北师大版八年级数学上《函数》教学设计

合集下载

数学八年级上册《函数》教案

数学八年级上册《函数》教案

基于课程标准的学科教学设计义,能根据所给信息确定一次函数表达式.4.能画一次函数的图象,理解一次函数图象的变化情况,并利用一次函数图象解决简单的实际问题.5.在画一次函数的图象、探索一次函数图象的变化情况、利用一次函数的图象解决实际问题等过程,体会数形结合的思想方法与一次函数中k与b的实际意义.3.单元整体教学思路(教学结构图)课时教学设计课题《一次函数》第一课时课型新授课☑章/单元复习课□专题复习课□习题/试卷讲评课□学科实践活动课□其它1.课程标准分析1.体验从具体情境中抽象出数学符号的过程,理解函数的概念;探索具体问题中的数量关系和变化规律,掌握用函数进行表述的方法.2.通过用函数表述数量关系的过程,体会建模思想,建立符号意识;能独立思考,体会数学的基本思想和思维方式.6.学习活动设计教师活动学生活动环节一:创设情境、导入新课教的活动1播放洋葱数学有关函数的数学史。

学的活动1观看洋葱数学有关函数的数学史。

活动意图说明:承接上一学期变量关系的学习,让学生感受到变量之间关系的是通过多种形式表现出来的,感受研究函数的必要性。

环节二:展现背景,提供概念抽象的素材教的活动1问题 1.你去过游乐园吗?你坐过摩天轮吗?你能描述一下坐摩天轮的感觉吗?当人坐在摩天轮上时,人的高度随时间在变化,那么变化有规律吗?摩天轮上一点的高度h与旋转时间t之间有一定的关系,右图就反映了时间t(分)与摩天轮上一点的高度h(米)之间的关系.你能从上图观察出,有几个变化的量吗?当t分别取3,6,10时,相应的h是多少?给定一个t值,你都能找到相应的h值吗?问题2.在平整的路面上,某型号汽车紧急刹车后仍将滑行S米,一般地有经验公式2300vs ,其中v表示刹车前汽车的速度(单位:千米/时).(1)公式中有几个变化的量?计算当v分别为50,60,100时,相应的滑行距离s是多少?学的活动1畅所欲言,分享体验。

举手回答:摩天轮上一点的高度h与旋转时间t之间的关系。

北师大版八年级数学上册:4.1《函数》教案

北师大版八年级数学上册:4.1《函数》教案

北师大版八年级数学上册:4.1《函数》教案一. 教材分析《函数》是北师大版八年级数学上册第4章第1节的内容。

本节内容是学生学习数学的基础知识,对于学生理解数学的本质,培养学生的逻辑思维能力具有重要意义。

本节内容主要介绍了函数的概念、函数的表示方法以及函数的性质。

通过本节内容的学习,学生能够理解函数的基本概念,掌握函数的表示方法,理解函数的性质。

二. 学情分析学生在学习本节内容之前,已经学习了有理数、代数式等基础知识,对于数学的基本概念和逻辑思维能力有一定的掌握。

但是,对于函数这一概念,学生可能比较陌生,需要通过具体的教学活动来帮助学生理解和掌握。

三. 教学目标1.知识与技能:理解函数的基本概念,掌握函数的表示方法,理解函数的性质。

2.过程与方法:通过具体的教学活动,培养学生的逻辑思维能力,提高学生的问题解决能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神,提高学生的自我表达能力。

四. 教学重难点1.重点:函数的概念、函数的表示方法、函数的性质。

2.难点:函数的概念的理解,函数的性质的推导。

五. 教学方法1.情境教学法:通过具体的生活实例,引导学生理解函数的概念,激发学生的学习兴趣。

2.小组合作学习:通过小组讨论,培养学生的团队合作精神,提高学生的问题解决能力。

3.启发式教学法:通过提问,引导学生思考,培养学生的逻辑思维能力。

六. 教学准备1.教学素材:函数的实例、函数的图片、函数的性质的推导过程。

2.教学工具:黑板、粉笔、多媒体设备。

七. 教学过程1.导入(5分钟)通过具体的生活实例,如气温、身高、体重等,引导学生理解函数的概念。

2.呈现(10分钟)介绍函数的表示方法,如解析式、图像等,并通过多媒体展示函数的图像,帮助学生理解函数的表示方法。

3.操练(10分钟)让学生通过小组合作学习,探讨函数的性质,如单调性、奇偶性等,并展示小组讨论的结果。

4.巩固(10分钟)通过提问和回答的方式,巩固学生对函数的概念、表示方法和性质的理解。

北师大版八年级数学上册第四章一次函数第四节一次函数的应用教学设计

北师大版八年级数学上册第四章一次函数第四节一次函数的应用教学设计
3.设计一道关于一次函数应用的题目,要求包含至少两个变量,并包含优化问题(如最大值或最小值)。题目需简洁明了,解题步骤要详细。
4.写一篇学习心得,总结一次函数在实际问题中的应用,以及在本节课中学到的解题策略和技巧。要求不少于300字,重点突出自己的收获和感悟。
5.预习下一节课的内容,提前思考如何将一次函数的知识应用到更广泛的实际问题中。
四、教学内容与过程
(一)导入新课,500字
在导入新课的环节,我将利用学生已有的知识经验,通过生活中的实例,引发学生的思考,激发他们的学习兴趣。
“同学们,我们在前面的学习中已经了解了一次函数的概念和性质。那么,你们知道一次函数在实际生活中有哪些应用吗?”通过这个问题,让学生回顾一次函数的知识,并思考其与现实生活的联系。
5.总结反思,提升认识
课后,教师应引导学生对所学知识进行总结反思,提炼关键点,形成知识体系。同时,教师也要对课堂教学进行反思,了解学生的学习情况,不断调整教学策略,提高教学效果。
6.关注个体差异,因材施教
在教学过程中,教师应关注学生的个体差异,针对不同学生的学习需求,给予个性化的指导。对于学习困难的学生,教师要有耐心,帮助他们克服困难,增强自信心;对于优秀生,则要适当提高要求,激发他们的潜能。
3.根据一次函数的性质,我们可以求出使总费用最低的小车数量。
(三)学生小组讨论,500字
在学生小组讨论环节,我将把学生分成若干小组,每组4-6人。针对以下问题进行讨论:
1.你还能想到生活中哪些问题可以用一次函数来解决?
2.在解决实际问题时,如何正确列出一次函数表达式?
3.如何利用一次函数的性质,找到实际问题的最优解?
接着,我展示一个实例:“假设我们班要组织一次郊游活动,需要租车。租车公司给出了如下收费标准:每辆小车租金100元,每辆大车租金200元。我们班共有50人,请同学们思考,如何选择车辆才能使总费用最低?”

