC绕点C按顺时针方向旋转60°得△ADC,∴△ADC≌△BOC,∠OCD=60°.∴CD=OC,∠ADC=∠BOC=120°,AD=OB,∴△OCD是等边三角形,∴OC=OD=CD,∠COD=∠CDO=60°,∵∠AOB=150°,∠BOC=120°,∴∠AOC=90°,∴∠AOD=30°,∠ADO=60°.∴∠DAO=90°.在Rt△ADO中,∠DAO=90°,∴OA2+AD2=OD2.∴OA2+OB2=OC2.(Ⅱ)①如图2,当α=β=120°时,OA+OB+OC有最小值.作图如图2,如图2,将△AOC绕点C按顺时针方向旋转60°得△A′O′C,连接OO′.∴△A′O′C≌△AOC,∠OCO′=∠ACA′=60°.∴O′C=OC,O′A′=OA,A′C=BC,∠A′O′C=∠AOC.∴△OCO′是等边三角形.∴OC=O′C=OO′,∠COO′=∠CO′O=60°.∵∠AOB=∠BOC=120°,∴∠AOC=∠A′O′C=120°.∴∠BOO′=∠OO′A′=180°.∴四点B,O,O′,A′共线.∴OA+OB+OC=O′A′+OB+OO′=BA′时值最小;②当等边△ABC的边长为1时,∵OB=OC,∴∠OBC=30°,在Rt△BDC中,BD=BC•cos30=,∴BA'=2BD=,∴OA+OB+OC的最小值A′B=.【点评】此题是几何变换综合题,主要考查了等边三角形的性质和判定,旋转的性质,含30度角的直角三角形的性质,构造出几何图形是解本题的关键.25.(10分)如图,抛物线y=﹣x2+2x+c与x轴正半轴,y轴正半轴分别交于点A,B,且OA=OB,点G为抛物线的顶点.(1)求抛物线的解析式及点G的坐标;(2)点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,点Q为抛物线上点M,N之间(含点M,N)的一个动点,求点Q的纵坐标y Q的取值范围.【分析】(1)先求出点B,点A坐标,代入解析式可求c的值,即可求解;(2)先求出点M,点N坐标,即可求解.【解答】解:(1)∵抛物线y=﹣x2+2x+c与y轴正半轴交于点B,∴点B(0,c),∵OA=OB=c,∴点A(c,0),∴0=﹣c2+2c+c,∴c=3或0(舍去),∴抛物线解析式为:y=﹣x2+2x+3,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点G的坐标为(1,4);(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴对称轴为直线x=1,∵点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,∴点M的横坐标为﹣2或4,点N的横坐标为6,∴点M坐标为(﹣2,﹣5)或(4,﹣5),点N坐标为(6,﹣21),∵点Q为抛物线上点M,N之间(含点M,N)的一个动点,∴﹣21≤y Q≤﹣5或﹣21≤y Q≤4.【点评】本题考查了待定系数法求二次函数解析式,二次函数的性质,二次函数图象上点的坐标特征,熟练运用二次函数的性质解决问题是本题的关键.。

