高考数学试题及答案(文科)【解析版】
2024年高考数学试卷(文)(全国甲卷)(含答案)
绝密★启用前2024年普通高等学校招生全国统一考试全国甲卷文科数学使用范围:陕西、宁夏、青海、内蒙古、四川注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其它答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上答题无效.5.考试结束后,只将答题卡交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 集合{}1,2,3,4,5,9A =,{}1B x x A =+Î,则A B =I ( )A. {}1,2,3,4B. {}1,2,3 C. {}3,4 D. {}1,2,9【答案】A 【解析】【分析】根据集合B 的定义先算出具体含有的元素,然后根据交集的定义计算.【详解】依题意得,对于集合B 中的元素x ,满足11,2,3,4,5,9x +=,则x 可能的取值为0,1,2,3,4,8,即{0,1,2,3,4,8}B =,于是{1,2,3,4}A B Ç=.故选:A2. 设z =,则z z ×=( )A. -iB. 1C. -1D. 2【答案】D 【解析】【分析】先根据共轭复数的定义写出z ,然后根据复数的乘法计算.【详解】依题意得,z =,故22i 2zz =-=.故选:D3. 若实数,x y 满足约束条件43302202690x y x y x y --³ìï--£íï+-£î,则5z x y =-最小值为( )A. 5B.12C. 2-D. 72-【答案】D 【解析】【分析】画出可行域后,利用z 的几何意义计算即可得.【详解】实数,x y 满足43302202690x y x y x y --³ìï--£íï+-£î,作出可行域如图:由5z x y =-可得1155y x z =-,即z 的几何意义为1155y x z =-的截距的15-,则该直线截距取最大值时,z 有最小值,此时直线1155y x z =-过点A ,联立43302690x y x y --=ìí+-=î,解得321x y ì=ïíï=î,即3,12A æöç÷èø,则min 375122z =-´=-.故选:D.4. 等差数列{}n a 的前n 项和为n S ,若91S =,37a a +=( )A. 2- B.73C. 1D.29【答案】D 【解析】的【分析】可以根据等差数列的基本量,即将题目条件全转化成1a 和d 来处理,亦可用等差数列的性质进行处理,或者特殊值法处理.【详解】方法一:利用等差数列的基本量由91S =,根据等差数列的求和公式,911989193612S a d a d ´=+=Û+=,又371111222628(936)99a a a d a d a d a d +=+++=+=+=.故选:D方法二:利用等差数列的性质根据等差数列的性质,1937a a a a +=+,由91S =,根据等差数列的求和公式,193799()9()122a a a a S ++===,故3729a a +=.故选:D方法三:特殊值法不妨取等差数列公差0d =,则9111199S a a ==Þ=,则371229a a a +==.故选:D5. 甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是( )A.14B.13C.12D.23【答案】B 【解析】【分析】分类讨论甲乙的位置,得到符合条件的情况,然后根据古典概型计算公式进行求解.【详解】当甲排在排尾,乙排第一位,丙有2种排法,丁就1种,共2种;当甲排在排尾,乙排第二位或第三位,丙有1种排法,丁就1种,共2种;于是甲排在排尾共4种方法,同理乙排在排尾共4种方法,于是共8种排法符合题意;基本事件总数显然是44A 24=,根据古典概型的计算公式,丙不在排头,甲或乙在排尾的概率为81243=.故选:B6. 已知双曲线2222:1(0,0)y x C a b a b-=>>的上、下焦点分别为()()120,4,0,4F F -,点()6,4P -在该双曲线上,则该双曲线的离心率为( )A. 4B. 3C. 2D.【答案】C 【解析】【分析】由焦点坐标可得焦距2c ,结合双曲线定义计算可得2a ,即可得离心率.【详解】由题意,()10,4F -、()20,4F 、()6,4P -,则1228F F c ==,110PF ==,26PF ==,则1221064a PF PF =-=-=,则28224c e a ===.故选:C.7. 曲线()631f x x x =+-在()0,1-处的切线与坐标轴围成的面积为( )A.16B.C.12D. 【答案】A 【解析】【分析】先求出切线方程,再求出切线的截距,从而可求面积.【详解】()563f x x =¢+,所以()03f ¢=,故切线方程为3(0)131y x x =--=-,故切线的横截距为13,纵截距为1-,故切线与坐标轴围成的面积为1111236´´=故选:A.8. 函数()()2e esin xxf x x x -=-+-在区间[ 2.8,2.8]-的大致图像为()A. B.C. D.【答案】B 【解析】【分析】利用函数的奇偶性可排除A 、C ,代入1x =可得()10f >,可排除D.【详解】()()()()()22ee sin e e sin xx x x f x x x x x f x ---=-+--=-+-=,又函数定义域为[]2.8,2.8-,故该函数为偶函数,可排除A 、C ,又()11πe 11111e sin11e sin 10e e 622e 42ef æöæö=-+->-+-=-->->ç÷ç÷èøèø,故可排除D.故选:B.9. 已知cos cos sin a a a =-πtan 4a æö+=ç÷èø( )A. 1+B. 1- C.D. 1【答案】B 【解析】【分析】先将cos cos sin aa -a弦化切求得tan a ,再根据两角和的正切公式即可求解.【详解】因为cos cos sin aa a=-,所以11tan =-a ,tan 1Þa =,所以tan 1tan 11tan 4a +p æö==a +ç÷-aèø,故选:B .原10题略10. 设a b 、是两个平面,m n 、是两条直线,且m a b =I .下列四个命题:①若//m n ,则//n a 或//n b ②若m n ^,则,n n a b^^③若//n a ,且//n b ,则//m n ④若n 与a 和b 所成的角相等,则m n^其中所有真命题的编号是( )A. ①③ B. ②④C. ①②③D. ①③④【答案】A【解析】【分析】根据线面平行的判定定理即可判断①;举反例即可判断②④;根据线面平行的性质即可判断③.【详解】对①,当n Ìa ,因为//m n ,m b Ì,则//n b ,当n b Ì,因为//m n ,m a Ì,则//n a ,当n 既不在a 也不在b 内,因为//m n ,,m m a b ÌÌ,则//n a 且//n b ,故①正确;对②,若m n ^,则n 与,a b 不一定垂直,故②错误;对③,过直线n 分别作两平面与,a b 分别相交于直线s 和直线t ,因为//n a ,过直线n 的平面与平面a 的交线为直线s ,则根据线面平行的性质定理知//n s ,同理可得//n t ,则//s t ,因为s Ë平面b ,t Ì平面b ,则//s 平面b ,因为s Ì平面a ,m a b =I ,则//s m ,又因为//n s ,则//m n ,故③正确;对④,若,m n a b Ç=与a 和b 所成的角相等,如果//,//a b n n ,则//m n ,故④错误;综上只有①③正确,故选:A.11. 在ABC V 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=( )A.32B.C.D.【答案】C 【解析】【分析】利用正弦定理得1sin sin 3A C =,再利用余弦定理有22134a c ac +=,再利用正弦定理得到22sin sin A C +的值,最后代入计算即可.【详解】因为29,34B b ac p==,则由正弦定理得241sin sin sin 93A CB ==.由余弦定理可得:22294b ac ac ac =+-=,即:22134a c ac +=,根据正弦定理得221313sin sin sin sin 412A C A C +==,所以2227(sin sin )sin sin 2sin sin 4A C A C A C +=++=,因为,A C 为三角形内角,则sin sin 0A C +>,则sin sin A C +=.故选:C.二、填空题:本题共4小题,每小题5分,共20分.原13题略12. 函数()sin f x x x =在[]0,π上的最大值是______.【答案】2【解析】【分析】结合辅助角公式化简成正弦型函数,再求给定区间最值即可.【详解】()πsin 2sin 3f x x x x æö==-ç÷èø,当[]0,πx Î时,ππ2π,333x éù-Î-êúëû,当ππ32x -=时,即5π6x =时,()max 2f x =.故答案为:213. 已知1a >,8115log log 42a a -=-,则=a ______.【答案】64【解析】【分析】将8log ,log 4a a 利用换底公式转化成2log a 来表示即可求解.【详解】由题28211315log log log 4log 22a a a a -=-=-,整理得()2225log 60log a a --=,2log 1a Þ=-或2log 6a =,又1a >,所以622log 6log 2a ==,故6264a ==故答案:64.为14. 曲线33y x x =-与()21y x a =--+在()0,¥+上有两个不同的交点,则a 的取值范围为______.【答案】()2,1-【解析】【分析】将函数转化为方程,令()2331x x x a -=--+,分离参数a ,构造新函数()3251,g x x x x =+-+结合导数求得()g x 单调区间,画出大致图形数形结合即可求解.【详解】令()2331x x x a -=--+,即3251a x x x =+-+,令()()32510,g x x x x x =+-+>则()()()2325351g x x x x x =+-=+-¢,令()()00g x x ¢=>得1x =,当()0,1x Î时,()0g x ¢<,()g x 单调递减,当()1,x ¥Î+时,()0g x ¢>,()g x 单调递增,()()01,12g g ==-,因为曲线33y x x =-与()21y x a =--+在()0,¥+上有两个不同的交点,所以等价于y a =与()g x 有两个交点,所以()2,1a Î-.故答案为:()2,1-三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.15. 已知等比数列{}n a 的前n 项和为n S ,且1233n n S a +=-.(1)求{}n a 的通项公式;(2)求数列{}n S 通项公式.【答案】(1)153n n a -æö=ç÷èø的(2)353232næö-ç÷èø【解析】【分析】(1)利用退位法可求公比,再求出首项后可求通项;(2)利用等比数列的求和公式可求n S .【小问1详解】因为1233n n S a +=-,故1233n n S a -=-,所以()12332n n n a a a n +=-³即153n n a a +=故等比数列的公比为53q =,故1211523333533a a a a =-=´-=-,故11a =,故153n n a -æö=ç÷èø.【小问2详解】由等比数列求和公式得5113353523213n nn S éùæö´-êúç÷èøêúæöëû==-ç÷èø-.16. 如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//BC AD EF AD ,4,2AD AB BC EF ====,ED FB ==M 为AD 的中点.(1)证明://BM 平面CDE ;(2)求点M 到ABF 的距离.【答案】(1)证明见详解; (2【解析】【分析】(1)结合已知易证四边形BCDM 为平行四边形,可证//BM CD,进而得证;(2)作FO AD ^,连接OB ,易证,,OB OD OF 三垂直,结合等体积法M ABF F ABM V V --=即可求解.【小问1详解】因为//,2,4,BC AD BC AD M ==为AD 的中点,所以//,BC MD BC MD =,四边形BCDM 为平行四边形,所以//BM CD ,又因BM Ë平面CDE ,CD Ì平面CDE ,所以//BM 平面CDE ;【小问2详解】如图所示,作BO AD ^交AD 于O ,连接OF ,因为四边形ABCD 为等腰梯形,//,4,BC AD AD =2AB BC ==,所以2CD =,结合(1)BCDM 为平行四边形,可得2BM CD ==,又2AM =,所以ABM V 为等边三角形,O 为AM中点,所以OB =,又因为四边形ADEF 为等腰梯形,M 为AD 中点,所以,//EF MD EF MD =,四边形EFMD 为平行四边形,FM ED AF ==,所以AFM △为等腰三角形,ABM V 与AFM △底边上中点O 重合,OF AM ^,3OF ==,因为222OB OF BF +=,所以OB OF ^,所以,,OB OD OF 互相垂直,由等体积法可得M ABF F ABM V V --=,2112333F ABM ABM V S FO -=×=×=△,222cos 2FA AB FBFAB FAB FA AB+-Ð===Ð=×11sin 222FAB S FA AB FAB =××Ð==△,设点M 到FAB的距离为d ,则1133M FAB F ABM FAB V V S d d --==××==△解得d =M 到ABF .为17. 已知函数()()1ln 1f x a x x =--+.(1)求()f x 的单调区间;(2)若2a £时,证明:当1x >时,()1ex f x -<恒成立.【答案】(1)见解析(2)见解析【解析】【分析】(1)求导,含参分类讨论得出导函数的符号,从而得出原函数的单调性;(2)先根据题设条件将问题可转化成证明当1x >时,1e 21ln 0x x x --++>即可.【小问1详解】()f x 定义域为(0,)+¥,11()ax f x a x x¢-=-=当0a £时,1()0ax f x x -¢=<,故()f x 在(0,)+¥上单调递减;当0a >时,1,x a ¥æöÎ+ç÷èø时,()0f x ¢>,()f x 单调递增,当10,x a æöÎç÷èø时,()0f x ¢<,()f x 单调递减.综上所述,当0a £时,()f x 在(0,)+¥上单调递减;0a >时,()f x 在1,a ¥æö+ç÷èø上单调递增,在10,a æöç÷èø上单调递减.【小问2详解】2a £,且1x >时,111e ()e (1)ln 1e 21ln x x x f x a x x x x ----=--+-³-++,令1()e 21ln (1)x g x x x x -=-++>,下证()0g x >即可.11()e 2x g x x -¢=-+,再令()()h x g x ¢=,则121()e x h x x-¢=-,显然()h x ¢在(1,)+¥上递增,则0()(1)e 10h x h ¢¢>=-=,即()()g x h x =¢在(1,)+¥上递增,故0()(1)e 210g x g ¢¢>=-+=,即()g x 在(1,)+¥上单调递增,故0()(1)e 21ln10g x g >=-++=,问题得证18. 设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M æöç÷èø在C 上,且MF x ^轴.(1)求C 的方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ^轴.【答案】(1)22143x y += (2)证明见解析【解析】【分析】(1)设(),0F c ,根据M 的坐标及MF ^x 轴可求基本量,故可求椭圆方程.(2)设:(4)AB y k x =-,()11,A x y ,()22,B x y ,联立直线方程和椭圆方程,用,A B 的坐标表示1Q y y -,结合韦达定理化简前者可得10Q y y -=,故可证AQ y ^轴.【小问1详解】设(),0F c ,由题设有1c =且232b a =,故2132a a -=,故2a =,故b =,故椭圆方程为22143x y +=.【小问2详解】直线AB 的斜率必定存在,设:(4)AB y k x =-,()11,A x y ,()22,B x y ,由223412(4)x y y k x ì+=í=-î可得()2222343264120k x k x k +-+-=,故()()422Δ102443464120k k k =-+->,故1122k -<<,又22121222326412,3434k k x x x x k k-+==++,而5,02N æöç÷èø,故直线225:522y BN y x x æö=-ç÷èø-,故22223325252Q y y y x x --==--,所以()1222112225332525Q y x y y y y y x x ´-+-=+=--()()()12224253425k x x k x x -´-+-=-()222212122264123225825834342525k k x x x x k k k k x x -´-´+-++++==--2222212824160243234025k k k k k x --+++==-,故1Q y y =,即AQ y ^轴.(1)设直线方程,设交点坐标为()()1122,,,x y x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意D 的判断;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式;(5)代入韦达定理求解.(二)选考题:共10分.请考生在第22、23题中任选一题作答,并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分,如果多做,则按所做的第一题计分.19. 在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1r r q =+.(1)写出C 的直角坐标方程;(2)设直线l :x t y t a=ìí=+î(t 为参数),若C 与l 相交于A B 、两点,若2AB =,求a 的值.【答案】(1)221y x =+(2)34a =【解析】【分析】(1)根据cos xr r q ìï=í=ïî可得C 的直角方程.(2)将直线的新的参数方程代入C 的直角方程,法1:结合参数s 的几何意义可得关于a 的方程,从而可求参数a 的值;法2:将直线的直角方程与曲线的直角方程联立,结合弦长公式可求a 的值.【小问1详解】由cos 1r r q =+,将cos xr r q ìï=í=ïîcos 1r r q =+,1x =+,两边平方后可得曲线直角坐标方程为221y x =+.【小问2详解】对于直线l 的参数方程消去参数t ,得直线的普通方程为y x a =+.法1:直线l 的斜率为1故直线的参数方程可设为x y ì=ïïíïïî,s ÎR .将其代入221y x =+中得()221)210s a s a +-+-=设,A B 两点对应的参数分别为12,s s ,则)()212121,21s s a s s a +=--=-,且()()22Δ818116160a a a =---=->,故1a <,12AB s s\=-=2==,解得34a =.法2:联立221y x a y x =+ìí=+î,得22(22)10x a x a +-+-=,()22Δ(22)41880a a a =---=-+>,解得1a <,的设()()1122,,,A x y B x y ,2121222,1x x a x x a \+=-=-,则AB ==2=,解得34a =20. 实数,ab 满足3a b +³.(1)证明:2222a b a b +>+;(2)证明:22226a b b a -+-³.【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)直接利用22222()a b a b +³+即可证明.(2)根据绝对值不等式并结合(1)中结论即可证明.【小问1详解】因为()()2222222022a b a ab b a b b a -+=--++=³,当a b =时等号成立,则22222()a b a b +³+,因为3a b +³,所以22222()a b a b a b +³+>+;【小问2详解】222222222222()a b b a a b b a a b a b -+-³-+-=+-+22222()()()()(1)326a b a b a b a b a b a b =+-+³+-+=++-³´=。