北师大版八年级数学上册:4.1《函数》教案1

北师大版八年级数学上册:4.1《函数》教案1

北师大版八年级数学上册:4.1《函数》教案1一. 教材分析《函数》是北师大版八年级数学上册第4章第1节的内容。

本节课的主要内容是让学生了解函数的概念,理解函数的性质,以及掌握函数的表示方法。

通过本节课的学习,使学生能够理解生活中的一些现象和问题,培养学生的数学思维能力。

二. 学情分析学生在学习本节课之前,已经掌握了代数的基础知识,对一些数学概念和符号有一定的理解。

但部分学生可能对生活中的实际问题与数学知识的联系还不够明确,对函数的概念和性质的理解可能存在一定的困难。

三. 教学目标1.让学生了解函数的概念,理解函数的性质,掌握函数的表示方法。

2.培养学生运用数学知识解决生活中问题的能力。

3.培养学生合作交流、积极思考的学习习惯。

四. 教学重难点1.函数的概念和性质。

2.函数的表示方法。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法,引导学生主动探究、积极思考,培养学生的数学思维能力。

六. 教学准备1.课件、教案。

2.与生活相关的函数实例。

3.小组讨论的准备。

七. 教学过程1.导入(5分钟)利用生活中的实例,如温度、海拔等,引导学生思考这些现象与数学知识的联系,激发学生的学习兴趣。

2.呈现(10分钟)通过课件展示函数的概念和性质,让学生初步了解函数的定义,以及函数的表示方法。

3.操练(10分钟)让学生通过自主学习,理解函数的概念和性质,学会用函数表示一些实际问题。

4.巩固(10分钟)学生分组讨论,分析生活中的实际问题,运用函数的知识解决问题,巩固所学内容。

5.拓展(10分钟)引导学生思考函数在其他领域的应用,如经济学、物理学等,拓宽学生的知识视野。

6.小结(5分钟)对本节课的主要内容进行总结,使学生明确函数的概念、性质和表示方法。

7.家庭作业(5分钟)布置一些有关函数的练习题,巩固所学知识,提高学生的应用能力。

8.板书(5分钟)总结本节课的主要知识点,方便学生复习和记忆。

教学过程中每个环节所用的时间如上所示,供您参考。

北师大版数学八年级上册1《函数》教学设计2

北师大版数学八年级上册1《函数》教学设计2

北师大版数学八年级上册1《函数》教学设计2一. 教材分析北师大版数学八年级上册1《函数》是学生在学习了初中数学基础知识后,对函数概念、性质和应用的初步认识。

本节课的内容主要包括函数的定义、函数的性质和函数图像等。

通过本节课的学习,学生可以对函数有更深入的了解,为后续学习更复杂的函数知识打下基础。

二. 学情分析学生在学习本节课之前,已经掌握了实数、代数式等基础知识,具备一定的逻辑思维能力和问题解决能力。

但部分学生对抽象的函数概念和性质可能较难理解和掌握,需要通过具体例子和实际应用来加深理解。

三. 教学目标1.理解函数的定义,掌握函数的性质。

2.学会用函数的性质解决实际问题。

3.培养学生的逻辑思维能力和问题解决能力。

四. 教学重难点1.函数的定义和性质。

2.函数图像的绘制和分析。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过设置问题引导学生思考,用实际案例让学生理解函数的性质,小组合作学习法让学生在讨论中加深对知识的理解。

六. 教学准备1.准备相关案例和实际问题。

2.准备函数图像的绘制工具。

3.准备小组讨论的问题和任务。

七. 教学过程1.导入(5分钟)通过一个实际问题引入函数的概念,如“某商场举行打折活动,商品的原价和折扣价之间是否存在某种关系?”引导学生思考函数的定义和作用。

2.呈现(10分钟)呈现函数的定义和性质,用PPT或板书展示。

同时,用具体案例来说明函数的性质,如“一次函数的图像是一条直线”,“二次函数的图像是一个抛物线”等。

3.操练(10分钟)让学生通过绘制函数图像来加深对函数性质的理解。

可以分组进行,每组选择一个函数,绘制其图像,并分析图像的性质。

4.巩固(10分钟)通过一些练习题来巩固对函数性质的理解。

可以设置一些选择题、填空题或解答题,让学生在解答过程中运用所学知识。

5.拓展(10分钟)引导学生思考函数在实际生活中的应用,如“如何利用函数模型来描述某种现象?”让学生举例说明,并进行讨论。

北师大版八年级数学上册:4.1《函数》教学设计1

北师大版八年级数学上册:4.1《函数》教学设计1

北师大版八年级数学上册:4.1《函数》教学设计1一. 教材分析北师大版八年级数学上册4.1《函数》是学生在学习了初中数学基础知识和初步接触到函数概念后,进一步深入研究函数性质和图像的重要章节。

本节内容主要包括函数的定义、函数的性质、函数的图像等,是学生理解函数概念、掌握函数解题方法的关键。

二. 学情分析学生在学习本节内容时,已具备一定的数学基础知识和初步的函数概念,但对于函数的深入理解和灵活运用还有待提高。

因此,在教学过程中,需要关注学生的认知水平,引导学生通过自主学习、合作探讨等方式,逐步理解和掌握函数的相关知识。

三. 教学目标1.理解函数的定义,掌握函数的性质和图像。

2.培养学生运用函数解决实际问题的能力。

3.培养学生的数学思维能力和团队协作能力。

四. 教学重难点1.函数的定义及其性质。

2.函数图像的特点和绘制方法。

五. 教学方法1.情境教学法:通过生活实例引入函数概念,让学生感受函数在实际生活中的应用。

2.启发式教学法:引导学生主动思考、探究函数的性质和图像。

3.合作学习法:学生进行小组讨论,培养学生的团队协作能力。

六. 教学准备1.教学PPT:制作包含函数定义、性质、图像等内容的PPT。

2.教学素材:准备一些与生活相关的函数实例,如温度、身高等。

3.练习题:挑选一些具有代表性的练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用PPT展示一些与生活相关的函数实例,如温度随时间的变化、身高与年龄的关系等,引导学生关注函数在实际生活中的应用。

提问:这些实例中有什么共同特点?从而引出函数的定义。

2.呈现(10分钟)通过PPT展示函数的定义、性质和图像,让学生初步了解函数的基本概念。

同时,教师进行讲解,确保学生能够理解函数的相关概念。

3.操练(10分钟)让学生独立完成一些具有代表性的练习题,检验学生对函数概念的理解。

教师在过程中进行个别辅导,帮助学生解决问题。

4.巩固(10分钟)学生进行小组讨论,让学生分享自己的解题心得,互相学习。

北师大版数学八年级上册1《函数》教学设计3

北师大版数学八年级上册1《函数》教学设计3

北师大版数学八年级上册1《函数》教学设计3一. 教材分析《函数》是北师大版数学八年级上册的教学内容,本节课主要让学生了解函数的概念,理解函数的性质,以及掌握函数的表示方法。