2022-2023学年天津市第十四中学九年级上学期数学模拟期末考试卷含详解

2022-2023学年天津市第十四中学九年级上学期数学模拟期末考试卷含详解

天津十四中2022-2023学年九年级(上)期末数学模拟试卷一、选择题(本大题共10小题,共30分.在每小题列出的选项中,选出符合题目的一项)1.岳阳楼是江南三大名楼之一,享有“洞庭天下水,岳阳天下楼”的盛名,从图中看,你认为它是【】A.轴对称图形B.中心对称图形C.既是轴对称图形,又是中心对称图形D.既不是轴对称图形,又不是中心对称图形2.如图,抛物线的顶点坐标是()13P -,,则函数y 随自变量x 的增大而增大的x 的取值范围是()A .3x > B.3x < C.1x > D.1x <3.如图,在Rt △ABC 中,∠B =90°,∠A =30°,DE 垂直平分斜边AC ,交AB 于点D ,E 是垂足,连结CD ,若BD =1,则AC 的长是()A. B.2C. D.44.如图,在宽为20m ,长为32m 的矩形耕地上修建同样宽的三条道路(横向与纵向垂直),把耕地分成若干小矩形块,作为水稻试验田,假设试验田面积为2570m ,求道路宽为多少?设道路宽为x m ,则下面列出的方程正确的是()A.(202)(32)570x x --=B.(322)(20)570x x --=C.6403220570x x --= D.(20)(322)570x x ++=5.在同一平面直角坐标系中,若抛物线1W :2(21)24y x m x m =++-﹣与抛物线2W :23()y x m n x n =-++关于直线=1x -对称,则抛物线1W 上的点(0,)A y 在抛物线2W 上的对应点'A 坐标是()A.(2,8)- B.(2,10)- C.(2,12)- D.(2,14)-6.直线2y x =-+与坐标轴交于A 、B 两点,点C 在坐标轴上,如果ABC 为等腰三角形,则满足条件的点C 最多有()个.A.4B.5C.7D.87.正三角形内切圆与外接圆的半径的比值是() A.33B.12C.32D.18.若A ,B ,C 是O 上三点,B 是弧AC 的中点,120ABC ∠=︒,6AC =,则O 的半径是()A. B.C.6D.9.如图,在ABC ∆中,A ABC CB =∠∠,BD 是ABC ∆内角ABC ∠的平分线,AD 是ABC ∆外角EAC ∠的平分线,CD 是ABC ∆外角ACF ∠的平分线,以下结论不正确的是()A.//AD BCB.2ACB ADB∠=∠C.90ADC ABD∠=-∠ D.BD 平分ADC∠10.如图,已知二次函数2y x bx c =-+-,它与x 轴交于A 、B ,且A 、B 位于原点两侧,与y 的正半轴交于C ,顶点D 在y 轴右侧的直线l :4y =上,则下列说法:①0bc <②04b <<③4AB =④8ABD S ∆=其中正确的结论有()A.①②B.②③C.①②③D.①②③④二、填空题(本大题共8小题,共24分)11.已知75a b =,则a b b-=__.12.已知一元二次方程有一个根是0,那么这个方程可以是__________(填上你认为正确的一个方程即可).13.在同一平面内与已知点O 的距离等于3cm 的所有点组成的图形是________.14.已知抛物线22(1)3y x =--+,当x _______时,y 随x 的增大而减小.15.经过点()2,1A 的正比例函数解析式是______.16.如图,在44⨯的正方形网格中,有4个小正方形已经涂黑,若再涂黑任意1个白色的小正方形(每个白色小正方形被涂黑的可能性相同),使新构成的黑色部分图形是轴对称图形的概率是________.17.将半径为5的圆(如图1)剪去一个圆心角为n 的扇形后围成如图2所示的圆锥,则n 的值等于________.18.如图,边长为2的正六边形ABCDEF 的中心与坐标原点O 重合,AF x ∥轴,将正六边形ABCDEF 绕原点O 逆时针旋转n 次,每次旋转60︒,当2022n =时,顶点A 的坐标为_____________.三、解答题(本大题共6小题,共66分.解答应写出文字说明,证明过程或演算步骤)19.解方程:(1)22410x x -+=;(2)()()454x x x +=-+.20.计算:(1))22-+(2)2--21.如图,在3×3正方形方格中,有3个小正方形涂成了黑色,所形成的图案如图所示,图中每块小正方形除颜色外完全相同.(1)一个小球在这个正方形方格上自由滚动,那么小球停在黑色小正方形的概率是多少?(2)现将方格内空白的小正方形(A 、B 、C 、D 、E 、F )中任取2个涂黑,得到新图案,请用列表或画树状图的方法求新图案是中心对称图形的概率.22.如图,点C 在以AB 为直径的⊙O 上,AD 垂直于过点C 的切线,垂足为D .(1)仅用无刻度的直尺在图1中作出∠BAD 的平分线,并说明理由;(2)当∠BAD =45°,OC=4时,①连接BC ,求∠ABC 的度数;②扇形AOC 的面积(阴影部分).图1图223.某公路有一个抛物线形状的隧道ABC ,其横截面如图所示,在图中建立的直角坐标系中,抛物线的解析式为y=110-x 2+c 且过顶点C (0,5).(长度单位:m )(1)直接写出c =_________;(2)该隧道为双车道,现有一辆运货卡车高4米、宽3米,问这辆卡车能否顺利通过隧道?请说明理由;(3)为了车辆安全快速通过隧道对该隧道加固维修,维修时需搭建的“脚手架”为矩形EFGH .使H 、G 点在抛物线上,E 、F 点在地面AB 上,施工队最多需要筹备多少材料.(即求出“脚手架”三根木杆HE 、HG 、GF 的长度之和的最大值)24.如图,D 、E 分别为等边ABC 的边AC 、BC 上的点,且AD CE =,BD 、AE 交于点N ,BM AE ⊥于M .(1)求证:BAD ACE ≌△△;(2)求证:2BN MN =;(3)若点D 在AC 的延长线上,点E 在CB 的延长线上,直线BD 、AE 交于点N ,其余条件不变,2BN MN 还成立吗?说明理由.天津十四中2022-2023学年九年级(上)期末数学模拟试卷一、选择题(本大题共10小题,共30分.在每小题列出的选项中,选出符合题目的一项)1.岳阳楼是江南三大名楼之一,享有“洞庭天下水,岳阳天下楼”的盛名,从图中看,你认为它是【】A.轴对称图形B.中心对称图形C.既是轴对称图形,又是中心对称图形D.既不是轴对称图形,又不是中心对称图形A【分析】根据轴对称图形与中心对称图形的概念,结合图形即可判断.【详解】由图形可得,岳阳楼是轴对称图形,不是中心对称图形.故选A .【点睛】此题考查了轴对称及中心对称图形的判定,属于基础题,掌握轴对称及中心对称的定义是解答本题的关键.2.如图,抛物线的顶点坐标是()13P -,,则函数y 随自变量x 的增大而增大的x 的取值范围是()A.3x >B.3x <C.1x >D.1x <C【分析】根据二次函数的性质求解即可.【详解】解:由题意得抛物线对称轴为直线1x =且抛物线开口向上,∴当1x >时,函数y 随自变量x 的增大而增大,故选C .【点睛】本题主要考查了二次函数图象的性质,熟知二次函数开口向上时,在对称轴的右边,函数y 随自变量x 的增大而增大是解题的关键.3.如图,在Rt △ABC 中,∠B =90°,∠A =30°,DE 垂直平分斜边AC ,交AB 于点D ,E 是垂足,连结CD ,若BD =1,则AC 的长是()A. B.2C. D.4A【分析】根据线段垂直平分线的性质证明AD =CD ,求得∠ACD =∠A =30°,再利用含30度角的直角三角形的性质求得CD 的长,利用勾股定理求得BC 的长,在Rt △ABC 中,再利用含30度角的直角三角形的性质即可求解.【详解】解:∵在Rt △ABC 中,∠B =90°,∠A =30°,∴∠ACB =60°,∵DE 垂直平分斜边AC ,∴AD =CD ,∴∠ACD =∠A =30°,∴∠DCB =60°-30°=30°,在Rt △DBC 中,∠B =90°,∠DCB =30°,BD =1,∴CD =2BD =2,由勾股定理,得BC =,在Rt △ABC 中,∠B =90°,∠A =30°,BC∴AC =2BC .故选:A .【点睛】本题考查了三角形内角和定理,等腰三角形的性质,勾股定理,含30度角的直角三角形性质的应用,解此题的关键是求出BC 的长,注意:在直角三角形中,如果有一个角等于30°,那么它所对的直角边等于斜边的一半.4.如图,在宽为20m ,长为32m 的矩形耕地上修建同样宽的三条道路(横向与纵向垂直),把耕地分成若干小矩形块,作为水稻试验田,假设试验田面积为2570m ,求道路宽为多少?设道路宽为x m ,则下面列出的方程正确的是()A.(202)(32)570x x --=B.(322)(20)570x x --=C .6403220570x x --= D.(20)(322)570x x ++=B【分析】试验地的面积=矩形耕地的面积−三条道路的面积+道路重叠部分的两个小正方形的面积.也可以利用平移思想去把试验田拼成一块长为(322)x -,宽为(20)x -的长方形,如果设道路宽x ,可根据此关系列出方程.【详解】设道路为x 米宽,由题意得:(322)(20)570x x --=故选:B .【点睛】本题考查了一元二次方程的应用,对于面积问题应熟记各种图形的面积公式.解题的关键在于利用平移思想去把复杂的几何问题化零为整.5.在同一平面直角坐标系中,若抛物线1W :2(21)24y x m x m =++-﹣与抛物线2W :23()y x m n x n =-++关于直线=1x -对称,则抛物线1W 上的点(0,)A y 在抛物线2W 上的对应点'A 坐标是()A.(2,8)-B.(2,10)- C.(2,12)- D.(2,14)-B【分析】先根据条件求出'A 坐标,再列出方程组5438m n m n +=-⎧⎨+=-⎩,求出7m =,即可求出答案.【详解】∵抛物线1W :2(21)24y x m x m =++-﹣与抛物线2W :23()y x m n x n =-++关于直线=1x -对称,∴1213()1222m m n-+-+=-,抛物线1W 上的点(0,)A y 在抛物线2W 上的对应点'A 坐标是(2,)y -,∴5m n +=-,∵抛物线1W 上的点(0,)A y 在抛物线2W 上的对应点'A 坐标是(2,)y -,∴2442(3)m m n n -=+++,∴438m n +=-,解得:7m =,∴2410y m =-=,∴在抛物线2W 上的对应点'A 坐标是(2,10)-.故选:B .【点睛】本题考查了二次函数图象与几何变化,根据题意列出方程组是解题关键.6.直线2y x =-+与坐标轴交于A 、B 两点,点C 在坐标轴上,如果ABC 为等腰三角形,则满足条件的点C 最多有()个.A.4B.5C.7D.8C【分析】运用分类讨论的数学思想,分AB 为腰或底两种情况来分类解析,逐一判断,即可解决问题.【详解】解:如图,若以点B 为圆心,以AB 的长为半径画弧,则与x 轴有两个交点,与y 轴有一个交点(点A 除外);若以点A 为圆心,以AB 的长为半径画弧,则与x 轴有一个交点(点B 除外),与y 轴有两个交点;∴以AB 为腰的等腰ABC 有6个;若以AB 为底,作AB 的垂直平分线,与坐标轴交于原点O ,∴ABC 为等腰三角形,则满足条件的点C 最多有7个.故选:C .【点睛】该题主要考查了等腰三角形的判定问题;解题的关键是运用分类讨论的数学思想,分AB 为腰或底两种情况来分类解析,逐一判断;对综合的分析问题解决问题的能力提出了一定的要求.7.正三角形内切圆与外接圆的半径的比值是()A.33B.12C.32D.1B【分析】根据三角形的内切圆与外接圆的性质可直接进行求解.【详解】解:如图,∵△ABC 是等边三角形,∴等边三角形的外接圆与内切圆的圆心在同一个点上,即图中的点O ,∴OA 为△ABC 的外接圆的半径,OE 为△ABC 的内切圆的半径,∴AD ⊥BC ,OE ⊥AB ,∴∠BAD =∠CAD =30°,∴12OE OA,∴正三角形内切圆与外接圆的半径的比值是12;故选B .【点睛】本题主要考查三角形的内切圆与外接圆,熟练掌握三角形的内切圆与外接圆的性质是解题的关键.8.若A ,B ,C 是O 上三点,B 是弧AC 的中点,120ABC ∠=︒,6AC =,则O 的半径是()A. B.C.6D.A【分析】O 的优弧AC 上取一点D ,连接AD 、CD ,连接OA ,OC ,根据圆周角定理求得2120AOC ADC Ð=Ð=°,再作垂线构造出含30︒的直角三角形,即可求解.【详解】O 的优弧AC 上取一点D ,连接AD 、CD ,连接OA 、OC ,∵120ABC ∠=︒,∴18012060ADC ∠=︒-︒=︒,∴2120AOC ADC Ð=Ð=°,过O 作AC 的垂线OF ,∵AO OC =,∴1602AOF AOC ∠=∠=︒,132==AF AC ,∴30FAO ∠=︒,∴设OF x =,则2AO x =,在Rt AOF 中,根据勾股定理可得AO =故选:A【点睛】本题考查了圆周角定理,解答该题的关键是利用圆周角定理转化已知角到要求的线段所构成的三角形当中.9.如图,在ABC ∆中,A ABC CB =∠∠,BD 是ABC ∆内角ABC ∠的平分线,AD 是ABC ∆外角EAC ∠的平分线,CD 是ABC ∆外角ACF ∠的平分线,以下结论不正确的是()A.//AD BCB.2ACB ADB∠=∠C.90ADC ABD ∠=-∠ D.BD 平分ADC∠D【分析】A、由AD平分△ABC的外角∠EAC,求出∠EAD=∠DAC,由三角形外角得∠EAC=∠ACB+∠ABC,且∠ABC=∠ACB,得出∠EAD=∠ABC,利用同位角相等两直线平行得出结论正确.B、由AD∥BC,得出∠ADB=∠DBC,再由BD平分∠ABC,所以∠ABD=∠DBC,∠ABC=2∠ADB,得出结论∠ACB=2∠ADB,C、在△ADC中,∠ADC+∠CAD+∠ACD=180°,利用角的关系得∠ADC+∠CAD+∠ACD=∠ADC+2∠ABD+∠ADC=2∠ADC+2∠ABD=180°,得出结论∠ADC=90°-∠ABD;D、由BD平分∠ABC,得到∠ABD=∠DBC,由于∠ADB=∠DBC,∠ADC=90°-1∠ABC,得到∠ADB不等于2∠CDB,故错误.【详解】A.∵AD平分△ABC的外角∠EAC,∴∠EAD=∠DAC,∵∠EAC=∠ACB+∠ABC,且∠ABC=∠ACB,∴∠EAD=∠ABC,∴AD∥BC,故A正确.B.