2022年全国乙卷高考文科数学试卷及答案解析
2022年全国乙卷高考文科数学试卷及答案解析2022全国乙卷高考文科数学试题及答案高考数学答题技巧一、三角函数题注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!)。
二、数列题1、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;2、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。
利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。
简洁的是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;3、证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。
三、立体几何题1、证明线面位置关系,一般不需要去建系,更简单;2、求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系;3、注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。
四、导数、极值、最值、不等式恒成立(或逆用求参)问题1、先求函数的定义域,正确求出导数,特别是复合函数的导数,单调区间一般不能并,用“和”或“,”隔开(知函数求单调区间,不带等号;知单调性,求参数范围,带等号);2、注意最后一问有应用前面结论的意识;3、注意分论讨论的思想;4、不等式问题有构造函数的意识;5、恒成立问题(分离常数法、利用函数图像与根的分布法、求函数最值法);6、整体思路上保6分,争10分,想14分。
五、概率问题1、搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;2、搞清是什么概率模型,套用哪个公式;3、记准均值、方差、标准差公式;4、求概率时,正难则反(根据p1+p2+。
精品解析:2023年全国高考甲卷数学(文)试题(解析版)
绝密★启用前2023年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必用黑色碳素笔将自己地姓名、准考证号、考场号、座位号填写在答题卡上,并认真核准条形码上地准考证号、姓名、考场号、座位号及科目,在规定地位置贴好条形码.2.回答选择题时,选出每小题解析后,用铅笔把答题卡上对应题目地解析标号涂黑,如需改动,用橡皮擦干净后,再选涂其他解析标号.回答非选择题时,将解析写在答题卡上、写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出地四个选项中,只有一项是符合题目要求地.1. 设集合5{2,1,0,1,2},02A B xx ⎧⎫=--=≤<⎨⎬⎩⎭∣,则A B = ( )A. {}0,1,2 B. {2,1,0}-- C. {0,1}D. {1,2}【解析】A 【解析】【分析】根据集合地交集运算即可解出.【详解】因为{}2,1,0,1,2A =--,502B xx ⎧⎫=≤<⎨⎬⎩⎭∣,所以{}0,1,2A B = .故选:A.2. 某社区通过公益讲座以普及社区居民地垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题地正确率如下图:则( )A. 讲座前问卷答题地正确率地中位数小于70%B. 讲座后问卷答题地正确率地平均数大于85%C. 讲座前问卷答题地正确率地标准差小于讲座后正确率地标准差D. 讲座后问卷答题地正确率地极差大于讲座前正确率地极差【解析】B 【解析】【分析】由图表信息,结合中位数、平均数、标准差、极差地概念,逐项判断即可得解.【详解】讲座前中位数为70%75%70%2+>,所以A 错;讲座后问卷答题地正确率只有一个是80%,4个85%,剩下全部大于等于90%,所以讲座后问卷答题地正确率地平均数大于85%,所以B 对;讲座前问卷答题地正确率更加分散,所以讲座前问卷答题地正确率地标准差大于讲座后正确率地标准差,所以C 错;讲座后问卷答题地正确率地极差为100%80%20%-=,讲座前问卷答题正确率地极差为95%60%35%20%-=>,所以D 错.故选:B3. 若1i z =+.则|i 3|z z +=( )A.B.C.D. 【解析】D的.【解析】【分析】根据复数代数形式地运算法则,共轭复数地概念以及复数模地计算公式即可求出.【详解】因为1i z =+,所以()()i 3i 1i 31i 22i z z +=++-=-,所以i 3z z +==故选:D.4. 如图,网格纸上绘制地是一个多面体地三视图,网格小正方形地边长为1,则该多面体地体积为( )A. 8B. 12C. 16D. 20【解析】B 【解析】【分析】由三视图还原几何体,再由棱柱地体积公式即可得解.【详解】由三视图还原几何体,如图,则该直四棱柱地体积2422122V +=⨯⨯=.故选:B.5. 将函数π()sin (0)3f x x ωω⎛⎫=+> ⎪⎝⎭地图像向左平移π2个单位长度后得到曲线C ,若C 关于y 轴对称,则ω地最小值是( )A.16B.14C.13D.12【解析】C 【解析】【分析】先由平移求出曲线C 地解析式,再结合对称性得,232k k ωππππ+=+∈Z ,即可求出ω地最小值.【详解】由题意知:曲线C 为sin sin(2323y x x ππωππωω⎡⎤⎛⎫=++=++ ⎪⎢⎥⎝⎭⎣⎦,又C 关于y 轴对称,则,232k k ωππππ+=+∈Z ,解得12,3k k ω=+∈Z ,又0>ω,故当0k =时,ω地最小值为13.故选:C.6. 从分别写有1,2,3,4,5,6地6张卡片中无放回随机抽取2张,则抽到地2张卡片上地数字之积是4地倍数地概率为( )A.15B.13C.25D.23【解析】C 【解析】【分析】先列举出所有情况,再从中挑出数字之积是4地倍数地情况,由古典概型求概率即可.【详解】从6张卡片中无放回抽取2张,共有()()()()()()()()()()()()()()()1,2,1,3,1,4,1,5,1,6,2,3,2,4,2,5,2,6,3,4,3,5,3,6,4,5,4,6,5,615种情况,其中数字之积为4地倍数地有()()()()()()1,4,2,4,2,6,3,4,4,5,4,66种情况,故概率为62155=.故选:C.7. 函数()33cos x xy x -=-在区间ππ,22⎡⎤-⎢⎥⎣⎦地图象大致为( )A. B.C. D.【解析】A 【解析】【分析】由函数地奇偶性结合指数函数、三角函数地性质逐项排除即可得解.【详解】令()()33cos ,,22xxf x x x ππ-⎡⎤=-∈-⎢⎥⎣⎦,则()()()()()33cos 33cos xx x x f x x x f x ---=--=--=-,所以()f x 为奇函数,排除BD ;又当0,2x π⎛⎫∈ ⎪⎝⎭时,330,cos 0x xx -->>,所以()0f x >,排除C.故选:A.8. 当1x =时,函数()ln bf x a x x=+取得最大值2-,则(2)f '=( )A. 1- B. 12-C.12D. 1【解析】B 【解析】【分析】根据题意可知()12f =-,()10f '=即可解得,a b ,再根据()f x '即可解出.【详解】因为函数()f x 定义域为()0,∞+,所以依题可知,()12f =-,()10f '=,而()2a b f x x x '=-,所以2,0b a b =--=,即2,2a b =-=-,所以()222f x x x '=-+,因此函数()f x 在()0,1上递增,在()1,+∞上递减,1x =时取最大值,满足题意,即有()112122f '=-+=-.故选:B.9. 在长方体1111ABCD A B C D -中,已知1B D 与平面ABCD 和平面11AA B B 所成地角均为30°,则( )A. 2AB AD= B. AB 与平面11AB C D 所成地角为30°C. 1AC CB =D. 1B D 与平面11BB C C 所成地角为45︒【解析】D 【解析】【分析】根据线面角地定义以及长方体地结构特征即可求出.【详解】如下图所示:不妨设1,,AB a AD b AA c ===,依题以及长方体地结构特征可知,1B D 与平面ABCD 所成角为1B DB ∠,1B D 与平面11AA B B 所成角为1DB A ∠,所以11sin 30c b B D B D==,即b c =,12B D c ==,解得a =.对于A ,AB a =,AD b =,AB =,A 错误;对于B ,过B 作1BE AB ⊥于E ,易知BE ⊥平面11AB C D ,所以AB 与平面11AB C D 所成角为BAE ∠,因为tan c BAE a ∠==所以30BAE ∠≠ ,B 错误;对于C,AC ==,1CB ==,1AC CB ≠,C 错误;对于D ,1B D 与平面11BB C C 所成角为1DB C ∠,11sin 2CD a DB C B D c ∠===,而1090DB C <∠<,所以145DB C ∠=.D 正确.故选:D .10. 甲、乙两个圆锥地母线长相等,侧面展开图地圆心角之和为2π,侧面积分别为S 甲和S 乙,体积分别为V 甲和V 乙.若=2S S 甲乙,则=VV 甲乙()A.B.C.D.【解析】C 【解析】【分析】设母线长为l ,甲圆锥底面半径为1r ,乙圆锥底面圆半径为2r ,根据圆锥地侧面积公式可得122r r =,再结合圆心角之和可将12,r r 分别用l 表示,再利用勾股定理分别求出两圆锥地高,再根据圆锥地体积公式即可得解.【详解】解:设母线长为l ,甲圆锥底面半径为1r ,乙圆锥底面圆半径为2r ,则11222S rl r S r l r ππ===甲乙,所以122r r =,又12222r r l l πππ+=,则121r rl+=,所以1221,33r l r l ==,所以甲圆锥地高1h ==,乙圆锥地高2h ==,所以2112221313r h V V r h ππ===甲乙.故选:C.11. 已知椭圆2222:1(0)x y C a b a b+=>>地离心率为13,12,A A 分别为C 地左、右顶点,B 为C 地上顶点.若121BA BA ⋅=-,则C 地方程为( )A. 2211816x y += B. 22198x y += C. 22132x y += D. 2212x y +=【解析】B【分析】根据离心率及12=1⋅-BA BA ,解得关于22,a b 地等量关系式,即可得解.【详解】解:因为离心率13c e a ===,解得2289b a =,2289=b a ,12,A A 分别为C 左右顶点,则()()12,0,,0A a A a -,B 为上顶点,所以(0,)B b .所以12(,),(,)=--=- BA a b BA a b ,因为121BA BA ⋅=-所以221-+=-a b ,将2289=b a 代入,解得229,8a b ==,故椭圆地方程为22198x y +=.故选:B.12. 已知910,1011,89m m m a b ==-=-,则( )A. 0a b >> B. 0a b >> C. 0b a >> D. 0b a>>【解析】A 【解析】【分析】根据指对互化以及对数函数地单调性即可知9log 101m =>,再利用基本不等式,换底公式可得lg11m >,8log 9m >,然后由指数函数地单调性即可解出.【详解】由910m =可得9lg10log 101lg 9m ==>,而()222lg 9lg11lg 99lg 9lg111lg1022+⎛⎫⎛⎫<=<= ⎪ ⎪⎝⎭⎝⎭,所以lg10lg11lg 9lg10>,即lg11m >,所以lg11101110110m a =->-=.又()222lg8lg10lg80lg8lg10lg 922+⎛⎫⎛⎫<=< ⎪ ⎪⎝⎭⎝⎭,所以lg 9lg10lg8lg 9>,即8log 9m >,所以8log 989890m b =-<-=.综上,0a b >>.故选:A.二、填空题:本题共4小题,每小题5分,共20分.13. 已知向量(,3),(1,1)a m b m ==+.若a b ⊥ ,则m =______________.【解析】34-##0.75-的【分析】直接由向量垂直地坐标表示求解即可.【详解】由题意知:3(1)0a b m m ⋅=++=,解得34m =-.故解析为:34-.14. 设点M 在直线210x y +-=上,点(3,0)和(0,1)均在M 上,则M 地方程为______________.【解析】22(1)(1)5x y -++=【解析】【分析】设出点M 地坐标,利用(3,0)和(0,1)均在M 上,求得圆心及半径,即可得圆地方程.【详解】解:∵点M 在直线210x y +-=上,∴设点M 为(,12)-a a ,又因为点(3,0)和(0,1)均在M 上,∴点M 到两点地距离相等且为半径R ,==R ,222694415-++-+=a a a a a ,解得1a =,∴(1,1)M -,R =M 地方程为22(1)(1)5x y -++=.故解析为:22(1)(1)5x y -++=15. 记双曲线2222:1(0,0)x y C a b a b -=>>地离心率为e ,写出满足条件"直线2y x =与C 无公共点"地e 地一个值______________.【解析】2(满足1e <≤皆可)【解析】【分析】根据题干信息,只需双曲线渐近线by x a =±中02b a<≤即可求得满足要求地e 值.【详解】解:2222:1(0,0)x y C a b a b -=>>,所以C 地渐近线方程为b y x a=±,结合渐近线地特点,只需02b a <≤,即224b a≤,可满足条件"直线2y x =与C 无公共点"所以==≤=c e a 又因为1e >,所以1e <≤,故解析为:2(满足1e <≤皆可)16. 已知ABC 中,点D 在边BC 上,120,2,2ADB AD CD BD ∠=︒==.当ACAB取得最小值时,BD =________.1-##-【解析】【分析】设220CD BD m ==>,利用余弦定理表示出22AC AB 后,结合基本不等式即可得解.【详解】设220CD BD m ==>,则在ABD △中,22222cos 42AB BD AD BD AD ADB m m =+-⋅∠=++,在ACD △中,22222cos 444AC CD AD CD AD ADC m m =+-⋅∠=+-,所以()()()2222224421214441243424211m m m AC m m AB m m m mm m ++-++-===-+++++++44≥=-,当且仅当311mm +=+即1m =-时,等号成立,所以当ACAB取最小值时,1m =.故解析为1-.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试卷考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17. 甲、乙两城之间地长途客车均由A和B两家公司运营,为了解这两家公司长途客车地运行情况,随机调查了甲、乙两城之间地500个班次,得到下面列联表:准点班次数未准点班次数A24020B21030(1)根据上表,分别估计这两家公司甲、乙两城之间地长途客车准点地概率;(2)能否有90%地把握认为甲、乙两城之间地长途客车是否准点与客车所属公司有关?附:22()()()()()n ad bcKa b c d a c b d-=++++, ()2P K k…0.1000.0500.010 k 2.706 3.841 6.635【解析】(1)A,B两家公司长途客车准点地概率分别为12 13,78(2)有【解析】【分析】(1)根据表格中数据以及古典概型地概率公式可求得结果;(2)根据表格中数据及公式计算2K,再利用临界值表比较即可得结论.【小问1详解】根据表中数据,A共有班次260次,准点班次有240次,设A家公司长途客车准点事件为M,则24012 ()26013==P M;B共有班次240次,准点班次有210次,设B家公司长途客车准点事件为N,则210 ()27840==P N.A 家公司长途客车准点地概率为1213;B 家公司长途客车准点地概率为78.【小问2详解】列联表准点班次数未准点班次数合计A 24020260B 21030240合计4505050022()()()()()n ad bc K a b c d a c b d -=++++=2500(2403021020) 3.205 2.70626024045050⨯⨯-⨯≈>⨯⨯⨯,根据临界值表可知,有90%地把握认为甲、乙两城之间地长途客车是否准点与客车所属公司有关.18. 记n S 为数列{}n a 地前n 项和.已知221nn S n a n+=+.(1)证明:{}n a 是等差数列;(2)若479,,a a a 成等比数列,求n S 地最小值.【解析】(1)证明见解析; (2)78-.【解析】【分析】(1)依题意可得222n nS n na n +=+,根据11,1,2n n n S n a S S n -=⎧=⎨-≥⎩,作差即可得到11n n a a --=,从而得证;(2)由(1)及等比中项地性质求出1a ,即可得到{}n a 地通项公式与前n 项和,再根据二次函数地性质计算可得.【小问1详解】解:因为221nn S n a n+=+,即222n n S n na n +=+①,当2n ≥时,()()()21121211n n S n n a n --+-=-+-②,①-②得,()()()22112212211n n n n S n S n na n n a n --+---=+----,即()12212211n n n a n na n a -+-=--+,即()()()1212121n n n a n a n ----=-,所以11n n a a --=,2n ≥且N*n ∈,所以{}n a 是以1为公差地等差数列.