通过本节课的学习,使学生能够理解生活中的函数现象,提高解决实际问题的能力。

二. 学情分析学生在七年级时已经学习了代数知识,对变量、方程有一定的认识。

但函数作为一种新的数学概念,对学生来说较为抽象,需要通过实例让学生感受函数的意义,从而更好地理解函数的内涵。

三. 教学目标1.了解函数的概念,知道函数的表示方法。

2.理解函数的性质,能够分析生活中的函数现象。

3.提高学生解决实际问题的能力,培养学生的数学思维。

四. 教学重难点1.函数的概念及表示方法。

2.函数的性质的理解与应用。

五. 教学方法采用情境教学法、实例教学法和小组合作学习法。

通过生活实例引入函数概念,让学生在实际问题中感受函数的意义;通过小组讨论,引导学生探索函数的性质,提高学生的合作能力。

六. 教学准备1.教学课件:制作课件,展示生活中的函数现象。

2.实例材料:收集相关的实际问题,用于引入函数概念。

3.学习任务单:设计学习任务单,引导学生探究函数的性质。

七. 教学过程1.导入(5分钟)利用课件展示生活中的函数现象,如温度随时间的变化、物价随时间的变化等,引导学生思考这些现象背后的数学规律。

2.呈现(10分钟)介绍函数的概念,让学生了解函数的定义,并通过实例解释函数的表示方法。

如y=2x+1,x表示自变量,y表示因变量,2和1为常数。

3.操练(10分钟)让学生分组讨论,分析给定的实际问题,尝试用函数表示这些问题。

如一个人骑自行车行驶的路程s与时间t的关系,可以表示为s=10t(假设速度为10km/h)。

4.巩固(10分钟)让学生根据函数的性质,判断给定的实际问题是否为函数。

如一个人身高与年龄的关系,是否为函数?通过讨论,使学生理解函数的内涵。

5.拓展(10分钟)引导学生思考函数在实际生活中的应用,如购物时优惠券的使用、手机话费的计算等。

八年级数学上册4.1函数教学设计 (新版北师大版)

八年级数学上册4.1函数教学设计 (新版北师大版)

八年级数学上册4.1函数教学设计(新版北师大版)一. 教材分析函数是八年级数学上册第四单元的内容,本节课的主要内容是让学生初步理解函数的概念,了解函数的表示方法,以及会使用函数的性质解决一些简单问题。

教材通过引入实际问题,引导学生探究函数的定义和表示方法,培养学生的数学思维能力。

二. 学情分析学生在学习本节课之前,已经掌握了代数基础知识,对数学问题有一定的探究能力。

但函数概念抽象,学生理解起来有一定难度,因此需要教师在教学中引导学生逐步理解函数的概念,并通过实际例子让学生体验函数的应用。

三. 教学目标1.了解函数的定义和表示方法,能正确理解函数的概念。

2.学会用函数的性质解决一些简单问题,提高数学解决问题的能力。

3.培养学生的数学思维能力,提高学生的数学素养。

四. 教学重难点1.函数的概念和表示方法。

2.函数的性质及应用。

五. 教学方法1.情境教学法:通过引入实际问题,引导学生探究函数的定义和表示方法。

2.启发式教学法:在教学过程中,教师引导学生思考,激发学生的学习兴趣。

3.小组合作学习:学生分组讨论,共同解决问题,提高学生的合作能力。

六. 教学准备1.教学PPT:制作包含函数概念、表示方法和应用实例的PPT。

2.实际问题:准备一些与生活相关的问题,用于引导学生探究函数。

3.练习题:准备一些有关函数的练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用PPT展示一些实际问题,如“某水果店售价为每千克x元,求购买y千克该水果需要支付的总价”,让学生思考这些实际问题与数学函数之间的关系。

2.呈现(15分钟)介绍函数的定义和表示方法。

函数的定义:在某个变化过程中,有两个变量x和y,对于x的每一个值,y都有唯一的值与之相对应,那么y就是x的函数。

函数的表示方法有解析式和列表法。

3.操练(15分钟)让学生分组讨论,运用函数的性质解决一些简单问题。

如:“已知函数y=2x+1,求当x=3时,y的值是多少?”4.巩固(10分钟)让学生独立完成一些有关函数的练习题,巩固所学知识。

八年级数学上册第4章《函数》教学设计(北师大版)

八年级数学上册第4章《函数》教学设计(北师大版)

函数一、教材分析《函数》是义务教育课程标准北师大版实验教科书八年级(上)第四章《一次函数》第一节的内容。

教材让学生分析了大量的问题,感受到在实际问题中存在两个变量,而且这两个变量之间存在一定的关系,它们的表示方式是多样地,如可以通过列表的方法表示,可以通过画图象的方法表示,还可以通过列解析式的方法表示,但都有着共性:其中一个变量依赖于另一个变量。

教材中的函数概念就是这样从具体实际问题的数量关系和变化规律中抽象出来的,主要是通过学生探索实际问题中存在的大量的变量之间关系,进而抽象出函数的概念。

本节内容是在七年级知识的基础上,继续通过对变量间的关系的考察,让学生初步体会函数的概念,为后续学习打下基础。

同时,函数的学习可以使学生体会到数形结合的思想方法,感受事物是相互联系和规律的变化。

二、学情分析1、对学生已有知识经验分析学生在小学时学到加减乘除运算法则,乘法口诀,就体现了一种对应关系。

还有按规律数火柴棒的经历,也体现了一种对应。

学生在六年级上学期学习圆和扇形时,就初步感知了两个变量的依赖关系;学习数据的表示(统计图表)时,认识数字与图形的联系和对应关系。

六年级下学期学习数轴时,初步接触点与数的对应。

学生在七年级上学期用字母表示数,代数式的值的教学是培养学生对变量的认识、树立初步的函数观念的良好契机。

数、字母、代数式之间的关系实际上就是数、自变数、函数之间的关系。

代数式本身就是代数式所含字母的函数,代数式求值实际上就是给自变数一个确定的值,求对应的函数值。

在七年级下册已学习了《变量之间的关系》,学生接触了大量的生活实例额,体会了变量之间相互依赖关系的普遍性,感受到了学习变量关系的必要性,对变量间互相依存的关系有了一定的认识。

初步具备了一定的识图能力和主动参与、合作的意识和初步的观察、分析、抽象概括的能力。

上述分析表明,课本在正式引进函数概念之前,早已结合有关知识,渗透了函数的概念和对应的思想:通过代数式的值的概念,可以很好给学生渗透一些变量间的依存关系以及变量的变化范围等方面的初步知识,学习平面上的点和有序实数对间的一一对应关系,为学生学习函数的图形做好了准备,此外,方程(特别是二元一次方程)、等式的学习以及有关几何量的计算,进一步促进学生认识两个量之间是相互关联的,体会到两个变量之间的相互依存关系,都为学生学习函数知识作了很好的准备!2、可能存在的难点分析由常量数学到变量数学的过渡,以函数的引入为标志,宣布了数学问题的研究由处理相对稳定的数学问题进入处理运动、变化的量与量关系的数学问题的领域,抽象层次的再一次提升;由数到形,又到数形结合,研究量与量之间运动、变化过程中表现出的关系,则又是一类研究对象与研究方法的转变而导致的不适应,就出现了由常量数学到变量数学过渡的这一难关。