由(1)可知AD∥BC,∴∠ADB=∠DBC,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABC=2∠ADB,∵∠ABC=∠ACB,∴∠ACB=2∠ADB,故B正确.C.在△ADC中,∠ADC+∠CAD+∠ACD=180°,∵CD平分△ABC的外角∠ACF,∴∠ACD=∠DCF,∵AD∥BC,∴∠ADC=∠DCF,∠ADB=∠DBC,∠CAD=∠ACB∴∠ACD=∠ADC,∠CAD=∠ACB=∠ABC=2∠ABD,∴∠ADC+∠CAD+∠ACD=∠ADC+2∠ABD+∠ADC=2∠ADC+2∠ABD=180°,∴∠ADC+∠ABD=90°∴∠ADC=90°−∠ABD,故C正确;D.∵BD平分∠ABC,∴∠ABD=∠DBC ,∵∠ADB=∠DBC,∠ADC=90°−12∠ABC ,∴∠ADB 不等于∠CDB ,∴D 错误;故选D.【点睛】此题考查平行线的判定与性质,三角形内角和定理,三角形的外角性质,解题关键在于掌握各性质定义.10.如图,已知二次函数2y x bx c =-+-,它与x 轴交于A 、B ,且A 、B 位于原点两侧,与y 的正半轴交于C ,顶点D 在y 轴右侧的直线l :4y =上,则下列说法:①0bc <②04b <<③4AB =④8ABD S ∆=其中正确的结论有()A.①②B.②③C.①②③D.①②③④D【分析】由根与系数的关系,结合顶点位置和坐标轴位置,进行分析即可得到答案.【详解】解:设函数图像与x 轴交点的横坐标分别为x 1,x 2则根据根于系数的关系得到:x 1+x 2=b,x 1x 2=c∵A,B 两点位于y 轴两侧,且对称轴在y 轴的右侧,则b>0函数图像交y 轴于C 点,则c<0,∴bc<0,即①正确;又∵顶点坐标为(24,24b ac b a a --),即(24,24b c b -)∴244c b -=4,即2416b c =+又∵()()2222121212121224x x x x x x x x x x -=+-=+-=2416b c =+,即124x x -=∴AB=4即③正确;又∵A,B 两点位于y 轴两侧,且对称轴在y 轴的右侧∴2b <2,即b<4∴0<b<4,故②正确;∵顶点的纵坐标为4,∴△ABD 的高为4∴△ABD 的面积=14482⨯⨯=,故④正确;所以答案为D.【点睛】本题考查了二次函数与一元二次方程的联系,熟练掌握二次函数和一元二次方程的性质是解答本题的关键.二、填空题(本大题共8小题,共24分)11.已知75a b =,则a b b -=__.25【分析】由比例的性质进行计算,即可得到答案.【详解】解:∵75a b =,∴75a b =,∴7255b b a b b b --==;故答案为:25.【点睛】本题考查了比例的性质,解题的关键是掌握运算法则进行解题.12.已知一元二次方程有一个根是0,那么这个方程可以是__________(填上你认为正确的一个方程即可).20x x -=(答案不唯一)【分析】根据题意知道:满足条件的方程是“二次项系数不为0,且常数项为0”均正确.【详解】解:∵一元二次方程有一个根是0,∴方程可以为()210100x x -++⨯=,即20x x -=.故答案为:20x x -=(答案不唯一).【点睛】此题考查了一元二次方程的根,以及根与系数的关系,一元二次方程有解时,设为1x ,2x ,方程可为()212120x x x x x x -++=.掌握一元二次方程的根与系数的关系是解题的关键.13.在同一平面内与已知点O 的距离等于3cm 的所有点组成的图形是________.以点O 为圆心,3cm 长为半径的圆【分析】根据圆的定义:平面内到一定点的距离等于定长的所有点的集合,即可解题.【详解】解:由圆的定义可知,到点O 的距离等于3cm 的所有点组成的图形是圆.【点睛】本题考查了圆的定义,属于简单题,熟悉圆的定义是解题关键.14.已知抛物线22(1)3y x =--+,当x _______时,y 随x 的增大而减小.1>【分析】根据题中抛物线的顶点式得到对称轴为直线x =1,抛物线开口方向向下,结合二次函数图像与性质即可得到结论.【详解】解:抛物线22(1)3y x =--+,对称轴为直线x =1,∵20-<,即抛物线开口方向向下,∴当1x >时,y 随x 增大而减小,故答案为:1>.【点睛】本题考查二次函数的增减性,熟练掌握二次函数图像与性质是解决问题的关键.15.经过点()2,1A 的正比例函数解析式是______.12y x =【分析】设正比例函数的解析式为y kx =,将()2,1A 代入进行计算,即可得到答案.【详解】设正比例函数的解析式为y kx =.将()2,1A 代入得,12k =,解得12k =.则它的函数解析式为12y x =.故答案为12y x =.【点睛】本题主要考查了正比例函数解析式,解题的关键是熟练掌握待定系数法求解解析式.16.如图,在44⨯的正方形网格中,有4个小正方形已经涂黑,若再涂黑任意1个白色的小正方形(每个白色小正方形被涂黑的可能性相同),使新构成的黑色部分图形是轴对称图形的概率是________.16【分析】根据轴对称的定义,确定可以构成轴对称图形的情况,根据概率公式求解即可.【详解】解:如图,图中共有12个白色正方形,其中涂黑1个使新构成的黑色部分图形是轴对称图形的共有2种情况,所以概率为P=21=126.故答案为:16【点睛】本题考查了列举法求概率,轴对称图形的判定,熟知求概率公式和轴对称图形的概念是解题关键.17.将半径为5的圆(如图1)剪去一个圆心角为n 的扇形后围成如图2所示的圆锥,则n 的值等于________.144【分析】根据题意可得圆的弧长等于圆锥底面圆的周长,即可得到关于n 的方程,然后求解即可.【详解】解:圆锥底面周长为:2π×3=6π,则()3605180n π-⨯⨯=6π,解得:n=144.故答案为144.【点睛】本题主要考查圆锥与圆,弧长公式,解此题的关键在于熟练掌握其知识点.18.如图,边长为2的正六边形ABCDEF 的中心与坐标原点O 重合,AF x ∥轴,将正六边形ABCDEF 绕原点O 逆时针旋转n 次,每次旋转60︒,当2022n =时,顶点A 的坐标为_____________.(3-【分析】将正六边形ABCDEF 绕原点O 逆时针旋转2022次时,点A 所在的位置是自身所在的位置,连接OA ,OF ,设AF 交y 轴于点H ,先判断AOF 是等边三角形,求出AH 和OH 的长度,即可求出点A 的坐标.【详解】解:202260360337⨯︒÷︒= ,∴当2022n =时,顶点A 旋转到了原来的位置,连接OA ,OF ,设AF 交y 轴于点H ,在正六边形ABCDEF 中,60AOF ∠=︒,AO FO =,AOF ∴△是等边三角形,2AO AF ∴==,1AH HF ==,OH AF ⊥ ,2222213OH OA AH ∴=-=-=(3A ∴-,即当2022n =时,顶点A 的坐标为(3-,故答案为:(3-.【点睛】本题考查了正多边形的性质、旋转变换的性质,掌握正多边形的性质、旋转变换的性质是解题的关键.三、解答题(本大题共6小题,共66分.解答应写出文字说明,证明过程或演算步骤)19.解方程:(1)22410x x -+=;(2)()()454x x x +=-+.(1)12221122x x =+=-,(2)1245x x =-=-,【分析】(1)利用公式法解一元二次方程即可;(2)提取公因式()4x +即可得到()()450x x ++=,再解两个一元一次方程即可.【小问1详解】解:241a b c ==-= ,,,()22444121688b ac ∴∆=-=--⨯⨯=-=,()48422122242b x a --±-±∆±∴====±⨯,12221122x x ∴=+=-;【小问2详解】解:()()454x x x +=-+ ,()()4540x x x ∴+++=,()()450x x ∴++=,40x ∴+=或50x +=,1245x x ∴=-=-,.【点睛】本题主要考查了因式分解法和公式法解一元二次方程,解题的关键是熟练掌握解方程的一般方法步骤.20.计算:(1))22-+(2)2--(1)7(2)0【分析】(1)利用完全平方公式,以及化简二次根式的方法计算,进而合并求出即可;(2)利用平方差公式,以及立方根的定义计算,进而合并求出即可.【小问1详解】解:原式=34-+=7;【小问2详解】解:原式=642--=0.【点睛】此题主要考查了二次根式的混合运算,正确化简二次根式是解题的关键.21.如图,在3×3正方形方格中,有3个小正方形涂成了黑色,所形成的图案如图所示,图中每块小正方形除颜色外完全相同.(1)一个小球在这个正方形方格上自由滚动,那么小球停在黑色小正方形的概率是多少?(2)现将方格内空白的小正方形(A 、B 、C 、D 、E 、F )中任取2个涂黑,得到新图案,请用列表或画树状图的方法求新图案是中心对称图形的概率.(1)小球停在黑色小正方形的概率是13;(2)新图案是中心对称图形的概率是15.【分析】(1)根据题意和图形,可以求得小球停在黑色小正方形的概率;(2)根据题意可以画出相应的表格,从而可以求得相应的概率.【详解】解:(1)由题意可得,小球停在黑色小正方形的概率是31=93,即小球停在黑色小正方形的概率是13;(2)共有30种等可能结果,中心对称的情况是:(BE )、(CD )、(AF ),(EB ),(DC ),(FA ),则新图案是中心对称图形的概率是:61=305,即新图案是中心对称图形的概率是15.【点睛】本题考查列表法与树状图法、中心对称图形、概率公式,解答本题的关键是明确题意,求出相应的概率.22.如图,点C 在以AB 为直径的⊙O 上,AD 垂直于过点C 的切线,垂足为D .(1)仅用无刻度的直尺在图1中作出∠BAD 的平分线,并说明理由;(2)当∠BAD =45°,OC=4时,①连接BC ,求∠ABC 的度数;②扇形AOC 的面积(阴影部分).图1图2(1)见解析;(2)①67.5°;②18.8.【分析】(1)连接AC ,AC 为∠BAD 的平分线,证明,连接OC ,利用条件可证得AD ∥OC ,再根据平行线的性质和角之间的关系∠DAC =∠CAO ;(2)①根据圆周角定理可求得∠COB 的度数,因为OC =OB ,从而可以求出∠ABC 的度数;②由①可知∠COB 的度数,从而可求出∠AOC 的度数,扇形AOC 的面积=圆的面积×360AOC,从而求出答案.【详解】(1)连接AC ,AC 为∠BAD 的平分线,证明:连接AC ,OC ,由题意可知:OC ⊥DC ,AD ⊥DC ,故OC ∥DC ,故∠DAC =∠OCA ,∵OC =OA ,故∠OCA =∠OAC ,故∠DAC =∠OAC ,∴AC 平分∠BAD ;(2)①∵∠BAD =45°,OC ∥DC ,故∠BOC =45°,而OC =OB ,故∠OCB =∠OBC ,可得:∠ABC =12×(180°-45°)=67.5°;②故可知∠AOC =180°-45°=135°,扇形AOC 的面积=π×42×135360=6π≈18.8.【点睛】本题主要考查了角平分线的概念、平行线的基本性质以及圆周角定理.23.某公路有一个抛物线形状的隧道ABC ,其横截面如图所示,在图中建立的直角坐标系中,抛物线的解析式为y=110-x 2+c 且过顶点C (0,5).(长度单位:m )(1)直接写出c =_________;(2)该隧道为双车道,现有一辆运货卡车高4米、宽3米,问这辆卡车能否顺利通过隧道?请说明理由;(3)为了车辆安全快速通过隧道对该隧道加固维修,维修时需搭建的“脚手架”为矩形EFGH .使H 、G 点在抛物线上,E 、F 点在地面AB 上,施工队最多需要筹备多少材料.(即求出“脚手架”三根木杆HE 、HG 、GF 的长度之和的最大值)(1)5;(2)能安全通过,理由见解析;(3)施工队最多需要筹备15米材料【分析】(1)直接利用顶点C (0,5),进而求出c 的值;(2)利用x=3时,求出y 的值,进而得出答案;(3)利用HE=FG=110-x 2+5,GH=EF=2x ,即可得出HE+FG+GH 与x 的函数关系,进而求出最值即可.【详解】(1)∵顶点()0,5C ,∴5c =,故答案为:5.(2)把3x =代入得215 4.1410y x =-+=>,故能安全通过.(3)设(),0F x ,则21,510G x x ⎛⎫-+ ⎪⎝⎭,∴21510HE FG x ==-+,2GH EF x ==,∴HE FG GH ++()(2211210515055x x x x =-++=--+<<,∴5x =时有最大值为15.【点睛】此题主要考查了二次函数的应用,根据数形结合得出函数关系式是解题关键.24.如图,D 、E 分别为等边ABC 的边AC 、BC 上的点,且AD CE =,BD 、AE 交于点N ,BM AE ⊥于M .(1)求证:BAD ACE ≌△△;(2)求证:2BN MN =;(3)若点D 在AC 的延长线上,点E 在CB 的延长线上,直线BD 、AE 交于点N ,其余条件不变,2BN MN =还成立吗?说明理由.(1)证明见解析;(2)证明见解析;(3)成立,理由见解析.【分析】(1)利用等边三角形的性质和已知,用边角边证明.(2)利用全等三角形的性质和等量代换,证明BNM 为含30︒角的直角三角形,因为在含30︒角的直角三角形中,30︒所对的边为斜边的一半,即可证明.(3)利用全等三角形的性质、外角等于与它不相邻的两内角的和及等量代换,证明BNM 为含30︒角的直角三角形,因为在含30︒角的直角三角形中,30︒所对的边为斜边的一半,即可证明.【小问1详解】∵ABC 为等边三角形∴AB AC =60BAD ACE ∠=∠=︒在BAD 和ACE △中AB AC BAC ACE AD CE =⎧⎪∠=∠⎨⎪=⎩∴BAD ACE ≌△△(SAS )【小问2详解】∵60BAE CAE ∠+∠=︒且由(1)得CAE ABD∠=∠∴60BAE ABD ∠+∠=︒∴60BNM ∠=︒∵BM AE ⊥∴90BMN ∠=︒∴30NBM ∠=︒∴在Rt BNM △中,2BN NM =.【小问3详解】成立.证明:∵BAD ACE ≌△△(理由同1)∴E D ∠=∠∵60D CBD ∠+∠=︒∴CBD NBE∠=∠∴60E NBE ∠+∠=︒∴60BNM ∠=︒∵BM AE ⊥∴90BMN ∠=︒∴30NBM ∠=︒∴在Rt BNM 中,2BN NM =.【点睛】本题考查了全等三角形的证明与性质,含30︒角的直角三角形的30︒所对的边为斜边的一半等知识,解题的关键在于识别图中相等的线段和角.。

