(完整)六年级列方程解应用题

合集下载

六年级奥数应用专题《列方程解应用题》全国通用版(有答案)

六年级奥数应用专题《列方程解应用题》全国通用版(有答案)

列方程解应用题知识框架方程,是一种顺向的“程序”,即设出未知数之后,完全可以根据题目叙述,把各个量翻译出来,找出等量关系划等号即可.一、列方程解应用题的要点(1)设出用哪个未知量表示题目中提到的其他量比较方便,就选择哪个未知量作为未知数.如果只设一个不能进行有效的表达,就再设一两个.(2)翻译用设出的未知数,逐个对应地翻译题目中提到的其他各个量.(3)等量按照题目所述,找出并构建等量关系.等量中很容易忽视的是“不变量”和“相同量”,一定要敏感.【提示】有时虽然设出未知数之后等式列出来了,但方程不好解. 此时,可考虑重设未知数、重列方程或采取其他方法,甚至可以考虑先把问题的目标表达式找出来,“设而不求”——不占而屈人之兵.二、列方程解应用题的优势和局限性关系比较复杂的问题,使用方程,通常可以达到事半功倍的效果.但需要注意的是,方程“单飞”有时无力,需要结合线段图、列表法等,能够发挥更加明显的作用.重难点(1)重点:未知数的选设,其他量的表达,等量关系的寻找(2)难点:未知数的选设,等量关系的寻找,不定方程和不定方程组解的讨论例题精讲一、列一般方程解应用题【例 1】已知足球、篮球、排球三种球平均每个35元.篮球比排球每个贵10元,足球比排球每个贵8元.问:每个篮球多少元?【考点】列方程解应用题【难度】1星【题型】解答【解析】设每个排球x元,则每个篮球为x+10元,每个足球x+8元,由已知列方程:x+x+8+x+10=35×3,15解得x=29.所以每个篮球x+10=29+10=39元.【答案】29【巩固】 有一些糖,每人分5块多10块;如果现有的人数增加到原人数的1.5倍,那么每人4块就少2块.问这些糖共有多少块?【考点】列方程解应用题 【难度】2星 【题型】解答 【解析】 设开始共有x 人,5x+10=4×1.5x-2, 解得x=12,所以这些糖共有12×5+10=70块.【答案】70【例 2】 一个分数 ,分子与分母的和是122,如果分子、分母郡减去19,得到的分数约简后是 .那么原来的分数是多少?【考点】列方程解应用题 【难度】2星 【题型】解答 【解析】 方法一:设这个分数为122aa -,则分子、分母都减去19为19191==(122)191035a a a a -----,即5-95=103-a a ,解得33a =,则122-33=89.所以原来的分数是3389方法二:设这个分数为变化后为5a a ,那么原来这个分数为19519a a ++,并且有(19)(519)a a +++=122, ,解得.=14.所以原来的分数是3389. 【答案】3389【巩固】 如下左图中的短除式所示,一个自然数被8除余1,所得的商被8除余1,再把第二次所得的商被8除后余7,最后得到的一个商是a .如下右图中的短除式表明:这个自然数被17除余4,所得的商被17除余15,最后得到的一个商是a 的2倍.求这个自然数.【考点】列方程解应用题 【难度】2星 【题型】解答【解析】 由题意知()()878181172174,a a +⨯+⨯+=+++⎡⎤⎣⎦整理得512a+457=578a+259,即66a=198,a=3.于是,[(80+1)×8+1]× 8+1=1993.【答案】1993【例 3】 一条船往返于甲、乙两港之间,由甲至乙是顺水行驶,由乙至甲是逆水行驶.已知船在静水中的速度为8千米/时,平时逆行与顺行所用的时间比为2∶1.某天恰逢暴雨,水流速度为原来的2倍,这条船往返共用9时.问:甲、乙两港相距多少千米?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 设甲、乙两港相距x 千米,原来水流速度为a 千米/时根据题意可知,逆水速度与顺水速度的比为2∶1,即(8-a )∶(8+a )=1∶2,于是有8+a=2(8-a),解得a=38再根据暴雨天水流速度变为2a 千米/时,则有92828=-++axa x把a=38代入,得938283828=⨯-+⨯+x x解得x=20.【答案】20【巩固】 如图,沿着边长为90米的正方形,按逆时针方向,甲从A 出发,每分钟走65米,乙从B 出发,每分钟走72米.当乙第一次追上甲时在 正方形的哪一条边上?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 设追上甲时乙走了x 分.依题意,甲在乙前方3×90=270(米),故有72x =65x+270.解得7270=x .在这段时间内乙走了712777727072=⨯(米).由于正方形边长为90米,共四条边,故由,可以推算出这时甲和乙应在正方形的DA 边上. 【答案】DA 边上二、 列一般方程组解应用题【例 4】用白铁皮做罐头盒,每张铁皮可制盒身16个,或制盒底43个,一个盒身和两个盒底配成一个罐头盒,现有150张铁皮,用多少张制盒身,多少张制盒底,才能使盒身与盒底正好配套?【考点】列方程解应用题【难度】3星【题型】解答【解析】设用x张铁皮制盒身,y张铁皮制盒底.⎩⎨⎧=⨯=+yxyx43216150解得xy==⎧⎨⎩8664所以86张铁皮制盒身,64张铁皮制盒底.【答案】86;64【巩固】运来三车苹果,甲车比乙车多4箱,乙车比丙车多4箱,甲车比乙车每箱少3个苹果,乙车比丙车每箱少5个苹果,甲车比乙车总共多3个苹果,乙车比丙车总共多5个苹果,这三车苹果共有多少个?【考点】列方程解应用题【难度】3星【题型】解答【解析】设乙车运x箱,每箱装y个苹果,列表如下:(x+4)(y-3)-xy=3xy-(x-4)(y+5)=5化简为:4y-3x=15, ①5x-4y=15, ②①+②,得:2x=30,于是x=15.将x=15代人①或②,可得:y=15.所以甲车运19箱,每箱12个;乙车运15箱,每箱15个;丙车运11箱,每箱20个.三车苹果的总数是:12×19+15×15+20×11=673(个).【答案】673【例 5】有甲、乙、丙、丁4人,每3个人的平均年龄加上余下一人的年龄分别为29,23,2l和17.这4人中最大年龄与最小年龄的差是多少?⎧⎨⎩【考点】列方程解应用题 【难度】4星 【题型】解答 【解析】 设这些人中的年龄从大到小依次为x 、y 、z 、w ,①+②+③十④得:2(x +y+z+w )=90, 则3x y z w+++=15…………………………………………⑤①-⑤得:2143x = , x =21; ④-⑤得:223z =, z=3; 所以最大年龄与最小年龄的差为x w - =21—3=18(岁) 【答案】18三、 列不定方程或不定方程组解应用题【例 6】 新发行的一套邮票共3枚,面值分别为20分、40分和50分,小明花5.00元买了15张.问:其中三种面值的邮票各多少张?【考点】列方程解应用题 【难度】2星 【题型】解答【解析】 根据题意,设面值20分的x 张,面值40分的y 张,面值50分的z 张,可列方程得152********x y z x y z ++=⎧⎨++=⎩解得672x y z =⎧⎪=⎨⎪=⎩所以20分的6张,40分的7张,50分的2张【答案】6;7;2【巩固】 某次数学竞赛准备了22支铅笔作为奖品发给获得一、二、三等奖的学生,原计划一等奖每人发6支,二等奖每人发3支,三等奖每人发2支.后来又改为一等奖每人发9支,二等奖每人发4支,三等奖每人发1支.问:获一、二、三等奖的学生各几人?【考点】列方程解应用题 【难度】3星 【题型】解答 【解析】 根据题意,设一等奖x 人,二等奖y 人,三等奖z 人,可列方程得632229422x y z x y z ++=⎧⎨++=⎩解得125x y z =⎧⎪=⎨⎪=⎩所以,一等奖1人,二等奖2人,三等奖5人.【答案】1;2;5【例 7】 工程队要铺设78米长的地下排水管道,仓库中有3米和5米长的两种管子.问:可以有多少种不同取法?【考点】列方程解应用题 【难度】2星 【题型】解答 【解析】 根据题意,设3米管子x 根,5米管子y 根,可列方程得3578x y +=解得260x y =⎧⎨=⎩或213x y =⎧⎨=⎩或166x y =⎧⎨=⎩或119x y =⎧⎨=⎩或612x y =⎧⎨=⎩或115x y =⎧⎨=⎩所以共有6种取法.【答案】6【巩固】 用1分、2分和5分硬币凑成1元钱,共有多少种不同的凑法? 【考点】列方程解应用题 【难度】4星 【题型】解答 【解析】 根据题意,设5分有x 个,2分有y 个,1分有z 个,可列方程得52100x y z ++=5分取20个,有1种.5分取19个,2分有3种取法(2个、1个、0个),共3种. 5分取18个,共6种.(同上) 5分取17个,共8种. 5分取16个,共11种. ......根据规律不难求出共有1+3+6+8+11+13+16+18+21+23+26+28+31+33+36+38+41+43+46+48+51 =18+58+98+138+178+51 =490+51 =541【答案】541【例 8】 某单位的职工到郊外植树,其中有男职工,也有女职工,并且有寺的职工各带一个孩子参加.男职工每人种13棵树,女职工每人种10棵树,每个孩子种6棵树,他们一共种了216棵树.那么其中有多少名男职工?【考点】列方程解应用题 【难度】4星 【题型】解答【解析】 设男职工x 人,孩子y 人,则女职工3y -x 人(注意,为何设孩子数为y 人,而不是设女工为y 人),那么有()131036x y x y +-+=216,化简为336x y +=216,即12x y +=72. 有122436486054321x x x x x y y y y y ⎧=⎧====⎧⎧⎧⎪⎨⎨⎨⎨⎨=====⎩⎩⎩⎪⎩⎩. 但是,女职工人数为3y x -必须是自然数,所以只有125x y =⎧⎨=⎩时,33y x -=满足.那么男职工数只能为12名.【答案】12【巩固】 一居民要装修房屋,买来长0.7米和O.8米的两种木条各若干根.如果从这些木条中取出一些接起来,可以得到许多种长度的木条,例如:O.7+O.7=1.4米,0.7+0.8=1.5米.