【小问2详解】解:由(1)可得413a a =+,716a a =+,918a a =+,又4a ,7a ,9a 成等比数列,所以2749a a a =⋅,即()()()2111638a a a +=+⋅+,解得112a =-,所以13n a n =-,所以()22112512562512222228n n n S n n n n -⎛⎫=-+=-=--⎪⎝⎭,所以,当12n =或13n =时()min 78n S =-.19. 小明同学参加综合实践活动,设计了一个封闭地包装盒,包装盒如下图所示:底面ABCD 是边长为8(单位:cm )地正方形,,,,EAB FBC GCD HDA 均为正三角形,且它们所在地平面都与平面ABCD 垂直.(1)证明://EF 平面ABCD ;(2)求该包装盒地容积(不计包装盒材料地厚度).【解析】(1)证明见解析;(2【解析】【分析】(1)分别取,AB BC 地中点,M N ,连接MN ,由平面知识可知,EM AB FN BC ⊥⊥,EM FN =,依题从而可证EM ⊥平面ABCD ,FN ⊥平面ABCD ,根据线面垂直地性质定理可知//EM FN ,即可知四边形EMNF 为平行四边形,于是//EF MN ,最后根据线面平行地判定定理即可证出;(2)再分别取,AD DC 中点,K L ,由(1)知,该几何体地体积等于长方体KMNL EFGH -地体积加上四棱锥B MNFE -体积地4倍,即可解出.【小问1详解】如下图所示:,分别取,AB BC 地中点,M N ,连接MN ,因为,EAB FBC 为全等地正三角形,所以,EM AB FN BC ⊥⊥,EM FN =,又平面EAB ⊥平面ABCD ,平面EAB ⋂平面ABCD AB =,EM ⊂平面EAB ,所以EM ⊥平面ABCD ,同理可得FN ⊥平面ABCD ,根据线面垂直地性质定理可知//EM FN ,而EM FN =,所以四边形EMNF 为平行四边形,所以//EF MN ,又EF ⊄平面ABCD ,MN ⊂平面ABCD ,所以//EF 平面ABCD .【小问2详解】如下图所示:,分别取,AD DC 中点,K L ,由(1)知,//EF MN 且EF MN =,同理有,//,HE KM HE KM =,//,HG KL HG KL =,//,GF LN GF LN =,由平面知识可知,BD MN ⊥,MN MK ⊥,KM MN NL LK ===,所以该几何体地体积等于长方体KMNL EFGH -地体积加上四棱锥B MNFE-体积地4倍.因为MN NL LK KM ====,8sin 60EM == 点B 到平面MNFE 地距离即为点B 到直线MN 地距离d ,d =,所以该几何体地体积(2143V =⨯+⨯⨯=+=20. 已知函数32(),()f x x x g x x a =-=+,曲线()y f x =在点()()11,x f x 处地切线也是曲线()y g x =地切线.(1)若11x =-,求a ;(2)求a 地取值范围.【解析】(1)3 (2)[)1,-+∞【解析】【分析】(1)先由()f x 上地切点求出切线方程,设出()g x 上地切点坐标,由斜率求出切点坐标,再由函数值求出a 即可;(2)设出()g x 上地切点坐标,分别由()f x 和()g x 及切点表示出切线方程,由切线重合表示出a ,构造函数,求导求出函数值域,即可求得a 地取值范围.【小问1详解】由题意知,(1)1(1)0f -=---=,2()31x f x '=-,(1)312f '-=-=,则()y f x =在点()1,0-处地切线方程为2(1)y x =+,即22y x =+,设该切线与()g x 切于点()22,()x g x ,()2g x x '=,则22()22g x x '==,解得21x =,则(1)122g a =+=+,解得3a =;【小问2详解】2()31x f x '=-,则()y f x =在点()11(),x f x 处地切线方程为()()32111131()y x x x x x --=--,整理得()2311312y x x x =--,设该切线与()g x 切于点()22,()x g x ,()2g x x '=,则22()2g x x '=,则切线方程为()22222()y x a x x x -+=-,整理得2222y x x x a =-+,则21232123122x x x x a ⎧-=⎨-=-+⎩,整理得2223343212111113193122222424x a x x x x x x ⎛⎫=-=--=--+ ⎪⎝⎭,令432931()2424h x x x x =--+,则32()9633(31)(1)h x x x x x x x '=--=+-,令()0h x '>,解得103x -<<或1x >,令()0h x '<,解得13x <-或01x <<,则x 变化时,(),()h x h x '地变化情况如下表:x1,3⎛⎫-∞- ⎪⎝⎭13-1,03⎛⎫- ⎪⎝⎭()0,11()1,+∞()h x '-0+0-+()h x527141-则()h x 地值域为[)1,-+∞,故a 地取值范围为[)1,-+∞.21. 设抛物线2:2(0)C y px p =>地焦点为F ,点(),0D p ,过F 地直线交C 于M ,N 两点.当直线MD 垂直于x 轴时,3MF =.(1)求C 地方程;(2)设直线,MD ND 与C 地另一个交点分别为A ,B ,记直线,MN AB 地倾斜角分别为,αβ.当αβ-取得最大值时,求直线AB 地方程.【解析】(1)24y x =; (2):4AB x =+.【解析】【分析】(1)由抛物线地定义可得=2pMF p +,即可得解;(2)设点地坐标及直线:1MN x my =+,由韦达定理及斜率公式可得2MN AB k k =,再由差角地正切公式及基本不等式可得AB k =,设直线:AB x n =+,结合韦达定理可解.【小问1详解】抛物线地准线为2px =-,当MD 与x 轴垂直时,点M 地横坐标为p ,此时=32pMF p +=,所以2p =,所以抛物线C 地方程为24y x =;【小问2详解】设222231241234,,,,,,,4444y y y y M y N y A y B y ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,直线:1MN x my =+,由214x my y x=+⎧⎨=⎩可得2440y my --=,120,4y y ∆>=-,由斜率公式可得12221212444MN y y k y y y y -==+-,34223434444AB y y k y y y y -==+-,直线112:2x MD x y y -=⋅+,代入抛物线方程可得()1214280x y y y --⋅-=,130,8y y ∆>=-,所以322y y =,同理可得412y y =,所以()34124422MNAB k k y y y y ===++又因为直线MN 、AB 地倾斜角分别为,αβ,所以tan tan 22MN AB k k αβ===,若要使αβ-最大,则0,2πβ⎛⎫∈ ⎪⎝⎭,设220MN AB k k k ==>,则()2tan tan 1tan 11tan tan 122k k k k αβαβαβ--===≤=+++,当且仅当12k k =即k =,等号成立,所以当αβ-最大时,AB k =,设直线:AB x n =+,代入抛物线方程可得240y n --=,34120,4416y y n y y ∆>=-==-,所以4n =,所以直线:4AB x =+.【点睛】关键点点睛:解决本题地关键是利用抛物线方程对斜率进行化简,利用韦达定理得出坐标间地关系.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做地第一题计分.[选修4-4:坐标系与参数方程]22. 在直角坐标系xOy 中,曲线1C地参数方程为26t x y +⎧=⎪⎨⎪=⎩(t 为参数),曲线2C地参数方程为26s x y +⎧=-⎪⎨⎪=⎩(s 为参数).(1)写出1C 地普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线3C 地极坐标方程为2cos sin 0θθ-=,求3C 与1C 交点地直角坐标,及3C 与2C 交点地直角坐标.【解析】(1)()2620y x y =-≥;(2)31,C C 地交点坐标为1,12⎛⎫⎪⎝⎭,()1,2,32,C C 地交点坐标为1,12⎛⎫-- ⎪⎝⎭,()1,2--.【解析】【分析】(1)消去t ,即可得到1C 地普通方程;(2)将曲线23,C C 地方程化成普通方程,联立求解即解出.【小问1详解】因为26t x +=,y =,所以226y x +=,即1C 普通方程为()2620y x y =-≥.【小问2详解】因为2,6sx y +=-=,所以262x y =--,即2C 地普通方程为()2620y x y =--≤,由2cos sin 02cos sin 0θθρθρθ-=⇒-=,即3C 地普通方程为20x y -=.联立()262020y x y x y ⎧=-≥⎨-=⎩,解得:121x y ⎧=⎪⎨⎪=⎩或12x y =⎧⎨=⎩,即交点坐标为1,12⎛⎫ ⎪⎝⎭,()1,2;联立()262020y x y x y ⎧=--≤⎨-=⎩,解得:121x y ⎧=-⎪⎨⎪=-⎩或12x y =-⎧⎨=-⎩,即交点坐标1,12⎛⎫--⎪⎝⎭,()1,2--.[选修4-5:不等式选讲]23. 已知a ,b ,c 均为正数,且22243a b c ++=,证明:(1)23a b c ++≤;(2)若2b c =,则113a c+≥.【解析】(1)见解析 (2)见解析【解析】【分析】(1)根据()22222242a b c a b c ++=++,利用柯西不等式即可得证;(2)由(1)结合已知可得043a c <+≤,即可得到1143a c ≥+,再根据权方和不等式即可得证.【小问1详解】证明:由柯西不等式有()()()222222221112a b c a b c ⎡⎤++++≥++⎣⎦,所以23a b c ++≤,当且仅当21a b c ===时,取等号,所以23a b c ++≤;【小问2详解】证明:因为2b c =,0a >,0b >,0c >,由(1)得243a b c a c ++=+≤,的为即043a c <+≤,所以1143a c ≥+,由权方和不等式知()22212111293444a c a c a c a c++=+≥=≥++,当且仅当124a c =,即1a =,12c =时取等号,所以113a c+≥.。
精品解析:2022年全国高考乙卷数学(文)试题(解析版)
2023年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己地姓名,准考证号填写在答题卡上.2.回答选择题时,选出每小题结果后,用2B 铅笔把答题卡上对应题目地结果标号框涂黑.如需改动,用橡皮擦干净后,再选涂其它结果标号框,回答非选择题时,将结果写在答题卡上.写在本试题上无效.3.考试结束后,将本试题和答题卡一并交回.一,选择题:本题共12小题,每小题5分,共60分.在每小题给出地四个选项中,只有一项是符合题目要求地.1. 集合{}{}2,4,6,8,10,16M N x x ==-<<,则M N = ( )A. {2,4} B. {2,4,6}C. {2,4,6,8}D. {2,4,6,8,10}【结果】A 【思路】【思路】依据集合地交集运算即可解出.【详解】因为{}2,4,6,8,10M =,{}|16N x x =-<<,所以{}2,4M N = .故选:A.2. 设(12i)2i a b ++=,其中,a b 为实数,则( )A. 1,1a b ==- B. 1,1a b == C. 1,1a b =-= D. 1,1a b =-=-【结果】A 【思路】【思路】依据复数代数形式地运算法则以及复数相等地概念即可解出.【详解】因为,a b ÎR ,()2i 2i a b a ++=,所以0,22a b a +==,解得:1,1a b ==-.故选:A.3. 已知向量(2,1)(2,4)a b ==-,,则a b -r r ( )A. 2B. 3C. 4D. 5【结果】D 【思路】【思路】先求得a b -,然后求得a b -r r .【详解】因为()()()2,12,44,3a b -=--=- ,所以5-== a b .故选:D4. 分别统计了甲,乙两位同学16周地各周课外体育运动时长(单位:h ),得如下茎叶图:则下面结论中错误地是( )A. 甲同学周课外体育运动时长地样本中位数为7.4B. 乙同学周课外体育运动时长地样本平均数大于8C. 甲同学周课外体育运动时长大于8地概率地估计值大于0.4D. 乙同学周课外体育运动时长大于8地概率地估计值大于0.6【结果】C 【思路】【思路】结合茎叶图,中位数,平均数,古典概型等知识确定正确结果.【详解】对于A 选项,甲同学周课外体育运动时长地样本中位数为7.37.57.42+=,A 选项结论正确.对于B 选项,乙同学课外体育运动时长地样本平均数为:6.37.47.68.18.28.28.58.68.68.68.69.09.29.39.810.18.50625816+++++++++++++++=>,B 选项结论正确.对于C 选项,甲同学周课外体育运动时长大于8地概率地估计值60.3750.416=<,C 选项结论错误.对于D 选项,乙同学周课外体育运动时长大于8地概率地估计值130.81250.616=>,D 选项结论正确.故选:C5. 若x ,y 满足约束款件2,24,0,x y x y y +⎧⎪+⎨⎪⎩………则2z xy =-地最大值是( )A. 2-B. 4C. 8D. 12【结果】C 【思路】【思路】作出可行域,数形结合即可得解.【详解】由题意作出可行域,如图阴影部分所示,转化目标函数2z x y =-为2y x z =-,上下平移直线2y x z =-,可得当直线过点()4,0时,直线截距最小,z 最大,所以max 2408z =⨯-=.故选:C.6. 设F 为抛物线2:4C y x =地焦点,点A 在C 上,点(3,0)B ,若AF BF =,则AB =( )A. 2B.C. 3D. 【结果】B 【思路】【思路】依据抛物线上地点到焦点和准线地距离相等,从而求得点A 地横坐标,进而求得点A 坐标,即可得到结果.【详解】由题意得,()1,0F ,则2AF BF ==,即点A 到准线1x =-地距离为2,所以点A 地横坐标为121-+=,不妨设点A 在x 轴上方,代入得,()1,2A ,所以AB ==故选:B7. 执行下边地程序框图,输出地n =( )A. 3B. 4C. 5D. 6【结果】B 【思路】【思路】依据框图循环计算即可.【详解】执行第一次循环,2123b b a =+=+=,312,12a b a n n =-=-==+=,222231220.0124b a -=-=>。
2023年高考数学(全国甲卷)文科数学(含答案及详细解析)
2023年高考数学真题试卷(全国甲卷)文科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集,集合,则()A.B.C.D.2.()A.B.1C.D.3.已知向量,则()A.B.C.D.4.某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为()A.B.C.D.5.记为等差数列的前项和.若,则()A.25B.22C.20D.156.执行下边的程序框图,则输出的()A.21B.34C.55D.897.设为椭圆的两个焦点,点在上,若,则()A.1B.2C.4D.58.曲线在点处的切线方程为()A.B.C.D.9.已知双曲线的离心率为,其中一条渐近线与圆交于A,B两点,则()A.B.C.D.10.在三棱锥中,是边长为2的等边三角形,,则该棱锥的体积为()A.1B.C.2D.311.已知函数.记,则()A.B.C.D.12.函数的图象由的图象向左平移个单位长度得到,则的图象与直线的交点个数为()A.1B.2C.3D.4二、填空题:本大题共4小题,每小题5分,共20分.13.记为等比数列的前项和.若,则的公比为.14.若为偶函数,则.15.若x,y满足约束条件,则的最大值为.16.在正方体中,为的中点,若该正方体的棱与球的球面有公共点,则球的半径的取值范围是.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.记的内角的对边分别为,已知.(1)求;(2)若,求面积.18.如图,在三棱柱中,平面.(1)证明:平面平面;(2)设,求四棱锥的高.19.一项试验旨在研究臭氧效应,试验方案如下:选40只小白鼠,随机地将其中20只分配到试验组,另外20只分配到对照组,试验组的小白鼠饲养在高浓度臭氧环境,对照组的小白鼠饲养在正常环境,一段时间后统计每只小白鼠体重的增加量(单位:g).试验结果如下:对照组的小白鼠体重的增加量从小到大排序为15.218.820.221.322.523.225.826.527.530.132.634.334.835.635.635.836.237.340.543.2试验组的小白鼠体重的增加量从小到大排序为7.89.211.412.413.215.516.518.018.819.219.820.221.622.823.623.925.128.232.336.5(1)计算试验组的样本平均数;(2)(ⅰ)求40只小白鼠体重的增加量的中位数m,再分别统计两样本中小于m与不小于m的数据的个数,完成如下列联表对照组试验组(ⅱ)根据(i)中的列联表,能否有95%的把握认为小白鼠在高浓度臭氧环境中与在正常环境中体重的增加量有差异?附:,0.1000.0500.0102.7063.841 6.63520.已知函数.(1)当时,讨论的单调性;(2)若,求的取值范围.21.已知直线与抛物线交于两点,.(1)求;(2)设为的焦点,为上两点,且,求面积的最小值.22.已知点,直线(为参数),为的倾斜角,与轴正半轴、轴正半轴分别交于,且.(1)求;(2)以坐标原点为极点,轴正半轴为极轴建立极坐标系,求的极坐标方程.23.已知.(1)求不等式的解集;(2)若曲线与轴所围成的图形的面积为2,求.答案解析部分1.【答案】A【解析】【解答】,故选:A【分析】先计算补集,再求并集即得答案.2.【答案】C【解析】【解答】,故选:C【分析】利用复数乘法运算计算由得出答案。
2020年全国统一高考数学试卷(文科)(新课标ⅱ)(含解析版)