2020-2021学年天津市和平区九年级(上)期末数学试卷 (解析版)

2020-2021学年天津市和平区九年级(上)期末数学试卷 (解析版)

2020-2021学年天津市和平区九年级第一学期期末数学试卷一、选择题(共12小题).1.下列图形中,可以看作是中心对称图形的是()A.B.C.D.2.下列命题中,是真命题的是()A.直角三角形都相似B.等腰三角形都相似C.矩形都相似D.正方形都相似3.二次函数y=ax2+bx+c图象上部分点的坐标如下表所示,则该函数图象的顶点坐标为()x…﹣1012…y…0343…A.(﹣1,0)B.(0,3)C.(1,4)D.(2,3)4.如图,一个油桶靠在直立的墙边,量得WY=0.5m,并且XY⊥WY,则这个油桶的底面半径是()A.0.25m B.0.5m C.0.75m D.1m5.一个仅装有球的不透明布袋里共有4个球(只有编号不同),编号为1,2,3,5.从中任意摸出一个球,记下编号后放回,搅匀,再任意摸出一个球,则两次摸出的球的编号之和为偶数的概率是()A.B.C.D.6.如图,Rt△ABC中,∠C=90°,AB=10,AC=8,E是边AC上一点,AE=5,ED⊥AB,垂足为点D,则AD的长是()A.16B.C.6D.47.在如图所示的网格中,以点O为位似中心,四边形ABCD的位似图形是()A.四边形NPMQ B.四边形NPMR C.四边形NHMQ D.四边形NHMR 8.如图,在▱OABC中,∠A=60°,将▱OABC绕点O逆时针旋转得到▱OA′B'C′,且∠A'OC=90°,设旋转角为α(0°<α<90°),则α的大小为()A.30°B.45°C.60°D.75°9.设函数y=a(x﹣h)2+k(a,h,k是实数,a≠0),当x=1时,y=1;当x=8时,y =8,()A.若h=4,则a<0B.若h=5,则a>0C.若h=6,则a<0D.若h=7,则a>010.如图是抛物线形拱桥,当拱顶高离水面2m时,水面宽4m.水面下降2.5m,水面宽度增加()A.1m B.2m C.3m D.6m11.如图,已知BC是⊙O的直径,半径OA⊥BC,点D在劣弧AC上(不与点A,点C重合),BD与OA交于点E.设∠AED=α,∠AOD=β,则()A.3α+β=180°B.2α+β=180°C.3α﹣β=90°D.2α﹣β=90°12.如图,抛物线y=ax2+bx+c的顶点坐标为(1,﹣4a),点A(4,y1)是该抛物线上一点,若点B(x2,y2)是该抛物线上任意一点,有下列结论:①4a﹣2b+c>0;②抛物线y=ax2+bx+c与x轴交于点(﹣1,0),(3,0);③若y2>y1,则x2>4;④若0≤x2≤4,则﹣3a≤y2≤5a.其中,正确结论的个数是()A.0B.1C.2D.3二、填空题(共6小题).13.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在岔路口随机选择一条路径,它获得食物的概率是.14.已知正六边形的半径是3,则这个正六边形的边长是.15.如图,在△ABC中,点D,E在AC边上,且AE=ED=DC.点F,M在AB边上,且FE∥MD∥BC,延长FD交BC的延长线于点N,则的值=.16.已知圆锥的底面半径为40cm,母线长为90cm,则它的侧面展开图的圆心角为度.17.对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y=x2+2x+c有两个相异的不动点x1,x2,且x1<1<x2,则c的取值范围是.18.已知正方形ABCD的边长为6,O是BC边的中点.(1)如图①,连接AO,则AO的长为;(2)如图②,点E是正方形内一动点,OE=2,连接DE,将线段DE绕点D逆时针旋转90°得DF,则线段OF长的最小值为.三、解答题(共7小题,共66分.)19.已知2是方程x2﹣c=0的一个根,求常数c的值及该方程的另一根.20.已知,⊙O中,=,D是⊙O上的点,OC⊥BD.(1)如图①,求证=;(2)如图②,连接AB,BC,CD,DA,若∠A=70°,求∠BCD,∠ADB的大小.21.已知⊙O的直径AB=4,C为⊙O上一点,AC=2.(1)如图①,点P是上一点,求∠APC的大小;(2)如图②,过点C作⊙O的切线MC,过点B作BD⊥MC于点D,BD与⊙O交于点E,求∠DCE的大小及CD的长.22.一个直角三角形的两条直角边的和是7cm,面积是6cm2,求两条直角边的长.23.如图,已知矩形ABCD的周长为36cm,矩形绕它的一条边CD旋转形成一个圆柱.设矩形的一边AB的长为xcm(x>0),旋转形成的圆柱的侧面积为Scm2.(1)用含x的式子表示:矩形的另一边BC的长为cm,旋转形成的圆柱的底面圆的周长为cm;(2)求S关于x的函数解析式及自变量x的取值范围;(3)求当x取何值时,矩形旋转形成的圆柱的侧面积最大;(4)若矩形旋转形成的圆柱的侧面积等于18πcm2,则矩形的长是cm,宽是cm.24.在△ABC中,∠ACB=90°,CA=CB=2,点P是边AB的中点,连接CP.(1)如图①,∠B的大小=(度),AB的长=,CP的长=;(2)延长BC至点O,使OC=2BC,将△ABC绕点O逆时针旋转α(0°<α<180°)得到△A'B'C',点A,B,C,P的对应点分别为A',B',C',P'.①图②,当α=30°时,求点C′到直线OB的距离及点C'到直线AB的距离;②当C′P'与△ABC的一条边平行时,求点P'到直线AC的距离(直接写出结果即可).25.如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,AB ∥x轴,∠ABC=135°,且AB=4.(1)当m=1时,求抛物线的顶点坐标;(2)求点C到直线AB的距离(用含a的式子表示);(3)若点C到直线AB的距离为1,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.参考答案一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列图形中,可以看作是中心对称图形的是()A.B.C.D.解:A、不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;D、不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误.故选:B.2.下列命题中,是真命题的是()A.直角三角形都相似B.等腰三角形都相似C.矩形都相似D.正方形都相似解:A、直角三角形都相似,错误,是假命题;B、等腰三角形不一定相似,故错误,是假命题;C、矩形都相似,错误,是假命题;D、正方形都相似,正确,是真命题,故选:D.3.二次函数y=ax2+bx+c图象上部分点的坐标如下表所示,则该函数图象的顶点坐标为()x…﹣1012…y…0343…A.(﹣1,0)B.(0,3)C.(1,4)D.(2,3)解:∵x=0、x=2时的函数值都是3,∴函数图象的对称轴为直线x==1,∴顶点坐标为(1,4).故选:C.4.如图,一个油桶靠在直立的墙边,量得WY=0.5m,并且XY⊥WY,则这个油桶的底面半径是()A.0.25m B.0.5m C.0.75m D.1m解:过X点作AX⊥XY,过W点作BW⊥YW,AX与BW相交于O点,如图,∵油桶与墙相切,∴O点为油桶的底面圆的圆心,∵∠OXY=∠OWY=∠XYW=90°,∴四边形OXYW为矩形,∵OX=OW,∴矩形OXYW为正方形,∴OW=WY=0.5m,即这个油桶的底面半径是0.5m.故选:B.5.一个仅装有球的不透明布袋里共有4个球(只有编号不同),编号为1,2,3,5.从中任意摸出一个球,记下编号后放回,搅匀,再任意摸出一个球,则两次摸出的球的编号之和为偶数的概率是()A.B.C.D.解:根据题意画图如下:共有16种等情况数,其中两次摸出的球的编号之和为偶数的有10种,则两次摸出的球的编号之和为偶数的概率是=.故选:A.6.如图,Rt△ABC中,∠C=90°,AB=10,AC=8,E是边AC上一点,AE=5,ED⊥AB,垂足为点D,则AD的长是()A.16B.C.6D.4解:∵ED⊥AB,∴∠ADE=90°,∵∠C=90°,∴∠ADE=∠C,又∵∠A=∠A,∴△ADE∽△ACB,∴AD:AC=AE:AB,∵AB=10,AC=8,AE=5,∴AD:8=5:10,∴AD=4.故选:D.7.在如图所示的网格中,以点O为位似中心,四边形ABCD的位似图形是()A.四边形NPMQ B.四边形NPMR C.四边形NHMQ D.四边形NHMR 解:∵以点O为位似中心,∴点C对应点M,设网格中每个小方格的边长为1,则OC==,OM==2,OD=,OB==,OA ==,OR==,OQ=2,OP==2,OH==3,ON==2,∵==2,∴点D对应点Q,点B对应点P,点A对应点N,∴以点O为位似中心,四边形ABCD的位似图形是四边形NPMQ,故选:A.8.如图,在▱OABC中,∠A=60°,将▱OABC绕点O逆时针旋转得到▱OA′B'C′,且∠A'OC=90°,设旋转角为α(0°<α<90°),则α的大小为()A.30°B.45°C.60°D.75°解:设A′O与AB相交于点D,∵四边形OABC是平行四边形,∴AB∥OC,∴∠ODA=∠A′OC=90°,∵∠A=60°,∴∠A′OA=90°﹣60°=30°,∴旋转角为α=30°,故选:A.9.设函数y=a(x﹣h)2+k(a,h,k是实数,a≠0),当x=1时,y=1;当x=8时,y =8,()A.若h=4,则a<0B.若h=5,则a>0C.若h=6,则a<0D.若h=7,则a>0解:当x=1时,y=1;当x=8时,y=8;代入函数式得:,∴a(8﹣h)2﹣a(1﹣h)2=7,整理得:a(9﹣2h)=1,若h=4,则a=1,故A错误;若h=5,则a=﹣1,故B错误;若h=6,则a=﹣,故C正确;若h=7,则a=﹣,故D错误;故选:C.10.如图是抛物线形拱桥,当拱顶高离水面2m时,水面宽4m.水面下降2.5m,水面宽度增加()A.1m B.2m C.3m D.6m解:如右图建立平面直角坐标系,设抛物线的解析式为y=ax2,由已知可得,点(2,﹣2)在此抛物线上,则﹣2=a×22,解得a=,∴y=,当y=﹣4.5时,﹣4.5=,解得,x1=﹣3,x2=3,∴此时水面的宽度为:3﹣(﹣3)=6,∴6﹣4=2,即水面的宽度增加2m,故选:B.11.如图,已知BC是⊙O的直径,半径OA⊥BC,点D在劣弧AC上(不与点A,点C重合),BD与OA交于点E.设∠AED=α,∠AOD=β,则()A.3α+β=180°B.2α+β=180°C.3α﹣β=90°D.2α﹣β=90°解:∵OA⊥BC,∴∠AOB=∠AOC=90°,∴∠DBC=90°﹣∠BEO=90°﹣∠AED=90°﹣α,∴∠COD=2∠DBC=180°﹣2α,∵∠AOD+∠COD=90°,∴β+180°﹣2α=90°,∴2α﹣β=90°,故选:D.12.如图,抛物线y=ax2+bx+c的顶点坐标为(1,﹣4a),点A(4,y1)是该抛物线上一点,若点B(x2,y2)是该抛物线上任意一点,有下列结论:①4a﹣2b+c>0;②抛物线y=ax2+bx+c与x轴交于点(﹣1,0),(3,0);③若y2>y1,则x2>4;④若0≤x2≤4,则﹣3a≤y2≤5a.其中,正确结论的个数是()A.0B.1C.2D.3解:①∵二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(1,﹣4a),∴x=﹣=1,且﹣4a=a+b+c,∴b=﹣2a,c=﹣3a,∴4a﹣2b+c=4a+4a﹣3a=5a>0(∵抛物线开口向上,则a>0),结论①正确;②∵b=﹣2a,c=﹣3a,∴y=ax2﹣2ax﹣3a=a(x﹣3)(x+1),∴抛物线y=ax2+bx+c与x轴交于点(﹣1,0),(3,0)结论②正确;③∵点A(4,y1)关于直线x=1的对称点为(﹣2,y1),∴当y2>y1,则x2>4或x2<﹣2,结论③错误;④当x=4时,y1=16a+4b+c=16a﹣8a﹣3c=5a,∴当0≤x2≤4,则﹣4a≤y2≤5a,结论④错误.故选:C.二、填空题(本大题共6小题,每小题3分,共18分)13.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在岔路口随机选择一条路径,它获得食物的概率是.解:蚂蚁获得食物的概率=.故答案为.14.已知正六边形的半径是3,则这个正六边形的边长是3.解:如图所示,连接OB、OC,∵此六边形是正六边形,∴∠BOC==60°,∵OB=OC=3,∴△BOC是等边三角形,∴OB=OC=BC=3,故答案为:3.15.如图,在△ABC中,点D,E在AC边上,且AE=ED=DC.点F,M在AB边上,且FE∥MD∥BC,延长FD交BC的延长线于点N,则的值=.解:∵EF∥DM∥BC,AE=DE=CD,∴,在△EFD与△CND中,,∴△EFD≌△CND(AAS),∴EF=CN,∵CN:BC=1:3,∴CN:BN=1:4,∴,故答案为.16.已知圆锥的底面半径为40cm,母线长为90cm,则它的侧面展开图的圆心角为160度.解:根据弧长的公式l=得到:80π=,解得n=160度.侧面展开图的圆心角为160度.17.对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y=x2+2x+c有两个相异的不动点x1,x2,且x1<1<x2,则c的取值范围是c <﹣2.解:由题意知二次函数y=x2+2x+c的两个相异的不动点x1、x2是方程x2+2x+c=x的两个不相等实数根,且x1<1<x2,整理,得:x2+x+c=0,由x2+x+c=0有两个不相等的实数根,且x1<1<x2,知△>0,令y=x2+x+c,画出该二次函数的草图如下:则,解得c<﹣2,故答案为c<﹣2.18.已知正方形ABCD的边长为6,O是BC边的中点.(1)如图①,连接AO,则AO的长为3;(2)如图②,点E是正方形内一动点,OE=2,连接DE,将线段DE绕点D逆时针旋转90°得DF,则线段OF长的最小值为3﹣2.解:(1)∵正方形ABCD的边长为6,O是BC边的中点,∴OB=BC=3,∠B=90°,∴AO===3,故答案为:3.(2)如图②,连接DO,将线段DO绕点D逆时针旋转90°得DM,连接FM,OM,∵∠EDF=∠ODM=90°,∴∠EDO=∠FDM,∵DE=DF,DO=DM,∴△EDO≌△FDM(SAS),∴FM=OE=2,由(1)可知OA=OD=3,∴OM===3,∵OF+MF≥OM,∴OF≥3﹣2,∴线段OF长的最小值为3﹣2.故答案为:3﹣2.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程)19.已知2是方程x2﹣c=0的一个根,求常数c的值及该方程的另一根.解:将x=2代入x2﹣c=0,得:4﹣c=0,解得c=4,所以方程为x2﹣4=0,则x2=4,∴x1=2,x2=﹣2.所以c=4,另一个根为x=﹣2.20.已知,⊙O中,=,D是⊙O上的点,OC⊥BD.(1)如图①,求证=;(2)如图②,连接AB,BC,CD,DA,若∠A=70°,求∠BCD,∠ADB的大小.【解答】(1)证明:∵OC⊥BD,OC过O,∴=,∵=,∴=;(2)解:∵四边形ABD是圆内接四边形,∴∠A+∠BCD=180°,∵∠A=70°,∴∠BCD=110°,∵=,∴∠CBD=∠CDB=(180°﹣∠BCD)=35°,∵=,∴∠ADB=∠CDB=35°.21.已知⊙O的直径AB=4,C为⊙O上一点,AC=2.(1)如图①,点P是上一点,求∠APC的大小;(2)如图②,过点C作⊙O的切线MC,过点B作BD⊥MC于点D,BD与⊙O交于点E,求∠DCE的大小及CD的长.解:(1)连接OC,∵AB为⊙O的直径,AB=2AC,∴OA=OC=AC,∴△AOC是等边三角形,∴∠AOC=60°,∴∠APC=AOC=30°;(2)连接OE,OC,∵MC是⊙O的切线,∴MC⊥OC,∵BD⊥MC,∴∠MCO=∠CDB=90°,∴BD∥OC,∴∠B=∠AOC=60°,∵OB=OE,∴△EOB是等边三角形,∴∠EOB=60°,∴∠COE=180°﹣∠EOB﹣∠AOC=60°,∵OC=OE,∴△OCE是等边三角形,∴CE=OC=2,∠EOC=60°,∴∠DCE=90°﹣∠ECO=30°,在Rt△COE中,CE=2,∴DE=CE=1,∴CD===.22.一个直角三角形的两条直角边的和是7cm,面积是6cm2,求两条直角边的长.解:设其中一条直角边的长为xcm,则另一条直角边的长为(7﹣x)cm,依题意得:x(7﹣x)=6,整理得:x2﹣7x+12=0,解得:x1=3,x2=4.当x=3时,7﹣x=4;当x=4时,7﹣x=3.答:两条直角边的长分别为3cm,4cm.23.如图,已知矩形ABCD的周长为36cm,矩形绕它的一条边CD旋转形成一个圆柱.设矩形的一边AB的长为xcm(x>0),旋转形成的圆柱的侧面积为Scm2.(1)用含x的式子表示:矩形的另一边BC的长为(18﹣x)cm,旋转形成的圆柱的底面圆的周长为2π(18﹣x)cm;(2)求S关于x的函数解析式及自变量x的取值范围;(3)求当x取何值时,矩形旋转形成的圆柱的侧面积最大;(4)若矩形旋转形成的圆柱的侧面积等于18πcm2,则矩形的长是(9+6)cm,宽是(9﹣6)cm.解:(1)BC=(36﹣2x)=(18﹣x)cm,旋转形成的圆柱的底面圆的周长为2π(18﹣x)cm.故答案为:(18﹣x),2π(18﹣x).(2)S=2π(18﹣x)•x=﹣2πx2+36πx(0<x<18).(3)∵S=﹣2πx2+36πx=﹣2π(x﹣9)2+162π,又∵﹣2π<0,∴x=9时,S有最大值.(4)由题意:﹣2πx2+36πx=18π,∴x2﹣18x+9=0,解得x=9+6或9﹣6(舍弃),∴矩形的长是(9+6)cm,宽是(9﹣6)cm.故答案为:(9+6),(9﹣6).24.在△ABC中,∠ACB=90°,CA=CB=2,点P是边AB的中点,连接CP.(1)如图①,∠B的大小=45(度),AB的长=2,CP的长=;(2)延长BC至点O,使OC=2BC,将△ABC绕点O逆时针旋转α(0°<α<180°)得到△A'B'C',点A,B,C,P的对应点分别为A',B',C',P'.①图②,当α=30°时,求点C′到直线OB的距离及点C'到直线AB的距离;②当C′P'与△ABC的一条边平行时,求点P'到直线AC的距离(直接写出结果即可).解:(1)在△ABC中,∠ACB=90°,CA=CB=2,∴∠B=∠A=45°,∵sin B==,∴AB=2,∵点P是边AB的中点,∴CP==,故答案为45,2,.(2)①过点C′作C′D⊥OB,垂足为点D,过点C′作C′E⊥AB,交BA的延长线于点E,连接AC′,∵将△ABC绕点O逆时针旋转a得到△A′B′C′,∴OC′=OC=2BC=2×2=4,在R△OC′D中,∠O=30°,∴C′D=OC′=×4=2,∴点C′到直线OB的距离为2,OD===2;∵C′D⊥OB,∠ACB=90°,∴∠C′DB=∠ACB=90°,∴AC∥C′D,∵C′D=2,AC=2,C′D=AC,∴四边形C′DCA是平行四边形,∴C′A=DC=OC﹣OD=4﹣2,C′A∥DC,∴∠EAC'=∠B=45°,∠EC′A=90°﹣∠EAC′=90°﹣45°=45°,∴∠EAC′=∠EC′A∴C′E=AE,在Rt△AC′E中,∵C′E2+AE2=C′A2,∴C′E2=,∴C′E=C′A=(4﹣2)=2﹣.∴点C′到直线AB的距离为2﹣;②如图③﹣1中,当P′C′∥AC时,延长P′C′交OB于H.∵P′H∥AC,∴∠OHC′=∠ACO=90°,∵∠OC′H=∠B′C′P′=45°,∴OH=OC′•cos45°=2,∴CH=OC﹣OH=4﹣2.∴点P'到直线AC的距离为4﹣2.如图③﹣2中,如图当P′C′∥AB时,过点P′作P′H⊥OB交BO的延长线于H,交A′C′于T.由题意四边形OHTC′是矩形,OH=C′T=1,∴CH=OC+OH=1+4=5,∴点P'到直线AC的距离为5.如图③﹣3中,当P′C′∥BC时,延长B′A′交BO于H,可得OH=OB′•cos45°=3,∴CH=3+4,∴点P'到直线AC的距离为4+3.综上所述,点P'到直线AC的距离为4﹣2或4+3或5.25.如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,AB ∥x轴,∠ABC=135°,且AB=4.(1)当m=1时,求抛物线的顶点坐标;(2)求点C到直线AB的距离(用含a的式子表示);(3)若点C到直线AB的距离为1,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.解:(1)当m=1时,抛物线的解析式为y=ax2﹣2ax+a﹣3,∵y=ax2﹣2ax+a﹣3=a(x﹣1)2﹣3,∴顶点坐标为(1,﹣3);(2)如图,过点C作CD⊥AB,交AB的延长线于D,∵∠ABC=135°,∴∠CBD=45°,∵CD⊥AD,∴∠DBC=∠DCB=45°,∴BD=CD,∵y=ax2﹣2amx+am2+2m﹣5=a(x﹣m)2+2m﹣5,∴顶点坐标为(m,2m﹣5),∵AB=4,∴点B的横坐标为m+2,∵点B在抛物线y=a(x﹣m)2+2m﹣5上,∴y=a(m+2﹣m)2+2m﹣5=4a+2m﹣5,∴点B(m+2,4a+2m﹣5),设点C到直线AB的距离为d,∴BD=CD=d,∴点C(m+2+d,4a+2m﹣5﹣d),∵点C在抛物线y=a(x﹣m)2+2m﹣5上,∴4a+2m﹣5﹣d=,a(m+2+d﹣m)2+2m﹣5,整理得:ad2+4ad+d=0,∵d≠0,∴d=﹣,∴点C到直线AB的距离为﹣;(3)∵点C到直线AB的距离为1,∴﹣=1,∴a=﹣,∴抛物线的解析式为y=﹣(x﹣m)2+2m﹣5.分三种情况考虑:①当m>2m﹣2,即m<2时,有﹣(2m﹣2﹣m)2+2m﹣5=2,整理,得:m2﹣14m+39=0,解得:m1=7﹣(舍去),m2=7+(舍去);②当2m﹣5≤m≤2m﹣2,即2≤m≤5时,有2m﹣5=2,解得:m=;③当m<2m﹣5,即m>5时,有﹣(2m﹣5﹣m)2+2m﹣5=2,整理,得:m2﹣20m+60=0,解得:m3=10﹣2(舍去),m4=10+2.综上所述:m的值为或10+2.。