北师大版八年级数学上册:4.1《函数》公开课教学设计

北师大版八年级数学上册:4.1《函数》公开课教学设计

优质课《函数》教学设计方案科目数学课题名称北师大版八年级(上册)《函数》教学时间学习者分析在七年级上期学习了用字母表示数,体会了字母表示数的意义,学会了探索具体事物之间的关系和变化的规律,并用符号进行了表示;在七年级下期又学习了“变量之间的关系”,使学生在具体的情境中,体会了变量之间的相依关系的普遍性,感受了学习变量之间的关系的必要性和重要性,并且积累了一定的研究变量之间关系的一些方法和初步经验,为学习本章的函数知识奠定了一定的基础。

教学目标一、情感态度与价值观1.在函数概念形成的过程中,培养学生联系实际、善于观察、乐于探索和勤于思考的精神2、在探索过程中体验成功的喜悦,树立学习的自信心。

二、过程与方法1.通过函数概念的学习,初步形成学生利用函数观点认识现实世界的意识和能力;2.经历从具体实例中抽象概括的过程,进一步发展学生的抽象思维能力,体会函数的模型思想;3.通过对函数概念的学习,培养学生的语言表达能力。

三、知识与技能1.初步掌握函数概念,能判断两个变量间的关系是否可以看成函数;2.根据两个变量之间的关系式,给定其中一个量,相应的会求出另一个量的值;3.了解函数的三种表示方法。

教教学重点:1.掌握函数的概念,以及函数的三种表示方法;学重难点2.会判断两个变量之间是否是函数关系。

教学难点:1.对函数概念的理解;2.把实际问题抽象概括为函数问题。

教学资源1、教材,笔,练习本2、课件,电脑3、多媒体大屏幕《函数》教学过程描述教学活动1一、师生互动,激趣导入1、情景引入:大屏幕展示一些与学生实际生活有关的图片,如心电图片,天气随时间的变化图片,抛掷铅球球形成的轨迹,k线图等,提请学生思考问题。

2、设置疑问:生活中充满了许许多多变化的量,你了解这些变量之间的关系吗?引入课题:函数是刻画变量之间的关系的常用模型,其中最为简单的事一次函数。

什么是函数?它对应的图像有什么特点?用函数能解决现实生活中的那些问题?你想了解这些吗?让我们一起来走进函数的世界吧?教学二、问题启发,合作探究1你去过游乐园吗?2你坐过摩天轮?你能描述一下坐摩天轮的感觉吗?问题 1.你去过游乐园吗?你坐过摩天轮吗?你能描述一下坐摩天轮的感觉吗?当人坐在摩天轮上时,人的高度随时间在变化,那么变化有规律吗?活动2如上图摩天轮上一点的高度h与旋转时间t之间有一定的关系,右图就反映了时间t(分)与摩天轮上一点的高度h(米)之间的关系.你能从上图观察出,有几个变化的量吗?当t分别取3,6,10时,相应的h是多少?给定一个t值,你都能找到相应的h值吗?问题2.在平整的路面上,某型号汽车紧急刹车后仍将滑行S米,一般地有经验公式2300vs ,其中v表示刹车前汽车的速度(单位:千米/时).(1)公式中有几个变化的量?计算当v分别为50,60,100时,相应的滑行距离s是多少?(2)给定一个v值,你都能求出相应的s值吗?问题3.如图,搭一个正方形需要4根火柴棒,按图中方式,动手做一做,完成下表:表格中有几个变量?按图中方式搭100个正方形,需要多少根火柴棒?若搭n个正正方形个数 1 2 3 4 5火柴棒根数 4 7 10 13 16方形,需要多少根火柴棒?教学活动3三、归纳总结,抽象概念1.引导学生思考以上三个问题的共同点,进而揭示出函数的概念:在上面的问题中,都有两个变量,给定其中一个变量(自变量)的值,相应的就确定了另一个变量(因变量)的值.一般地,在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量.2.点明函数概念中的两个关键词:两个变量,一个x值确定一个y值,它们是判断函数关系的关键。

北师大版数学八年级上册《1 函数》教案1

北师大版数学八年级上册《1 函数》教案1

北师大版数学八年级上册《1 函数》教案1一. 教材分析北师大版数学八年级上册《1 函数》是学生在学习了初中数学基础知识后,对函数概念、性质和应用进行初步了解的一节课。