绝密★启用前2020年普通高等学校招生全国统一考试文科数学注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题目时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号框涂黑.如需改动,用橡皮擦干净后,在选涂其它答案标号框.回答非选择题目时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题目:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x ||x |<3,x ∈Z },B ={x ||x |>1,x ∈Z },则A ∩B =()A. B.{–3,–2,2,3)C.{–2,0,2} D.{–2,2}【答案】D 【解析】【分析】解绝对值不等式化简集合,A B 的表示,再根据集合交集的定义进行求解即可.【详解】因为3,2,1,0,1,2A x x x Z ,1,1B x x x Z x x 或 1,x x Z ,所以 2,2A B ∩.故选:D.【点睛】本题考查绝对值不等式的解法,考查集合交集的定义,属于基础题.2.(1–i )4=()A.–4B.4C.–4iD.4i【答案】A【解析】【分析】根据指数幂的运算性质,结合复数的乘方运算性质进行求解即可.【详解】422222(1)[(1)](12)(2)4i i i i i .故选:A.【点睛】本题考查了复数的乘方运算性质,考查了数学运算能力,属于基础题.3.如图,将钢琴上的12个键依次记为a 1,a 2,…,a 12.设1≤i <j <k ≤12.若k –j =3且j –i =4,则称a i ,a j ,a k 为原位大三和弦;若k –j =4且j –i =3,则称a i ,a j ,a k 为原位小三和弦.用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为()A.5B.8C.10D.15【答案】C 【解析】【分析】根据原位大三和弦满足3,4k j j i ,原位小三和弦满足4,3k j j i 从1i 开始,利用列举法即可解出.【详解】根据题意可知,原位大三和弦满足:3,4k j j i .∴1,5,8i j k ;2,6,9i j k ;3,7,10i j k ;4,8,11i j k ;5,9,12i j k .原位小三和弦满足:4,3k j j i .∴1,4,8i j k ;2,5,9i j k ;3,6,10i j k ;4,7,11i j k ;5,8,12i j k .故个数之和为10.故选:C .【点睛】本题主要考查列举法的应用,以及对新定义的理解和应用,属于基础题.4.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者()A.10名B.18名C.24名D.32名【答案】B 【解析】【分析】算出第二天订单数,除以志愿者每天能完成的订单配货数即可.【详解】由题意,第二天新增订单数为50016001200900 ,故需要志愿者9001850名.故选:B【点晴】本题主要考查函数模型的简单应用,属于基础题.5.已知单位向量a ,b 的夹角为60°,则在下列向量中,与b 垂直的是()A.a +2bB.2a +bC.a –2bD.2a –b【答案】D 【解析】【分析】根据平面向量数量积的定义、运算性质,结合两平面向量垂直数量积为零这一性质逐一判断即可.【详解】由已知可得:11cos 601122a b a b .A :因为215(2)221022a b b a b b ,所以本选项不符合题意;B :因为21(2)221202a b b a b b ,所以本选项不符合题意;C :因213(2)221022a b b a b b ,所以本选项不符合题意;D:因为21(2)22102a b b a b b ,所以本选项符合题意.故选:D.【点睛】本题考查了平面向量数量积的定义和运算性质,考查了两平面向量数量积为零则这两个平面向量互相垂直这一性质,考查了数学运算能力.6.记S n 为等比数列{a n }的前n 项和.若a 5–a 3=12,a 6–a 4=24,则nnS a =()A.2n –1 B.2–21–n C.2–2n –1D.21–n –1【答案】B 【解析】【分析】根据等比数列的通项公式,可以得到方程组,解方程组求出首项和公比,最后利用等比数列的通项公式和前n 项和公式进行求解即可.【详解】设等比数列的公比为q ,由536412,24a a a a 可得:421153111122124a q a q q a a q a q ,所以1111(1)122,21112n nn n n n n a q a a qS q ,因此1121222n n n n n S a .故选:B.【点睛】本题考查了等比数列的通项公式的基本量计算,考查了等比数列前n 项和公式的应用,考查了数学运算能力.7.执行右面的程序框图,若输入的k =0,a =0,则输出的k 为()A.2B.3C.4D.5【答案】C 【解析】分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出的k 值,模拟程序的运行过程,分析循环中各变量值的变化情况,即可求得答案.【详解】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出的k 值模拟程序的运行过程0,0k a 第1次循环,2011a ,011k ,210 为否第2次循环,2113a ,112k ,310 为否第3次循环,2317a ,213k ,710 为否第4次循环,27115a ,314k ,1510 为是退出循环输出4k .故选:C.【点睛】本题考查求循环框图的输出值,解题关键是掌握模拟循环语句运行的计算方法,考查了分析能力和计算能力,属于基础题.8.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y 的距离为()A.55B.255C.355D.455【答案】B 【解析】【分析】由题意可知圆心在第一象限,设圆心的坐标为 ,,0a a a ,可得圆的半径为a ,写出圆的标准方程,利用点 2,1在圆上,求得实数a 的值,利用点到直线的距离公式可求出圆心到直线230x y 的距离.【详解】由于圆上的点 2,1在第一象限,若圆心不在第一象限,则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限,设圆心的坐标为,a a ,则圆的半径为a ,圆的标准方程为 222x a y a a .由题意可得 22221a a a ,可得2650a a ,解得1a 或5a ,所以圆心的坐标为 1,1或 5,5,圆心到直线230x y 的距离均为22555d;所以,圆心到直线230x y 的距离为255.故选:B.【点睛】本题考查圆心到直线距离的计算,求出圆的方程是解题的关键,考查计算能力,属于中等题.9.设O 为坐标原点,直线x a 与双曲线2222:1(0,0)x y C a b a b的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为()A.4B.8C.16D.32【答案】B 【解析】【分析】因为2222:1(0,0)x y C a b a b ,可得双曲线的渐近线方程是b y x a,与直线x a 联立方程求得D ,E 两点坐标,即可求得||ED ,根据ODE 的面积为8,可得ab 值,根据2222c a b ,结合均值不等式,即可求得答案.【详解】∵2222:1(0,0)x y C a b a b双曲线的渐近线方程是by x a∵直线x a 与双曲线2222:1(0,0)x y C a b a b的两条渐近线分别交于D ,E 两点不妨设D 为在第一象限,E 在第四象限联立x ab y x a,解得x a y b故(,)D a b 联立x ab y x a,解得x a y b故(,)E a b ||2ED bODE 面积为:1282ODE S a b ab△∵双曲线2222:1(0,0)x y C a b a b其焦距为2222222168c a b ab 当且仅当22a b 取等号C 的焦距的最小值:8【点睛】本题主要考查了求双曲线焦距的最值问题,解题关键是掌握双曲线渐近线的定义和均值不等式求最值方法,在使用均值不等式求最值时,要检验等号是否成立,考查了分析能力和计算能力,属于中档题.10.设函数331()f x x x,则()f x ()A.是奇函数,且在(0,+∞)单调递增 B.是奇函数,且在(0,+∞)单调递减C.是偶函数,且在(0,+∞)单调递增 D.是偶函数,且在(0,+∞)单调递减【答案】A 【解析】【分析】根据函数的解析式可知函数的定义域为0x x ,利用定义可得出函数 f x 为奇函数,再根据函数的单调性法则,即可解出.【详解】因为函数 331f x x x定义域为 0x x ,其关于原点对称,而 f x f x ,所以函数 f x 为奇函数.又因为函数3y x 在()0,+¥上单调递增,在(),0-¥上单调递增,而331y x x在()0,+¥上单调递减,在(),0-¥上单调递减,所以函数 331f x x x在()0,+¥上单调递增,在(),0-¥上单调递增.故选:A .【点睛】本题主要考查利用函数的解析式研究函数的性质,属于基础题.11.已知△ABC 是面积为934的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为()A.3B.32C.1D.32【答案】C【分析】根据球O 的表面积和ABC 的面积可求得球O 的半径R 和ABC 外接圆半径r ,由球的性质可知所求距离22d R r.【详解】设球O 的半径为R ,则2416R ,解得:2R .设ABC 外接圆半径为r ,边长为a ,ABC ∵ 是面积为934的等边三角形,21393224a ,解得:3a ,22229933434a r a ,球心O 到平面ABC 的距离22431d R r .故选:C.【点睛】本题考查球的相关问题的求解,涉及到球的表面积公式和三角形面积公式的应用;解题关键是明确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面.12.若2233x y x y ,则()A.ln(1)0y x B.ln(1)0y x C.ln ||0x y D.ln ||0x y 【答案】A 【解析】【分析】将不等式变为2323x x y y ,根据 23t tf t 的单调性知x y ,以此去判断各个选项中真数与1的大小关系,进而得到结果.【详解】由2233x y x y 得:2323x x y y ,令 23ttf t ,2x y ∵为R 上的增函数,3x y 为R 上的减函数, f t 为R 上的增函数,x y ,0y x Q ,11y x , ln 10y x ,则A 正确,B 错误;x y Q 与1的大小不确定,故CD 无法确定.故选:A.【点睛】本题考查对数式的大小的判断问题,解题关键是能够通过构造函数的方式,利用函数的单调性得到,x y 的大小关系,考查了转化与化归的数学思想.二、填空题目:本题共4小题,每小题5分,共20分.13.若2sin 3x ,则cos 2x __________.【答案】19【解析】【分析】直接利用余弦的二倍角公式进行运算求解即可.【详解】22281cos 212sin 12()1399x x .故答案为:19.【点睛】本题考查了余弦的二倍角公式的应用,属于基础题.14.记n S 为等差数列 n a 的前n 项和.若1262,2a a a ,则10S __________.【答案】25【解析】【分析】因为 n a 是等差数列,根据已知条件262a a ,求出公差,根据等差数列前n 项和,即可求得答案.【详解】∵ n a 是等差数列,且12a ,262a a 设 n a 等差数列的公差d根据等差数列通项公式: 11n a a n d 可得1152a d a d 即: 2252d d 整理可得:66d 解得:1d∵根据等差数列前n 项和公式:*1(1),2n n n S na d n N可得: 1010(101)1022045252S1025S .故答案为:25.【点睛】本题主要考查了求等差数列的前n 项和,解题关键是掌握等差数列的前n 项和公式,考查了分析能力和计算能力,属于基础题.15.若x ,y 满足约束条件1121,x y x y x y,,则2z x y 的最大值是__________.【答案】8【解析】【分析】在平面直角坐标系内画出不等式组表示的平面区域,然后平移直线12y x ,在平面区域内找到一点使得直线1122y x z在纵轴上的截距最大,求出点的坐标代入目标函数中即可.【详解】不等式组表示的平面区域为下图所示:平移直线12y x,当直线经过点A 时,直线1122y x z 在纵轴上的截距最大,此时点A 的坐标是方程组121x y x y的解,解得:23x y,因此2z x y 的最大值为:2238 .故答案为:8.【点睛】本题考查了线性规划的应用,考查了数形结合思想,考查数学运算能力.16.设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内.p 2:过空间中任意三点有且仅有一个平面.p 3:若空间两条直线不相交,则这两条直线平行.p 4:若直线l 平面α,直线m ⊥平面α,则m ⊥l .则下述命题中所有真命题的序号是__________.①14p p ②12p p ③23p p ④34p p 【答案】①③④【解析】【分析】利用两交线直线确定一个平面可判断命题1p 的真假;利用三点共线可判断命题2p 的真假;利用异面直线可判断命题3p 的真假,利用线面垂直的定义可判断命题4p 的真假.再利用复合命题的真假可得出结论.【详解】对于命题1p ,可设1l 与2l 相交,这两条直线确定的平面为 ;若3l 与1l 相交,则交点A 在平面 内,同理,3l 与2l 的交点B 也在平面 内,所以,AB ,即3l ,命题1p 真命题;对于命题2p ,若三点共线,则过这三个点的平面有无数个,命题2p 为假命题;对于命题3p ,空间中两条直线相交、平行或异面,命题3p 为假命题;对于命题4p ,若直线m 平面 ,则m 垂直于平面 内所有直线,∵直线l 平面 , 直线m 直线l ,命题4p 为真命题.综上可知,14p p 为真命题,12p p 为假命题,23p p 为真命题,34p p 为真命题.故答案为:①③④.【点睛】本题考查复合命题的真假,同时也考查了空间中线面关系有关命题真假的判断,考查推理能力,属于中等题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知25cos ()cos 24A A .(1)求A ;(2)若33b c a,证明:△ABC 是直角三角形.【答案】(1)3A;(2)证明见解析【解析】【分析】(1)根据诱导公式和同角三角函数平方关系,25cos cos 24A A可化为251cos cos 4A A,即可解出;(2)根据余弦定理可得222b c a bc ,将33b c a 代入可找到,,a b c 关系,再根据勾股定理或正弦定理即可证出.【详解】(1)因为25cos cos 24A A,所以25sin cos 4A A ,即251cos cos 4A A ,解得1cos 2A ,又0A ,所以3A;(2)因为3A ,所以2221cos 22b c a A bc ,即222b c a bc ①,又33b c a②,将②代入①得, 2223b c b c bc ,即222250b c bc ,而b c ,解得2b c ,所以3a c,故222b a c ,即ABC 是直角三角形.【点睛】本题主要考查诱导公式和平方关系的应用,利用勾股定理或正弦定理,余弦定理判断三角形的形状,属于基础题.18.某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i ix,2011200i iy,2021)80i i x x (,2021)9000i i y y (,201))800i i i x y x y ((.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r =12211))))ni iiiin ni i x y x x y y y x((((,2=1.414.【答案】(1)12000;(2)0.94;(3)详见解析【解析】【分析】(1)利用野生动物数量的估计值等于样区野生动物平均数乘以地块数,代入数据即可;(2)利用公式20120202211()()()()iii iii i x x yy r x x yy计算即可;(3)各地块间植物覆盖面积差异较大,为提高样本数据的代表性,应采用分层抽样.【详解】(1)样区野生动物平均数为201111200602020i i y ,地块数为200,该地区这种野生动物的估计值为2006012000 (2)样本(,)i i x y 的相关系数为20120202211()()800220.943809000()()iii i i i i x x y y r x x y y(3)由于各地块间植物覆盖面积差异较大,为提高样本数据的代表性,应采用分层抽样先将植物覆盖面积按优中差分成三层,在各层内按比例抽取样本,在每层内用简单随机抽样法抽取样本即可.【点晴】本题主要考查平均数的估计值、相关系数的计算以及抽样方法的选取,考查学生数学运算能力,是一道容易题.19.已知椭圆C 1:22221x y a b(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴重直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)若C 1的四个顶点到C 2的准线距离之和为12,求C 1与C 2的标准方程.【答案】(1)12;(2)1C :2211612x y ,2C :28y x .【解析】【分析】(1)根据题意求出2C 的方程,结合椭圆和抛物线的对称性不妨设,A C 在第一象限,运用代入法求出,,,A B C D 点的纵坐标,根据4||||3CD AB ,结合椭圆离心率的公式进行求解即可;(2)由(1)可以得到椭圆的标准方程,确定椭圆的四个顶点坐标,再确定抛物线的准线方程,最后结合已知进行求解即可;【详解】解:(1)因为椭圆1C 的右焦点坐标为:(c,0)F ,所以抛物线2C 的方程为24y cx ,其中22c a b.不妨设,A C 在第一象限,因为椭圆1C 的方程为:22221x y a b,所以当x c 时,有222221c y b y a b a ,因此,A B 的纵坐标分别为2b a ,2ba;又因为抛物线2C 的方程为24y cx ,所以当x c 时,有242y c c y c ,所以,C D 的纵坐标分别为2c ,2c ,故22||bAB a,||4CD c .由4||||3CD AB 得2843b c a,即2322()c c a a ,解得2c a (舍去),12c a .所以1C 的离心率为12.(2)由(1)知2a c ,3b c ,故22122:143x y C c c,所以1C 的四个顶点坐标分别为(2,0)c ,(2,0)c ,(0,3)c ,(0,3)c ,2C 的准线为x c .由已知得312c c c c ,即2c .所以1C 的标准方程为2211612x y ,2C 的标准方程为28y x .【点睛】本题考查了求椭圆的离心率,考查了求椭圆和抛物线的标准方程,考查了椭圆的四个顶点的坐标以及抛物线的准线方程,考查了数学运算能力.20.如图,已知三棱柱ABC –A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点.过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1//MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO =AB =6,AO //平面EB 1C 1F ,且∠MPN =π3,求四棱锥B –EB 1C 1F 的体积.【答案】(1)证明见解析;(2)24.【解析】【分析】(1)由,M N 分别为BC ,11B C 的中点,1//MN CC ,根据条件可得11//AA BB ,可证1MN AA //,要证平面11EB C F 平面1A AMN ,只需证明EF 平面1A AMN 即可;(2)根据已知条件求得11EB C F S 四边形和M 到PN 的距离,根据椎体体积公式,即可求得11B EB C F V .