那么在3.6米、3.8米、3.4米、3.9米、3.7米这5种长度中,哪种是不可能通过这些木条的恰当拼接而实现的?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 设0.7米,0.8米两种木条分别x ,y 根,则0.7x +0.8y =3.4,3.6……,即7x +8y =34,36,37,38,39. 将系数,常数对7取模,有y ≡6,l ,2,3,4(mod 7),于是y 最小分别取6,1,2,3,4.但是当y 取6时,8×6=48超过34,x 无法取值.所以3.4米是不可能通过这些木条的恰当拼接而实现的.【答案】3.4【例 9】 某人在公路上行走,往返公共汽车每隔4分就有一辆与此人迎面相遇,每隔6分就有一辆从背后超过此人.如果人与汽车均为匀速运动,那么汽车站每隔几分发一班车?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 设汽车站每隔x 分发一班车,某人的速度是v1,汽车的速度为v2,依题意得由①、②,得将③代入①,得x =4.8所以汽车站每隔4.8分钟发一班车 【答案】4.8【巩固】 某地收取电费的标准是:若每月用电不超过50千瓦时,则每千瓦时收5角;若超过50千瓦时,则超出部分按每千瓦时8角收费.某月甲用户比乙用户多交3元3角电费,这个月甲、乙各用了多少千瓦时电?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 根据题意可知,因为3元3角既不是5角的整数倍,也不是8角的整数倍.所以甲用的电超过50千瓦时,乙用的电没有超过50千瓦时,设甲用的电超过50千瓦时的部分为x 千瓦时电,乙用的电与50千瓦时相差y 千瓦时电,可列方程得8533x y +=解得15x y =⎧⎨=⎩所以甲用了50+1=51(千瓦时)的电,乙用了50-5=45(千万时)的电.【答案】51;45【例 10】 某校师生为贫困地区捐款1995元.这个学校共有35名教师,14个教学班.各班学生人数相同且多于30人不超过45人.如果平均每人捐款的钱数是整数,那么平均每人捐款多少元?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 设每班有a(30<a≤45)名学生,每人平均捐款x 元(x 是整数),依题意有:x(14a+35)=1995.于是14a+35|1995.又3l <a≤45,所以469<14a+35≤665,而1995=3×5×7×19,在469与665之间它的约数仅有665,故14a+35=665,x=3,平均每人捐款3元.【答案】3【巩固】 一次数学竞赛中共有A 、B 、C 三道题,25名参赛者每人至少答对了一题.在所有没有答对A 的学生中,答对B 的人数是答对C 的人数的两倍,只答对问题A 的人数比既答对A 又至少答对其他一题的人数多1.又已知在所有恰好答对一题的参赛者中,有一半没有答对A .请问有多少学生只答对B?【考点】列方程解应用题 【难度】4星 【题型】解答【解析】 设不只答对A 的为x 人,仅答对B 的为y 人,没有答对A 但答对B 与C 的为z 人.解得:253233x y z x-⎧=⎪⎨⎪=-⎩,,6,y z x ≥≥x =7时,y 、z 都是正整数,所以7,6,2x y z ===. 故只答对B 的有6人. 【答案】6课堂检测【随练1】 有一队伍以1.4米/秒的速度行军,末尾有一通讯员因事要通知排头,于是以2.6米/秒的速度从末尾赶到排头并立即返回排尾,共用了10分50秒.问:队伍有多长?【考点】经济问题 【难度】2星 【题型】解答 【解析】 设通讯员从末尾赶到排头用了x 秒,依题意得2.6x-1.4x=2.6(650-x )+1.4(650-x )解得x =500所以队伍长为(2.6-1.4)×500=600(米)【答案】600【随练2】 六(1)班举行一次数学测验,采用5级计分制(5分最高,4分次之,以此类推).男生的平均成绩为4分,女生的平均成绩为3.25分,而全班的平均成绩为3.6分.如果该班的人数多于30人,少于50人,那么有多少男生和多少女生参加了测验?【考点】列方程解应用题 【难度】3星 【题型】解答 【解析】 设该班有x 个男生和y 个女生,于是有4x+3.25y=3.6(x+y ),化简后得8x=7y.从而全班共有学生在大于30小于50的自然数中,只有45可被15整除,所以推知x =21,y=24. 【答案】21;24【随练3】 (1)将50分拆成10个质数之和,要求其中最大的质数尽可能大,则这个最大质数是多少?(2)将60分拆成10个质数之和,要求其中最大的质数尽可能小,则这个最大的质数是多少?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 (1)首先确定这10个质数或其中的几个质数可以相等,不然10个互不相等的质数和最小为2+3+5+7+11+13+17+19+23+29,显然大于50. 所以,其中一定可以有某几个质数相等. 欲使最大的质数尽可能大,那么应使最小的质数尽可能小,最小的质数为2,且最多可有9个2,那么最大质数不超过50—2×9=32,而不超过32的最大质数为31. 又有82502222331=++++++个,所以满足条件的最大质数为31.(2)最大的质数必大于5,否则10个质数的之和将不大于50. 所以最大的质数最小为7,为使和为60,所以尽可能的含有多个7.60÷7=8……4,8760=7+7+7++7+4个,而4=2+2,恰好有8760=7+7+7++7+2+2个.即8个7与2个2的和为60,显然其中最大的质数最小为7.【答案】31;7【随练4】 在同一路线上有4个人:第一个人坐汽车,第二个人开摩托车,第三个人乘助力车,第四个人骑自行车,各种车的速度是固定的,坐汽车的12时追上乘助力车的,14时遇到骑自行车的,而开摩托车的相遇是16时.开摩托车的遇到乘助力车的是17时,并在18时追上了骑自行车的,问骑自行车的几时遇见乘助车的?【考点】经济问题 【难度】4星 【题型】解答【解析】 设汽车、摩托车、助力车、自行车的速度分别为a ,b ,c ,d ,设在12时骑自行车的与坐汽车的距离为x ,骑自行车的与开摩托车的之间的距离为y .有(①+③)×2一(②+④),得 310()x c d =+,即10()3x c d =+ 设骑自行车的在t 时遇见骑助力车的,则 (12)(),x t c d =-⨯+即10123t -=,所以1153t =. 所以骑自行车的在15时20分遇见骑助力车的. 【答案】15时20分家庭作业【作业1】 甲、乙、丙、丁四人今年分别是16、12、11、9岁.问:多少年前,甲、乙的年龄和是丙、丁年龄和的2倍?【考点】列方程解应用题 【难度】2星 【题型】解答 【解析】 设x 年前,甲乙的年龄和是丙、丁年龄和的2倍.16+12-2x=2×(11+9-2x), 解得x=6.所以,6年前,甲、乙的年龄和是丙、丁年龄和的2倍.【答案】6【作业2】 铁路旁的一条与铁路平行的小路上,有一行人与骑车人同时向南行进,行人速度为3.6千米/时,骑车人速度为10.8千米/时,这时有一列火车从他们背后开过来,火车通过行人用22秒,通过骑车人用26秒,这列火车的车身总长是多少?【考点】列方程解应用题 【难度】2星 【题型】解答【解析】 设这列火车的速度是x 米/秒,依题意列方程,得(x-1)×22=(x-3)×26.解得x=14.所以火车的车身长为(14-1)×22=286(米).【答案】286【作业3】 小明玩套圈游戏,套中小鸡一次得9分,套中小猴得5分,套中小狗得2分.小明共套了10次,每次都套中了,每个小玩具都至少被套中一次,小明套10次共得61分.问:小明至多套中小鸡几次?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 设套中小鸡x 次,套中小猴y 次,则套中小狗(10-x-y )次.根据得61分可列方程9x+5y+2(10-x-y )=61,化简后得7x=41-3y.显然y 越小,x 越大.将y=1代入得7x=38,无整数解;若y=2,7x=35,解得x=5.【答案】5【作业4】 袋子里有三种球,分别标有数字2,3和5,小明从中摸出几个球,它们的数字之和是43.问:小明最多摸出几个标有数字2的球?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 根据题意,设摸出标有数字2的x 个,摸出标有数字3的y 个,摸出标有数字5的z 个,可列方程得23543x y z ++=,x 最大为所求.解得2010x y z =⎧⎪=⎨⎪=⎩所以,摸出标有数字2的最多为20个.【答案】20【作业5】 小花狗和波斯猫是一对好朋友,它们在早晚见面时总要叫上几声表示问候.若是早晨见面,小花狗叫两声,波斯猫叫一声;若是晚上见面,小花狗叫两声,波斯猫叫三声.细心的小娟对它们的叫声统计了15天,发现它们并不是每天早晚都见面,在这15天内它们共叫了61声.问:波斯猫至少叫了多少声?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 根据题意,设白天见面的次数为x ,晚上见面的次数为y ,可列方程得3561x y +=白天见面最多时,波斯猫叫声最少.即x 最大为所求.解得125x y =⎧⎨=⎩所以,波斯猫至少叫125327+⨯=(声).【答案】27【作业6】小明买红、蓝两支笔,共用了17元.两种笔的单价都是整数元,并且红笔比蓝笔贵.小强打算用35元来买这两种笔(也允许只买其中一种),可是他无论怎么买,都不能把35元恰好用完.那么红笔的单价是多少元?【考点】列方程解应用题【难度】3星【题型】解答【解析】如下表先枚举出所有可能的单价如表1.再依次考虑:首先,不能出现35的约数.否则只买这种笔就可以刚好用完35元,所以含有7,5,1的组合不可能.然后,也不能出现35—17=18的约数.否则先各买一支需17元,那么再买这种笔就可以花去18元,一共花35元.所以含有9,6,3,2的组合也不可能.所以,只有13+4的组合可能,经检验13x+4y=35这个不定方程确实无自然数解.所以红笔的单价为13元.【答案】13。