2020-2021学年天津市河西区九年级(上)期末数学试卷

2020-2021学年天津市河西区九年级(上)期末数学试卷

2020-2021学年天津市河西区九年级(上)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)已知⊙O的半径为10cm,点M到圆心O的距离为10cm,则该点M与⊙O的位置关系为()A.点M在圆内B.点M在圆上C.点M在圆外D.无法判断2.(3分)如图,五角星的五个顶点等分圆周,把这个图形绕着圆心顺时针旋转一定的角度后能与自身重合,那么这个角度至少为()A.60°B.72°C.75°D.90°3.(3分)下列图案中,可以看作是中心对称图形的是()A.B.C.D.4.(3分)下列多边形一定相似的是()A.两个平行四边形B.两个菱形C.两个矩形D.两个正方形5.(3分)下列说法错误的是()A.已知圆心和半径可以作一个圆B.经过一个已知点A的圆能作无数个C.经过两个已知点A,B的圆能作两个D.经过不在同一直线上的三个点A,B,C只能作一个圆6.(3分)已知△ABC和△DEF的相似比是1:2,则△ABC和△DEF的面积比是()A.2:1B.1:2C.4:1D.1:47.(3分)当x≥2时,二次函数y=x2﹣2x﹣3有()A.最大值﹣3B.最小值﹣3C.最大值﹣4D.最小值﹣48.(3分)如图,已知⊙O上三点A,B,C,半径OC=1,∠ABC=30°,切线P A交OC 延长线于点P,则P A的长为()A.2B.C.D.9.(3分)如图,在平行四边形ABCD中,点E是边AD的中点,EC交对角线BD于点F ,则EF:FC等于()A.3:2B.3:1C.1:1D.1:210.(3分)一个圆锥的底面半径r=10,高h=20,则这个圆锥的侧面积是()A.100πB.200πC.100πD.200π11.(3分)如图,将△ABC绕点A按逆时针方向旋转100°,得到△AB1C1,若点B1在线段BC的延长线上,则∠BB1C1的大小为()A.70°B.84°C.80°D.86°12.(3分)二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣1,n),其部分图象如图所示.以下结论错误的是()A.abc>0B.4ac﹣b2<0C.3a+c>0D.关于x的方程ax2+bx+c=n+1无实数根二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)点(3,﹣2)关于原点的对称点的坐标为.14.(3分)抛物线y=x2+2x﹣3与y轴的交点为.15.(3分)一个质地均匀的小正方体,六个面分别标有数字“1”、“2”、“3”、“4”、“5”、“6”,掷一次小正方体后,观察朝上一面的数字出现偶数的概率是.16.(3分)如图,铁道路口的栏杆短臂长1m,长臂长16m,当短臂端点下降0.5m时,长臂端点升高为.(杆的宽度忽略不计)17.(3分)如图,菱形ABCD的边长为10,面积为80,∠BAD<90°,⊙O与边AB,AD 都相切,菱形的顶点A到圆心O的距离为5,则⊙O的半径长等于.18.(3分)如图,在每个小正方形的边长为1的网格中,矩形ABCD的四个顶点均在格点上,连接对角线BD.(Ⅰ)对角线BD的长等于;(Ⅱ)将矩形ABCD绕点A顺时针旋转,使得点B的对应点B′恰好落在对角线BD上,得到矩形AB′C′D′.请用无刻度的直尺,画出矩形AB′C′D′,并简要说明这个矩形的各个顶点是如何找到的(不要求证明).三、解答题(本大题共7小题,共66分。