【详解】(1)∵,M N 分别为BC ,11B C 的中点,1//MN BB 又11//AA BB1//MN AA 在等边ABC 中,M 为BC 中点,则BC AM 又∵侧面11BB C C 为矩形,1BC BB 1//MN BB ∵MN BC由MN AM M ,,MN AM 平面1A AMNBC ⊥平面1A AMN又∵11//B C BC ,且11B C 平面ABC ,BC 平面ABC ,11//B C 平面ABC又∵11B C 平面11EB C F ,且平面11EB C F 平面ABC EF11//B C EF//EF BC又BC ∵平面1A AMNEF 平面1A AMN EF ∵平面11EB C F 平面11EB C F 平面1A AMN(2)过M 作PN 垂线,交点为H ,画出图形,如图∵//AO 平面11EB C FAO 平面1A AMN ,平面1A AMN 平面11EB C F NP//AO NP又∵//NO AP6AO NP ∵O 为111A B C △的中心.1111sin 606sin 60333ON A C故:3ON AP,则333AM AP ,∵平面11EB C F 平面1A AMN ,平面11EB C F 平面1A AMN NP ,MH 平面1A AMNMH 平面11EB C F又∵在等边ABC 中EF APBC AM即36233AP BC EF AM由(1)知,四边形11EB C F 为梯形四边形11EB C F 的面积为:111126=62422EB C F EF B C S NP 四边形111113B EBC F EB C F V S h 四边形,h 为M 到PN 的距离23sin 603MH , 1243243V .【点睛】本题主要考查了证明线线平行和面面垂直,及其求四棱锥的体积,解题关键是掌握面面垂直转为求证线面垂直的证法和棱锥的体积公式,考查了分析能力和空间想象能力,属于中档题.21.已知函数f (x )=2ln x +1.(1)若f (x )≤2x +c ,求c 的取值范围;(2)设a >0时,讨论函数g (x )=()()f x f a x a的单调性.【答案】(1)1c ;(2)()g x 在区间(0,)a 和(,)a 上单调递减,没有递增区间【解析】【分析】(1)不等式()2f x x c 转化为()20f x x c ,构造新函数,利用导数求出新函数的最大值,进而进行求解即可;(2)对函数()g x 求导,把导函数()g x 分子构成一个新函数()m x ,再求导得到()m x ,根据()m x 的正负,判断()m x 的单调性,进而确定()g x 的正负性,最后求出函数()g x 的单调性.【详解】(1)函数()f x 的定义域为:(0,)()2()202ln 120()f x x c f x x c x x c ,设()2ln 12(0)h x x x c x ,则有22(1)()2x h x x x,当1x 时,()0,()h x h x 单调递减,当01x 时,()0,()h x h x 单调递增,所以当1x 时,函数()h x 有最大值,即max ()(1)2ln11211h x h c c ,要想不等式() 在(0,) 上恒成立,只需max ()0101h x c c ;(2)2ln 1(2ln 1)2(ln ln )()(0x a x a g x x x a x a且)x a 因此22(ln ln )()()x a x x x a g x x x a ,设()2(ln ln )m x x a x x x a ,则有()2(ln ln )m x a x ,当x a 时,ln ln x a ,所以()0m x ,()m x 单调递减,因此有()()0m x m a ,即()0g x ,所以()g x 单调递减;当0x a 时,ln ln x a ,所以()0m x ,()m x 单调递增,因此有()()0m x m a ,即()0g x ,所以()g x 单调递减,所以函数()g x 在区间(0,)a 和(,)a 上单调递减,没有递增区间.【点睛】本题考查了利用导数研究不等式恒成立问题,以及利用导数判断含参函数的单调性,考查了数学运算能力,是中档题.(二)选考题:共10分.请考生在第22、23题中选定一题作答,并用2B 铅笔在答题卡上将所选题目对应的题号方框涂黑.按所涂题号进行评分,不涂、多涂均按所答第一题评分;多答按所答第一题评分.[选修4—4:坐标系与参数方程]22.已知曲线C 1,C 2的参数方程分别为C 1:224cos 4sin x y ,(θ为参数),C 2:1,1x t t y t t(t 为参数).(1)将C 1,C 2的参数方程化为普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.设C 1,C 2的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程.【答案】(1)1:4C x y ;222:4C x y ;(2)17cos 5.【解析】【分析】(1)分别消去参数 和t 即可得到所求普通方程;(2)两方程联立求得点P ,求得所求圆的直角坐标方程后,根据直角坐标与极坐标的互化即可得到所求极坐标方程.【详解】(1)由22cos sin 1 得1C 的普通方程为:4x y ;由11x t t y t t 得:2222221212x t t y t t,两式作差可得2C 的普通方程为:224x y .(2)由2244x y x y 得:5232x y ,即53,22P ;设所求圆圆心的直角坐标为 ,0a ,其中0a ,则22253022a a,解得:1710a , 所求圆的半径1710r , 所求圆的直角坐标方程为:22217171010x y ,即22175x y x , 所求圆的极坐标方程为17cos 5.【点睛】本题考查极坐标与参数方程的综合应用问题,涉及到参数方程化普通方程、直角坐标方程化极坐标方程等知识,属于常考题型.[选修4—5:不等式选讲]23.已知函数2()|21|f x x a x a .(1)当2a 时,求不等式()4f x 的解集;(2)若()4f x ,求a 的取值范围.【答案】(1)32x x或112x;(2) ,13, .【解析】【分析】(1)分别在3x 、34x 和4x 三种情况下解不等式求得结果;(2)利用绝对值三角不等式可得到 21f x a ,由此构造不等式求得结果.【详解】(1)当2a 时, 43f x x x .当3x 时, 43724f x x x x ,解得:32x ≤;当34x 时, 4314f x x x ,无解;当4x 时, 43274f x x x x ,解得:112x;综上所述: 4f x 的解集为32x x或112x .(2) 22222121211f x x a x a x ax a a a a (当且仅当221a x a 时取等号), 214a ,解得:1a 或3a ,a 的取值范围为 ,13, .【点睛】本题考查绝对值不等式的求解、利用绝对值三角不等式求解最值的问题,属于常考题型.祝福语祝你马到成功,万事顺意!。
2023年全国统一高考数学试卷(文科)(甲卷)(解析版)
2023年全国统一高考数学试卷(文科)(甲卷)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设全集U={1,2,3,4,5},集合M={1,4},N={2,5},则N∪∁U M=( )A.{2,3,5}B.{1,3,4}C.{1,2,4,5}D.{2,3,4,5}【答案】A【解答】解:因为U={1,2,3,4,5},集合M={1,4},N={2,5},所以∁U M={2,3,5},则N∪∁U M={2,3,5}.故选:A.2.(5分)=( )A.﹣1B.1C.1﹣i D.1+i【答案】C【解答】解:==1﹣i.故选:C.3.(5分)已知向量=(3,1),=(2,2),则cos〈+,﹣〉=( )A.B.C.D.【答案】B【解答】解:根据题意,向量=(3,1),=(2,2),则+=(5,3),﹣=(1,﹣1),则有|+|==,|﹣|==,(+)•(﹣)=2,故cos〈+,﹣〉==.故选:B.4.(5分)某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为( )A .B .C .D .【答案】D【解答】解:某校文艺部有4名学生,其中高一、高二年级各2名,从这4名学生中随机选2名组织校文艺汇演,基本事件总数n ==6,这2名学生来自不同年级包含的基本事件个数m ==4,则这2名学生来自不同年级的概率为P ===.故选:D .5.(5分)记S n 为等差数列{a n }的前n 项和.若a 2+a 6=10,a 4a 8=45,则S 5=( )A .25B .22C .20D .15【答案】C【解答】解:等差数列{a n }中,a 2+a 6=2a 4=10,所以a 4=5,a 4a 8=5a 8=45,故a 8=9,则d ==1,a 1=a 4﹣3d =5﹣3=2,则S 5=5a 1+=10+10=20.故选:C .6.(5分)执行下边的程序框图,则输出的B =( )A.21B.34C.55D.89【答案】B【解答】解:模拟执行程序框图,如下:n=3,A=1,B=2,k=1,k≤3,A=1+2=3,B=3+2=5,k=2,k≤3,A=3+5=8,B=8+5=13,k=3,k≤3,A=8+13=21,B=21+13=34,k=4,k>3,输出B=34.故选:B.A.1B.2C.4D.5【答案】B【解答】解:根据题意,点P在椭圆上,满足•=0,可得∠F1PF2=,又由椭圆C:+y2=1,其中c2=5﹣1=4,可得|PF1|•|PF2|=2,故选:B.8.(5分)曲线y=在点(1,)处的切线方程为( )A.y=x B.y=x C.y=x+D.y=x+【答案】C【解答】解:因为y=,y′==,故函数在点(1,)处的切线斜率k=,切线方程为y﹣=(x﹣1),即y=.故选:C.9.(5分)已知双曲线C:﹣=1(a>0,b>0)的离心率为,C的一条渐近线与圆(x﹣2)2+(y﹣3)2=1交于A,B两点,则|AB|=( )A.B.C.D.【答案】D【解答】解:双曲线C:﹣=1(a>0,b>0)的离心率为,可得c=a,所以b=2a,所以双曲线的渐近线方程为:y=±2x,一条渐近线与圆(x﹣2)2+(y﹣3)2=1交于A,B两点,圆的圆心(2,3),半径为1,圆的圆心到直线y=2x的距离为:=,所以|AB|=2=.故选:D.10.(5分)在三棱锥P﹣ABC中,△ABC是边长为2的等边三角形,PA=PB=2,PC=,则该棱锥的体积为( )A.1B.C.2D.3【答案】A【解答】解:如图,PA=PB=2,AB=BC=2,取AB的中点D,连接PD,CD,可得AB⊥PD,AB⊥CD,又PD∩CD=D,PD、CD⊂平面PCD,∴AB⊥平面PCD,在△PAB与△ABC中,求得PD=CD=,在△PCD中,由PD=CD=,PC=,得PD2+CD2=PC2,则PD⊥CD,∴,∴×AB=.故选:A.11.(5分)已知函数f(x)=.记a=f(),b=f(),c=f(),则( )A.b>c>a B.b>a>c C.c>b>a D.c>a>b【答案】A【解答】解:令g(x)=﹣(x﹣1)2,则g(x)的开口向下,对称轴为x=1,∵,而=,∴,∴,∴由一元二次函数的性质可知g()<g(),∵,而,∴,∴,综合可得,又y=e x为增函数,∴a<c<b,即b>c>a.故选:A.12.(5分)函数y=f(x)的图象由y=cos(2x+)的图象向左平移个单位长度得到,则y=f(x)的图象与直线y=x﹣的交点个数为( )A.1B.2C.3D.4【答案】C【解答】解:y=cos(2x+)的图象向左平移个单位长度得到f(x)=cos (2x+)=﹣sin2x,在同一个坐标系中画出两个函数的图象,如图:y=f(x)的图象与直线y=x﹣的交点个数为:3.故选:C.二、填空题:本大题共4小题,每小题5分,共20分。
全国高考文科数学试卷及答案解析-全国卷(20200616223538)
∠ AOB=120°. 以 O 为圆心 ,
1
OA 为半径作圆 .
2
(Ⅱ )点 C,D 在⊙ O 上 ,
且 A,B,C,D 四点共圆 ,
证明: AB ∥CD.
23.(本小题满分 10 分)选修 4— 4:坐标系与参数方程
在直线坐标系 xoy 中 ,
x acost
曲线 C1 的参数方程为
( t 为参数 ,
连接 CG,
依题 D是正 ΔABC的重心 ,
∴D在中线 CG上 ,
且 CD=2DG.
易知 DE// PC,
PC=PB=P=A6,
∴ DE=2,
2
2
PE= PG
3
3
则在等腰直角 Δ PEF中 ,
PF=EF=2,
∴Δ PEF的面积 S=2.
32
2 2.
1
4
所以四面体 PDEF的体积 V S DE .
3
3
圆中两条相互垂直的半径 则它的表面积是 ( )
.若该几何体的体积是
28
,
3
A . 17π B. 18π C. 20π
8.若 a>b>0,
0< c<1,
则( )
A . logac<log b c B. logca<log cb 9.函数 y=2x2–e|x|在[ –2,2] 的图像大致为 (
D. 28π
19.解: ( Ⅰ ) 当 x≤ 19 时,
y=3800;当 x>19 时 ,
… 12 分 y=3800+500( x-19)=500 x-5700.
所以 y 与 x 的函数解析式为 y
3800,
x 19
精品解析:2023年高考全国甲卷数学(文)真题(解析版)
2023年普通高等学校招生全国统一考试(全国甲卷)文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集,集合,则( )A. B. C. D. 【答案】A 【解析】【分析】利用集合的交并补运算即可得解.【详解】因为全集,集合,所以,又,所以,故选:A.2.( )A. B. 1C. D. 【答案】C 【解析】【分析】利用复数的四则运算求解即可.【详解】故选:C.3. 已知向量,则( ){}1,2,3,4,5U ={}{}1,4,2,5M N ==U N M = ð{}2,3,5{}1,3,4{}1,2,4,5{}2,3,4,5{1,2,3,4,5}U ={1,4}M ={}2,3,5U M =ð{2,5}N ={2,3,5}U N M = ð()()()351i 2i 2i +=+-1-1i-1i+()()351i 51i 1i(2i)(2i)5+-==-+-()()3,1,2,2a b ==cos ,a b a b +-=A.B.C.D.【答案】B 【解析】【分析】利用平面向量模与数量积的坐标表示分别求得,从而利用平面向量余弦的运算公式即可得解.【详解】因为,所以,则,所以.故选:B.4. 某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为( )A.B.C.D.【答案】D 【解析】【分析】利用古典概率的概率公式,结合组合的知识即可得解.【详解】依题意,从这4名学生中随机选2名组织校文艺汇演,总的基本事件有件,其中这2名学生来自不同年级的基本事件有,所以这2名学生来自不同年级的概率为.故选:D.5. 记为等差数列的前项和.若,则( )A. 25 B. 22C. 20D. 15【答案】C 【解析】【分析】方法一:根据题意直接求出等差数列的公差和首项,再根据前项和公式即可解出;方法二:根据等差数列的性质求出等差数列的公差,再根据前项和公式的性质即可解出.117()(),,a b a b a b a b +-+⋅-(3,1),(2,2)a b ==()()5,3,1,1a b a b +=-=- a b b +==== ()()()51312a b a b +⋅-=⨯+⨯-= ()()cos ,a b a b a b a b a b a b+⋅-+-===+- 1613122324C 6=1122C C 4=4263=n S {}n a n 264810,45a a a a +==5S ={}n a n {}n a n【详解】方法一:设等差数列的公差为,首项为,依题意可得,,即,又,解得:,所以.故选:C.方法二:,,所以,,从而,于是,所以.故选:C.6. 执行下边的程序框图,则输出的( )A. 21B. 34C. 55D. 89【答案】B 【解析】【分析】根据程序框图模拟运行即可解出.【详解】当时,判断框条件满足,第一次执行循环体,,,;当时,判断框条件满足,第二次执行循环体,,,;当时,判断框条件满足,第三次执行循环体,,,;{}n a d 1a 2611510a a a d a d +=+++=135a d +=()()48113745a a a d a d =++=11,2d a ==515455210202S a d ⨯=+⨯=⨯+=264210a a a +==4845a a =45a =89a =84184a a d -==-34514a a d =-=-=53520S a ==B =1k =123A =+=325B =+=112k =+=2k =358A =+=8513B =+=213k =+=3k =81321A =+=211334B =+=314k =+=当时,判断框条件不满足,跳出循环体,输出.故选:B.7. 设为椭圆的两个焦点,点在上,若,则( )A. 1B. 2C. 4D. 5【答案】B 【解析】【分析】方法一:根据焦点三角形面积公式求出的面积,即可解出;方法二:根据椭圆定义以及勾股定理即可解出.【详解】方法一:因为,所以,从而,所以.故选:B.方法二:因为,所以,由椭圆方程可知,,所以,又,平方得:,所以.故选:B.8. 曲线在点处的切线方程为( )A. B. C. D. 【答案】C 【解析】【分析】先由切点设切线方程,再求函数的导数,把切点的横坐标代入导数得到切线的斜率,代入所设方程即可求解.【详解】设曲线在点处的切线方程为,因为,的4k =34B =12,F F 22:15x C y +=P C 120PF PF ⋅= 12PF PF ⋅=12PF F △120PF PF ⋅= 1290FPF ∠=122121tan 4512FP F S b PF PF ===⨯⋅122PF PF ⋅=120PF PF ⋅= 1290FPF ∠= 25142c c =-=⇒=22221212416PF PF F F +===122PF PF a +==22121212216220PF PF PF PF PF PF ++=+=122PF PF ⋅=e 1=+x y x e 1,2⎛⎫ ⎪⎝⎭e 4y x =e 2y x =e e 44y x =+e 3e24y x =+e 1xy x =+e 1,2⎛⎫ ⎪⎝⎭()e 12y k x -=-e 1xy x =+所以,所以所以所以曲线在点处的切线方程为.故选:C9. 已知双曲线交于A ,B 两点,则( )A. B. C.D.【答案】D 【解析】【分析】根据离心率得出双曲线渐近线方程,再由圆心到直线的距离及圆半径可求弦长.【详解】由,则,解得,所以双曲线的一条渐近线不妨取,则圆心到渐近线的距离,所以弦长.故选:D10. 在三棱锥中,是边长为2的等边三角形,为( )A. 1 B.C. 2D. 3【答案】A()()()22e 1e e 11x xxx x y x x +-'==++1e|4x k y ='==()e e124y x -=-e 1xy x =+e 1,2⎛⎫ ⎪⎝⎭e e 44y x =+22221(0,0)x y a b a b -=>>22(2)(3)1x y -+-=||AB =e =222222215c a b b a a a+==+=2ba=2y x =(2,3)d ==||AB ===-P ABC ABC 2,PA PB PC ===【解析】【分析】证明平面,分割三棱锥为共底面两个小三棱锥,其高之和为AB 得解.【详解】取中点,连接,如图,是边长为2的等边三角形,,,又平面,,平面,又,,故,即,所以,故选:A11. 已知函数.记,则( )A. B. C. D. 【答案】A 【解析】【分析】利用作差法比较自变量大小,再根据指数函数的单调性及二次函数的性质判断即可.