列方程解分数应用题十套(六年级修正版)

列方程解分数应用题十套(六年级修正版)

列方程解分数应用题(一)3、某筑路队修一条公路, 第一天修了全长的1,第二1、一个人抄一篇稿件,第一次抄1500 个字,第二次4抄 2000 个字,还剩下 3没有抄, 这篇稿件共有多少个天修了余下的1,这时距中点6 千米,这条公路长多85字?少千米?2、某机器厂七月份上半月完成月计划的2,下半月完4、步行者走完 2 千米及所余路程的一半后,还剩全程5成月计划的3,结果超额完成机器 6台,原计划生产的 1又 2 千米,全程共有多少千米?43机器多少台?5、某厂要运走一批化工原料,上午运了 52 吨,下午运了余下的3,这一天共运走这批原料的1,这批化82工原料共有多少吨?6、一筐苹果, 筐占苹果重量的2 ,苹果卖掉 48 千克25后,苹果的重量相当于筐重的1,问原来苹果有几千2克?7、一个班早晨到校时缺席人数是出席人数的1,后来6一个同学因病请假了, 这时缺席的人是出席人数的1 。

5问这个班有多少名学生?8、商店运进一批香蕉, 第一天卖出全部的2 ,第二天9卖出剩下的1,第三天补进第二天剩下的1,这时还72 有香蕉 305 千克,问原来有香蕉多少千克?列方程解分数应用题(二)1、五年一班有 54 名学生,女生人数的 2等于男生人数的 15,男女生各有多少人?22、五年级与六年级共有学生 270 人,五年级学生人数的 2 比六年级学生的1多 4 人,这两个年级的学生相54差多少人?3、饲养场有牛和羊 980 头,牛的头数比羊的2还多528 头,问饲养场牛羊各多少头?4、两根钢筋共长 18 米,如果把第一根截去1,把第5二根接长 0.9 米,那么两根钢筋就一样长了, 两根钢筋原来各长几米?5、一只布袋中装有黑、白、花三种球,黑球的2与白7、两个仓库共有水泥84 吨,如果从甲仓库取出1 放35 球同样多,白球的2再加 3 只与花球一样多,黑球比入乙仓库, 那么甲仓库的水泥就比乙仓库的水泥多1 ,33花球多 32 只。

小学六年级数学方程应用题100道及答案解析

小学六年级数学方程应用题100道及答案解析

小学六年级数学方程应用题100道及答案解析1. 商店原来有一些水果,又进货20 千克,卖出35 千克后,还剩15 千克,商店原来有水果多少千克?解:设商店原来有水果x 千克。

x + 20 - 35 = 15x - 15 = 15x = 30答:商店原来有水果30 千克。

2. 小明买了5 个练习本和2 支铅笔,共用去3.9 元,已知每个练习本0.6 元,每支铅笔多少元?解:设每支铅笔x 元。

5×0.6 + 2x = 3.93 + 2x = 3.92x = 0.9x = 0.45答:每支铅笔0.45 元。

3. 学校买了18 个篮球和20 个足球,共付出490 元,每个篮球14 元,每个足球多少元?解:设每个足球x 元。

18×14 + 20x = 490252 + 20x = 49020x = 238x = 11.9答:每个足球11.9 元。

4. 一辆汽车从甲地开往乙地,每小时行48 千米,5 小时到达,如果要4 小时到达,每小时要行多少千米?解:设每小时要行x 千米。

4x = 48×54x = 240x = 60答:每小时要行60 千米。

5. 食堂运来150 千克大米,比运来的面粉的3 倍少30 千克。

食堂运来面粉多少千克?解:设食堂运来面粉x 千克。

3x - 30 = 1503x = 180x = 60答:食堂运来面粉60 千克。

6. 果园里有苹果树270 棵,比梨树的3 倍多30 棵,梨树有多少棵?解:设梨树有x 棵。

3x + 30 = 2703x = 240x = 80答:梨树有80 棵。

7. 某工厂有男工180 人,比女工人数的2 倍少40 人,这个工厂有女工多少人?解:设这个工厂有女工x 人。

2x - 40 = 1802x = 220答:这个工厂有女工110 人。

8. 学校买了8 张办公桌和20 把椅子,一共花了1860 元,已知每张办公桌120 元,每把椅子多少元?解:设每把椅子x 元。

完整版)六年级列方程解分数应用题

完整版)六年级列方程解分数应用题

完整版)六年级列方程解分数应用题例1:已知一个分数约分后将是$\frac{4}{9}$,如果将这个分数的分子减少$\frac{5}{124}$,分母减少11,所得的新分数约分后将是$\frac{4}{9}$。

那么原分数是多少?解:设原分数为$\frac{a}{b}$,则有$\frac{a}{b}=\frac{4}{9}$,约分后得到$\frac{a}{b}=\frac{4k}{9k}$,其中$k$为正整数。

根据题意,得到$\frac{a-\frac{5}{124}}{b-11}=\frac{4}{9}$,约分后得到$\frac{a-\frac{5}{124}}{b-11}=\frac{4k-1}{9k-11}$。