2023届天津市五区县数学九上期末综合测试试题含解析

2023届天津市五区县数学九上期末综合测试试题含解析

2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(每小题3分,共30分)1.关于x 的方程22370x x +-=的根的情况,正确的是( ).A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根2.如图,已知△ABC 的三个顶点均在格点上,则cosA 的值为( )A .33B .55C .233D .2553.如图,二次函数y =ax 2+bx+c 的图象与x 轴相交于A 、B 两点,C(m ,﹣3)是图象上的一点,且AC ⊥BC ,则a 的值为( )A .2B .12C .3D .134.如果某人沿坡度为3 : 4的斜坡前进10m ,那么他所在的位置比原来的位置升高了( )A .6mB .8mC .10mD .12m5.将抛物线y =(x -3)2-2向左平移( )个单位后经过点A (2,2)A .1B .2C .3D .46.﹣2019的倒数的相反数是( )A .﹣2019B .12019-C .12019D .20197.寒假即将来临,小明要从甲、乙、丙三个社区中随机选取一个社区参加综合实践活动,那么小明选择到甲社区参加实践活动的可能性为( ) A .12 B .13 C .14 D .198.若x =2是关于x 的一元二次方程x 2﹣ax =0的一个根,则a 的值为( )A .1B .﹣1C .2D .﹣29.如图,立体图形的俯视图是( )A .B .C .D .10.如图,AB 是⊙O 的直径,CD 是⊙O 的弦,如果∠ACD =34°,那么∠BAD 等于( )A .34°B .46°C .56°D .66°二、填空题(每小题3分,共24分)11.如图,点B C 、把弧AD 分成三等分,ED 是⊙O 的切线,过点B C 、分别作半径OA OB 、的垂线段,已知45E ∠=,2OD =,则图中阴影部分的面积是________.12.如图,△ABC 是等腰直角三角形,BC 是斜边,将△ABP 绕点A 逆时针旋转后,能与△ACP ′重合,如果AP =3,那么PP ′=______.13.如图,矩形OABC 的面积为1003,它的对角线OB 与双曲线k y x=相交于点D ,且:5:3OB OD =,则k =________.14.如图,圆锥的表面展开图由一扇形和一个圆组成,已知圆的面积为100π,扇形的圆心角为120°,这个扇形的面积为 .15.如图,在Rt ABC ∆中,90ACB ∠=︒,CD 是AB 边上的中线,5CD =,则AB 的长是__________.16.用一个半径为10的半圆,围成一个圆锥的侧面,该圆锥的底面圆的半径为_____.17.如图,D 是△ABC 的边AC 上的一点,连接BD ,已知∠ABD=∠C ,AB=6,AD=4,求线段CD 的长.18.如图,AB 是⊙O 的直径,BC 是⊙O 的弦.若∠OBC =60°,则∠BAC=__.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,已知点B(-4,2),BA⊥x轴于A.(1)画出将△OAB绕原点旋转180°后所得的△OA1B1 ,并写出点B1 的坐标;(2)将△OAB平移得到△O2A2B2,点A的对应点是A2 (-2,4),点B的对应点B2 ,在坐标系中画出△O2A2B2;并写出B2的坐标;(3)△OA1B1与△O2A2B2成中心对称吗?若是,请直接写出对称中心点P的坐标.20.(6分)阅读以下材料,并按要求完成相应地任务:莱昂哈德·欧拉(Leonhard Euler)是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理,下面是欧拉发现的一个定理:在△ABC中,R和r分别为外接圆和内切圆的半径,O和I分别为其外心和内心,则222OI R Rr=-.如图1,⊙O和⊙I分别是△ABC的外接圆和内切圆,⊙I与AB相切分于点F,设⊙O的半径为R,⊙I的半径为r,外心O(三角形三边垂直平分线的交点)与内心I(三角形三条角平分线的交点)之间的距离OI=d,则有d2=R2﹣2Rr.下面是该定理的证明过程(部分):延长AI交⊙O于点D,过点I作⊙O的直径MN,连接DM,AN.∵∠D=∠N,∠DMI=∠NAI(同弧所对的圆周角相等),∴△MDI∽△ANI,∴IM ID IA IN=,∴IA ID IM IN ⋅=⋅①,如图2,在图1(隐去MD ,AN)的基础上作⊙O 的直径DE ,连接BE ,BD ,BI ,IF ,∵DE 是⊙O 的直径,∴∠DBE=90°,∵⊙I 与AB 相切于点F ,∴∠AFI=90°,∴∠DBE=∠IFA ,∵∠BAD=∠E(同弧所对圆周角相等),∴△AIF ∽△EDB , ∴IA IF DE BD=,∴IA BD DE IF ⋅=⋅②, 任务:(1)观察发现:IM R d =+,IN = (用含R ,d 的代数式表示);(2)请判断BD 和ID 的数量关系,并说明理由;(3)请观察式子①和式子②,并利用任务(1),(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;(4)应用:若△ABC 的外接圆的半径为5cm ,内切圆的半径为2cm ,则△ABC 的外心与内心之间的距离为 cm.21.(6分)如图,Rt ABC ∆中,90C ∠=︒,15AC =,面积为1.(1)尺规作图:作C ∠的平分线交AB 于点D ;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,求出点D 到两条直角边的距离.22.(8分)如图,直线y =﹣x+m 与抛物线y =ax 2+bx 都经过点A (6,0),点B ,过B 作BH 垂直x 轴于H ,OA =3OH .直线OC 与抛物线AB 段交于点C .(1)求抛物线的解析式;(2)当点C 的纵坐标是52时,求直线OC 与直线AB 的交点D 的坐标; (3)在(2)的条件下将△OBH 沿BA 方向平移到△MPN ,顶点P 始终在线段AB 上,求△MPN 与△OAC 公共部分面积的最大值.23.(8分)如图(1),某数学活动小组经探究发现:在⊙O 中,直径AB 与弦CD 相交于点P,此时PA·PB=PC·PD(1)如图(2),若AB 与CD 相交于圆外一点P, 上面的结论是否成立?请说明理由.(2)如图(3),将PD 绕点P 逆时针旋转至与⊙O 相切于点C, 直接写出PA 、PB 、PC 之间的数量关系.(3)如图(3),直接利用(2)的结论,求当 PC= 3 ,PA=1时,阴影部分的面积. 24.(8分)24425x x +=+25.(10分)在一个不透明的盒子里,装有四个分别标有数字2、3、4、6的乒乓球,它们的形状、大小、颜色、质地完全相同,耀华同学先从盒子里随机取出一个小球,记为数字x ,不放回,再由洁玲同学随机取出另一个小球,记为数字y ,(1)用树状图或列表法表示出坐标(x ,y)的所有可能出现的结果;(2)求取出的坐标(x ,y)对应的点落在反比例函数y =12x图象上的概率. 26.(10分)在ABC ∆中,AB=6,BC=4,B 为锐角且cosB 12=.(1)求∠B 的度数.(2)求ABC ∆的面积.(3)求tanC .参考答案一、选择题(每小题3分,共30分)1、A【分析】根据一元二次方程根的判别式,即可得到方程根的情况.【详解】解:∵22370x x +-=,∴2342(7)956650∆=-⨯⨯-=+=>,∴原方程有两个不相等的实数根;故选择:A.【点睛】本题考查了一元二次方程根的判别式,解题的关键是熟练掌握根的判别式.2、D【详解】过B 点作BD ⊥AC ,如图,由勾股定理得,AB=221310+=,AD=222222+=,cosA=AD AB =2210=255, 故选D .3、D【分析】在直角三角形ABC 中,利用勾股定理AD 2+DC 2+CD 2+BD 2=AB 2,即m 2﹣m (x 1+x 2)+18+x 1x 2=0;然后根据根与系数的关系即可求得a 的值.【详解】过点C作CD⊥AB于点D.∵AC⊥BC,∴AD2+DC2+CD2+BD2=AB2,设ax2+bx+c=0的两根分别为x1与x2(x1≤x2),∴A(x1,0),B(x2,0).依题意有(x1﹣m)2+9+(x2﹣m)2+9=(x1﹣x2)2,化简得:m2﹣m(x1+x2)+9+x1x2=0,∴m2ba+m+9ca+=0,∴am2+bn+c=﹣9a.∵(m,﹣3)是图象上的一点,∴am2+bm+c=﹣3,∴﹣9a=﹣3,∴a13 =.故选:D.【点睛】本题是二次函数的综合试题,考查了二次函数的性质和图象,解答本题的关键是注意数形结合思想.4、A【解析】设斜坡的铅直高度为3x,水平距离为4x,然后根据勾股定理求解即可.【详解】设斜坡的铅直高度为3x,水平距离为4x,由勾股定理得9x2+16x2=100,∴x=2,∴3x=6m.故选A.【点睛】此题主要考查坡度坡角及勾股定理的运用,需注意的是坡度是坡角的正切值,是铅直高度h和水平宽l的比,我们把斜坡面与水平面的夹角叫做坡角,若用α表示坡角,可知坡度与坡角的关系是tan h i lα==. 5、C 【分析】直接利用二次函数平移规律结合二次函数图像上点的性质进而得出答案.【详解】解:∵将抛物线()232y x =--向左平移后经过点()2,2A ∴设平移后的解析式为()232y x a =-+-∴()22232a =-+-∴3a =或1a =-(不合题意舍去)∴将抛物线()232y x =--向左平移3个单位后经过点()2,2A . 故选:C【点睛】本题主要考查的是二次函数图象的平移,根据平移规律“左加右减,上加下减”利用顶点的变化确定图形的变化是解题的关键.6、C【分析】先求-2019的倒数,再求倒数的相反数即可;【详解】解:﹣2019的倒数是12019-,12019-的相反数为12019, 故答案为:C .【点睛】本题考查倒数和相反数.熟练掌握倒数和相反数的求法是解题的关键.7、B【解析】由小明要从甲、乙、丙三个社区中随机选取一个社区参加综合实践活动,直接利用概率公式求解即可求得答案.【详解】解:∵小明要从甲、乙、丙三个社区中随机选取一个社区参加综合实践活动, ∴小明选择到甲社区参加实践活动的可能性为:13. 故选:B .【点睛】本题考查概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.8、C【分析】将x=2代入原方程即可求出a 的值.【详解】将x =2代入x 2﹣ax =0,∴4﹣2a =0,∴a =2,故选:C .【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.9、C【解析】找到从上面看所得到的图形即可.【详解】A 、是该几何体的主视图;B 、不是该几何体的三视图;C 、是该几何体的俯视图;D 、是该几何体的左视图.故选C .【点睛】考查了三视图的知识,掌握所看的位置,注意所有的看到的棱都应表现在视图中.10、C【解析】由AB 是⊙O 的直径,根据直径所对的圆周角是直角,可求得∠ADB =90°,又由∠ACD =34°,可求得∠ABD 的度数,再根据直角三角形的性质求出答案.【详解】解:∵AB 是⊙O 的直径,∴∠ADB =90°, ∵∠ACD =34°, ∴∠ABD =34°∴∠BAD =90°﹣∠ABD =56°, 故选:C .【点睛】此题考查了圆周角定理以及直角三角形的性质.此题比较简单,注意掌握数形结合思想的应用.二、填空题(每小题3分,共24分)11、2π 【分析】根据题意可以求出各个扇形圆心角的度数,然后利用扇形面积和三角形的面积公式即可求出阴影部分的面积.【详解】解:∵ED 是⊙O 的切线,45E ∠=︒,∴90,45ODE DOC ∠=︒∠=︒,∵点B C 、把弧AD 分成三等分,45AOB BOC DOC ∴∠=∠=∠=︒,2OB OC OD ===, ∴2OG BG OF CF ==== ,2245211452222222360223602S πππ⨯⨯∴=⨯-⨯⨯⨯+⨯⨯-=阴影 . 故答案为:2π.【点睛】本题主要考查扇形的面积公式和等腰直角三角形的性质,掌握扇形的面积公式是解题的关键.12、32【分析】根据旋转的性质,可得∠BAC =∠PAP′=90°,AP =AP′,故△APP′是等腰直角三角形,由勾股定理得PP′的大小.【详解】解:根据旋转的性质,可得∠BAC =∠PAP′=90°,AP =AP′,∴△APP′是等腰直角三角形,由勾股定理得PP′=2222'3332AP AP .故答案为32.【点睛】本题考查了图形的旋转变化,旋转得到的图形与原图形全等,解答时要分清旋转角和对应线段.13、12【解析】试题分析:由题意,设点D 的坐标为(x ,y ),则点B 的坐标为(,),所以矩形OABC 的面积,解得∵图象在第一象限, ∴. 考点:反比例系数k 的几何意义点评:反比例系数k 的几何意义是初中数学的重点,是中考常见题,一般难度不大,需熟练掌握.14、300π【解析】试题分析:首先根据底面圆的面积求得底面的半径,然后结合弧长公式求得扇形的半径,然后利用扇形的面积公式求得侧面积即可.∵底面圆的面积为100π, ∴底面圆的半径为10,∴扇形的弧长等于圆的周长为20π,设扇形的母线长为r , 则120180r π=20π, 解得:母线长为30,∴扇形的面积为πrl=π×10×30=300π 考点:(1)、圆锥的计算;(2)、扇形面积的计算15、10【分析】根据直角三角形斜边中线等于斜边的一半直接求解即可.【详解】解:∵在Rt ABC ∆中,90ACB ∠=︒,CD 是AB 边上的中线 ∴12CD AB = ∴AB=2CD=10故答案为:10【点睛】本题考查直角三角形斜边中线等于斜边的一半,掌握直角三角形的性质是本题的解题关键.16、5【解析】试题解析:∵半径为10的半圆的弧长为:12×2π×10=10π ∴围成的圆锥的底面圆的周长为10π设圆锥的底面圆的半径为r ,则2πr=10π解得r=517、1.【分析】由已知角相等,加上公共角,得到三角形ABD 与三角形ACB 相似,由相似得比例,将AB 与AD 长代入即可求出CD 的长.【详解】在△ABD 和△ACB 中,∠ABD=∠C ,∠A=∠A ,∴△ABD ∽△ACB ,∴AB AD AC AB=,∵AB=6,AD=4,∴23694ABACAD===,则CD=AC﹣AD=9﹣4=1.【点睛】考点:相似三角形的判定与性质.18、30°【分析】根据AB是⊙O的直径可得出∠ACB=90°,再根据三角形内角和为180°以及∠OBC=60°,即可求出∠BAC 的度数.【详解】∵AB是⊙O的直径,∴∠ACB=90°,又∵∠OBC=60°,∴∠BAC=180°-∠ACB-∠ABC=30°.故答案为:30°.【点睛】本题考查了圆周角定理以及角的计算,解题的关键是找出∠ACB=90°.本题属于基础题,难度不大,解决该题型题目时,找出直径所对的圆周角为90°是关键.三、解答题(共66分)19、(1)图见解析,B1(4,-2);(2)△图见解析,B2(-2,6)(3)△OA1B1与△O2A2B2成中心对称,对称中心P的坐标是(1,2).【分析】(1)找出点A,点B关于原点O的对称点A1,B1,顺次连接起来即可;(2)找出点A,点B,点O的对应点,顺次连接起来即可;(3)根据中心对称图形的性质,找出对称中心P,写出坐标,即可.【详解】(1)△OA1B1如图所示;B1(4,-2);(2)△OA2B2如图所示;B2(-2,6);(3)△OA1B1与△O2A2B2成中心对称,对称中心P的坐标是(1,2)【点睛】本题主要考查图形变换和坐标,熟练掌握平变换和旋转变换的性质,是解题的关键.20、 (1)R-d ;(2)BD=ID ,理由见解析;(3)见解析;5【解析】(1)直接观察可得;(2)由三角形内心的性质可得∠BAD=∠CAD ,∠CBI=∠ABI ,由圆周角定理可得∠DBC=∠CAD ,再根据三角形外角的性质即可求得∠BID=∠DBI ,继而可证得BD=ID ;(3)应用(1)(2)结论即可;(4)直接代入结论进行计算即可.【详解】(1)∵O 、I 、N 三点共线,∴OI+IN =ON ,∴IN =ON ﹣OI =R ﹣d ,故答案为:R ﹣d ;(2)BD=ID ,理由如下:∵点I 是△ABC 的内心,∴∠BAD=∠CAD ,∠CBI=∠ABI ,∵∠DBC=∠CAD ,∠BID=∠BAD+∠ABI ,∠DBI=∠DBC+∠CBI ,∴∠BID=∠DBI ,∴BD=ID ;(3)由(2)知:BD=ID ,又IA ID IM IN ⋅=⋅,IA BD DE IF ⋅=⋅,∴DE·IF=IM·IN , ∴2()()Rr R d R d =+-,∴222R d Rr -=∴222d R Rr =-;(4)由(3)知:222d R Rr =-,把R=5,r=2代入得:2252525d =-⨯⨯=,∵d>0, ∴5d =, 故答案为:5.【点睛】本题是圆综合题,主要考查了三角形外接圆、外心和内切圆、内心,圆周角性质,角平分线定义,三角形外角性质等,综合性较强,熟练掌握相关知识是解题的关键.21、(1)见解析;(2)607【分析】(1)利用尺规作图的步骤作出∠ACB 的平分线交AB 于点D 即可;(2)作DE AC ⊥于E ,DF BC ⊥于F,根据面积求出BC 的长.法一:根据角平分线的性质得出DE=DF ,从而得出四边形CEDF 为正方形.再由BDF BAC ∆∆∽,得出DF BF AC BC=,列方程可以求出结果;法二:根据150∆∆+=BCD ACD S S ,利用面积法可求得DE,DF 的值.【详解】解:(1)∠ACB 的平分线CD 如图所示:(2)已知15AC =,面积为1,∴20BC =.法一:作DE AC ⊥,DF BC ⊥,∵CD 是ACB ∠角平分线,∴DF DE =,90DFC DEC ∠=∠=︒,而90ACB ∠=︒,∴四边形CEDF 为正方形.设DF 为x ,则由DF AC ,∴BDF BAC ∆∆∽,∴DF BF AC BC =. 即201520x x -=,得607x =. ∴点D 到两条直角边的距离为607. 法二:150∆∆+=BCD ACD S S , 即15022⋅⋅+=BC DF DE AC , 又由(1)知AC=15,BC=20, ∴201515022DF DF +=, ∴607=DF . 故点D 到两条直角边的距离为607. 【点睛】本题考查了尺规作图,角平分线的性质,直角三角形的面积等知识,解题的关键是熟练掌握基本性质,属于中考常考题型.22、(1)y =-12x 2+3x ;(2)(4,2);(3)32【分析】(1)先求出直线AB 的解析式,求出点B 坐标,再将A ,B 的坐标代入y =ax 2+bx 即可;(2)求出直线AC 的解析式,再联立直线OC 与直线AB 的解析式即可;(3)设PM 与OC 、PA 分别交于G 、H ,PN 与OC 、OA 分别交于K 、F ,分别求出直线OB ,PM ,OC 的解析式,再分别用含a 的代数式表示出H ,G ,E ,F 的坐标,最后分情况讨论,可求出△MPN 与△OAC 公共部分面积的最大值.【详解】解:(1)∵直线y =﹣x+m 点A (6,0),∴﹣6+m =0,∴m =6,∴y AB =﹣x+6,∵OA =3OH ,∴OH =2,在y AB =﹣x+6中,当x =2时,y =4,∴B (2,4),将A (6,0),B (2,4)代入y =ax 2+bx ,得,3660 424a ba b+=⎧⎨+=⎩,解得,a=﹣12,b=3,∴抛物线的解析式为y=-12x2+3x;(2)∵直线OC与抛物线AB段交于点C,且点C的纵坐标是52,∴52=﹣12x2+3x,解得,x1=1(舍去),x2=5,∴C(5,52),设y OC=kx,将C(5,52)代入,得,k=12,∴y OC=12x,联立612y xy x=-+⎧⎪⎨=⎪⎩,解得,x=4,y=2,∴点D的坐标为(4,2);(3)设直线OB的解析式为y OB=mx,点P坐标为(a,﹣a+6),将点B(2,4)代入,得,m=2,∴y OB=2x,由平移知,PM∥OB,∴设直线PM的解析式为y PM=2x+n,将P(a,﹣a+6)代入,得,﹣a+6=2a+n,∴n=6﹣3a,∴y PM=2x+6﹣3a,设PM与OC、PA分别交于G、H,PN与OC、OA分别交于K、F,联立12263y xy x a ⎧=⎪⎨⎪=+-⎩,解得,x=2a﹣4,y=a﹣2,∴G(2a﹣4,a﹣2),y G=a﹣2,在y PM=2x+6﹣3a中,当y=0时,x=33 2a-,∴E(332a-,0),OE=332a-,∵点P的横坐标为a,∴K(a,12a),F(a,0),∴OF=a,KF=12 a,设△MPN与△OAC公共部分面积为S,①当0≤a<4时,S=S△OFK﹣S△OEG,=12×a×12a﹣12(332a-)(a﹣2),=﹣12a2+3a﹣3=﹣12(a﹣3)2+32,∵﹣12<0,根据二次函数的图象及性质可知,∴当a=3时S有最大值32;②当4≤a≤6时,S =S △PEF =12EF•PF =12(a ﹣32a+3)(﹣a+6) =21394a a -+ =21(6)4a -, ∵104>,根据二次函数的图象及性质知,当a =4时,S 有最大值1; ∵312> ∴△MPN 与△OAC 公共部分面积的最大值为32. 【点睛】本题考查了待定系数法求函数解析式,一次函数交点问题,图形平移,二次函数综合最值,解决本题的关键是正确理解题意,熟练运用待定系数法求函数解析式,熟练掌握函数交点问题的解法步骤,要与方程相结合,对于求图形面积最值问题转化为二次函数最值问题,万熟练掌握二次函数的性质.23、(1)成立,理由见解析;(2)2P C PA PB =⋅;(3)36π【分析】(1)连接AD 、BC ,得到∠D=∠B ,可证△PAD ∽△PCB ,即可求解;(2)根据(1)中的结论即可求解;(3)连接OC ,根据 2P C PA PB =⋅3 ,PA=1求出PB=3 , AO=CO=1,PO=2 利用CO 1sin 2CPO PO ∠==,得到∆AOC 为等边三角形,再分别求出AOC S 扇形,S AOC ∆即可求解.【详解】解:(1)成立理由如下:如图,连接AD 、BC则∠D=∠B∵∠P=∠P∴△PAD ∽△PCB ∴PA PC =PD PB∴PA· PB=PC·PD(2)当PD 与⊙O 相切于点C 时, PC=PD ,由(1)得PA·PB=PC·PD ∴2P C PA PB =⋅(3)如图,连接OC2P C PA PB =⋅3 ,PA=1∴PB=3 , AO=CO=1,PO=2 PC 与 ⊙O 相切于点C∴ ∆PCO 为直角三角形 ∴CO 1sin 2CPO PO ∠==, ∴30,60CPO COP ∠=︒∠=︒ ∆AOC 为等边三角形 AOC S =扇形2601360π⨯⨯=6π S AOC ∆=1312⨯= 3AOC AOC S S S ∆=-阴影扇形=6π【点睛】此题主要考查圆内综合问题,解题的关键是熟知相似三角形的判定与性质、切线的性质及扇形面积的求解公式. 24、1273x x ==-,【分析】移项,利用配方法解方程即可. 【详解】移项得:24425x x -+=, 配方得:2(2)25x -=, ∴25x ,∴1273x x ==-,. 【点睛】本题主要考查了解一元二次方程-配方法,正确应用完全平方公式是解题关键. 25、(1)见解析;(2)13【分析】(1)首先根据题意列出表格,然后由表格求得所有等可能的结果; (2)由(1)中的列表求得点(x ,y )落在反比例函数y =12x的图象上的情况,再利用概率公式即可求得答案. 【详解】(1)列表如下则共有12种可能的结果;(2)各取一个小球所确定的点(x ,y )落在反比例函数y =12x的图象上的有(6,2),(4,3), (3,4),(2,6)四种情况, ∴点(x ,y )落在反比例函数y =12x 的图象上的概率为412=13. 【点睛】本题考查了列表法或树状图法求概率,反比例函数图象上点的坐标特征.用到的知识点为:概率=所求情况数与总情况数之比.26、(1)60°;(2)63;(3)33【解析】(1)直接利用三角函数值,即可求出∠B的度数;(2) 过A作AD⊥BC于D,根据cosB12=,可求出BD的值,利用勾股定理可求出AD的值,即可求得ABC∆的面积;(3)利用正切概念即可求得tanC的值;【详解】解:(1)∵B为锐角且cosB12 =,∴∠B=60°;(2)如图,过A作AD⊥BC于D,在Rt ABD中,cosB1=2 BDAB=,∵AB=6,∴BD=3,∴33 AD=∴1143363 22ABCS BC AD=⨯⨯=⨯⨯=(3)∵BD=3,BC=4,∴CD=1,∴在Rt ACD中,tanC3=3133 ADCD==【点睛】本题考查了三角函数的定义及性质,掌握三角函数的性质是解题的关键.。