【详解】令,则开口向下,对称轴为,,而,由二次函数性质知,的AB ⊥PEC AB E ,PE CE ABC 2PA PB ==,PE AB CE AB ∴⊥⊥,PE CE ⊂PEC PE CE E = AB ∴⊥PEC 2PE CE ===PC =222PC PE CE =+PE CE ⊥11121332B PEC A PEC PEC V V V S AB --=+=⋅=⨯=△()2(1)e x f x --=,,a f b f c f ===b c a >>b a c>>c b a>>c a b>>2()(1)g x x =--()g x 1x =4112⎛---=- ⎝22491670-=+-=>41102⎛--=-> ⎝11->g g <,而,,所以,综上,,又为增函数,故,即.故选:A.12. 函数的图象由的图象向左平移个单位长度得到,则的图象与直线的交点个数为( )A. 1 B. 2C. 3D. 4【答案】C 【解析】【分析】先利用三角函数平移的性质求得,再作出与的部分大致图像,考虑特殊点处与的大小关系,从而精确图像,由此得解.【详解】因为向左平移个单位所得函数为,所以,而显然过与两点,作出与的部分大致图像如下,考虑,即处与的大小关系,4112⎛--=- ⎝22481682)0-=+=-=-<11-<-g g >g g g <<e x y =a c b <<b c a >>()y f x =cos 26y x π⎛⎫=+ ⎪⎝⎭6π()y f x =1122y x =-()sin 2f x x =-()f x 1122y x =-()f x 1122y x =-πcos 26y x ⎛⎫=+⎪⎝⎭π6πππcos 2cos 2sin 2662y x x x ⎡⎤⎛⎫⎛⎫=++=+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦()sin 2f x x =-1122y x =-10,2⎛⎫- ⎪⎝⎭()1,0()f x 1122y x =-3π3π7π2,2,2222x x x =-==3π3π7π,,444x x x =-==()f x 1122y x =-当时,,;当时,,;当时,,;所以由图可知,与的交点个数为.故选:C.二、填空题:本大题共4小题,每小题5分,共20分.13. 记为等比数列的前项和.若,则的公比为________.【答案】【解析】【分析】先分析,再由等比数列的前项和公式和平方差公式化简即可求出公比.【详解】若,则由得,则,不合题意.所以.当时,因为,所以,即,即,即,解得.故答案为:14. 若偶函数,则________.【答案】2【解析】【分析】根据常见函数的奇偶性直接求解即可.为3π4x =-3π3πsin 142f ⎛⎫⎛⎫-=--=- ⎪ ⎪⎝⎭⎝⎭13π1π4284312y +⎛⎫=⨯--=-<- ⎪⎝⎭3π4x =3π3πsin 142f ⎛⎫=-= ⎪⎝⎭13π13π412428y -=⨯-=<7π4x =7π7πsin 142f ⎛⎫=-= ⎪⎝⎭17π17π412428y -=⨯-=>()f x 1122y x =-3n S {}n a n 6387S S ={}n a 12-1q ≠n q 1q =6387S S =118673a a ⋅=⋅10a =1q ≠1q ≠6387S S =()()6311118711a q a q qq--⋅=⋅--()()638171q q ⋅-=⋅-()()()33381171q q q ⋅+-=⋅-()3817q ⋅+=12q =-12-()2π(1)sin 2f x x ax x ⎛⎫=-+++ ⎪⎝⎭=a【详解】,且函数为偶函数,,解得,故答案为:215. 若x ,y 满足约束条件,则的最大值为________.【答案】15【解析】【分析】由约束条件作出可行域,根据线性规划求最值即可.【详解】作出可行域,如图,由图可知,当目标函数过点时,有最大值,由可得,即,所以.故答案为:1516. 在正方体中,为的中点,若该正方体的棱与球的球面有公共点,则球的半径的取值范围是________.【答案】【解析】【分析】当球是正方体的外接球时半径最大,当边长为的正方形是球的大圆的内接正方形时半径达到最小.【详解】设球的半径为.()()()222π1sin 1cos (2)1cos 2f x x ax x x ax x x a x x ⎛⎫=-+++=-++=+-++ ⎪⎝⎭20a ∴-=2a =323,2331,x y x y x y -≤⎧⎪-+≤⎨⎪+≥⎩32z x y =+322zy x =-+A z 233323x y x y -+=⎧⎨-=⎩33x y =⎧⎨=⎩(3,3)A max 332315z =⨯+⨯=1111ABCD A B C D -4,AB O =1AC OO 4R当球是正方体的外接球时,恰好经过正方体的每个顶点,所求的球的半径最大,若半径变得更大,球会包含正方体,导致球面和棱没有交点,正方体的外接球直径为体对角线长,即,故;分别取侧棱的中点,显然四边形是边长为的正方形,且为正方形的对角线交点,连接,则的外接圆,球的半径达到最小,即的最小值为综上,.故答案为:三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17. 记的内角的对边分别为,已知.(1)求;(2)若,求面积.【答案】(1) (2【解析】分析】(1)根据余弦定理即可解出;【2R '1AC ==2R R ''==max R =1111,,,AA BB CC DD ,,,M H G N MNGH 4O MNGH MG MG =MNGH R R ∈ABC ,,A B C ,,a b c 2222cos b c aA+-=bc cos cos 1cos cos a B b A ba Bb A c--=+ABC 1(2)由(1)可知,只需求出即可得到三角形面积,对等式恒等变换,即可解出.【小问1详解】因为,所以,解得:.【小问2详解】由正弦定理可得,变形可得:,即,而,所以,又,所以,故的面积为.18. 如图,在三棱柱中,平面.(1)证明:平面平面;(2)设,求四棱锥的高.【答案】(1)证明见解析. (2)【解析】【分析】(1)由平面得,又因为,可证平面,从而证得平面平面;(2) 过点作,可证四棱锥的高为,由三角形全等可证,从而证得为中点,设,由勾股定理可求出,再由勾股定理即可求.sin A 2222cos a b c bc A =+-2222cos 22cos cos b c a bc Abc A A+-===1bc =cos cos sin cos sin cos sin cos cos sin cos sin cos sin a B b A b A B B A B aB b A c A B B A C---=-++()()()()()sin sin sin sin 1sin sin sin A B A B B B A B A B A B ---=-==+++()()sin sin sin A B A B B --+=2cos sin sin A B B -=0sin 1B <≤1cos 2A =-0πA <<sin A =ABC 11sin 122ABC S bc A ==⨯=△111ABC A B C -1A C ⊥,90ABC ACB ∠=︒11ACC A ⊥11BB C C 11,2AB A B AA ==111A BB C C -11A C ⊥ABC 1A C BC ⊥AC BC ⊥BC ⊥11ACC A 11ACC A ⊥11BCC B 1A 11A O CC ⊥1AO 1A C AC =O 1CC 1A C AC x ==x 1AO【小问1详解】证明:因为平面,平面,所以,又因为,即,平面,,所以平面,又因为平面,所以平面平面.【小问2详解】如图,过点作,垂足为.因为平面平面,平面平面,平面,所以平面,所以四棱锥的高为.因为平面,平面,所以,,又因为,为公共边,所以与全等,所以.设,则,所以为中点,,1A C ⊥ABC BC ⊂ABC 1A C BC ⊥90ACB ∠= ACBC ⊥1,A C AC ⊂11ACC A 1AC AC C ⋂=BC⊥11ACC A BC ⊂11BCC B 11ACC A ⊥11BCC B 1A 11A O CC ⊥O 11ACC A ⊥11BCC B 11ACC A 111BCC B CC =1A O ⊂11ACC A 1A O ⊥11BCC B 111A BB C C -1AO 1A C ⊥ABC ,AC BC ⊂ABC 1A C BC ⊥1A C AC ⊥1A B AB =BC ABC 1A BC 1A C AC =1A C AC x ==11A C x =O 1CC 11112OC AA ==又因为,所以,即,解得,所以,所以四棱锥的高为.19. 一项试验旨在研究臭氧效应,试验方案如下:选40只小白鼠,随机地将其中20只分配到试验组,另外20只分配到对照组,试验组的小白鼠饲养在高浓度臭氧环境,对照组的小白鼠饲养在正常环境,一段时间后统计每只小白鼠体重的增加量(单位:g ).试验结果如下:对照组的小白鼠体重的增加量从小到大排序为15.2 18.8 20.2 21.3 22.5 23.2 25.8 26.5 27.5 30.132.6 34.3 34.8 35.6 35.6 35.8 36.2 37.3 40.5 43.2试验组的小白鼠体重的增加量从小到大排序为7.8 9.2 11.4 12.4 13.2 15.5 16.5 18.0 18.8 19.219.8 20.2 21.6 22.8 23.6 23.9 25.1 28.2 32.3 36.5(1)计算试验组的样本平均数;(2)(ⅰ)求40只小白鼠体重的增加量的中位数m ,再分别统计两样本中小于m 与不小于m 的数据的个数,完成如下列联表对照组试验组(ⅱ)根据(i )中的列联表,能否有95%的把握认为小白鼠在高浓度臭氧环境中与在正常环境中体重的增加量有差异?附:,0.1000.0500.0102.7063.8416.635【答案】(1)1A C AC ⊥22211AC AC AA +=2222x x +=x=11A O ===111A BB C C -1m<m≥()()()()22()n ad bc K a b c d a c b d -=++++()2P K k ≥k19.8(2)(i );列联表见解析,(ii )能【解析】【分析】(1)直接根据均值定义求解;(2)(i )根据中位数的定义即可求得,从而求得列联表;(ii )利用独立性检验的卡方计算进行检验,即可得解.【小问1详解】试验组样本平均数为:【小问2详解】(i )依题意,可知这40只小鼠体重的中位数是将两组数据合在一起,从小到大排后第20位与第21位数据的平均数,由原数据可得第11位数据为,后续依次为,故第20位为,第21位数据为,所以,故列联表为:合计对照组61420试验组14620合计202040(ii )由(i )可得,,所以能有的把握认为小白鼠在高浓度臭氧环境中与在正常环境中体重的增加量有差异.20. 已知函数.(1)当时,讨论的单调性;23.4m =23.4m =1(7.89.211.412.413.215.516.518.018.819.219.820.220+++++++++++39621.622.823.623.925.128.232.336.5)19.820++++++++==18.819.2,19.8,20.2,20.2,21.3,21.6,22.5,22.8,23.2,23.6, 23.223.623.223.623.42m +==m<m≥2240(661414) 6.400 3.84120202020K ⨯⨯-⨯==>⨯⨯⨯95%()2sin π,0,cos 2x f x ax x x ⎛⎫=-∈ ⎪⎝⎭1a =()f x(2)若,求的取值范围.【答案】(1)在上单调递减(2)【解析】【分析】(1)代入后,再对求导,同时利用三角函数的平方关系化简,再利用换元法判断得其分子与分母的正负情况,从而得解;(2)法一:构造函数,从而得到,注意到,从而得到,进而得到,再分类讨论与两种情况即可得解;法二:先化简并判断得恒成立,再分类讨论,与三种情况,利用零点存在定理与隐零点的知识判断得时不满足题意,从而得解.【小问1详解】因为,所以,则,令,由于,所以,所以,因为,,,所以在上恒成立,所以在上单调递减.【小问2详解】法一:()sin 0f x x +<a ()f x π0,2⎛⎫⎪⎝⎭0a ≤1a =()f x ()f x '()()sin g x f x x =+()0g x <()00g =()00g '≤0a ≤0a =a<02sin sin 0cos xx x-<0a =a<00a >0a >1a =()2sin π,0,cos 2x f x x x x ⎛⎫=-∈ ⎪⎝⎭()()22432cos cos 2cos sin sin cos 2sin 11cos cos x x x x xx xf x xx--+'=-=-()3333222cos cos 21cos coscos 2cos cos x x xx x xx---+-==cos t x =π0,2x ⎛⎫∈ ⎪⎝⎭()cos 0,1t x =∈()()()23233222cos cos 22221211x x t t t t t tt t t +-=+-=-+-=-++-()()2221t t t =++-()2222110t t t ++=++>10t -<33cos 0x t =>()233cos cos 20cos x x f x x +-'=<π0,2⎛⎫ ⎪⎝⎭()f x π0,2⎛⎫⎪⎝⎭构建,则,若,且,则,解得,当时,因为,又,所以,,则,所以,满足题意;当时,由于,显然,所以,满足题意;综上所述:若,等价于,所以的取值范围为.法二:因为,因为,所以,,故在上恒成立,所以当时,,满足题意;当时,由于,显然,所以,满足题意;()()2sin πsin sin 0cos 2x g x f x x ax x x x ⎛⎫=+=-+<< ⎪⎝⎭()231sin πcos 0cos 2x g x a x x x +⎛⎫'=-+<< ⎪⎝⎭()()sin 0g x f x x =+<()()00sin 00g f =+=()0110g a a '=-+=≤0a ≤0a =22sin 1sin sin 1cos cos x x x x x ⎛⎫-=- ⎪⎝⎭π0,2x ⎛⎫∈ ⎪⎝⎭0sin 1x <<0cos 1x <<211cos x>()2sin sin sin 0cos xf x x x x+=-<a<0π02x <<0ax <()22sin sin sin sin sin 0cos cos x xf x x ax x x x x+=-+<-<()sin 0f x x +<0a ≤a (],0-∞()2232222sin cos 1sin sin cos sin sin sin cos cos cos cos x x x x x x x x x x x x---===-π0,2x ⎛⎫∈ ⎪⎝⎭0sin 1x <<0cos 1x <<2sin sin 0cos x x x-<π0,2⎛⎫⎪⎝⎭0a =()2sin sin sin 0cos xf x x x x+=-<a<0π02x <<0ax <()22sin sin sin sin sin 0cos cos x xf x x ax x x x x+=-+<-<当时,因为,令,则,注意到,若,,则在上单调递增,注意到,所以,即,不满足题意;若,,则,所以在上最靠近处必存在零点,使得,此时在上有,所以在上单调递增,则在上有,即,不满足题意;综上:.【点睛】关键点睛:本题方法二第2小问讨论这种情况的关键是,注意到,从而分类讨论在上的正负情况,得到总存在靠近处的一个区间,使得,从而推得存在,由此得解.21. 已知直线与抛物线交于两点,.(1)求;(2)设为的焦点,为上两点,且,求面积的最小值.【答案】(1) (2)【解析】【分析】(1)利用直线与抛物线的位置关系,联立直线和抛物线方程求出弦长即可得出;(2)设直线:,利用,找到的关系,以及0a >()322sin sin sin sin cos cos x xf x x ax x ax x x+=-+=-()32sin π0cos 2x g x ax x x ⎛⎫=-<< ⎪⎝⎭()22433sin cos 2sin cos x x xg x a x+'=-()22433sin 0cos 02sin 000cos 0g a a +'=-=>π02x ∀<<()0g x '>()g x π0,2⎛⎫⎪⎝⎭()00g =()()00g x g >=()sin 0f x x +>0π02x ∃<<()00g x '<()()000g g x ''<π0,2⎛⎫⎪⎝⎭0x =1π20,x ⎛⎫∈ ⎪⎝⎭()10g x '=()g x '()10,x ()0g x '>()g x ()10,x ()10,x ()()00g x g >=()sin 0f x x +>0a ≤0a >()00g '>()g x 'π0,2⎛⎫⎪⎝⎭0x =()0g x '>()()00g x g >=210x y -+=2:2(0)C y px p =>,A B AB =p F C ,M N C 0FM FN ⋅=MFN △2p =12-p MN x my n =+()()1122,,,,M x y N x y 0MF NF ⋅=,m n MNF的面积表达式,再结合函数的性质即可求出其最小值.【小问1详解】设,由可得,,所以,所以即,因为,解得:.【小问2详解】因为,显然直线的斜率不可能为零,设直线:,,由可得,,所以,,,因为,所以,即,亦即,将代入得,,,所以,且,解得或.设点到直线的距离为,所以,所以的面积,而或,所以,()(),,,A A B B A x y B x y 22102x y y px-+=⎧⎨=⎩2420y py p -+=4,2A B A B y y p y y p +==B AB y ==-==2260p p --=0p >2p =()1,0F MN MN x my n =+()()1122,,,M x y N x y 24y x x my n⎧=⎨=+⎩2440y my n --=12124,4y y m y y n +==-22161600m n m n ∆=+>⇒+>0MF NF ⋅=()()1212110x x y y --+=()()1212110my n my n y y +-+-+=()()()()2212121110m y y m n y y n ++-++-=12124,4y y m y y n +==-22461m n n =-+()()22410m n n +=->1n ≠2610n n -+≥3n ≥+3n ≤-F MN d d 2MN y ==-=1==-MNF ()2111122S MN d n =⨯⨯=-=-3n ≥+3n ≤-当时,的面积【点睛】本题解题关键是根据向量的数量积为零找到的关系,一是为了减元,二是通过相互的制约关系找到各自的范围,为得到的三角形面积公式提供定义域支持,从而求出面积的最小值.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程](10分)22. 已知点,直线(为参数),为的倾斜角,与轴正半轴、轴正半轴分别交于,且.(1)求;(2)以坐标原点为极点,轴正半轴为极轴建立极坐标系,求的极坐标方程.【答案】(1)(2)【解析】【分析】(1)根据的几何意义即可解出;(2)求出直线的普通方程,再根据直角坐标和极坐标互化公式即可解出.【小问1详解】因为与轴,轴正半轴交于两点,所以,令,,令,,所以,所以,即,解得,因为,所以.【小问2详解】由(1)可知,直线的斜率为,且过点,所以直线的普通方程为:,即,由可得直线的极坐标方程为.3n =-MNF (2min 212S =-=-,m n ()2,1P 2cos ,:1sin x t l y t αα=+⎧⎨=+⎩t αl l x y ,A B 4PA PB ⋅=αx l 3π4cos sin 30ραρα+-=t l l x y ,A B ππ2α<<0x =12cos t α=-0y =21sin t α=-21244sin cos sin 2PA PB t t ααα====sin 21α=±π2π2k α=+π1π,42k k α=+∈Z ππ2α<<3π4α=l tan 1α=-()2,1l ()12y x -=--30x y +-=cos ,sin x y ραρα==l cos sin 30ραρα+-=[选修4-5:不等式选讲](10分)23. 已知.(1)求不等式的解集;(2)若曲线与坐标轴所围成的图形的面积为2,求.【答案】(1) (2【解析】【分析】(1)分和讨论即可;(2)写出分段函数,画出草图,表达面积解方程即可.【小问1详解】若,则,即,解得,即,若,则,解得,即,综上,不等式的解集为.【小问2详解】.画出的草图,则与坐标轴围成与的高为,所以所以解得,()2,0f x x a a a =-->()f x x <()y f x =a ,33a a ⎛⎫⎪⎝⎭x a ≤x a >x a ≤()22f x a x a x =--<3x a >3a x >3ax a <≤x a >()22f x x a a x =--<3x a <3a x a <<,33a a ⎛⎫ ⎪⎝⎭2,()23,x a x af x x a x a -+≤⎧=⎨->⎩()f x ()f x ADO △ABCABC 3,(0,),,0,,022a a a D a A B ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭||=AB a21132224OAD ABC S S OA a AB a a +=⋅+⋅== a =三人行教育资源。