本节课的内容包括函数的定义、函数的性质和函数图像的识别。

通过本节课的学习,学生将对函数有更深入的认识,为今后的数学学习打下基础。

二. 学情分析学生在学习本节课之前,已经掌握了实数、方程、不等式等基础知识,具备了一定的逻辑思维能力和抽象思维能力。

但函数概念较为抽象,学生可能难以理解。

因此,在教学过程中,教师需要运用生动形象的教学手段,帮助学生建立函数概念,引导学生理解函数的性质和图像。

三. 教学目标1.了解函数的定义,掌握函数的基本性质。

2.能够识别和绘制简单的函数图像。

3.培养学生的逻辑思维能力和抽象思维能力。

4.提高学生运用数学知识解决实际问题的能力。

四. 教学重难点1.函数的定义及其性质。

2.函数图像的识别和绘制。

五. 教学方法1.情境教学法:通过生活实例引入函数概念,激发学生兴趣。

2.讲授法:讲解函数的定义、性质和图像,引导学生理解。

3.实践操作法:让学生动手绘制函数图像,加深对函数的理解。

4.小组讨论法:分组讨论函数问题,培养学生的合作意识。

六. 教学准备1.教学PPT:包含函数的定义、性质、图像及实例。

2.练习题:包括简单函数的识别和绘制。

3.教学用具:黑板、粉笔、直尺、圆规等。

七. 教学过程1.导入(5分钟)通过一个生活实例,如温度随时间的变化,引入函数的概念。

引导学生思考:如何表示这种变化关系?引出函数的定义。

2.呈现(10分钟)讲解函数的定义、性质和图像,引导学生理解。

用PPT展示函数图像,让学生观察、分析。

3.操练(10分钟)让学生动手绘制一些简单函数的图像,如正比例函数、一次函数、二次函数等。

在绘制过程中,引导学生掌握函数图像的特点。

4.巩固(10分钟)出示一些练习题,让学生识别和绘制函数图像。

教师巡回指导,解答学生疑问。

北师大版八年级数学上册:4.1《函数》教学设计1

北师大版八年级数学上册:4.1《函数》教学设计1

北师大版八年级数学上册:4.1《函数》教学设计1一. 教材分析《函数》是北师大版八年级数学上册第4章的内容,本节主要介绍了函数的概念、性质和简单的函数图像。

函数是初中数学的重要内容,也是高中数学的基础。

通过本节的学习,学生能够理解函数的基本概念,了解函数的性质和图像,为后续学习更复杂的函数知识打下基础。

二. 学情分析八年级的学生已经学习了代数和几何的基础知识,具备一定的逻辑思维能力和空间想象能力。

但是,对于函数这一概念,学生可能比较陌生,难以理解函数的的本质。

因此,在教学过程中,需要引导学生从实际问题中抽象出函数的概念,并通过大量的例子让学生感受函数的性质和图像。

三. 教学目标1.了解函数的概念,能够说出函数的定义。

2.了解函数的性质,能够判断一个函数的性质。

3.能够画出一些简单函数的图像,了解函数图像的特点。

4.能够运用函数解决实际问题。

四. 教学重难点1.函数的概念和性质。

2.函数图像的画法和特点。

五. 教学方法1.情境教学法:通过实际问题引入函数的概念,让学生感受函数的应用。

2.实例教学法:通过大量的例子让学生理解函数的性质和图像。

3.小组合作学习:让学生在小组内讨论和探究函数的问题,培养学生的合作能力。

六. 教学准备1.PPT课件:制作相关的PPT课件,展示函数的定义、性质和图像。

2.实例材料:准备一些实际的例子,让学生分析和探究。

3.练习题:准备一些练习题,让学生巩固所学知识。

七. 教学过程1.导入(5分钟)利用PPT课件展示一些实际问题,如电梯的运行、温度变化等,引导学生思考这些问题背后的数学模型。

通过学生的思考和讨论,引出函数的概念。

2.呈现(10分钟)用PPT课件呈现函数的定义,让学生了解函数的基本概念。

然后,用PPT课件展示一些简单函数的图像,让学生观察和分析函数图像的特点。

3.操练(10分钟)让学生分组讨论和探究,分析给定的实际问题中的函数关系。

每组选择一个实际问题,分析其中的函数关系,并画出函数的图像。

八年级数学上册4.1函数教案 新版北师大版

八年级数学上册4.1函数教案 新版北师大版

八年级数学上册4.1函数教案新版北师大版一. 教材分析《新版北师大版八年级数学上册》第四单元第一节“函数”是学生在初中阶段首次接触函数概念。

在此之前,学生已学习了代数知识,为本节函数的学习奠定了基础。

本节课的主要内容是让学生了解函数的定义、性质及表示方法,通过实例让学生理解函数的概念,并能够运用函数解决实际问题。

二. 学情分析八年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对于新知识有一定的求知欲和好奇心。

但是,由于函数概念较为抽象,学生可能一时难以理解和接受。

因此,在教学过程中,需要教师通过具体实例和生活中的问题,引导学生理解和掌握函数的概念。

三. 教学目标1.让学生了解函数的定义、性质及表示方法。

2.培养学生运用函数解决实际问题的能力。

3.提高学生的抽象思维能力和逻辑思维能力。

四. 教学重难点1.函数的概念和性质。

2.函数的表示方法。

3.运用函数解决实际问题。

五. 教学方法1.实例教学:通过具体实例引入函数概念,使学生更容易理解和接受。

2.问题驱动:提出生活中的问题,引导学生运用函数解决实际问题。

3.小组讨论:分组讨论函数的性质和表示方法,培养学生合作学习能力。

4.练习巩固:课后布置适量习题,巩固所学知识。

六. 教学准备1.准备相关实例和图片,用于导入和讲解。

2.准备PPT,用于展示函数的性质和表示方法。

3.准备习题,用于课后巩固。

七. 教学过程1.导入(5分钟)利用生活中的实例,如温度随时间的变化、物体的高度随时间的变化等,引导学生思考这些现象背后的数学规律。

让学生意识到函数可以用来描述这些变化规律。

2.呈现(10分钟)讲解函数的定义、性质及表示方法。

通过PPT展示函数图像,让学生直观地理解函数的概念。

同时,给出一些实际问题,让学生尝试用函数来解决。

3.操练(10分钟)学生分组讨论,探究函数的性质和表示方法。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)课后布置适量习题,让学生巩固所学知识。

北师大版数学八年级上册1《函数》教学设计1

北师大版数学八年级上册1《函数》教学设计1

北师大版数学八年级上册1《函数》教学设计1一. 教材分析《函数》是北师大版数学八年级上册的教学内容,本节课主要介绍函数的概念、性质及简单的函数图像。

教材通过生活中的实例引入函数的概念,让学生理解函数是一种数学模型,用来描述两个变量之间的关系。

教材还介绍了函数的性质,如单调性、奇偶性等,并通过实例让学生了解函数图像的特点。

二. 学情分析八年级的学生已经学习了代数和几何的基本知识,具备一定的逻辑思维能力和空间想象能力。

但对于函数这一概念,学生可能较为陌生,难以理解函数的本质和应用。

因此,在教学过程中,需要通过生活实例和实际操作,让学生感受函数的意义,并培养他们的抽象思维能力。

三. 教学目标1.理解函数的概念,知道函数的定义要素;2.了解函数的性质,如单调性、奇偶性等;3.能够观察和分析实际问题中的函数关系,并能用函数模型进行描述;4.培养学生的抽象思维能力和解决问题的能力。

四. 教学重难点1.函数的概念及其定义要素;2.函数的性质及其应用;3.利用函数模型解决实际问题。

五. 教学方法1.情境教学法:通过生活实例引入函数概念,让学生感受函数的意义;2.直观教学法:利用图形和实物展示函数的性质,增强学生的空间想象能力;3.引导发现法:教师引导学生发现函数的性质,培养学生的抽象思维能力;4.实践操作法:让学生动手绘制函数图像,提高他们的实际操作能力。

六. 教学准备1.教学课件:制作函数概念、性质及实例的课件;2.教学素材:收集生活中的函数实例;3.练习题:准备巩固函数概念和性质的练习题;4.板书设计:设计本节课的重点内容和关键步骤。

七. 教学过程1.导入(5分钟)利用生活实例引入函数的概念,如气温与时间的关系,让学生感受函数的意义。

2.呈现(10分钟)展示教材中的函数实例,引导学生分析函数的定义要素,如自变量、因变量和函数关系。

3.操练(10分钟)让学生动手绘制一些简单函数的图像,如正比例函数、一次函数等,观察和分析函数的性质。

北师大版八年级数学上册教案《函数》教学设计

北师大版八年级数学上册教案《函数》教学设计

北师大版八年级数学上册教案《函数》教学设计函数》是八年级(上)第四章《一次函数》第一节的内容。

教材中的函数是从具体实际问题的数量关系和变化规律中抽象出来的。

本节内容是在七年级知识的基础上,让学生初步体会函数的概念,为后续研究打下基础。

通过函数概念的研究,初步形成学生利用函数观点认识现实世界的意识和能力。

本节课的难点在于对函数概念的理解。

教学目标:1.初步掌握函数概念,能判断两个变量间的关系是否可以看成函数;2.根据两个变量之间的关系式,给定其中一个量,相应的会求出另一个量的值;3.了解函数的三种表示方法。