2022-2023学年天津市部分区(蓟州区)九年级数学第一学期期末教学质量检测试题含解析

2022-2023学年天津市部分区(蓟州区)九年级数学第一学期期末教学质量检测试题含解析

2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p (kPa )是气体体积V (3m )的反比例函数,其图象如图所示,当气球内的气压大于120kPa 时,气球将会爆炸,为了安全起见,气球的体积应( )A .不小于35m 4B .大于35m 4C .不小于35m 4D .小于35m 42.如图,△ABC 中,D 是AB 的中点,DE ∥BC ,连结BE ,若S △DEB =1,则S △BCE 的值为( )A .1B .2C .3D .43.如图,AB 切⊙O 于点B ,C 为⊙O 上一点,且OC ⊥OA ,CB 与OA 交于点D ,若∠OCB =15°,AB =23,则⊙O 的半径为( )A 3B .2C .3D .44.如图,在Rt ABC ∆中, 90BAC =︒∠,45ACB ∠=︒,22AB =点P 为BC 上任意一点,连结PA ,以PA ,PC为邻边作平行四边形PAQC ,连结PQ ,则PQ 的最小值为( )A .2B .2C .22D .45.如图,在平面直角坐标系中,点A 在函数()30y x x=>的图象上,点B 在函数()0k y x x =<的图象上,AB y ⊥轴于点C .若3AC BC =,则k 的值为( )A .1-B .1C .2-D .26.已知点C 在线段AB 上(点C 与点A 、B 不重合),过点A 、B 的圆记作为圆1O ,过点B 、C 的圆记作为圆2O ,过点C 、A 的圆记作为圆3O ,则下列说法中正确的是( )A .圆1O 可以经过点CB .点C 可以在圆1O 的内部 C .点A 可以在圆2O 的内部D .点B 可以在圆3O 的内部7.如图,这个几何体的左视图是( )A .B .C .D .8.如图,是由一些相同的小正方形围成的立方体图形的三视图,则构成这种几何体的小正方形的个数是()A .4B .6C .9D .129.将抛物线y =2x 2经过怎样的平移可得到抛物线y =2(x +3)2+4( )A .先向左平移3个单位,再向上平移4个单位B .先向左平移3个单位,再向下平移4个单位C .先向右平移3个单位,再向上平移4个单位D .先向右平移3个单位,再向下平移4个单位10.下列手机软件图标中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .11.下列所给图形是中心对称图形但不是轴对称图形的是( )A .B .C .D .12.关于x 的方程x 2﹣mx+6=0有一根是﹣3,那么这个方程的另一个根是( )A .﹣5B .5C .﹣2D .2二、填空题(每题4分,共24分)13.已知扇形的面积为3πcm 2,半径为3cm ,则此扇形的圆心角为_____度.14.已知p ,q 都是正整数,方程7x 2﹣px+2009q =0的两个根都是质数,则p+q =_____.15.如图,平行四边形,ABCD O 分别切,,CD AD BC 于点,,E F G ,连接CO 并延长交AD 于点H ,连接,AG AG 与HC 刚好平行,若4,5AB AD ==,则O 的直径为______.16.两个函数y ax b =+和c y x=(abc ≠0)的图象如图所示,请直接写出关于x 的不等式c ax b x +>的解集_______________.17.某农户2010年的年收入为4万元,由于“惠农政策”的落实,2012年年收入增加到5.8万元.设每年的年增长率x相同,则可列出方程为______.18.如图,已知AD∥BE∥CF,它们依次交直线1l、2l于点A、B、C和点D、E、F.如果23ABBC,DF=15,那么线段DE的长是__.三、解答题(共78分)19.(8分)如图,在矩形ABCD中,AB=6,BC=8,点E是BC边上的一个动点(不与点B.C重合),连结AE,并作EF⊥AE,交CD边于点F,连结AF.设BE=x,CF=y.(1)求证:△ABE∽△ECF;(2)当x为何值时,y的值为2;20.(8分)某商店准备进一批季节性小家电,单价40元.经市场预测,销售定价为52元时,可售出180个;定价每增加1元,销售量将减少10个.商店若准备获利2000元,则售价应定为多少?这时应进货多少个?21.(8分)如图,已知抛物线y1=x2-2x-3与x轴相交于点A,B(点A在B的左侧),与y轴相交于点C,直线y2=kx+b经过点B,C.(1)求直线BC 的函数关系式;(2)当y 1>y 2时,请直接写出x 的取值范围.22.(10分)已知关于x 的方程()22120mx m x m --+-=. (1)当m 取何值时,方程有两个不相等的实数根;(2)若1x 、2x 为方程的两个不等实数根,且满足2212122x x x x +-=,求m 的值.23.(10分)如图,∆ABD 内接于半径为5的⊙O ,连结AO 并延长交BD 于点M ,交圆⊙O 于点C ,过点A 作AE //BD ,交CD 的延长线于点E ,AB =AM .(1)求证:∆ABM ∽∆ECA .(2)当CM =4OM 时,求BM 的长.(3)当CM =kOM 时,设∆ADE 的面积为1S , ∆MCD 的面积为2S ,求12S S 的值(用含k 的代数式表示).24.(10分)周老师家的红心猕猴桃深受广大顾客的喜爱,猕猴桃成熟上市后,她记录了15天的销售数量和销售单价,其中销售单价y (元/千克)与时间第x 天(x 为整数)的数量关系如图所示,日销量P (千克)与时间第x 天(x 为整数)的部分对应值如下表所示:(1)求y 与x 的函数关系式,并写出自变量x 的取值范围;(2)从你学过的函数中,选择合适的函数类型刻画P 随x 的变化规律,请直接写出P 与x 的函数关系式及自变量x 的取值范围;(3)求出销售额W 在哪一天达到最大,最大销售额是多少元?25.(12分)先化简,再求值:2222225321x y x x y y x x y xy ⎛⎫++÷ ⎪---⎝⎭,其中12x =+,12y =-. 26.如图,在菱形ABCD 中,对角线AC 与BD 相交于点M ,已知BC =5,点E 在射线BC 上,tan ∠DCE =43,点P 从点B 出发,以每秒25个单位沿BD 方向向终点D 匀速运动,过点P 作PQ ⊥BD 交射线BC 于点O ,以BP 、BQ 为邻边构造▱PBQF ,设点P 的运动时间为t (t >0).(1)tan ∠DBE = ;(2)求点F 落在CD 上时t 的值;(3)求▱PBQF 与△BCD 重叠部分面积S 与t 之间的函数关系式;(4)连接▱PBQF 的对角线BF ,设BF 与PQ 交于点N ,连接MN ,当MN 与△ABC 的边平行(不重合)或垂直时,直接写出t 的值.参考答案一、选择题(每题4分,共48分)1、C【解析】由题意设设(0)k p V V =>,把(1.6,60)代入得到k=96,推出96(0)p V V =>,当P=120时,45V ,由此即可判断.【详解】因为气球内气体的气压p (kPa )是气体体积V (3m )的反比例函数,所以可设(0)k p V V =>,由题图可知,当 1.6V =时,60p =,所以 1.66096k =⨯=,所以96(0)p V V =>.为了安全起见,气球内的气压应不大于120kPa ,即96120V ,所以45V . 故选C.【点睛】此题考查反比例函数的应用,解题关键在于把已知点代入解析式.2、B【解析】根据三角形中位线定理和三角形的面积即可得到结论.【详解】∵D 是AB 的中点,DE ∥BC ,∴CE =AE . ∴DE =12BC , ∵S △DEB =1,∴S △BCE =2,故选:B .【点睛】本题考查了三角形中位线定理,熟练掌握并运用三角形中位线定理是解题的关键.3、B【分析】连接OB ,由切线的性质可得∠OBA=90°,结合已知条件可求出∠A=30°,因为AB 的长已知,所以⊙O 的半径可求出.【详解】连接OB ,∵AB 切⊙O 于点B ,∴OB ⊥AB ,∴∠ABO =90°,∵OC ⊥OA ,∠OCB =15°,∴∠CDO =∠ADO =75°,∵OC =OB ,∴∠C =∠OBD =15°,∴∠ABD =75°,∴∠ADB =∠ABD =75°,∴∠A =30°,∴BO=12 AO,∵AB=23,∴BO2+AB2=4OB2,∴BO=2,∴⊙O的半径为2,故选:B.【点睛】本题考查了切线的性质、等腰三角形的判定和性质以及勾股定理的运用,求出∠A=30°,是解题的关键.4、A【分析】设PQ与AC交于点O,作OP'⊥BC于P',首先求出OP',当P与P'重合时,PQ的值最小,PQ的最小值=2OP'.【详解】设PQ与AC交于点O,作OP'⊥BC于P',如图所示:在Rt△ABC中,∠BAC=90︒,∠ACB=45︒,∴22AB AC==∵四边形PAQC是平行四边形,∴122OA OC AC===∵OP'⊥BC,∠ACB=45︒,∴2sin45212OP OC=︒='=,当P与P'重合时,OP的值最小,则PQ的值最小,∴PQ 的最小值22OP ='=故选:A .【点睛】本题考查了勾股定理的运用、平行四边形的性质以及垂线段最短的性质,利用垂线段最短求线段的最小值是解题的关键.5、A【分析】设A 的横坐标为a ,则纵坐标为3a ,根据题意得出点B 的坐标为13(,)3a a -,代入y=k x (x <0)即可求得k 的值.【详解】解:设A 的横坐标为a ,则纵坐标为3a , ∵AC=3BC ,∴B 的横坐标为-13a , ∵AB ⊥y 轴于点C ,∴AB ∥x 轴,∴B (-13a ,3a ), ∵点B 在函数y=k x (x <0)的图象上,∴k=-13a ×3a =-1, 故选:A .【点睛】本题主要考查了反比例函数图象上点的坐标特征,表示出点B 的坐标是解题的关键.6、B【分析】根据已知条件确定各点与各圆的位置关系,对各个选项进行判断即可.【详解】∵点C 在线段AB 上(点C 与点A 、B 不重合),过点A 、B 的圆记作为1O∴点C 可以在圆1O 的内部,故A 错误,B 正确;∵过点B 、C 的圆记作为圆2O∴点A 可以在圆2O 的外部,故C 错误;∴点B 可以在圆3O 的外部,故D 错误.故答案为B .【点睛】本题考查了点与圆的位置关系,根据题意画出各点与各圆的位置关系进行判断即可.7、B【解析】根据三视图概念即可解题.【详解】解:因为物体的左侧高,所以会将右侧图形完全遮挡,看不见的直线要用虚线代替,故选B.【点睛】本题考查了三视图的识别,属于简单题,熟悉三视图的概念是解题关键.8、D【分析】根据三视图,得出立体图形,从而得出小正方形的个数.【详解】根据三视图,可得立体图形如下,我们用俯视图添加数字的形式表示,数字表示该图形俯视图下有几个小正方形则共有:1+1+1+2+2+2+1+1+1=12故选:D【点睛】本题考查三视图,解题关键是在脑海中构建出立体图形,建议可以如本题,通过在俯视图上标数字的形式表示立体图形帮助分析.9、A【分析】抛物线的平移问题,实质上是顶点的平移,原抛物线的顶点为(0,0),平移后的抛物线顶点为(-3,1),由顶点的平移规律确定抛物线的平移规律.【详解】抛物线y=2x2的顶点坐标为(0,0),抛物线y=2(x+3)2+1的顶点坐标为(-3,1),点(0,0)需要先向左平移3个单位,再向上平移1个单位得到点(-3,1).∴抛物线y=2x2先向左平移3个单位,再向上平移1个单位得到抛物线y=2(x+3)2+1.故选A.【点睛】在寻找图形的平移规律时,往往需要把图形的平移规律理解为某个特殊点的平移规律.10、B【解析】试题分析:A.∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故A 选项错误;B .∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故B 选项正确.C .∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故C 选项错误;D .∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,也不是轴对称图形,故B 选项错误. 考点:1.中心对称图形;2.轴对称图形.11、D【解析】A. 此图形不是中心对称图形,不是轴对称图形,故A 选项错误;B. 此图形是中心对称图形,也是轴对称图形,故B 选项错误;C. 此图形不是中心对称图形,是轴对称图形,故D 选项错误.D. 此图形是中心对称图形,不是轴对称图形,故C 选项正确;故选D.12、C【分析】根据两根之积可得答案.【详解】设方程的另一个根为a ,∵关于x 的方程x 2﹣mx+6=0有一根是﹣3,∴﹣3a =6,解得a =﹣2,故选:C .【点睛】本题主要考查了根与系数的关系,一元二次方程()200ax bx c a ++=≠的根与系数的关系:若方程两个为1x ,2x ,则12bc x x a a=-=,.二、填空题(每题4分,共24分)13、120【分析】利用扇形的面积公式:S =2360n r π计算即可. 【详解】设扇形的圆心角为n °.则有3π=23360n π⋅, 解得n =120,故答案为120【点睛】此题主要考查扇形的面积公式,解题的关键是熟知扇形的面积公式的运用.14、337【分析】利用一元二次方程根与系数的关系,得出有关p ,q 的式子,再利用两个根都是质数,可分析得出结果.【详解】解:x 1+x 2=7p , x 1x 2=20097q =287q =7×41×q , x 1和x 2都是质数,则只有x 1和x 2是7和41,而q =1,所以7+41=7p , p =336,所以p+q =337,故答案为:337.【点睛】此题考查了一元二次方程根与系数的关系以及质数的概念,题目比较典型.15、【分析】先证得四边形AGCH 是平行四边形,则AH CG =,再证得DH DC =,求得1AH =, 3DE =,证得DO ⊥HC ,根据~Rt OCE Rt DOE ,即可求得半径,从而求得结论.【详解】∵四边形ABCD 是平行四边形,∴AD ∥BC ,∵AG ∥HC ,∴四边形AGCH 是平行四边形,∴AH CG =,∵CG CE 、是⊙O 的切线,且切点为G 、E ,∴CG CE AH ==,∠GCH =∠HCD ,∵AD ∥BC ,∴∠DHC =∠GCH ,∴∠DHC =∠HCD ,∴三角形DHC 为等腰三角形,∴4DH DC AB ===,∴541AH AD DH =-=-=,∴1CE AH ==,413DE DC CE =-=-=,连接OD 、OE ,如图,∵DE DF 、是⊙O 的切线,且切点为E 、F ,∴DO 是∠FDE 的平分线,又∵DH DC =,∴DO ⊥HC,∴∠DOC =90︒,∵CD 切⊙O 于E ,∴OE ⊥CD,∵∠OCE +∠COE=90︒,∠DOE +∠COE=90︒,∴∠OCE=∠DOE ,∴~Rt OCE Rt DOE , ∴OE CE DE OE =,即13OE OE=, ∴3OE =∴⊙O 的直径为:3故答案为:23【点睛】本题考查了平行四边形的判定和性质,切线长定理,相似三角形的判定和性质,等腰三角形的判定和性质,证得DHC 为等腰三角形是解题的关键.16、30x -<<或1x >;【分析】由题意可知关于x 的不等式c ax b x+>的解集实际上就是一次函数的值大于反比例函数的值时自变量x 的取值范围,由于反比例函数的图象有两个分支,因此可以分开来考虑.【详解】解:关于x 的不等式c ax b x+>的解集实际上就是一次函数的值大于反比例函数的值时自变量x 的取值范围,观察图象的交点坐标可得:30x -<<或1x >.【点睛】本题考查一次函数的图象和性质、反比例函数的图象和性质以及一次函数、反比例函数与一次不等式的关系,理解不等式与一次函数和反比例函数的关系式解决问题的关键.17、4(1+x )2=5.1【解析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果设每年的年增长率为x ,根据“由2010年的年收入4万元增加到2012年年收入5.1万元”,即可得出方程.【详解】设每年的年增长率为x ,根据题意得:4(1+x )2=5.1.故答案为4(1+x )2=5.1.【点睛】本题考查了由实际问题抽象出一元二次方程﹣﹣增长率问题.若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为a (1±x )2=b (增长为+,下降为﹣).18、6【分析】由平行得比例,求出DE 的长即可.【详解】解:////AD BE FC ,23AB DE BC EF ∴==, 15DF =,2153DE DE ∴=-, 解得:DE 6=,故答案为:6.【点睛】此题考查了平行线分线段成比例,熟练掌握平行线分线段成比例性质是解本题的关键.三、解答题(共78分)19、(1)见解析;(2)x 的值为2或1时,y 的值为2【分析】(1)①先判断出∠BAE =∠CEF ,即可得出结论;(2)利用的相似三角形得出比例式即可建立x ,y 的关系式,代入即可;【详解】(1)证明:∵四边形ABCD 是矩形,∴∠B =∠C =90°.∵AE ⊥EF ,∴∠AEF =90°=∠B .∴∠BAE +∠AEB =90°,∠FEC +∠AEB =90°,∴∠BAE =∠CEF .又∵∠B =∠C ,∴△ABE ∽△ECF .②∵△ABE ∽△ECF . ∴AB BE EC CF=, ∵AB =1,BC =8,BE =x ,CF =y ,EC =8−x , ∴68x x y=-. ∴y =−16x 2+43x . ∵y =2,−16x 2+43x =2, 解得 x 1=2,x 2=1.∵0<x <8,∴x 的值为2或1.【点睛】此题是相似形综合题,主要考查了矩形的性质,相似三角形的判定和性质,解本题的关键是用方程的思想解决问题.20、当该商品每个单价定为50元时,进货200个;每个单价为60元时,进货100个.【解析】试题分析:利用销售利润=售价-进价,根据题中条件可以列出利润与x 的关系式,求出即可.试题解析:设每个商品的定价是x 元.由题意,得()()40[1801052]2000.x x ---=整理,得211030000.x x -+=解得125060.x x ==, 都符合题意.答:当该商品每个单价定为50元时,进货200个;每个单价为60元时,进货100个.21、(1)y=x-1;(2)当y 1>y 2时,x <0和x >1.【分析】(1)根据抛物线的解析式求出A 、B 、C 的解析式,把B 、C 的坐标代入直线的解析式,即可求出答案; (2)根据B 、C 点的坐标和图象得出即可.【详解】解:(1)抛物线y 1=x 2-2x-1,当x=0时,y=-1,当y=0时,x=1或-1,即A 的坐标为(-1,0),B 的坐标为(1,0),C 的坐标为(0,-1),把B 、C 的坐标代入直线y 2=kx+b 得:303k b b +⎧⎨-⎩==, 解得:k=1,b=-1,即直线BC 的函数关系式是y=x-1;(2)∵B 的坐标为(1,0),C 的坐标为(0,-1),如图,∴当y 1>y 2时,x 的取值范围是x <0或x >1.【点睛】本题考查了一次函数和二次函数图象上点的坐标特征、用待定系数法求一次函数的解析式和二次函数与一次函数的图象等知识点,能求出B 、C 的坐标是解此题的关键.22、(1)当14m >-且0m ≠时,方程有两个不相等的实数根;(221 【分析】(1)由方程有两个不相等的实数根,可得24b ac =-⊿>0,继而求得m 的取值范围;(2)由根与系数的关系,可得12x x +和12x x ,再根据已知得到方程并解方程即可得到答案.【详解】(1)关于x 的方程()22120mx m x m --+-= a m =,()21b m =--,2c m =-,∵方程有两个不相等的实数根,∴()()2242142b ac m m m ⎡⎤=-=----⎣⎦⊿>0, 解得:14m >-, ∵二次项系数0a ≠,∴0m ≠, ∴当14m >-且0m ≠时,方程有两个不相等的实数根; (2)∵12x x 、为方程的两个不等实数根, ∴122m 1b x x a m -+=-=,122c m x x a m -==, ∴()()222212121212322m 132m x x x x x x x x m m --⎛⎫+-=+-=-= ⎪⎝⎭,解得:11m,21m =(不合题意,舍去),∴1m =.【点睛】本题考查了根的判别式以及根与系数的关系.注意当24b ac =-⊿>0时,方程有两个不相等的两个实数根;注意若12x x 、是一元二次方程20ax bx c ++=(a ≠0)的两根时,12b x x a +=-,12c x x a=. 23、 (1)证明见解析;(2)BM =2122264S k k S k ++= 【分析】(1)利用同弧所对的圆周角相等,以及平行线的性质得出角相等,再利用两角对应相等的两个三角形相似解题.(2)连接BC 构造直角三角形,再过B 作BF ⊥AC ,利用所得到的直角三角形,结合勾股定理解题.(3)过点M 作出△MCD 的高MG , 再由//AE BD ,//MG AD 得出线段间的比例关系,从而可得出结果.【详解】解:(1)∵弧CD =弧CD ,∴MAB BDC ∠=∠.∵//AE BD ,∴E BDC ∠=∠.∴MAB E ∠=∠∵弧AD =弧AD∴ABM ACD ∠=∠∴ABM ECA(2)连接BC ,作BF AC ⊥,∵O 半径为5,∴5,5OC AO ==.∵4CM OM =,∴1,4OM CM ==,6AM =.∴6AB AM ==.由图可知AC 为直径,10AC =,得8BC =. 1122ABC S AB BC BF AC =⋅⋅=⋅⋅,解得 4.8BF =. 在Rt ABF 中,6, 4.8AB BF ==,则 3.6AF =.∴ 2.4FM =.在Rt BFM 中,1255BM =.(3)当CM k OM =⋅,即1CM k OC k =+, 22CM k AC k =+, 2AM k CM k+=, ∵//AE BD ,∴CD CM DE AM=, ∴CDM CEA .过M 作MG CE ⊥,090ADC ∠=,(以AC 为直径),可知//MG AD ,∴CM MG AC AD=. 212212222642.12AD DE S AC AM k k k k S MC CM k k k MG CD ⋅++++==⋅=⋅=⋅【点睛】此题是圆中的相似问题,一般利用两角相等证明相似,同时注意结合圆中作辅助线的技巧,构造直角三角形是解题的关键.24、(1)14y x =-+;(2)20300,(110)1001500,(1015)x x p x x +≤≤⎧=⎨-+<≤⎩(x 取整数);(3)第10天销售额达到最大,最大销售额是4500元【分析】(1)是分段函数,利用待定系数法可得y 与x 的函数关系式;(2)从表格中的数据上看,是成一次函数,且也是分段函数,同理可得p 与x 的函数关系式;(3)根据销售额=销量×销售单价,列函数关系式,并配方可得结论.