将两个等式联立,得到$\frac{a-\frac{5}{124}}{b-11}=\frac{a}{b}$,解得$a=\frac{20}{3}$,$b=45$。

所以原分数为$\frac{20}{45}$。

例2:某小学有学生530人,其中20位女生和$\frac{9}{20}$的男生去参加“迎春数学学竞赛”。

剩下的男、女生人数正好相等。

这所学校的女生有多少人?解:设男生总人数为$mx$,女生总人数为$nx$,则有$m+n=530$,$n-20=\frac{9}{20}(mx-20)$,$m=n$。

解得$n=300$,所以女生有$300$人。

例3:两块地共72亩,第一块地的$\frac{2}{5}$种西红柿,第二块地的$\frac{5}{9}$种西红柿,两块地余下的$\frac{5}{39}$共39亩种茄子,每一块地是多少亩?解:设第一块地的面积为$x$,第二块地的面积为$y$,则有$x+y=72$,$\frac{2}{5}x+\frac{5}{9}y=\frac{33}{39}(x+y)-39$。

解得$x=24$,$y=48$。

所以第一块地是$24$亩,第二块地是$48$亩。

例4:某小学的在校学生是850人。

六年级30道解方程应用题

六年级30道解方程应用题

六年级30道解方程(1)2x+8=16 (2)x/5=10 (3)x+7x=8 (4)9x-3x=6 (20)6/7x-8=4 (30)3x-8=30(5)6x-8=4 (6)5x+x=9 (7)x-8=6x (8)4/5x=20 (9)2x-6=12 (10)7x+7=14 (11)6x-6=0 (12)5x+6=11 (13)2x-8=10 (14)1/2x-8=4 (15)x-5/6=7 (16)3x+7=28 (17)3x-7=26 (18)9x-x=16 (19)24x+x=5030道解决问题1、儿童商店新来一批书包,上午售出了30%,下午售出了40个,这是正好还剩下一半,这批书包共有多少个?2、某工厂有甲、乙两个车间,职工人数的比为3:5,如果从甲车间调120人到乙车间,则甲、乙两车间人数的比为3:7,甲、乙两车间原来各有多少人?3、一辆摩托车1/2小时行30千米,他每小时行多少千米?他行1千米要多少小时?4、阅览室看书的同学中,男同学占七分之四,从阅览室走出5位男同学后,看书的同学中,女同学占二十三分之十二,原来阅览室一共有多少名同学在看书?5、红,黄,蓝气球共有62只,其中红气球的五分之三等于黄气球的三分之二,蓝气球有24只,红气球和黄气球各有多少只?6、学校阅览室有36名学生看书,其中4/9是女学生.后又来了几名女学生,这时女学生人数占看书人数的3/5,后来了几名女生?7、水结成冰后,体积要比原来膨胀11分之1,2.16立方米的冰融化成水后,体积是多少?8、甲乙的粮食560吨,如果把甲的粮食运出2/9给乙,则甲乙的粮食正好相等.原来甲的粮食有多少吨?,乙的粮食有多少吨?9、电视机降价200元.比原来便宜了2/11.现在这种电视机的价格是多少钱?10、一辆车从甲地到乙地,行了全程的2/5还多20千米,这时候离乙地还有70千米,甲乙两地相距多少千米?11、小明看一本书,第一天看了28页,第二天看了全书的1/5(5分之1),两天共看了全书的3/8(3分之8),这本书共有多少页?12、师徒二人同加工一批零件,加工一段时间后,师傅加工了84个.徒弟加工了63个.师傅比徒弟多加工的正好占全部任务的1/28.这批零件共有多少个?13、一桶油,吃了7/10后,又添进了15千克,这时桶中的油正好是一桶油的一半,这桶油重多少千克?14、一列火车从上海开往天津,行了全路程的3/5,剩下的路程,如果每小时行106千米,5小时可以到天津.上海到天津的铁路长多少千米?15、六年级参加数学兴趣小组的共有46,其中女生人数的4/5是男生人数的3/2倍,参加兴趣小组的男、女生各有多少人?16、一辆汽车每行8千米要耗油4/5千克,平均每千克汽油可行多少千米.行1千米路程要耗油多少千克?17、两列火车同时从相距600千米的两城相对开出.列火车每小时行60千米,另一列火车每小时行75千米,经过几小时两车可以相遇?18、一辆摩托车每小时行64千米,找这样的速度,从甲到乙用了3/4小时,甲乙两地相距多少千米?19、水果店在两天内卖完一批水果,第一天卖出水果总重量的3/5,比第二天多卖了30千克,这批水果共有多少千克?20、西街小学共有学生910人,其中女生占4/7,女生有多少人?男生有多少人?21、一块长方形地,长60米,宽是长的2/5,这块地的面积是多少平方米?22、金鱼池里红金鱼与黑金鱼条数的比是7:3,黑金鱼有9条,红金鱼有多少条?23、6年级有学生132人,其中男学生与女学生人数的比是6:5,6年级男.女学生各有多少人?24、甲数和乙数的比是2:3,乙数和丙数的比是4:5.求甲数和丙数的比.25、解放路小学今年植树的棵数是去年的1.2倍.写出这个小学今年植树棵数和去年植树棵数的比.化简.26、一个电视机厂去年彩色电视机的产量与电视机总产量的比是20分之9.去年共生产电视机250000太,其中彩色电视机有多少台?27、某工厂工人占全厂职工总数的3分之2,技术人员占全场职工总数的2/9,其余的是干部.写出这个厂的工人,技术人员和干部人数的比.28、某班学生人数在40到50人之间,男生人数和女生人数的比是5:6.这个班的男生和女生各有多少人?29、图书馆科技书与文艺书的比是4 :5,又购进300本文艺术后,科技书与文艺书的比是5 :7,文艺书比原来增加了百分之几?30、甲、乙两厂去年分别完成计划任务的112%和110%,共生产食品4000吨,比原来两厂计划之和超产400吨,甲厂原来的生产任务是多少吨?。

(完整版)列方程解应用题练习题

(完整版)列方程解应用题练习题

一、列方程解应用题和倍问题例1 图书馆买回来60本文艺书和科普书,其中文艺书的本数是科普书的3倍,文艺书有多少本?例2 一个果园有荔枝、龙眼和芒果这三种果树108棵,其中荔枝的棵树是龙眼的3倍,芒果的棵树是龙眼的2倍,这三种果树各有多少棵?例3一个水池装有甲、乙两排水管,甲管每小时的排水量是乙管的3倍。

水池里有16吨水,打开两管5小时能把水排完,甲管每小时排水量多少吨?例4 某粮店全天卖出大米、面粉和玉米面11520千克,卖出大米的千克数是面粉的6倍,面粉的千克数是玉米免的5倍,卖出的大米比玉米面多多少千克?较复杂的和倍问题例1甲粮仓有510吨大米,乙粮仓有1170吨大米,每天从乙粮仓调30吨大米到甲粮仓,多少天以后甲粮仓大米的吨数是乙粮仓的6倍?例2 图书馆买回来故事书、科普书和连环画236本,如果故事书增加10本,就是科普书本数的2倍,科普书减少12本,就是连环画本数的一半,买回来的故事书有多少本?例3 甲数与乙数的和是30,甲数的8倍与乙数的3倍的和是160.甲数、乙数各是多少?例4 甲站和乙站相距299千米,一辆大客车从甲站开往乙站,1.5小时后一辆小轿车从乙站开往甲站,行驶速度是客车的3倍,小轿车行驶2.5小时遇见大客车,小轿车每小时行多少千米?差倍问题一个问题的已知条件是有关数量的差与数量之间的倍的关系,这种问题就是差倍问题。

列方程解差倍问题,可以吧问题中的一个未知数量用x表示,再根据问题中的“差”或“倍”的关系,把其他未知数量用含有x 的式子表示,再找出数量之间的等量关系列方程。

在设未知数x时,通常把倍的关系中作为1的数量设为x较好。

例1一张办公桌的价钱是一把椅子的4倍,办公桌的定价比椅子贵138元,一张办公桌的价钱是多少钱?例2 一个书柜下层放的书的本数是上层的3倍,如果从下层取43本数放到上层,两层的书的本数相同,这个书柜一共方有多少本书?例3 水果店购进的一批西瓜,分三天售完,其中第一天售出的千克数是第二天的2倍,第二天售出的千克数是第三天的1.5倍,第三天售出的比第一天少88千克,这批西瓜共有多少千克?例4 有对黑棋子和白棋子,其中黑棋子的个数是白棋子的3倍,每次取走相同的个数的黑棋子和白棋子,取了若干次后,白棋子还剩8个,黑棋子还剩94个,原来这堆棋子中多少个黑棋子?较复杂的差倍问题例1 有两根同样长的绳子,第一根绳子剪去10米,第二根绳子剪去28米,第一根绳子剩下的长度是第二根的4倍。

