今日头条内容的推荐机制(如何打造爆文)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本次分享将从今日头条推荐原理出发,探索一篇文章的生命历程,最后解决推荐中常遇到的问题,帮助大家提高推荐量和阅读量。
首先要和大家介绍的是推荐系统的工作原理,推荐系统的本质就是从一个巨大的内容池里边儿给当前用户匹配出最感兴趣的几篇文章,这个内容持有几千万上百万的内容,涵盖了文章,图片,小视频,问答等等各种各样的题材,在给用户匹配内容的时候呢,我们主要依据三个元素内容,用户,用户对内容感兴趣的程度。
我们来看一下系统是怎么理解我们创作的内容的呢?头条的内容题材非常丰富,有图文,小视频,视频,问答,微头条等等,这些内容有娱乐,体育健康等多种分类平台可以提取文章中的关键词,或者利用AI技术识别音频与视频的具体内容,从而将内容呢好或者是说怎么样更好地去理解一个用户的需求,其实,平台由很多角度去刻画一个用户的画像,比如他的年龄,性别,历史,浏览的文章,环境特征等等。
以环境特征为例,用户浏览某个信息的时间是在平时还是周末地点是在外出时还是在常住的地方?这些都是刻画用户的重要因素。了解了用户和内容,接下来最重要的呢,就是要感兴趣,我们不可能就直接去问用户说哎你对这个内容感兴趣吗?是不是感兴趣呢?
如果用户对某篇文章感兴趣,他首先就会点击阅读,再点击,之后呢,如果觉得这一篇文章写的好,他可能会跟身边的人分享,还会点赞评论,假如这篇文章呢,让他对作者产生了兴趣呢?他会干嘛呢?有可能是去关注这个作者,但是有的人看完了这篇文章,觉得这
个文章内容质量特别差,但它可能还会给这篇文章点一个不喜欢,所以基于以上种种呢,都是我们用来刻画这个用户是不是喜欢这篇文章的动作。
这些动作呢,在我们的推荐系统里边儿都会作为一个因素被纳入最终的考虑之中。假如你的文章得到特别多的人的点击,但点击进去之后,用户看了两眼就走了,也不点赞,也不评论,推荐系统的可能会判定你的文章其实没那么吸引人。
以上就是我们的推荐系统的工作原理,提取内容特征。用户特征,结合用户兴趣,然后综合评估用户对内容的满意度,最后给用户推送他可能喜欢的内容。
刚刚从推荐系统的三个要素介绍了一下推荐系统的本质,下面就会从大家比较关心的角度,也就是从一个文章在发表之后,在系统经历的审核和推荐的生命历程。
当大家发表完了一篇文章,拍完了一个视频以后,就会生成一个内容。这个内容在整个系统中经过下面的这些步骤,首先呢是文章撰写完成之后呢,就会进入初审环节,通过初审后,系统会对内容做一些加权推荐,我们称之为冷启动。
冷启动完成了之后,在这一过程中,文章被展示出来,我们会不断地收集到用户的反馈,然后就会有用户去点击他,评论他,甚至是去举报它,基于这种行为,进而触发我们的复审流程。复审会直接影响到文章的后续推荐。
我们作者上传一篇文章后呢,文章就会进入到这个初审环节。我