4.培养学生联系实际、善于观察、乐于探索和勤于思考的精神。

教学重点:对学生来讲本节课的难点在于对函数概念的理解。

教学准备:教材,课件,电脑,笔,练本。

第一环节:创设情境、导入新课展示一些与学生实际生活有关的图片,如心电图片,天气随时间的变化图片,抛掷铅球球形成的轨迹,K线图等,提请学生思考问题。

通过多种形式表现变量之间的关系,让学生感受研究函数的必要性。

第二环节:展现背景,提供概念抽象的素材问题1:你坐过摩天轮吗?当人坐在摩天轮上时,人的高度随时间在变化,那么变化有规律吗?摩天轮上一点的高度h 与旋转时间t之间有一定的关系,可以通过列表、图像、解析式等方式表示。

让学生观察图像,求出当t分别取3,6,10时,相应的h是多少,同时让学生思考给定一个t值,如何找到相应的h值。

通过这个问题,引出函数的概念。

问题2:如何计算圆柱形物体的总数随着层数的增加而变化?填写下表:层数物体数量1 12 23 34 45 56 67 78 89 910 10问题3:当气体质量不变且体积不变时,气体的压强会在温度降低到-273℃时变为零。

因此,热力学温度T(K)与摄氏温度t(℃)之间有如下数量关系:T=t+273,其中T≥0.1)当t分别等于-43,-27,18时,相应的热力学温度T 分别为230K,246K,291K。

北师大版八年级数学上《函数》教学设计

北师大版八年级数学上《函数》教学设计

教学目标:1.了解函数的定义及其表示方式。

2.掌握函数的性质和基本例子。

3.能够根据给定的函数进行问题求解。

4.培养学生的思维能力和问题解决能力。

教学重点:1.函数的定义及其表示方式。

2.函数性质及其应用。

3.函数问题解决方法的培养。

教学难点:1.函数定义的理解和运用。

2.学生问题解决能力的提升。

教学准备:1.教材《数学八年级上册》2.讲义、教学演示软件3.学生练习册教学过程:一、导入(10分钟)1.提问:你们能说出一些函数的例子吗?2.展示一个简单的函数图像,引导学生猜测其函数表达式。