【详解】解:(1)① 当15x ≤≤时,设y kx b =+(0k ≠),把点(0,14),(5,9)代入y kx b =+, 得1495b k b =⎧⎨=+⎩ ,解得:114k b =-⎧⎨=⎩ , ∴14y x =-+;②当515x <≤时,9y = ,∴14,(15)9(515)x x y x -+≤≤⎧=⎨<≤⎩,(x 取整数); (2)∴20300,(110)1001500,(1015)x x p x x +≤≤⎧=⎨-+<≤⎩(x 取整数); (3)设销售额为W 元,①当15x ≤≤时,2(14)(20300)20204200W x x x x =-++=--+=2120()42052x -++, ∴当1x =时,2120(1)420541602W =-++=最大值; ②当510x <≤时,9(20300)1802700W x x =+=+,∴当10x =时,=18010+2700=4500W ⨯最大值;③当1015x <≤时,9(1001500)90013500W x x =-+=-+,∴当11x =时,=90011135003600W -⨯+=最大值,综上所述:第10天销售额达到最大,最大销售额是4500元;【点睛】本题考查了二次函数的性质在实际生活中的应用.最大利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.25、3xy ,3-【分析】原式括号中变形后,利用同分母分式的减法法则计算,再利用除法法则变形,约分得到最简结果,把x 与y 的值代入计算即可求出值.【详解】原式()()()532x y x xy x y x y x y +-=⋅-+- ()()()()3x y xy x y x y x y +=⋅-+- 3xy =.当1x =1y =-=3×(1×(13=-. 【点睛】此题考查了分式的化简求值,以及分母有理化,熟练掌握运算法则是解本题的关键.26、(1)12;(1)t =23;(3)见解析;(4)t 的值为23或89或87或1. 【分析】(1)如图1中,作DH ⊥BE 于H .解直角三角形求出BH ,DH 即可解决问题.(1)如图1中,由PF ∥CB ,可得PF DP BC DB=,由此构建方程即可解决问题. (3)分三种情形:如图3-1中,当203t <时,重叠部分是平行四边形PBQF .如图3-1中,当213t <时,重叠部分是五边形PBQRT .如图3-3中,当1<t ≤1时,重叠部分是四边形PBCT ,分别求解即可解决问题.(4)分四种情形:如图4-1中,当MN ∥AB 时,设CM 交BF 于T .如图4-1中,当MN ⊥BC 时.如图4-3中,当MN ⊥AB 时.当点P 与点D 重合时,MN ∥BC ,分别求解即可.【详解】解:(1)如图1中,作DH ⊥BE 于H .在Rt△BCD中,∵∠DHC=90°,CD=5,tan∠DCH=43,∴DH=4,CH=3,∴BH=BC+CH=5+3=8,∴tan∠DBE=DHBH=48=12.故答案为12.(1)如图1中,∵四边形ABCD是菱形,∴AC⊥BD,∵BC=5,tan∠CBM=CMBM=12,∴CM5BM=DM=5∵PF∥CB,∴PFBC=DPDB,∴55t452545t,解得t=23.(3)如图3﹣1中,当0<t≤23时,重叠部分是平行四边形PBQF,S=PB•PQ=55=10t1.如图3﹣1中,当23<t≤1时,重叠部分是五边形PBQRT,S=S平行四边形PBQF﹣S△TRF=10t1﹣12•[15t﹣(5﹣5t)]•45[15t﹣(5﹣5t)]=﹣55t1+(105+50)t﹣15.如图3﹣3中,当1<t≤1时,重叠部分是四边形PBCT,S=S△BCD﹣S△PDT=12×5×4﹣12•(5﹣52t)•(4﹣1t)=﹣52t1+10t.(4)如图4﹣1中,当MN∥AB时,设CM交BF于T.∵PN∥MT,∴PNMT=BPBM,∴52MTt=2525t,∴MT=52,∵MN∥AB,∴MTAM=TNBN=PBPM=1,∴PB=23 BM,∴15t=23×15,∴t=23.如图4﹣1中,当MN⊥BC时,易知点F落在DH时,∵PF∥BH,∴PFBH=DPDB,∴58t452545t,解得t=89.如图4﹣3中,当MN⊥AB时,易知∠PNM=∠ABD,可得tan ∠PNM =PM PN =12, 25255t t 12, 解得t =87, 当点P 与点D 重合时,MN ∥BC ,此时t =1, 综上所述,满足条件的t 的值为23或89或87或1. 【点睛】本题属于四边形综合题,考查了菱形的性质,平行四边形的性质,平行线分线段成比例定理,解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考压轴题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021天津市九年级数学上期末模拟试卷(及答案)一、选择题1.关于x 的方程(m ﹣3)x 2﹣4x ﹣2=0有两个不相等的实数根,则实数m 的取值花围是( )A .m≥1B .m >1C .m≥1且m≠3D .m >1且m≠3 2.已知2(0)y ax bx c a =++≠的图象如图,则y ax b =+和c y x=的图象为( )A .B .C .D .3.下列智能手机的功能图标中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .4.如图,AB 是圆O 的直径,CD 是圆O 的弦,若35C ∠=︒,则ABD ∠=( )A .55︒B .45︒C .35︒D .65︒5.如图中∠BOD 的度数是( )A .150°B .125°C .110°D .55°6.下列命题错误..的是 ( ) A .经过三个点一定可以作圆B .经过切点且垂直于切线的直线必经过圆心C .同圆或等圆中,相等的圆心角所对的弧相等D .三角形的外心到三角形各顶点的距离相等7.五粮液集团2018年净利润为400亿元,计划2020年净利润为640亿元,设这两年的年净利润平均增长率为x ,则可列方程是( )A .400(1)640x +=B .2400(1)640x +=C .2400(1)400(1)640x x +++=D .2400400(1)400(1)640x x ++++=8.受益于电子商务发展和法治环境改善等多重因素,“快递业”成为我国经济的一匹“黑马”,2016年我国快递业务量为300亿件,2018年快递量将达到450亿件,若设快递量平均每年增长率为x ,则下列方程中,正确的是( )A .()3001x 450+=B .()30012x 450+=C .2300(1x)450+=D .2450(1x)300-=9.关于下列二次函数图象之间的变换,叙述错误的是( )A .将y =﹣2x 2+1的图象向下平移3个单位得到y =﹣2x 2﹣2的图象B .将y =﹣2(x ﹣1)2的图象向左平移3个单位得到y =﹣2(x+2)2的图象C .将y =﹣2x 2的图象沿x 轴翻折得到y =2x 2的图象D .将y =﹣2(x ﹣1)2+1的图象沿y 轴翻折得到y =﹣2(x+1)2﹣1的图象10.下列图标中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .11.方程x 2=4x 的解是( )A .x =0B .x 1=4,x 2=0C .x =4D .x =2 12.已知点P (﹣b ,2)与点Q (3,2a )关于原点对称点,则a 、b 的值分别是( )A .﹣1、3B .1、﹣3C .﹣1、﹣3D .1、3 二、填空题13.小明把如图所示的3×3的正方形网格纸板挂在墙上玩飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖落在阴影区域(四个全等的直角三角形的每个顶点都在格点上)的概率是______________.14.“明天的太阳从西方升起”这个事件属于________事件(用“必然”、“不可能”、“不确定”填空).15.抛物线y =(x ﹣1)2﹣2与y 轴的交点坐标是_____.16.一个扇形的圆心角为135°,弧长为3πcm ,则此扇形的面积是_____cm 2.17.△ABC 中,∠A =90°,AB =AC ,以A 为圆心的圆切BC 于点D ,若BC =12cm ,则⊙A 的半径为_____cm .18.四边形ABCD 内接于⊙O ,∠A =125°,则∠C 的度数为_____°.19.某市为了扎实落实脱贫攻坚中“两不愁、三保障”的住房保障工作,去年已投入5亿元资金,并计划投入资金逐年增长,明年将投入7.2亿元资金用于保障性住房建设,则这两年投入资金的年平均增长率为________.20.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A 、B 、C 、D 分别是“果圆”与坐标轴的交点,抛物线的解析式为y=x 2﹣6x ﹣16,AB 为半圆的直径,则这个“果圆”被y 轴截得的线段CD 的长为_____.三、解答题21.小明在解方程2210x x --=时出现了错误,其解答过程如下:解:221x x -=-(第一步)22111x x -+=-+(第二步)2(1)0x -=(第三步)121x x ==(第四步)(1)小明解答过程是从第几步开始出错的,写出错误原因.(2)请写出此题正确的解答过程.22.有四张完全相同的卡片,正面分别写有四个角度现将这四张卡片洗匀后,背面朝上;(1)若从中任意抽取一张,求抽到锐角卡片的概率;(2)若从中任意抽取两张,求抽到两张角度恰好互余卡片的概率;23.已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.24.在一个不透明的袋子中,装有除颜色外其余均相同的红、蓝两种球,已知其中红球有3个,且从中任意摸出一个是红球的概率为0.75.(1)根据题意,袋中有个蓝球.(2)若第一次随机摸出一球,不放回,再随机摸出第二个球.请用画树状图或列表法求“摸到两球中至少一个球为蓝球(记为事件A)”的概率P(A).25.为改善生态环境,建设美丽乡村,某村规划将一块长18米,宽10米的矩形场地建设成绿化广场,如图,内部修建三条宽相等的小路,其中一条路与广场的长平行,另两条路与广场的宽平行,其余区域种植绿化,使绿化区域的面积为广场总面积的80%.(1)求该广场绿化区域的面积;(2)求广场中间小路的宽.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据二次项系数非零及根的判别式列出关于m的一元一次不等式组,然后方程组即可.【详解】解:∵(m-3)x2-4x-2=0是关于x的方程有两个不相等的实数根,∴230(4)4(3)(2)0m m -≠⎧⎨∆=---⨯->⎩解得:m>1且m ≠3.故答案为D.【点睛】本题考查了根的判别式以及一元二次方程的定义,正确运用一元二次方程的定义和根的判别式解题是解答本题的关键.2.C解析:C【解析】【分析】根据二次函数y=ax 2+bx+c (a≠0)的图象可以得到a <0,b >0,c <0,由此可以判定y=ax+b 经过一、二、四象限,双曲线c y x=在二、四象限. 【详解】根据二次函数y=ax 2+bx+c (a≠0)的图象,可得a <0,b >0,c <0,∴y=ax+b 过一、二、四象限, 双曲线c y x=在二、四象限, ∴C 是正确的.故选C .【点睛】 此题考查一次函数,二次函数,反比例函数中系数及常数项与图象位置之间关系.3.C解析:C【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A 、图形既不是轴对称图形是中心对称图形,B 、图形是轴对称图形,C 、图形是轴对称图形,也是中心对称轴图形,D 、图形是轴对称图形.故选C .【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.解析:A【解析】【分析】根据同弧所对的圆周角相等可得35BAD C =∠=︒∠,再根据圆直径所对的圆周角是直角,可得90ADB ∠=︒,再根据三角形内角和定理即可求出ABD ∠的度数.【详解】∵35C ∠=︒∴35BAD C =∠=︒∠∵AB 是圆O 的直径∴90ADB ∠=︒∴18055ABD ADB BAD =︒--=︒∠∠∠故答案为:A .【点睛】本题考查了圆内接三角形的角度问题,掌握同弧所对的圆周角相等、圆直径所对的圆周角是直角、三角形内角和定理是解题的关键.5.C解析:C【解析】试题分析:如图,连接OC .∵∠BOC=2∠BAC=50°,∠COD=2∠CED=60°,∴∠BOD=∠BOC+∠COD=110°,故选C .【考点】圆周角定理.6.A解析:A【解析】选项A ,经过不在同一直线上的三个点可以作圆;选项B ,经过切点且垂直于切线的直线必经过圆心,正确;选项C ,同圆或等圆中,相等的圆心角所对的弧相等,正确;选项D ,三角形的外心到三角形各顶点的距离相等,正确;故选A.7.B解析:B【解析】【分析】根据平均年增长率即可解题.解:设这两年的年净利润平均增长率为x ,依题意得:()24001640x +=故选B.【点睛】本题考查了一元二次方程的实际应用,属于简单题,熟悉平均年增长率概念是解题关键. 8.C解析:C【解析】【分析】快递量平均每年增长率为x ,根据我国2016年及2018年的快递业务量,即可得出关于x 的一元二次方程,此题得解.【详解】快递量平均每年增长率为x ,依题意,得:2300(1x)450+=,故选C .【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 9.D解析:D【解析】【分析】根据平移变换只改变图形的位置不改变图形的形状与大小对各选项分析判断后利用排除法求解.【详解】A 选项,将y =﹣2x 2+1的图象向下平移3个单位得到y =﹣2x 2﹣2的图象,故A 选项不符合题意;B 选项,将y =﹣2(x ﹣1)2的图象向左平移3个单位得到y =﹣2(x +2)2的图象,故B 选项不符合题意;C 选项,将y =﹣2x 2的图象沿x 轴翻折得到y =2x 2的图象,故C 选项不符合题意;D 选项,将y =﹣2(x ﹣1)2+1的图象沿y 轴翻折得到y =﹣2(x +1)2+1的图象,故D 选项符合题意.故选D .【点睛】本题主要考查了二次函数图象与几何变换,熟练掌握平移变换只改变图形的位置不改变图形的形状与大小的关键.10.D解析:D试题分析:根据轴对称图形和中心对称图形的概念,可知:A既不是轴对称图形,也不是中心对称图形,故不正确;B不是轴对称图形,但是中心对称图形,故不正确;C是轴对称图形,但不是中心对称图形,故不正确;D即是轴对称图形,也是中心对称图形,故正确.故选D.考点:轴对称图形和中心对称图形识别11.B解析:B【解析】【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】x2=4x,x2﹣4x=0,x(x﹣4)=0,x﹣4=0,x=0,x1=4,x2=0,故选B.【点睛】本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.12.A解析:A【解析】【分析】让两个横坐标相加得0,纵坐标相加得0即可求得a,b的值.【详解】解:∵P(-b,2)与点Q(3,2a)关于原点对称点,∴-b+3=0,2+2a=0,解得a=-1,b=3,故选A.【点睛】用到的知识点为:两点关于原点对称,这两点的横纵坐标均互为相反数;互为相反数的两个数和为0.二、填空题13.【解析】∵阴影部分的面积=4个小正方形的面积大正方形的面积=9个小正方形的面积∴阴影部分的面积占总面积的∴飞镖落在阴影区域(四个全等的直角三角形的每个顶点都在格点上)的概率是故答案为解析:4 9【解析】∵阴影部分的面积=4个小正方形的面积,大正方形的面积=9个小正方形的面积,∴阴影部分的面积占总面积的49,∴飞镖落在阴影区域(四个全等的直角三角形的每个顶点都在格点上)的概率是4 9 .故答案为4 9 .14.不可能【解析】根据所学知识可知太阳应该从东方升起所以明天的太阳从西方升起这个事件属于不可能事件故答案为:不可能解析:不可能【解析】根据所学知识可知太阳应该从东方升起,所以”明天的太阳从西方升起”这个事件属于不可能事件,故答案为:不可能.15.(0﹣1)【解析】【分析】将x=0代入y=(x﹣1)2﹣2计算即可求得抛物线与y轴的交点坐标【详解】解:将x=0代入y=(x﹣1)2﹣2得y=﹣1所以抛物线与y轴的交点坐标是(0﹣1)故答案为:(0解析:(0,﹣1)【解析】【分析】将x=0代入y=(x﹣1)2﹣2,计算即可求得抛物线与y轴的交点坐标.【详解】解:将x=0代入y=(x﹣1)2﹣2,得y=﹣1,所以抛物线与y轴的交点坐标是(0,﹣1).故答案为:(0,﹣1).【点睛】本题考查了二次函数图象上点的坐标特征,根据y轴上点的横坐标为0求出交点的纵坐标是解题的关键.16.【解析】分析:先求出扇形对应的圆的半径再根据扇形的面积公式求出面积即可详解:设扇形的半径为Rcm∵扇形的圆心角为135°弧长为3πcm∴=3π解得:R=4所以此扇形的面积为=6π(cm2)故答案为6解析:6【解析】分析:先求出扇形对应的圆的半径,再根据扇形的面积公式求出面积即可.详解:设扇形的半径为Rcm,∵扇形的圆心角为135°,弧长为3πcm,∴135180Rπ⨯=3π,解得:R=4,所以此扇形的面积为21354180π⨯=6π(cm2),故答案为6π.点睛:本题考查了扇形的面积计算和弧长的面积计算,能熟记扇形的面积公式和弧长公式是解此题的关键.17.【解析】【分析】由切线性质知AD⊥BC根据AB=AC可得BD=CD=AD=BC =6【详解】解:如图连接AD则AD⊥BC∵AB=AC∴BD=CD=AD=BC=6故答案为:6【点睛】本题考查了圆的切线性解析:【解析】【分析】由切线性质知AD⊥BC,根据AB=AC可得BD=CD=AD=12BC=6.【详解】解:如图,连接AD,则AD⊥BC,∵AB=AC,∴BD=CD=AD=12BC=6,故答案为:6.【点睛】本题考查了圆的切线性质,解题的关键在于掌握圆的切线性质.18.【解析】【分析】根据圆内接四边形的对角互补的性质进行计算即可【详解】解:∵四边形ABCD内接于⊙O∴∠A+∠C=180°∵∠A=125°∴∠C=55°故答案为:55【点睛】本题考查了圆内接四边形的性解析:【解析】【分析】根据圆内接四边形的对角互补的性质进行计算即可.【详解】解:∵四边形ABCD内接于⊙O,∴∠A+∠C=180°,∵∠A=125°,∴∠C=55°,故答案为:55.【点睛】本题考查了圆内接四边形的性质,理解圆内接四边形的对角互补的性质是解答本题的关键. 19.20【解析】【分析】一般用增长后的量=增长前的量×(1+增长率)再根据题意列出方程5(1+x)2=72即可解答【详解】设这两年中投入资金的平均年增长率是x由题意得:5(1+x)2=72解得:x1=0解析:20%.【解析】【分析】一般用增长后的量=增长前的量×(1+增长率),再根据题意列出方程5(1+x)2=7.2,即可解答.【详解】设这两年中投入资金的平均年增长率是x,由题意得:5(1+x)2=7.2,解得:x1=0.2=20%,x2=﹣2.2(不合题意舍去).答:这两年中投入资金的平均年增长率约是20%.故答案是:20%.【点睛】此题考查一元二次方程的应用,解题关键在于列出方程.20.20【解析】【分析】抛物线的解析式为y=x2-6x-16可以求出AB=10;在Rt△COM中可以求出CO=4;则:CD=CO+OD=4+16=20【详解】抛物线的解析式为y=x2-6x-16则D(0解析:20【解析】【分析】抛物线的解析式为y=x2-6x-16,可以求出AB=10;在Rt△COM中可以求出CO=4;则:CD=CO+OD=4+16=20.【详解】抛物线的解析式为y=x 2-6x-16,则D (0,-16)令y=0,解得:x=-2或8,函数的对称轴x=-2ba =3,即M (3,0),则A (-2,0)、B (8,0),则AB=10,圆的半径为12AB=5,在Rt △COM 中,OM=5,OM=3,则:CO=4,则:CD=CO+OD=4+16=20.故答案是:20.【点睛】考查的是抛物线与x 轴的交点,涉及到圆的垂径定理.三、解答题21.(1)一,移项没变号(或移项错误或等式性质用错均给分);(2)112x =212x =-【解析】【分析】(1)第一步即发生错误,移项未变号;(2)可将采用配方法解方程即可.【详解】(1)一,移项没变号(或移项错误或等式性质用错)(2)解:221x x -=22111x x -+=+()212x -=即,112x =,212x =【点睛】本题考查了解一元二次方程,熟悉各种解法的特点并灵活选择解法是解题关键.22.(1)34;(2)16【解析】【分析】(1)利用四张卡片有三张锐角卡片即可得出答案;(2)利用列表法得出多少可能结果,找到两张角度恰好互余卡片的可能结果即可得出答案.【详解】解:(1)一共有四张卡片,其中写有锐角的卡片有三张,因此P(抽到写有锐角卡片)3 4 =(2)列表如下:所以(抽到两张角度恰好互余卡片)1 6 =【点睛】本题考查了概率的求法,根据题意得出总数与可能的结果数是解题的关键.23.(1) △ABC是等腰三角形;(2)△ABC是直角三角形;(3) x1=0,x2=﹣1.【解析】试题分析:(1)直接将x=﹣1代入得出关于a,b的等式,进而得出a=b,即可判断△ABC 的形状;(2)利用根的判别式进而得出关于a,b,c的等式,进而判断△ABC的形状;(3)利用△ABC是等边三角形,则a=b=c,进而代入方程求出即可.试题解析:(1)△ABC是等腰三角形;理由:∵x=﹣1是方程的根,∴(a+c)×(﹣1)2﹣2b+(a﹣c)=0,∴a+c﹣2b+a﹣c=0,∴a﹣b=0,∴a=b,∴△ABC是等腰三角形;(2)∵方程有两个相等的实数根,∴(2b)2﹣4(a+c)(a﹣c)=0,∴4b2﹣4a2+4c2=0,∴a2=b2+c2,∴△ABC是直角三角形;(3)当△ABC是等边三角形,∴(a+c)x2+2bx+(a﹣c)=0,可整理为:2ax2+2ax=0,∴x2+x=0,解得:x1=0,x2=﹣1.考点:一元二次方程的应用.24.(1)1;(2)1 2【解析】【分析】(1) 根据红球的个数和红球的概率可求出总球的个数,然后相减即可;(2)根据题意画出树状图,然后求出总可能数和符合条件的次数,根据概率公式求解即可.【详解】(1)3÷0.75-3=1. 故填1.(2)将袋中各球分别记为红1、红2、红3、蓝.根据题意,可以画出如下的树状图:由树状图可以看出,所有可能出现的结果共有12种,这些结果出现的可能性相等,其中事件A的结果共有6种,所以 P(A)=61 122.25.(1)该广场绿化区域的面积为144平方米;(2)广场中间小路的宽为1米.【解析】【分析】(1)根据该广场绿化区域的面积=广场的长×广场的宽×80%,即可求出结论;(2)设广场中间小路的宽为x米,根据矩形的面积公式(将绿化区域合成矩形),即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【详解】解:(1)18×10×80%=144(平方米).答:该广场绿化区域的面积为144平方米.(2)设广场中间小路的宽为x米,依题意,得:(18﹣2x)(10﹣x)=144,整理,得:x2﹣19x+18=0,解得:x1=1,x2=18(不合题意,舍去).答:广场中间小路的宽为1米.【点睛】本题考查的知识点是一元二次方程的应用,找准题目中的等量关系式是解此题的关键.。

相关文档
最新文档