(完整版)六年级奥数列方程解应用题

(完整版)六年级奥数列方程解应用题

(完整版)六年级奥数列方程解应用题列方程解应用题列方程解应用题,就是用代数算法解应用题。

它以布列方程为前提,先不考虑求得数,只把所求未知数设x。

一般所求问题与已知条件的数量关系明显者,采取设直接未知数的办法,即求什么就设什么为x;而所求问题与已知条件的数量关系隐蔽者,则采取设间接未知数的办法,即设一个跟所求问题与已知条件相关联的未知数为x。

但是,无论设哪种未知数为x,均将其放在与已知数同等的地位,一起参加数量关系的分析和运算。

列方程解应用题,一般分四步进行:①弄清题意,用x表示未知数;②找出数量间的等量关系,列出方程式;③解方程;④检验并作答。

正确的方程式,应符合下列条件:①等号两边的意义的相同;②等号两边的数量相等;③等号两边的单位一致。

例1.光明小学买回一批图书,如果每班发15本,则少20本,如果每班发12本,则剩下16本,这个学校一共有多少个班?买回图书多少本?1、一批游客过一条河,如果每只船坐10个人,还剩4人,如果每船坐12个人,那么多出1只船,你知道这批游客有多少人?有多少只船?2、小明每天同一时间从家出发去学校,如果每分钟行60米,则可提前1分钟到校,如果每分钟行50米,则迟到2分钟,小明家离学校多少米?3、某班班主任给同学们分巧克力,如果每个人分10块,则剩下8块,如果每个人分12块,有6个同学分不到。

这个班有多少个学生?例2.一个两位数,十位上的数字比个位上的数字少1,如果十位上的数字扩大4倍,个位上的数字减去2,那么所得的两位数比原来大58,求原来的两位数是多少?1、有一个两位数,它的十位数字和个位数字和是14,如果把十位上的数字和个位2、甲数是乙数的3倍,甲数减去85,乙数减去5,则两数相等,甲乙两数各是多少?3、一个三位数,十位数字是0,其余两位数字之和是12,如果个位数字减2,百位数字加1,那么所得的新数比原数的百位数字与个位数字互换位置后的数小100,求原三位数。

例3.100个和尚吃100个馒头,大和尚每人吃3个,小和尚每3人吃一个,那么一共有几个大和尚,几个小和尚?1、鸡兔同笼,从上面数,有15个头。

六年级有关路程的解方程应用题

六年级有关路程的解方程应用题

六年级有关路程的解方程应用题1. 甲、乙两地相距240 千米,一辆汽车从甲地开往乙地,每小时行60 千米,几小时能到达?解:设x 小时能到达。

60x = 240x = 240÷60x = 4答案:4 小时能到达。

解析:速度×时间= 路程,已知路程和速度,求时间,设时间为x 小时,列出方程求解。

2. 一辆汽车以每小时80 千米的速度行驶,5 小时行驶了多少千米?解:设5 小时行驶了x 千米。

x÷5 = 80x = 80×5x = 400答案:5 小时行驶了400 千米。

解析:速度×时间= 路程,已知速度和时间,求路程,设路程为x 千米,列出方程求解。

3. 小明骑自行车每小时行15 千米,行30 千米需要几小时?解:设行30 千米需要x 小时。

15x = 30x = 30÷15x = 2答案:行30 千米需要 2 小时。

解析:速度×时间= 路程,已知速度和路程,求时间,设时间为x 小时,列出方程求解。

4. 甲、乙两地相距360 千米,一辆汽车从甲地出发,4 小时行了160 千米,照这样的速度,还要几小时到达乙地?解:设还要x 小时到达乙地。

(160÷4)x = 360 - 16040x = 200x = 200÷40x = 5答案:还要5 小时到达乙地。

解析:先算出汽车的速度,根据速度不变,设还要x 小时到达乙地,列出方程求解。

5. 一辆汽车从A 地开往B 地,每小时行70 千米,8 小时到达,如果要7 小时到达,每小时要行多少千米?解:设每小时要行x 千米。

7x = 70×87x = 560x = 560÷7x = 80答案:每小时要行80 千米。

解析:路程一定,速度和时间成反比例,设每小时行x 千米,列出方程求解。

6. 小明从家到学校,如果每分钟走60 米,12 分钟可以到达,如果每分钟走80 米,几分钟可以到达?解:设x 分钟可以到达。

六年级列方程解应用题练习

六年级列方程解应用题练习
妈妈和小强一共有(X+4x=5x )岁; 妈妈比小强大(4X-x=3x )岁。
二、填空
4)猴子的只数是熊猫的6倍。 熊猫 )有( x )只, 解:设( 猴子 )有( 6x )只。 (
猴子和熊猫一共有( X+6x=7x)只; 熊猫比猴子少( 6X-x=5x )只。
二、填空
5)毛笔的单价是钢笔的0.6倍。 钢笔单价 解:设( )是( x )元, 毛笔单价 ( )是(0.6x )元。
二、填空
2)苹果的重量是香蕉的2.5倍。 解:设(香蕉 )有( x )千克, ( 苹果 )有(2.5x )千克。
苹果和香蕉一共有(x+2.5x=3.5x)千克; 苹果比香蕉多( 2.5x-x=1.5x )千克。
二、填空
3)妈妈的年龄是小强的4倍。 小强 )有( x )岁, 解:设( 妈妈 )有( 4x )岁。 (
四、综合练习
3.甲乙两数之和是165,甲数的最后一位 数字是0。如果把0去掉,就与乙数相 同。甲乙两数各是多少?
甲数+乙数=165
甲数是乙数的10倍。
解:设乙数是x,甲数是10x。
四、综合练习
4.一块长方形菜地周长是200米,长是宽 的4倍。菜地的长和宽各是多少米?
(长+宽)×2=长方形周长
解:设宽x米,长4x米。
X+0.6x=1.6x 一只毛笔和钢笔一共( )元; 一只钢笔比毛笔多( X-0.6x=0.4x )元。
三、应用题
1.一张办公桌和一把椅子共200元,一张 办公桌的价钱是椅子的4倍。一张办公 桌和一把椅子的价钱各多少元?
2.一张办公桌比一把椅子贵120元,一张 办公桌的价钱是椅子的4倍。一张办公 桌和一把椅子的价钱各多少元?

六年级列方程解应用题-鸡兔同笼问题带答案

六年级列方程解应用题-鸡兔同笼问题带答案

列方程解应用题—鸡兔同笼问题一、课前小练习:1、一个养兔厂养白兔100只,黑兔是白兔的53,灰兔又占黑兔的43,灰兔多少只? 答案:45只2、 鸡兔同笼,头共20个,足共62只,求鸡与兔各有多少只?答案:鸡:9只 兔:11只3、鸡兔同笼,头共70个,脚共186只,求鸡与兔各有多少个头?答案:鸡:47只 兔:23只二、知识点讲解:例1 鸡兔同笼,共有45个头,146只脚。

笼中鸡兔各有多少只?解法一 假设全是兔子。

(4×45-146)÷(4-2)=17(只)——鸡45-17=28(只)——兔解法二 假设全是鸡。

(146-2×45)÷(4-2)=28(只)——兔45-28=17(只)——鸡答:鸡有17只,兔子有28只。

拓展练习:1、在一个停车场上,停了汽车和摩托车一共32辆。

其中汽车有4个轮子,摩托车有3个轮子,这些车一共有108个轮子。

求汽车和摩托车各有多少辆?答案:汽车:12辆 摩托车:20辆 列方程解应用题,若在题干中含有多个量的情况下,在设出一个量为未知量x 时,一定要将其他的量用x 表示出来2、张大妈养鸡兔共200只,鸡兔足数共560只,求鸡兔各有多少只?答案:鸡:120只兔:80只3、鹤龟同池,鹤比龟多12只,鹤龟足共72只,求鹤龟各有多少只?答案:鹤:2只龟:14只例2蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀。