3.通过导入的方式激发学生的学习兴趣,并引入今天的主题。

二、概念讲解(20分钟)1.呈现《数学八年级上册》中“函数”的概念。

2.解读教材对函数的定义,引导学生探究函数的基本性质。

3.教师讲解函数的表示方法,包括映射表示法、解析表示法、图像表示法等。

三、函数性质(25分钟)1.引导学生通过讨论函数的图像和表达式,了解函数的增减性和奇偶性。

2.教师通过多个例子进行解析,讲解函数的单调性和有界性。

3.引导学生发现函数的最值和极值,并解释其意义和用途。

四、函数的应用(20分钟)1.发放练习册,让学生完成一些关于函数性质的练习。

2.引导学生通过解决实际问题来应用函数,如购物折扣、等速直线运动等。

3.教师与学生共同讨论解决方法和思路,培养学生的问题解决能力。

五、小结与拓展(15分钟)1.教师小结今天的教学内容,强调函数的定义和性质。

2.提出几个拓展问题,引导学生思考函数的更多应用场景。

3.教师和学生一起回顾本节课的重难点问题,并解答学生的疑惑。

六、作业布置(5分钟)1.布置课后练习题,巩固学生对函数概念和性质的理解。

2.提醒学生预习下节课的内容,准备相关材料。

教学反思:本节课通过导入、概念讲解、性质讨论、应用练习等多种教学手段,帮助学生全面理解函数的概念和基本性质。

通过引导学生解决实际问题,培养了学生的问题解决能力。

同时,通过小组合作和课堂讨论,激发了学生的主动性和参与度。

北师大版八年级数学上册 4.1 函数 教学设计

北师大版八年级数学上册 4.1 函数 教学设计

4.1《函数》教学设计一、教学内容解析本节课是北师大版八年级数学上册第四章《一次函数》第一节的内容,是在七年级学习过字母表示数、变量之间的关系后函数的第一节课,本节课旨在通过学生探究生活中的具体问题,初步理解函数的概念,发现函数的表示方法并指出具体问题中自变量的取值范围,是后面学习一次函数、反比例函数、二次函数的基础,在教材中有着明显的承上启下的作用.本节课的核心内容是函数的概念,但抽象出函数概念对学生来说是比较困难的,教材通过展示几个问题情景,引导学生通过观察、思考、交流、归纳等数学活动归纳概括出函数的概念,初步建立函数的模型思想.教材中增加了自变量取值范围的内容,目的是让学生更加全面认识函数.二、学习目标设置《课程标准》中关于本节课的描述有:1.结合实例,了解函数的概念和三种表示法,能举出函数的实例.2.能确定简单实际问题中函数自变量的取值范围,并会求函数值.根据《课程标准》,依据教材内容和学生情况,确定本课时的学习目标为:1.通过由具体到一般的问题分析,能归纳概括出函数的概念;能判断具体问题中两个变量间的关系是否是函数关系,并能举出函数的实例.2.能准确说出函数的三种表示方法;能指出简单实际问题中函数自变量的取值范围,给定自变量的值,相应的会求出函数值.3.通过本节课的学习,积累归纳概括的活动经验,在教师引导下,体会归纳、建模等数学思想.三、学生学情分析1.学生已有的基础:学生在七年级学习了字母表示数、变量间的关系,知道可以用表格法、图象法、关系式法表示变量间的关系,但对于如何刻画变量间的变化规律尚不明确.从数学活动经验上来说,学生具备了一定的数学活动经验,有主动参与数学活动的意识和小组合作学习的经验,好奇心强,学习比较积极主动.2.学生面临的问题:本节课是函数部分的开始,对学生来说是一个全新的概念,在认知方式和思维难度上对学生有较高的要求,而学生的抽象概括能力比较薄弱,学生在理解函数的概念和判断函数关系时会比较困难.重点:根据本节课教材安排和课标要求,结合学生实际,确定本节课的教学重点为:抽象概括函数的概念,指出实际问题中函数自变量的取值范围,举出函数的实例,判断实际问题中变量关系是否是函数关系.难点:从实际问题中归纳概括出函数的概念,对函数概念的理解.五、教学过程:环节一:创设情境引入新课通过关注学生能否参与教师设计的问题,引起学生的注意十月一假期,小明与父亲一起去高州,了解高州水库的变化情况,统计数据后,制成下表:回答下列为题:(1)1,2,3,4,5,6号高州水库地下水是位分别是多少?(2)在表格中有几个变量?分别是什么?(3)对于给定的一个时间t,你能找出对应的水位h吗?有多少个h与t相对应?(4)随着时间的变化,水库地下水位如何变化的?以焦点问题引入新课,激发学生的学习兴趣.并设计相同的问题,让学生关注学生能否自主完成三个问题.能否理解每个问题中的问题对于给定的每一个自变量的值,因变量的值唯一确定. (1)如果你坐在摩天轮上,随着时间的变化,你离开地面的高度是如何变化的?活动一中的三个生活中的变化关系实例,让学生体会到数学与生活的紧密联系,为引出函数概念做铺垫.三个变量间父亲解释:在平整的公路上,汽车紧急刹车仍将滑行米,一般有经验公式3002vs其中v表示刹车前汽车的速度(单位:千米/时)你能帮小明回答下列问题吗?(1)当v=60时,相应的滑行距离s是多少?V=80呢?100呢?(2)此关系式中有几个变量?分别是什么?(3)对于给定的一个速度v,能否滑行距离s确定?有多少个s与v相对应?(4)随着刹车前速度的增加,刹车后的滑行距离是如何变化?环节二:抽象概念初探新知关注学生是否能够积极思考,主动与小组成员交流,是否在实际问题中有数学发现,是否在表达自己的见解.(2)图4-1反映了摩天轮上一点的高度h(米)与旋转时间t(分)之间的关系.根据上图图填表:(3)此情景中反映了哪几个变量之间的关系?(4)对于给定的每一个时间t,相应的高度h能唯一确定吗?活动二:议一议1.小组内交流上面问题的答案,梳理三个问题中的本质特征,填写表格,派代表展示,限时2分钟.变量个数变量间的对应情况问题一问题二问题三2.小组内总结三个问题中的共同特征,互相说一说.3.以小组为单位叙述函数的概念,并进行展示.函数:一般地,如果在一个变化过程中有两个变量x和y,且对于变量x的每一个值,变量y都有唯一的值与它对应,那么我们称y是x的函数,其中x是自变量,y是因变量.4.上述三个问题中,哪个是自变量?是哪个变量的函数?活动三:说一说1.活动一.例举日常你生活中所知道的函数关系实例2.你认为学习函数这节课的作用?的关系依次借助图象、表格和表达式来描述,为引出函数的三种表达方式做准备.对每个问题,结合学生的思维最近发展区设置分别填空,降低了抽象出函数的难度.通过先自学再小组合作学习的形式,充分发挥学生的积极主动性,锻炼学生的独立思考能力和与他人交流的意识,为学生归纳函数本质特征、叙述函数概念搭建脚手架.活动三中,问题1是对函数概念的辨析,加深对函数的理解;问题2让学生举例,体会数学与现实世界的紧密联系.环节三:深化理解再探新知目标2 关注学生能否准确回答问题1、2、3.活动四:想一想1.在以上三个问题中,表示方法有何不同?请你说一说函数的表示方法.(1)指出下列表格中,哪些y是x的函数?(2)指出下列关系式中,哪些y是x的函数?①y=x+2 ②245y x x=-+③3yx=④2210x y+=⑤∣y∣=3x+1(3)指出下列图象中,哪些y是x的函数?哪些不是?问题1让学生在表格中判断函数问题2,关系式判断函数,问题3,图像中判断函数,渗透数形结合思想;环节四:巩固概念运用新知目标1目标2目标3关注学生的语言表达,特别是谁是谁的函数的叙述,从而判断学生对函数概念的理解.活动五:下面各题中分别有几个变量?如果是请写出函数关系式?并指出自变量的取值范围。

北师大版八年级数学上册:4.1《函数》教学设计3

北师大版八年级数学上册:4.1《函数》教学设计3

北师大版八年级数学上册:4.1《函数》教学设计3一. 教材分析《函数》是北师大版八年级数学上册第4章的内容,本节课主要介绍函数的概念、性质及表示方法。

函数是数学中的一个重要概念,也是初中数学的核心内容之一。

通过本节课的学习,使学生理解函数的基本概念,掌握函数的表示方法,能够判断两个相关联的变量之间的关系是否为函数,并为后续学习函数的图像和性质打下基础。

二. 学情分析八年级的学生已经学习了初中数学的大部分内容,对于一些基本的数学概念和运算规则有一定的掌握。

但是,对于函数这一概念,学生可能还存在一些模糊的认识,对于函数的表示方法也较为陌生。

因此,在教学过程中,需要引导学生从实际问题出发,理解函数的概念,掌握函数的表示方法。

三. 教学目标1.理解函数的概念,掌握函数的表示方法。

2.能够判断两个相关联的变量之间的关系是否为函数。

3.培养学生的数学思维能力,提高学生解决问题的能力。

四. 教学重难点1.函数的概念及判断两个相关联的变量之间的关系是否为函数。

2.函数的表示方法。

五. 教学方法1.情境教学法:通过实际问题引入函数的概念,使学生能够从实际问题中感受到函数的存在。

2.实例教学法:通过具体的实例,使学生理解函数的表示方法。

3.小组合作学习:引导学生分组讨论,培养学生的合作意识和团队精神。

六. 教学准备1.教学PPT:制作相关的教学PPT,以便于展示和讲解。

2.实例材料:准备一些具体的实例,用于解释和展示函数的表示方法。

3.练习题:准备一些练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)通过一个实际问题引入函数的概念,例如:“某商店举行打折活动,原价为100元的商品打8折,求打折后的价格。

”让学生思考并回答问题,引出函数的概念。

2.呈现(10分钟)讲解函数的定义,用PPT展示函数的表示方法,如列表法、图象法、解析法等。

通过具体的实例,让学生理解函数的表示方法。

3.操练(10分钟)让学生分组讨论,每组选择一个实例,用所学的表示方法表示函数。

北师大版数学八年级上册《1 函数》教学设计2

北师大版数学八年级上册《1 函数》教学设计2

北师大版数学八年级上册《1 函数》教学设计2一. 教材分析北师大版数学八年级上册《1 函数》是学生在学习了初中数学基础知识后,进一步深入研究数学的重要章节。

本章主要介绍了函数的概念、性质和图像,以及一些基本的函数类型,如线性函数、二次函数等。

本节教学设计旨在通过实例引入函数的概念,让学生理解函数的定义,并能够运用函数的性质解决实际问题。

二. 学情分析学生在学习本节内容前,已经掌握了初中数学的基本知识,对数学概念有一定的理解能力。

但函数的概念较为抽象,学生可能难以理解。

因此,在教学过程中,需要通过具体的实例和生活实际问题,引导学生理解函数的概念,并能够运用函数的性质解决问题。

三. 教学目标1.了解函数的概念,理解函数的定义。

2.能够识别和运用函数的性质解决实际问题。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.函数的概念和定义。

2.函数的性质及其运用。

五. 教学方法1.实例引入:通过具体的实例和生活实际问题,引导学生理解函数的概念。

2.问题解决:通过解决实际问题,让学生运用函数的性质解决问题。

3.小组讨论:分组讨论,培养学生的合作能力和解决问题的能力。

4.总结归纳:通过总结归纳,让学生深刻理解函数的概念和性质。

六. 教学准备1.教学课件:制作课件,展示具体的实例和实际问题。

2.练习题:准备相关的练习题,巩固学生的学习成果。

七. 教学过程1.导入(5分钟)通过一个具体的实例,如“汽车行驶的路程与时间的关系”,引导学生思考和讨论,引出函数的概念。

2.呈现(15分钟)展示课件,通过具体的实例和实际问题,引导学生理解函数的定义,并呈现函数的性质。

让学生通过观察和分析,总结出函数的性质。

3.操练(15分钟)让学生分组讨论,运用函数的性质解决实际问题。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)让学生完成相关的练习题,巩固所学知识。

教师及时批改和反馈,指导学生的学习。

5.拓展(5分钟)引导学生思考和讨论函数在实际生活中的应用,如“手机话费与通话时间的关系”、“商品价格与销售数量的关系”等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版八年级数学上第四章一次函数
第1节《函数》教学设计
开阳县金中镇中学:王正权课题:§4.1函数
一、学情分析
认知基础:学生在七年级下册第四章已学习了《变量之间的关系》,对变量间互相依存的关系有了一定的认识,但对于变量间的变化规律尚不明确,理解的很肤浅,也缺乏理论高度,另外本章在认知方式和思维深度上对学生有较高的要求,学生在理解和运用时会有一定的难度。

活动经验基础:在七年级下册《变量之间的关系》一章中,学生接触了大量的生活实例额,体会了变量之间相互依赖关系的普遍性,感受到了学习变量关系的必要性,初步具备了一定的识图能力和主动参与、合作的意识和初步的观察、分析、抽象概括的能力。

二、教学目标:
知识与技能目标:
(1)初步掌握函数概念,能判断两个变量之间的关系是否可以看作函数。

(2)根据两个变量之间的关系式,给定其中一个变量的值相应的会求出另一个变量的值。

(3)会对一个具体实例进行概括抽象成为函数问题。

过程与方法目标:
(1)通过函数概念初步形成利用函数的观点认识现实世界的意识和能力。

(2)经历具体实例的抽象概括过程,进一步发展学生的抽象思维能力。

情感态度与价值观目标:
(1)经历函数概念的抽象概括过程,体会函数的模型思想。

(2)能主动从事观察、操作、交流、归纳等探索活动,形成自己对数学知识的理解和有效的学习模式。

教学重点和难点
教学重点:
(1)掌握函数概念。

(2)会判断两个变量之间的关系是否可以看作函数。

(3)能把实际问题抽象概括成函数问题。

教学难点:
(1)理解函数的概念。

(2)能把实际问题抽象概括成函数问题。

三、教学过程设计:
(一)创设问题情境,导入新课
同学们你见过弹簧秤吗?使用过吗?你们打过吊针吗?在上面的两个情景中各个变量之间有着密切的联系,数学上常用函数来刻画变量之间的关系,那么函数是什么?用函数可以解决现实生活中的哪些问题?你想了解这些吗?这节课我们就一起来学习函数。

(板书课题:§4.1函数)
(二)共同探究,构建模型
问题一:游乐园中的摩天轮(如左下图)
(1)如果你坐在摩天轮上,随着时间的变化,你离开地面的高度是如何变化的?
右上图反映了旋转时间t(分)与摩天轮上一点的高度h(米)之间的关系。

(2)从图象上,你能读出哪些信息?
(3)对于给定的时间t,相应的高度h确定吗?
根据右上图进行填表:
t/分0 1 2 3 4 5 ……
h/米
(首先由学生分组讨论完成,然后相互交流。


问题二:圆柱形物体的堆放层数与物体总数的关系
罐头盒等圆柱形的物体常常如下图那样堆放,随着层数的增加,物体的总数是如何变化的?
填写下表:
问题三:热力学温度与摄氏温度之间的关系
一定质量的气体在体积不变时,假如温度降低到–273℃,则气体的压强为零,因此,物理学中把–273℃作为热力学温度的零度。

热力学温度T(K)与摄氏温度t(℃)之间有如下数量关系:T=t+273,T≥0.
①当t分别为-43℃,-27℃,0℃,18℃时,相应的热力学温度T是多少?
②给定一个大于-273℃的t值,你能求出相应的T值吗?
(由学生独立完成,一个学生板演,然后相互交流,师生共同订正。


(三)议一议,形成概念
1、议一议
在上面我们研究了三个问题。

下面大家探讨一下,在这三个问题中的共同点是什么?不同点又是什么?
(相同点是:这三个问题中都研究了两个变量。

不同点是:在第一个问题中,是以图象的形式表示两个变量之间的关系;第二个问题中是以表格的形式表示两个变量间的关系;第三个问题是以关系式来表示两个变量间的关系的。


通过对这三个问题的研究,明确“给定其中某一个变量的值,相应地就确定了另一个变量的值”这一共性。

2、函数的概念
在上面各例中,都有两个变量,给定其中某一个变量的值,相应地就确定另一个变量的值。

一般地,在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。

归纳出函数概念后,留几分钟时间给学生消化理解概念,并提出自己的不理解的地方,教师再提出:
(1)上面问题中的自变量和因变量吗?
(2)你能举出生活中是函数的例子吗?
(3)你是怎样理解“确定”这两个字的含义的?
学生分组讨论,交流以后,教师点评。

理解函数概念应把握三点:
(1)一个变化过程;(2)两个变量;(3)对于一个变量的每一个值,另一个变量都有唯一的值与它对应,即是一种对应关系。

判断两个量是否具有函数关系就以这三点为依据。

3、想一想
上述问题中,自变量能取哪些值?
(问题1中t≥0;问题2中自变量n>0的整数;问题3中自变量t≥0.)
概念对于自变量在可取值范围内的一个确定的值a,函数有唯一确定的对应值,这个对应值称为当自变量等于a时的函数值。

(如:当t=-43时,T的值(230)叫做t=-43时的函数值。


(四)操作演练,知识升华
1、指出下列变化关系中,哪些y是x的函数?那些不是?
①xy=2;②x2+y2=10;③x+y=5;④∣y∣=3x+1;⑤y=x2-4x+5
2、教材P77页随堂练习
(五)归纳总结,加深理解
1、初步掌握函数的概念,能判断两个变量间的关系是否可看作函数。

2、在一个函数关系式中,给定自变量的值,能相应地会求出函数的值。

3、函数的三种表达式:
(1)图象法;(2)表格法;(3)关系式(解析式或表达式)。

六、课后作业
习题4.1必做第1、2题,选作第3、4题
四、板书设计
§4.1 函数
1、什么叫函数问题一:
问题二:
问题三:概念:一般地,如果在一个变化过程中有两个变量x和y,并且对于变量x的每一个值,变量y都有唯一的值与它对应,那么我们称y是x的函数,其中x是自变量。

2、函数的表示方法:
图象法、表格法、关系式法。

相关文档
最新文档