现在这三种小虫16只,共有110条腿和14对翅膀。

问,每种小鸟各几只?答案:蜘蛛有7只,蜻蜓有5只,蝉有4只拓展练习:螃蟹有10条腿,螳螂有6条腿和1对翅膀,蜻蜓有6条腿和2对翅膀。

现在这三种动物37只,共有250条腿和52对翅膀。

每种动物各有多少只?答案:螃蟹有7只,螳螂有8只,蜻蜓有22只例3 鸡与兔共有32只,鸡的脚比兔的脚少8只,问鸡与兔各多少只?答案:鸡:20只兔:12只拓展练习:鸡与兔共有45只,兔的脚比鸡的脚多30只,问鸡与兔各多少只?答案:鸡:25只兔:20只例4已知鸡兔共居一笼,鸡、兔共有脚136只,若将鸡换成兔,兔换成鸡,则共有脚86只.问:鸡、兔各有几只?答案:鸡:22只兔:23只三、课后练习:1、有鸡兔共20只,脚44只,鸡兔各几只?答案:鸡:18只兔:2只2、鸡、兔共笼,鸡比兔多26只,足数共274只,问鸡、兔各几只?答案:鸡:63只兔:37只3、鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?答案:鸡:80只兔:20只4、鸡与兔共有200只,鸡的脚比兔的脚少56只,问鸡与兔各多少只?答案:鸡:124只兔:76只5、今有鸡兔共居一笼,已知鸡头与兔头共35个,鸡脚与兔脚共94只,问鸡兔各几只?答案:鸡:23只兔:12只6、蜘蛛有8条腿,蝴蝶有6条腿和2对翅膀,蝉有6条腿和一对翅膀,现有这三种动物共21只,共140条腿和23对翅膀,问蜘蛛、蝴蝶、蝉各有几只?答案:蜘蛛有8只,蝴蝶有10只,蝉有3只7、鸡、兔共有脚100只,若将鸡换成兔,兔换成鸡,则共有脚86只.问:鸡、兔各有几只?答案:鸡:12只兔:19只8、有一群鸡和兔,腿的总数比头的总数的2倍多18只,兔有几只?答案:兔:9只假设法:假设全是鸡 则总脚数为总头数的2倍 兔:92418=-÷)(只9、小华买了2元和5元纪念邮票一共34张,用去98元钱。

(完整版)小学六年级数学列方程解应用题练习

(完整版)小学六年级数学列方程解应用题练习

列方程解应用题综合练习题(50道)1、运送29.5吨煤,先用一辆载重4吨的汽车运3次,剩下的用一辆载重为2.5吨的货车运。

还要运几次才能运完?2、一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米?3、某车间计划四月份生产零件5480个。

已生产了9天,再生产908个就能完成生产计划,这9天中平均每天生产多少个?4、甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米。

甲每小时行45千米,乙每小时行多少千米?5、某校六年级有两个班,上学期级数学平均成绩是85分。

已知六(1)班40人,平均成绩为87.1分;六(2)班有42人,平均成绩是多少分?6、甲乙两人同时从同一地点向相反方向行走,3.5小时后两人相距38.5千米。

甲每小时行走5千米,乙每小时行走多少千米?7、5个足球比5个排球贵62.5元,已知每个排球52.5元,每个足球多少元8、一批煤,每天烧3.6吨,可以烧30天,如果每天烧2.4吨,可以烧多少天?9、一只足球46.8元,比一只排球价钱的3倍少1.2元,一只排球的价钱是多少元?10、果园里有苹果树270棵,比梨树的3倍少30棵,梨树有多少棵?11、王阿姨买空11个暖瓶,付了200元,找回35元,每个暖瓶多少元?12、一个长方形的周长是35米,长是12.5米,它的宽是多少米?13、李明和王军共有邮票54张,王军的张数是李明张数的2倍,李明和王军各有邮票多少张?14、两袋大米共重104千克,甲袋重量是乙袋的3倍,两袋面粉各多少千克?15、学校买一台电脑和一台彩电共用去8860元,已知一台电脑的价格是彩电的2倍,一台电脑和一台彩电各是多少元?16、同学们植树,五六年级一共植了560棵,六年级植的棵数是五年级的1.5倍,两个年级各植多少棵?17、两袋面粉共88千克,甲袋的重量是乙袋的3倍,两袋各多少千克?18、两袋面粉,甲比乙重34千克,甲袋是乙袋的3倍,两袋各多少?19、少先队员在果园,上午摘了18筐苹果,比下午少摘了100千克,下午摘了22筐,平均每筐苹果重多少千克?20、今年10月份李明家用电131度,王强家用电120度,王强家少缴电费5.5元。

(完整版)六年级列方程解分数应用题

(完整版)六年级列方程解分数应用题

列方程解分数应用题列方程解分数应用题的一般思路:①先根据题中的信息,构建等量关系;②再根据等量关系,确定未知数;③列出方程,再检查方程的合理性;④解方程;⑤检验,写答语。

例题例1:一个分数约分后将是54,如果将这个分数的分子减少124,分母减少11,所得的新分数约分后将是94.那么原分数是。

例2:某小学有学生530人,其中20位女生和19的男生去参加“迎春数学学竞赛”。

剩下的男、女生人数正好相等。

这所学校的女生有多少人?例3:两块地共72亩,第一块地的52和第二块地的95种西红柿,两块地余下的共39亩种茄子,每一块地是多少亩?例4:某小学的在校学生是850人。

男生人数的53比女生人数的21多70人。

那么,该校有女生多少人?例5:有甲、乙两堆煤,甲堆重量比乙堆重量的43少24吨。

若从乙堆调运48吨到甲堆,则甲堆的重量正好是乙堆重量的811。

甲、乙两堆煤原来各有多少吨?例6:在公路自行车比赛中,李勇骑行了全程的51后,又行了58千米到达C 地。

如果所行的这段路程比全程的32少5千米,那么自行车比赛的全程是多少千米?快乐练习1.一个分数约分后将是2011,如果将这个分数的分子加上109,分母减少4,所得的新分数约分后将是215.那么原分数是。

2.某小学六年级有学生156人,选出男生的111和女生12名,剩下的男生人数是剩下女生人数的2倍,求这个小学六年级男女同学各多少人?3.甲、乙两桶共装油44千克,若甲桶倒出51,乙桶倒进2.8千克,则两桶内的油相等,甲、乙两桶原来各装油多少千克?4.有两队小朋友做游戏,甲队比乙队的43还多10人。

若乙队给甲队10人,则甲队是乙队的54,求两队原来各有多少人?家庭作业1.一个分数187,分子加上一个数,分母减去这个数,就变成32;那么这个数是多少?2.把120个苹果分给两个班,其中大班分得的12与小班分得的13正好相等,那么小班分得多少个?3.甲、乙两根绳共长15米,如果甲绳减少41又2米,乙绳增加1米,那么甲、乙两绳就一样长。

(完整版)小学六年级列方程解应用题练习(附答案)

(完整版)小学六年级列方程解应用题练习(附答案)

小学列方程解应用题1、甲有书的本数是乙有书的本数的3倍,甲、乙两人平均每人有82本书,求甲、乙两人各有书多少本。

解:2、一只两层书架,上层放的书是下层的3倍,如果把上层的书搬60本到下层,那么两层的书一样多,求上、下层原来各有书多少本.解:3、有甲、乙两缸金鱼,甲缸的金鱼条数是乙缸的一半,如从乙缸里取出9条金鱼放人甲缸,这样两缸鱼的条数相等,求甲缸原有金鱼多少条.解:4、汽车从甲地到乙地,去时每小时行60千米,比计划时间早到1小时;返回时,每小时行40千米,比计划时间迟到1小时.求甲乙两地的距离.解:5、新河口小学的同学去种向日葵,五年级种的棵数比四年级种的3倍少10棵,五年级比四年级多种62棵,两个年级各种多少棵?解:6、熊猫电视机厂生产一批电视机,如果每天生产40台,要比原计划多生产6天,如果每天生产60台,可以比原计划提前4天完成,求原计划生产时间和这批电视机的总台数.解:7、甲仓存粮32吨,乙仓存粮57吨,以后甲仓每天存人4吨,乙仓每天存人9吨.几天后,乙仓存粮是甲仓的2倍?解:8、一把直尺和一把小刀共1.9元,4把直尺和6把小刀共9元,每把直尺和每把小刀各多少元?解:9、甲、乙两个粮仓存粮数相等,从甲仓运出130吨、从乙仓运出230吨后,甲粮仓剩粮是乙粮仓剩粮的3倍,原来每个粮仓各存粮多少吨?解:10、师徒俩要加工同样多的零件,师傅每小时加工50个,比徒弟每小时多加工10个.工作中师傅停工5小时,因此徒弟比师傅提前1小时完成任务.求两人各加工多少个零件.解:11、买2.5千克苹果和2千克橘子共用去13.6元,已知每千克苹果比每千克橘子贵2.2元,这两种水果的单价各是每千克多少元?解:12、买4支钢笔和9支圆珠笔共付24元,已知买2支钢笔的钱可买3支圆珠笔,两种笔的价钱各是多少元?解:13、一个两位数,个位上的数字是十位上数字的2倍,如果把十位上的数字与个位上的数字对调,那么得到的新两位数比原两位数大36.求原两位数.14、一个两位数,十位上的数字比个位上的数字小1,十位上的数字与个位上的数字的和是这个两位数的0.2倍.求这个两位数.解:15、有四只盒子,共装了45个小球.如变动一下,第一盒减少2个;第二盒增加2个;第三盒增加一倍;第四盒减少一半,那么这四只盒子里的球就一样多了.原来每只盒子中各有几个球?解:16、25除以一个数的2倍,商是3余1,求这个数.解:17、甲、乙分别从相距18千米的A、B两地同时同向而行,乙在前甲在后.当甲追上乙时行了1.5小时.乙车每小时行48千米,求甲车速度.解:18、甲、乙两车同时由A地到B地,甲车每小时行30千米,乙车每小时行45千米,甲车先出发2小时后乙车才出发,两车同时到达B地.求A、B两地的距离.19、师徒俩加工同一种零件,徒弟每小时加工12个,工作了3小时后,师傅开始工作,6小时后,两人加工的零件同样多,师傅每小时加工多少个零件.解:20、有甲、乙两桶油,甲桶油再注入15升后,两桶油质量相等;如乙桶油再注人145升,则乙桶油的质量是甲桶油的3倍,求原来两桶油各有多少升.解:21、一个工程队由6个粗木工和1个细木工组成.完成某项任务后,粗木工每人得200元,细木工每人工资比全队的平均工资多30元.求细木工每人得多少元.解。

6年级上册解方程题

6年级上册解方程题

6年级上册解方程题
列方程解决实际问题
1.学校兴趣小组中,书法组有64人,比美术组人数的4倍还多7人。

美术组有多少人?
2.学校体育室里短绳的根数是长绳的8倍,长绳比短绳少72根,短绳和长绳各多少根?
3.师、徒两人要共同加工940个零件,师傅每小时加工100个零件,徒弟每小时加工98个零件。

如果同时开始加工,几小时能完成?
4.吴老师用72厘米长的铁丝做了一个长方形的教具,长20厘米,宽是多少厘米?
5.工程队修一条长2100米的隧道,已经修了960米,剩下的要求4天修完,平均每天修多少米?。

小学数学列方程解应用题100道及答案(完整版)

小学数学列方程解应用题100道及答案(完整版)

小学数学列方程解应用题100道及答案(完整版)题目1:小明有x 本书,小红的书比小明多5 本,小红有10 本书,小明有多少本书?答案:小明有5 本书。

方程:x + 5 = 10,解得x = 5题目2:学校买来10 个篮球,比足球多2 个,足球有x 个,求足球个数。

答案:足球有8 个。

方程:x + 2 = 10,解得x = 8题目3:果园里苹果树有x 棵,梨树比苹果树少8 棵,梨树有12 棵,苹果树有多少棵?答案:苹果树有20 棵。

方程:x - 8 = 12,解得x = 20题目4:一支铅笔x 元,一支钢笔比铅笔贵3 元,钢笔5 元,铅笔多少钱?答案:铅笔2 元。

方程:x + 3 = 5,解得x = 2题目5:爸爸的年龄是x 岁,小明比爸爸小25 岁,小明10 岁,爸爸多少岁?答案:爸爸35 岁。

方程:x - 25 = 10,解得x = 35题目6:图书馆有故事书x 本,科技书比故事书多15 本,科技书有40 本,故事书有多少本?答案:故事书有25 本。

方程:x + 15 = 40,解得x = 25题目7:一辆汽车每小时行x 千米,5 小时行了250 千米,汽车速度是多少?答案:汽车速度是50 千米/小时。

方程:5x = 250,解得x = 50题目8:水果店运来苹果x 千克,香蕉比苹果多20 千克,香蕉有80 千克,苹果有多少千克?答案:苹果有60 千克。

方程:x + 20 = 80,解得x = 60题目9:姐姐有零花钱x 元,妹妹的零花钱比姐姐少10 元,妹妹有20 元,姐姐有多少元?答案:姐姐有30 元。

方程:x - 10 = 20,解得x = 30题目10:长方形的长是x 厘米,宽比长少3 厘米,宽是5 厘米,长是多少厘米?答案:长是8 厘米。

方程:x - 3 = 5,解得x = 8题目11:学校合唱队有x 人,舞蹈队比合唱队多8 人,舞蹈队有30 人,合唱队有多少人?答案:合唱队有22 人。

小学六年级列方程解应用题综合练习题(50道)

小学六年级列方程解应用题综合练习题(50道)

小学六年级列方程解应用题综合练习题(50道)小学六年级列方程解应用题综合练习题1. 两个数之和是100,两数的差是40,求这两个数各是多少?2. 甲、乙两人共有40只铅笔,甲比乙多20支,求甲和乙各有多少支铅笔?3. 甲、乙两人一共有80本书,甲比乙多10本,求甲和乙各有多少本书?4. 小猫和小狗一共有48只,小猫比小狗多12只,求小猫和小狗各有多少只?5. 甲、乙两个数之和是56,乙比甲大12,求甲和乙各是多少?6. 有一些书,如果再多两本,正好可以分成5摞,如果再少两本,正好可以分成9摞,求原来有多少本书?7. 有一个三位数,个位、十位、百位依次是a、b、c,满足条件:百位比个位大3,十位比百位小2,且a+b+c=10,求该三位数。

8. A、B两人一共有150元,A比B多60元,求A和B各有多少元?9. 有两个数,两数之和是29,较大的一数比较小的一数大23,求这两个数各是多少?10. 甲、乙两人共修剪了40棵树,甲比乙多修剪了3棵,求甲和乙各修剪了多少棵树?12. 一个数若加上14等于它的3/7,求这个数。

13. 一个四位数,个位、十位、百位、千位依次是a、b、c、d,满足条件:百位比千位多3,个位比十位多4,百位比千位小6,求该四位数。

14. 有一个两位数的个位数字是5,如果将该两位数的数字顺序颠倒,得到的两位数比原来的两位数大27,求该两位数。

15. 有一个数,百位、十位、个位依次是a、b、c,满足条件:百位比个位大3,十位比个位大7,且a+b+c=15,求该数。

16. 有两个数,两数之差是23,较小的一数比较大的一数小7,求这两个数各是多少?17. 一个数的2/3加上10等于它的1/4,求这个数。

18. 有一个四位数,个位、十位、百位、千位依次是a、b、c、d,满足条件:百位比个位多6,千位比百位小1,百位比个位大2,求该四位数。

19. 甲、乙两个数之和是56,乙比甲大28,求甲和乙各是多少?20. 一张纸的长度是20cm,折叠后每折一次长度减半,现在纸的长度是5cm,求纸折叠了多少次?21. 有一些苹果,如果每堆多放4个,可以分成5堆,如果每堆少放4个,可以分成9堆,求原来有多少个苹果?23. 旅行团共有45人,大巴每次只能坐48人,求需要几辆大巴?24. 一个数的3/4加上25等于它的5/6,求这个数。

六年级300道解方程应用题

六年级300道解方程应用题

六年级300道解方程应用题1、在日历上任意画一个含有9个数字的方框(3X3),然后把方框中的9个数字加起来,结果等于90,试求出这9个数字正中间的那个数。

2、一根钢管长10米,第一次截去它的7﹔10,第二次乂截公余下的1/3,还剩多米?4、师徒两人合做一批零件,徒弟做了总数的2/ 7,比师傅少做21个,这批零件有多少个?5、甲乙两地相距1152千米.一列客车和一列货车同时从两地对开,货车每小时行72千米,比客车快2/7,两车经过多少小时相遇?6、某班男生人数比全班人数的5/7多6人,女生人数比全班人数的1/4少4人。

全班共有多少人?7、妈妈买3千克香蕉和2千克梨共付13元,已知梨的单价是香蕉的2/3,每千克梨多少元?8、有甲乙两根绳子,甲绳比乙组长35米,已知甲绳1/9和乙绝的1/4相等,乙绳子长多少米?9、一件上衣比一条裤子贵160元,其中裤子的价格是上衣的3/5,一条裤子多少元?10、绵羊43只,绵羊比山羊的4/5多3只,山羊有多少只?11、新光小学四年级人数是五年级的4/5,三年级人数是四年级的2/3,如果三年级是64人,那么五年级是多少人?12、一根电线长40米,先用去3/8,后乂用去3/8米,这根电线还剩多少米?13、一桶油,第一次倒出1/5,第二次倒出15千克,第三次倒出1/3,还剩25/3千克,这桶油原有多少千克?14、一条路已经修了全长的1/3,如果再修60米,就正好修了全长的一半,这条路长多少米?15、加工一批零件,第一天和第二天各完成了这批零件的2/9,第三天加工了80个,正好完成了加工任务、这批零件共有多少个?16、学校美术小组人数的5/6正好是科技小组人数的5/8。

已知美术小组有24人。

这学校科技小组有多少人?17、水果超市运来苹果2500千克,比运来的梨的2倍少250千克。

这个超市运来梨多少千克?18、A、B两地相距300千米,甲车从A地出发24干米后,乙车才从B地相向而行。

小学六年级数学列方程解应用题精选

小学六年级数学列方程解应用题精选

小学六年级数学列方程解应用题精选1.同学们参加野营活动。

一个同学到负责后勤的教师那是去领碗。

教师问他领多少,他说领55个,教师又问:“多少人吃饭?”这个学生说:“一人一个饭碗,两人一个菜碗,三个人一个汤碗。

”请你帮忙算一算参加野营活动的共有多少学生?2.客、货两车分别从A、B两地同时相对开出,已知客、货两车速度的比是4:5。

两车在途中相遇后,继续行驶。

货车把速度提高20%,客车速度不变,再行4小时后,货车到达A地,而客车离B地还有112千米。

A、B两地相距多少千米?3.甲、乙两人从相距46千米的A、B两地出发,相向而行,甲先出发1小时,他们在乙出发后4小时相遇,又知甲比乙每小时快2千米。

乙行完全程需要几小时?4.幼儿园小朋友分饼干,如果每人分5块,则少27块饼干;如果每人分4块,则正好分完。

有几个小朋友?有几块饼干?5. 哥哥骑自行车,小明步行两人同时从家出发去公园,10分钟后哥哥到公园时,小明距公园还有1200米。

已知哥哥骑车的速度是小明步行速度的3倍。

小明步行每分钟走多少米?6.六(1)班图书角原来科技书与文艺书本数的比是5:6,借出去10本科技书后,科技书与文艺书的本数比是2:3,科技书原有多少本书?7.甲乙两校原有人数的比是6:5,甲校毕业了200人,乙校毕业了125人后,两校人数的比为8:7,原来两校各有多少人?8.羊毛衫厂共有工人538人,分三个车间,第一车间比第三车间少12人,已知第二车间与第三车间的人数比是3∶4。

三个车间各有多少人??9.甲乙两人原有钱数之比是6:5,后来甲用去80元,乙又得20元,这时甲乙两人的钱数比是10:9,原来两人各有多少钱?10.A、B两城相距490千米,一辆货车和一辆客车同时从两城出发,相向而行,货车的速度比客车的速度快25%,行驶2小时后,两车还相距130千米。

货车每小时行多少千米?11.果园里的梨树和苹果树共有360棵,其中的苹果树的棵树是梨树的棵树的20%。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

列方程解应用题
1 列方程解应用题的意义
★用方程式去解答应用题求得应用题的未知量的方法。

2 列方程解答应用题的步骤
★弄清题意,确定未知数并用x表示;
★找出题中的数量之间的相等关系;
★列方程,解方程;
★检查或验算,写出答案。

3列方程解应用题的方法
★综合法:先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。

这是从部分到整体的一种思维过程,其思考方向是从已知到未知。

★分析法:先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。

这是从整体到部分的一种思维过程,其思考方向是从未知到已知。

4列方程解应用题的范围
a一般应用题;
b和倍、差倍问题;
c几何形体的周长、面积、体积计算;
d 分数、百分数应用题;
e 比和比例应用题。

5、知识回顾
我们在小学阶段学习过许多数量关系:
(1)行程问题中路程、速度、时间之间的关系:相遇问题、追及问题、水流问题、过桥问题等;
(2)溶液中浓度、溶液、溶质的关系;工程问题中工程量、工作效率、工作时间之间的关系;(3)年龄、数字问题
(4)其它
6、方法总结.列方程解应用题的步骤是:
(1)审题:弄清题意,确定已知量、未知量及它们的关系;
(2)设元:选择适当未知数,用字母表示;
(3)列代数式:根据条件,用含所设未知数的代数式表示其他未知量;
(4)列方程:利用列代数式时未用过的等量关系,列出方程;
(5)解方程:正确运用等式的性质,求出方程的解;
(6)检验并答题。

一、“鸡兔同笼问题”
例1、苹果和梨共14筐,总重520千克,其中苹果每筐重35千克,梨每筐重40千克,问梨和苹果各几筐?
练习:1、鸡兔共36个头,118只脚,问鸡兔各多少只?
2、某人给农作物除草,下雨天每天除草12亩,晴天每天除20亩,他连续除草8天,平均每天除草14亩,那么这几天中,晴天有几天?
3、工人搬运100只玻璃杯,搬运一只得3角,损坏一只赔5角,搬运完共得到26元。

损坏了多少只?
二“盈亏问题”
例2、六年级同学分苹果,如果每人分18个,苹果还剩2个,如果每人分20个,还差18个,一共多少人?
练习:1、小雅去买一种练习本,如果买4本还剩1元,如果买6本就还差2元。

每本练习本多少钱?
2、少先队颁奖,如果每人发4枝,则剩10枝,如果每人发6枝,则剩2枝。

有多少人获奖?
三、分数应用题
例3、一根钢管,第一次截去3米,第二次截去余下的1/3,这时还剩12米,钢管原长多少米?
练习:汽车从A城市开往B城市,第一天行了全程的1/4,第二天行了剩下的2/5,这时离B 城市还有90千米。

A、B两城市相距多少千米?
例4、某校有学生465人,女生2/3比男生的4/5少20人。

该校有男生多少人?
练习:1、两根铁丝共长44米,若把第一根截去1/5,第二根接上2.8米,则两根长度一样。

两根铁丝各长多少米?
2、甲乙两数的差为10,甲数的1/7比乙数的2/9少20,求甲数。

3、甲乙两桶植物油,甲桶中的油比乙桶中的少120千克。

若果从乙中取出70千克放入甲中,则甲中的油比乙中的多1/8,原来乙桶中有油多少千克?
四、其它综合应用题
例5、成都一电视机厂接到一批任务,计划每天生产120台就可按时完成任务,实际每天比原计划多生产10台,结果提前4天完成任务。

这批电视机共多少台?
练习:同学列队出操,站成方阵。

每行站15人时的行数比每行站18人时的行数要多6行。

一共有学生多少人?
例6、一艘轮船所带的燃料最多可用12小时,驶出时顺水,速度是30千米/小时;返回时逆水,速度是顺水速度的4/5.这艘轮船最多行驶多远就应返航?
例7、加工一批零件,甲乙合作24天可以完成。

现在由甲先做16天,然后乙再做12天,还剩这批零件的2/5没完成。

已知甲每天比乙多做3个零件。

这批零件共多少个?
例8、爸爸对儿子说:“我像你这么大时,你才4岁;当你像我这么大时,我就79岁了。

”现
练习:一件工程甲队独做需8天完成,乙队独做需9天。

甲做三天后,乙来支援,甲,乙合作做多少天完成任务的3/4 ?
一项工作由A单独做要40天完成,由B单独做要50天完成。

现在由A先做,工作了若干天后,因A有事离去,由B继续做,共用了46天完成。

问A、B各做了多少天?
某人从家里去上班,每小时行5千米,下班按原路返回时,每小时行4千米,结果下班返回比上班多花10分钟,上班用多少小时?
一架飞机飞行在两个城市之间,顺风要2小时45分钟,逆风要3小时,已知风速是20千米/时,则两城市间距离为多少千米?。

相关文档
最新文档