2023年高考全国乙卷文科数学试题(含答案详解)
2023年普通高等学校招生全国统一考试(全国乙卷)文科数学一、选择题1. 232i 2i ++=( )A. 1B. 2C.D. 52. 设全集{}0,1,2,4,6,8U =,集合{}{}0,4,6,0,1,6M N ==,则M ∪C U N ( ) A. {}0,2,4,6,8B. {}0,1,4,6,8C. {}1,2,4,6,8D. U3. 如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为( )A. 24B. 26C. 28D. 304. 在ABC 中,内角,,A B C 的对边分别是,,a b c ,若cos cos a B b A c −=,且5C π=,则B ∠=( )A.10π B.5π C.310π D.25π 5. 已知e ()e 1xax x f x =−是偶函数,则=a ( )A. 2−B. 1−C. 1D. 26. 正方形ABCD 的边长是2,E 是AB 的中点,则EC ED ⋅=( )A.B. 3C. D. 57. 设O 为平面坐标系的坐标原点,在区域(){}22,14x y xy ≤+≤内随机取一点A ,则直线OA 的倾斜角不大于π4的概率为( ) A.18B.16C.14D.128. 函数()32f x x ax =++存在3个零点,则a 的取值范围是( )A. (),2−∞−B. (),3−∞−C. ()4,1−−D. ()3,0−9. 某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,则甲、乙两位参赛同学抽到不同主题概率为( )A.56B.23C.12D.1310. 已知函数()sin()f x x ωϕ=+在区间π2π,63⎛⎫ ⎪⎝⎭单调递增,直线π6x =和2π3x =为函数()y f x =的图像的两条对称轴,则5π12f ⎛⎫−= ⎪⎝⎭( )A. B. 12−C.12D.11. 已知实数,x y 满足224240x y x y +−−−=,则x y −的最大值是( )A. 1+B. 4C. 1+D. 712. 设A ,B 为双曲线2219y x −=上两点,下列四个点中,可为线段AB 中点的是( )A. ()1,1B. ()1,2-C. ()1,3D. ()1,4−−二、填空题13.已知点(A 在抛物线C :22y px =上,则A 到C 的准线的距离为______. 14. 若π10,,tan 22⎛⎫∈= ⎪⎝⎭θθ,则sin cos θθ−=________. 15. 若x ,y 满足约束条件312937x y x y x y −≤−⎧⎪+≤⎨⎪+≥⎩,则2z x y =−的最大值为______.16. 已知点,,,S A B C 均在半径为2的球面上,ABC 是边长为3的等边三角形,SA ⊥平面ABC ,则SA =________. 三、解答题17. 某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率.甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为i x ,()1,2,,10i y i =⋅⋅⋅.试验结果如下:记1,2,,10i i i z x y i =−=⋅⋅⋅,记1210,,,z z z ⋅⋅⋅的样本平均数为z ,样本方差为2s . (1)求z ,2s ;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果z ≥为有显著提高)18.记n S 为等差数列{}n a 的前n 项和,已知21011,40a S ==. (1)求{}n a 的通项公式; (2)求数列{}n a 的前n 项和n T .19.如图,在三棱锥−P ABC 中,AB BC ⊥,2AB =,BC =PB PC ==,,BP AP BC 的中点分别为,,D E O ,点F 在AC 上,BF AO ⊥.(1)求证:EF //平面ADO ;(2)若120POF ∠=︒,求三棱锥−P ABC 的体积. 20.已知函数()()1ln 1f x a x x ⎛⎫=++⎪⎝⎭. (1)当1a =−时,求曲线()y f x =在点()()1,f x 处的切线方程. (2)若函数()f x 在()0,∞+单调递增,求a 的取值范围.21.已知椭圆2222:1(0)C bb x a a y +>>=,点()2,0A −在C 上.(1)求C 的方程;(2)过点()2,3−的直线交C 于,P Q 两点,直线,AP AQ 与y 轴的交点分别为,M N ,证明:线段MN 的中点为定点.【选修4-4】(10分)22.在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为2sin 42ππρθθ⎛⎫=≤≤⎪⎝⎭,曲线2C :2cos 2sin x y αα=⎧⎨=⎩(α为参数,2απ<<π).(1)写出1C 的直角坐标方程;(2)若直线y x m =+既与1C 没有公共点,也与2C 没有公共点,求m 的取值范围.【选修4-5】(10分)23.已知()22f x x x =+− (1)求不等式()6x f x ≤−的解集;(2)在直角坐标系xOy 中,求不等式组()60f x yx y ⎧≤⎨+−≤⎩所确定的平面区域的面积.2023年普通高等学校招生全国统一考试(全国乙卷)答案详解文科数学(2023·全国乙卷·文·1·★)232i 2i ++=( )(A )1 (B )2 (C (D 答案:C解析:2322i 2i 212i i 212(1)i 12i ++=−+⨯⨯=−+⨯−⨯=−=.(2023·全国乙卷·文·2·★)设全集{0,1,2,4,6,8}U =,集合{0,4,6}M =,{0,1,6}N =,M ∪C U N 则( ) (A ){0,2,4,6,8} (B ){0,1,4,6,8} (C ){1,2,4,6,8} (D )U 答案:A解析:由题意,C U N ={2,4,8},所以M ∪C U N ={0,2,4,6,8}.(2023·全国乙卷·文·3·★) 如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为( )A.24B.26C.28D.30答案:D解析:如图所示,在长方体1111ABCD A B C D −中,2AB BC ==,13AA =,点,,,H I J K 为所在棱上靠近点1111,,,B C D A 的三等分点,,,,O L M N 为所在棱的中点,则三视图所对应的几何体为长方体1111ABCD A B C D −去掉长方体11ONIC LMHB −之后所得的几何体,该几何体的表面积和原来的长方体的表面积相比少2个边长为1的正方形, 其表面积为:()()()22242321130⨯⨯+⨯⨯−⨯⨯=.(2023·全国乙卷·文·4·★★)在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,若cos cos a B b A c −=,且5C π=则,在B =( ) (A )10π(B )5π (C )310π (D )25π 答案:C解法1:所给边角等式每一项都有齐次的边,要求的是角,故用正弦定理边化角分析, 因为cos cos a B b A c −=,所以sin cos sin cos sin A B B A C −=,故sin()sin A B C −= ①, 已知C ,先将C 代入,再利用A B C π++=将①中的A 换成B 消元, 因为5C π=,所以45A B C ππ+=−=,故45A B π=−,代入①得4sin(2)sin 55B ππ−= ②, 因为45A B π+=,所以405B π<<,故4442555B πππ−<−<,结合②可得4255B ππ−=,所以310B π=.解法2:按解法1得到sin cos sin cos sin A B B A C −=后,观察发现若将右侧sin C 拆开,也能出现左边的两项,故拆开来看,sin sin[()]sin()sin cos cos sin C A B A B A B A B π=−+=+=+,代入sin cos sin cos sin A B B A C −=得:sin cos sin cos sin cos sin cos A B B A A B B A −=+,化简得:sin cos 0B A =,因为0B π<<,所以sin 0B >,故cos 0A =,结合0A π<<可得2A π=,所以43510B A ππ=−=.(2023·全国乙卷·文·5·★★) 已知e ()e 1xax x f x =−是偶函数,则=a ( )A. 2−B. 1−C. 1D. 2答案:D解析:因为()e e 1x ax x f x =−为偶函数,则()()()()1e e e e 0e 1e 1e 1a x x x x ax ax ax x x x f x f x −−−⎡⎤−−⎣⎦−−=−==−−−, 又因为x 不恒为0,可得()1e e 0a x x −−=,即()1e e a x x −=,则()1x a x =−,即11a =−,解得2a =.(2023·全国乙卷·文·6·★)正方形ABCD 的边长是2,E 是AB 的中点,则EC ED ⋅=( ) (A(B )3 (C) (D )5 答案:B解析:如图,EC ,ED 共起点,且中线、底边长均已知,可用极化恒等式求数量积, 由极化恒等式,223EC ED EF CF ⋅=−=.A BCDE F(2023·全国乙卷·文·7·★★)设O 为平面坐标系的坐标原点,在区域(){}22,14x y xy ≤+≤内随机取一点A ,则直线OA 的倾斜角不大于π4的概率为( ) A.18B. 16C.14D.12答案:C 解析:因为区域(){}22,|14x y xy ≤+≤表示以()0,0O 圆心,外圆半径2R =,内圆半径1r =的圆环,则直线OA 的倾斜角不大于π4的部分如阴影所示,在第一象限部分对应的圆心角π4MON ∠=, 结合对称性可得所求概率π2142π4P ⨯==.(2023·全国乙卷·文·8·★★★)函数3()2f x x ax =++存在3个零点,则a 的取值范围是( ) (A )(,2)−∞− (B )(,3)−∞− (C )(4,1)−− (D )(3,0)− 答案:B解法1:观察发现由320x ax ++=容易分离出a ,故用全分离,先分析0x =是否为零点, 因为(0)20f =≠,所以0不是()f x 的零点;当0x ≠时,3322()0202f x x ax ax x a x x=⇔++=⇔=−−⇔=−−, 所以直线y a =与函数22(0)y x x x =−−≠的图象有3个交点,要画此函数的图象,需求导分析,令22()(0)g x x x x =−−≠,则3222222(1)2(1)(1)()2x x x x g x x x x x −−++'=−+==, 因为22131()024x x x ++=++>,所以()00g x x '>⇔<或01x <<,()01g x x '<⇔>,故()g x 在(,0)−∞上,在(0,1)上,在(1,)+∞上,又lim ()x g x →−∞=−∞,当x 分别从y 轴左、右两侧趋近于0时,()g x 分别趋于+∞,−∞,(1)3g =−,lim ()x g x →+∞=−∞,所以()g x 的大致图象如图1,由图可知要使y a =与()y g x =有3个交点,应有3a <−.解法2:如图2,三次函数有3个零点等价于两个极值异号,故也可直接求导分析极值,由题意,2()3f x x a '=+,要使()f x 有2个极值点,则()f x '有两个零点,所以120a ∆=−>,故0a <, 令()0f x '=可得x =322f =+=,3(((22f a =++=,故34(2)(2)4027a f f =+=+<,解得:3a <−.a=1图2图(2023·全国乙卷·文·9·★)某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,则甲、乙两位参赛同学抽到不同主题概率为( ) A.56B.23C.12D.13答案:A解析:甲有6种选择,乙也有6种选择,故总数共有6636⨯=种, 若甲、乙抽到的主题不同,则共有26A 30=种, 则其概率为305366=,(2023·全国乙卷·文·10·★★★)已知函数()sin()f x x ωϕ=+在区间π2π,63⎛⎫⎪⎝⎭单调递增,直线π6x =和2π3x =为函数()y f x =的图像的两条对称轴,则5π12f ⎛⎫−= ⎪⎝⎭() A. B. 12−C.12D.2答案:D解析:因为()sin()f x x ωϕ=+在区间π2π,63⎛⎫⎪⎝⎭单调递增, 所以2πππ2362T =−=,且0ω>,则πT =,2π2w T ==, 当π6x =时,()f x 取得最小值,则ππ22π62k ϕ⋅+=−,Z k ∈,则5π2π6k ϕ=−,Z k ∈,不妨取0k =,则()5πsin 26f x x ⎛⎫=− ⎪⎝⎭,则5π5πsin 1232f ⎛⎫⎛⎫−=−= ⎪ ⎪⎝⎭⎝⎭,(2023·全国乙卷·文·11·★★★)已知实数x ,y 满足224240x y x y +−−−=,则x y −的最大值是( )(A )1 (B )4 (C )1+ (D )7 答案:C解法1:所给等式可配方化为平方和结构,故考虑三角换元,22224240(2)(1)9x y x y x y +−−−=⇒−+−=,令23cos 13sin x y θθ=+⎧⎨=+⎩,则23cos 13sin 1)4x y πθθθ−=+−−=−−,θ∈R ,所以当sin()14πθ−=−时,x y −取得最大值1+解法2:所给方程表示圆,故要求x y −的最大值,也可设其为t ,看成直线,用直线与圆的位置关系处理,22224240(2)(1)9x y x y x y +−−−=⇒−+−= ①,设t x y =−,则0x y t −−=,因为x ,y 还满足①,所以直线0x y t −−=与该圆有交点,从而圆心(2,1)到直线的距离3d =≤,解得:11t −≤≤+max ()1x y −=+(2023·全国乙卷·文·12·★★★★)设A ,B 为双曲线2219y x −=上两点,下列四个点中,可为线段AB 中点的是( ) A. ()1,1 B. ()1,2-C. ()1,3D. ()1,4−−答案:D解析:设()()1122,,,A x y B x y ,则AB 的中点1212,22x x y y M ++⎛⎫⎪⎝⎭,可得1212121212122,2ABy y y y y y k k x x x x x x +−+===+−+,因为,A B 在双曲线上,则221122221919y x y x ⎧−=⎪⎪⎨⎪−=⎪⎩,两式相减得()2222121209y y x x −−−=, 所以221222129AB y y k k x x −⋅==−. 对于选项A : 可得1,9AB k k ==,则:98AB y x =−,联立方程229819y x y x =−⎧⎪⎨−=⎪⎩,消去y 得272272730x x −⨯+=,此时()2272472732880∆=−⨯−⨯⨯=−<, 所以直线AB 与双曲线没有交点,故A 错误; 对于选项B :可得92,2AB k k =−=−,则95:22AB y x =−−, 联立方程22952219y x y x ⎧=−−⎪⎪⎨⎪−=⎪⎩,消去y 得245245610x x +⨯+=, 此时()224544561445160∆=⨯−⨯⨯=−⨯⨯<, 所以直线AB 与双曲线没有交点,故B 错误; 对于选项C :可得3,3AB k k ==,则:3AB y x =由双曲线方程可得1,3a b ==,则:3AB y x =为双曲线的渐近线, 所以直线AB 与双曲线没有交点,故C 错误; 对于选项D :94,4AB k k ==,则97:44AB y x =−,联立方程22974419y x y x ⎧=−⎪⎪⎨⎪−=⎪⎩,消去y 得2631261930x x +−=, 此时21264631930∆=+⨯⨯>,故直线AB 与双曲线有交两个交点,故D 正确;(2023·全国乙卷·文·13·★)已知点(A 在抛物线C :22y px =上,则A 到C 的准线的距离为______. 答案:94解析:由题意可得:221p =⨯,则25p =,抛物线的方程为25y x =,准线方程为54x =−,点A 到C 的准线的距离为59144⎛⎫−−= ⎪⎝⎭.(2023·全国乙卷·文·14·★)若(0,)2πθ∈,1tan 3θ=,则sin cos θθ−=_____.答案: 解析:已知tan θ,可先求出sin θ和cos θ, 由题意,sin 1tan cos 3θθθ==,所以cos 3sin θθ=,代入22cos sin 1θθ+=可得210sin 1θ=, 又(0,)2πθ∈,所以sin θ=,cos θ=,故sin cos θθ−=(2023·全国乙卷·文·15·★★)若x ,y 满足约束条件312937x y x y x y −≤−⎧⎪+≤⎨⎪+≥⎩,则2z x y =−的最大值为______.答案:8解析:作出可行域如下图所示:z =2x −y ,移项得y =2x −z , 联立有3129x y x y −=−⎧⎨+=⎩,解得52x y =⎧⎨=⎩,设()5,2A ,显然平移直线2y x =使其经过点A ,此时截距−z 最小,则z 最大,代入得z =8,(2023·全国乙卷·文·16·★★★)已知点S ,A ,B ,C 均在半径为2的球面上,ABC ∆是边长为3的等边三角形,SA ⊥平面ABC ,则SA =_____. 答案:2解析:有线面垂直,且ABC ∆是等边三角形,属外接球的圆柱模型,核心方程是222()2hr R +=,如图,圆柱的高h SA =,底面半径r 即为ABC ∆的外接圆半径,所以233r ==, 由题意,球的半径2R =,因为222()2hr R +=,所以23()42h +=,解得:2h =,故2SA =.(2023·全国乙卷·文·17·★★★)某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率.甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为i x ,()1,2,,10i y i =⋅⋅⋅.试验结果如下:记()1,2,,10i i i z x y i =−=⋅⋅⋅,记1210,,,z z z ⋅⋅⋅的样本平均数为z ,样本方差为2s . (1)求z ,s 2;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果z ≥则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高) 答案:(1)11z =,261s =;(2)认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高. 解析:(1)545533551522575544541568596548552.310x +++++++++==,536527543530560533522550576536541.310y +++++++++==,552.3541.311z x y =−=−=,i i i z x y =− 的值分别为: 9,6,8,8,15,11,19,18,20,12−,故2222222222(911)(611)(811)(811)(1511)0(1911)(1811)(2011)(1211)6110s −+−+−+−−+−++−+−+−+−==(2)由(1)知:11z =,==z ≥ 所以认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高.(2023·全国乙卷·文·18·★★★)记n S 为等差数列{}n a 的前n 项和,已知211a =,1040S =. (1)求{}n a 的通项公式; (2)求数列{}n a 的前n 项和n T .解:(1)(已知条件都容易代公式,故直接用公式翻译,求出1a 和d ) 设{}n a 的公差为d ,则2111a a d =+= ①, 101104540S a d =+= ②,联立①②解得:113a =,2d =−,所以1(1)13(1)(2)152n a a n d n n =+−=+−⨯−=−.(2)(通项含绝对值,要求和,先去绝对值,观察发现{}n a 前7项为正,从第8项起为负,故据此讨论) 当7n ≤时,0n a >,所以12n n T a a a =++⋅⋅⋅+ 2112()(13152)1422n n n a a n n a a a n n ++−=++⋅⋅⋅+===−; 当8n ≥时,12n n T a a a =++⋅⋅⋅+ 12789n a a a a a a =++⋅⋅⋅+−−−⋅⋅⋅− 127122()()n a a a a a a =++⋅⋅⋅+−++⋅⋅⋅+ 27(131)(13152)2149822n n n n ⨯++−=⨯−=−+; 综上所述,2214,71498,8n n n n T n n n ⎧−≤⎪=⎨−+≥⎪⎩.(2023·全国乙卷·文·19·★★★)如图,在三棱锥−P ABC 中,AB BC ⊥,2AB =,BC =PB PC ==,,BP AP BC 的中点分别为,,D E O ,点F 在AC 上,BF AO ⊥.(1)求证:EF //平面ADO ;(2)若120POF ∠=︒,求三棱锥−P ABC 的体积.答案:(1)证明见解析 (2解析:(1)连接,DE OF ,设AF tAC =,则(1)BF BA AF t BA tBC =+=−+,12AO BA BC =−+,BF AO ⊥, 则2211[(1)]()(1)4(1)4022BF AO t BA tBC BA BC t BA tBC t t ⋅=−+⋅−+=−+=−+=, 解得12t =,则F 为AC 的中点,由,,,D E O F 分别为,,,PB PA BC AC 的中点,于是11//,,//,22DE AB DE AB OF AB OF AB ==,即,//DE OF DE OF =,则四边形ODEF 为平行四边形,//,EF DO EF DO =,又EF ⊄平面,ADO DO ⊂平面ADO ,所以//EF 平面ADO .(2)过P 作PM 垂直FO 的延长线交于点M , 因为,PB PC O =是BC 中点,所以PO BC ⊥,在Rt PBO △中,12PB BO BC ===2PO ===, 因为,//AB BC OF AB ⊥,所以OF BC ⊥,又PO OF O ⋂=,,PO OF ⊂平面POF , 所以BC⊥平面POF ,又PM ⊂平面POF ,所以BC PM ⊥,又BC FM O =,,BC FM ⊂平面ABC ,所以PM ⊥平面ABC ,即三棱锥−P ABC 的高为PM ,因为120POF ∠=︒,所以60POM ∠=︒,所以sin 6022PM PO =︒=⨯=,又11222ABC S AB BC =⋅=⨯⨯=△所以11333P ABC ABC V S PM −=⋅=⨯=△.(2023·全国乙卷·文·20·★)已知函数1()()ln(1)f x a x x=++.(1)当1a =−时,求曲线()y f x =在点(1,(1))f 处的切线方程; (2)若函数()f x 在(0,)+∞上单调递增,求a 的取值范围. 答案:(1)()ln 2ln 20x y +−=; (2)1|2a a ⎧⎫≥⎨⎬⎩⎭. 解析:(1)当1a =−时,()()()11ln 11f x x x x ⎛⎫=−+>−⎪⎝⎭, 则()()2111ln 111x f x x x x ⎛⎫'=−⨯++−⨯ ⎪+⎝⎭, 据此可得()()10,1ln 2f f '==−,所以函数在()()1,1f 处的切线方程为()0ln 21y x −=−−,即()ln 2ln 20x y +−=. (2)由函数的解析式可得()()()2111=ln 111f x x a x x x x ⎛⎫⎛⎫'−+++⨯>− ⎪ ⎪+⎝⎭⎝⎭, 满足题意时()0f x '≥在区间()0,∞+上恒成立. 令()2111ln 101x a x x x ⎛⎫⎛⎫−+++≥ ⎪ ⎪+⎝⎭⎝⎭,则()()()21ln 10x x x ax −++++≥, 令()()()2=1ln 1g x ax x x x +−++,原问题等价于()0g x ≥在区间()0,∞+上恒成立, 则()()2ln 1g x ax x '=−+,当0a ≤时,由于()20,ln 10ax x ≤+>,故()0g x '<,()g x 在区间()0,∞+上单调递减,此时()()00g x g <=,不合题意;令()()()2ln 1h x g x ax x '==−+,则()121h x a x −'=+, 当12a ≥,21a ≥时,由于111x <+,所以()()0,h x h x '>在区间()0,∞+上单调递增, 即()g x '在区间()0,∞+上单调递增,所以()()>00g x g ''=,()g x 在区间()0,∞+上单调递增,()()00g x g >=,满足题意. 当102a <<时,由()1201h x a x =−=+'可得1=12x a−, 当10,12x a ⎛⎫∈− ⎪⎝⎭时,()()0,h x h x '<在区间10,12a ⎛⎫− ⎪⎝⎭上单调递减,即()g x '单调递减,注意到()00g '=,故当10,12x a ⎛⎫∈− ⎪⎝⎭时,()()00g x g ''<=,()g x 单调递减, 由于()00g =,故当10,12x a ⎛⎫∈− ⎪⎝⎭时,()()00g x g <=,不合题意. 综上可知:实数a 得取值范围是1|2a a ⎧⎫≥⎨⎬⎩⎭.(2023·全国乙卷·文·21·★★★)已知椭圆2222:1(0)C b b x a a y +>>=,点()2,0A −在C 上.(1)求C 的方程; (2)过点()2,3−的直线交C 于,P Q 两点,直线,AP AQ 与y 轴的交点分别为,M N ,证明:线段MN 的中点为定点.答案:(1)22194y x += (2)证明见详解解析:(1)由题意可得22223b a b c c e a ⎧⎪=⎪⎪=+⎨⎪⎪==⎪⎩,解得32a b c ⎧=⎪=⎨⎪=⎩,所以椭圆方程为22194y x +=.(2)由题意可知:直线PQ 的斜率存在,设()()()1122:23,,,,PQ y k x P x y Q x y =++,联立方程()2223194y k x y x ⎧=++⎪⎨+=⎪⎩,消去y 得:()()()222498231630k x k k x k k +++++=,则()()()2222Δ64236449317280kk k k k k =+−++=−>,解得0k <,可得()()2121222163823,4949k k k k x x x x k k +++=−=++, 因为()2,0A −,则直线()11:22y AP y x x =++, 令0x =,解得1122y y x =+,即1120,2y M x ⎛⎫⎪+⎝⎭,同理可得2220,2y N x ⎛⎫ ⎪+⎝⎭,则()()1212121222232322222y y k x k x x x x x +++++⎡⎤⎡⎤++⎣⎦⎣⎦=+++()()()()()()12211223223222kx k x kx k x x x +++++++⎡⎤⎡⎤⎣⎦⎣⎦=++()()()()1212121224342324kx x k x x k x x x x +++++=+++()()()()()()222222323843234231084949336163162344949k k k k k k k k k k k k k k k +++−++++===++−+++,所以线段PQ 的中点是定点()0,3.【选修4-4】(10分)(2023·全国乙卷·文·22·★★★)在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为2sin 42ππρθθ⎛⎫=≤≤ ⎪⎝⎭,曲线2C :2cos 2sin x y αα=⎧⎨=⎩(α为参数,2απ<<π).(1)写出1C 的直角坐标方程;(2)若直线y x m =+既与1C 没有公共点,也与2C 没有公共点,求m 的取值范围. 答案:(1)()[][]2211,0,1,1,2x y x y +−=∈∈ (2)()(),022,−∞+∞解析:(1)因为2sin ρθ=,即22sin ρρθ=,可得222x y y +=, 整理得()2211x y +−=,表示以()0,1为圆心,半径为1的圆,又因为2cos 2sin cos sin 2,sin 2sin 1cos 2x y ======−ρθθθθρθθθ, 且ππ42θ≤≤,则π2π2≤≤θ,则[][]sin 20,1,1cos 21,2x y =∈=−∈θθ, 故()[][]221:11,0,1,1,2C x y x y +−=∈∈.(2)因为22cos :2sin x C y αα=⎧⎨=⎩(α为参数,ππ2α<<),整理得224x y +=,表示圆心为()0,0O ,半径为2,且位于第二象限的圆弧, 如图所示,若直线y x m =+过()1,1,则11m =+,解得0m =;若直线y x m =+,即0x y m −+=与2C相切,则20m =>⎩,解得m =,若直线y x m =+与12,C C均没有公共点,则m >或0m <, 即实数m 的取值范围()(),022,−∞+∞.【选修4-5】(10分)(2023·全国乙卷·文·23·★★)已知()22f x x x =+− (1)求不等式()6x f x ≤−的解集;(2)在直角坐标系xOy 中,求不等式组()60f x yx y ⎧≤⎨+−≤⎩所确定的平面区域的面积.答案:(1)[2,2]−; (2)8.解析:(1)依题意,32,2()2,0232,0x x f x x x x x −>⎧⎪=+≤≤⎨⎪−+<⎩,不等式()6f x x ≤−化为:2326x x x >⎧⎨−≤−⎩或0226x x x ≤≤⎧⎨+≤−⎩或0326x x x <⎧⎨−+≤−⎩,解2326x x x >⎧⎨−≤−⎩,得无解;解0226x x x ≤≤⎧⎨+≤−⎩,得02x ≤≤,解0326x x x <⎧⎨−+≤−⎩,得20x −≤<,因此22x −≤≤,所以原不等式的解集为:[2,2]−(2)作出不等式组()60f x yx y ≤⎧⎨+−≤⎩表示的平面区域,如图中阴影ABC ,由326y xx y=−+⎧⎨+=⎩,解得(2,8)A−,由26y xx y=+⎧⎨+=⎩, 解得(2,4)C,又(0,2),(0,6)B D,所以ABC的面积11|||62||2(2)|822ABC C AS BD x x=⨯−=−⨯−−=.。
2021年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)
2021年普通高等学校招生全国统一考试(全国乙卷)数学(文)一、选择题1.已知全集{1,2,3,4,5}U =,集合{1,2}M =,{3,4}N =,则)(U C M N = ()A.{5}B.{1,2}C.{3,4}D.{1,2,3,4}2.设43iz i =+,则z =()A.34i --B.–34i +C.34i -D.34i+3.已知命题:,sin 1p x R x ∃∈<;命题||:,1x q x R e ∈∀≥,则下列命题中为真命题的是()A.p q ∧B.p q ⌝∧C.p q ∧⌝D.()p q ⌝∨答案:A 解析:根据正弦函数的值域sin [1,1]x ∈-,sin 1x <,故x R ∃∈,p 为真命题,而函数||x y e =为偶函数,且0x ≥时,1xy e =≥,故x R ∀∈,||1x y e =≥恒成立.则q 也为真命题,所以p q ∧为真,选A.4.函数()sin cos 33x xf x =+的最小正周期和最大值分别是()A.3π和B.3π和2C.6π和D.6π和2答案:C解析:())34x f x π=+max ()f x =,2613T ππ==.故选C.5.若,x y 满足约束条件2,3,4,y x y x y ≤≤+≥⎧⎪-⎨⎪⎩则3z x y =+的最小值为()A.18B.10C.6D.4答案:C 解析:根据约束条件可得图像如下,3z x y =+的最小值,即3y x z =-+,y 轴截距最小值.根据图像可知3y x z =-+过点(1,3)B 时满足题意,即min 336z =+=.6.225cos cos 1212ππ-=()A.12B.33C.22D.32答案:D 解析:2222223()sin cos 25cos cos cos cos cos 12121212121262ππππππππ-=-=--==∴选D.7.在区间1(0,)2随机取1个数,则取到的数小于13的概率为()A.34B.23C.13D.16答案:B解析:在区间1(0,2随机取1个数,可知总长度12d =,取到的数小于13,可知取到的长度范围13d '=,根据几何概型公式123132d p d '===,∴选B.8.下列函数中最小值为4的是()A.224y x x =++B.4|sin ||sin |y x x =+C.222x xy -=+D.4n ln l y x x=+答案:C 解析:对于A,22224213(1)33y x x x x x =++=+++=++≥.不符合,对于B,4|sin ||sin |y x x =+,令|sin |[0,1]t x =∈,∴4y t t =+,根据对勾函数min 145y =+=不符合,对于C,242222xxx x y -==++,令20xt =>,∴4224y t t =+≥=⨯=,当且仅当2t =时取等,符合,对于D,4n ln l y x x =+,令ln t x R =∈,4y t t=+.根据对勾函数(,4][4,)y ∈-∞-+∞ ,不符合.9.设函数1(1)xf x x-=+,则下列函数中为奇函数的是()A.1()1f x --B.1()1f x -+C.1()1f x +-D.1()1f x ++答案:B 解析:12()111x f x x x-==-+++,()f x 向右平移一个单位,向上平移一个单位得到2()g x x=为奇函数.所以选B.10.在正方体1111ABCD A B C D -中,P 为11B D 的中点,则直线PB 与1AD 所成的角为A.2πB.3πC.4πD.6π答案:D 解析:做出图形,11//AD BC ,所以1PBC ∠为异面直线所成角,设棱长为1.1BC =,122B P =,122PC =,62BP =.222111131222cos 22BC BP C P PBC BP BC +-+-∠==⋅,即16PBC π∠=,故选D.11.设B 是椭圆C :2215x y +=的上顶点,点P 在C 上,则PB 的最大值为A.5265D.2答案:A 解析:方法一:由22:15x C y +=,(0,1)B 则C 的参数方程:5sin x y θθ⎧=⎪⎨=⎪⎩.22||(sin 1)(5cos )PB θθ=-+24sin 2sin 6θθ=--+212554(sin )442θ=-++.∴max 5||2PB =,故选A.方法二:设00(,)P x y ,则220001([1,1])5x y y +=∈-①,(0,1)B .因此22200||(1)PB x y =+-②将①式代入②式化简得:22012525||4()444PB y =-++≥,当且仅当014y =-时||PB 的最大值为52,故选A.12.设0a ≠,若x a =为函数2()()()f x a x a x b =--的极大值点,则A.a b <B.a b >C.2ab a <D.2ab a >答案:D 解析:2()2()()()()(32)f x a x a x b a x a a x a x b a '=--+-=---当0a >时,原函数先增再减后增.原函数在()0f x '=的较小零点时取得极大值.即23a b a +<,即a b <,∴2a ab <.当0a <时,原函数先减再增后减.原函数在()0f x '=的较大零点时取得极大值.即23a b a +>,a b >,2a ab <,故选D.二、填空题13.已知向量(2,5)a = ,(,4)b λ= ,若//a b,则λ=.答案:85解析:由已知//a b 可得82455λλ⨯=⇒=.14.双曲线22145x y -=的右焦点到直线280x y +-=的距离为.答案:解析:22145x y -=的右焦点为(3,0),到直线280x y +-=的距离d ==.15.记ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,面积为,60B =︒,223a c ac +=,则b =.答案:解析:由面积公式1sin 2S ac B ==,且60B =︒,解得4ac =,又由余弦定理2222cos b a c ac B =+-,223a c ac +=,且0b >解得b =.16.以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为(写出符合要求的一组答案即可).答案:②⑤或③④解析:由高度可知,侧视图只能为②或③.侧视图为②,如图(1),平面PAC ⊥平面ABC ,PA PC ==,BA BC =,2AC =,俯视图为⑤.俯视图为③,如图(2),PA ⊥平面ABC ,1PA =,AC AB =,2BC =,俯视图为④.17.某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:旧设备9.810.310.010.29.99.810.010.110.29.7新设备10.110.410.110.010.110.310.610.510.410.5旧设备和新设备生产产品的该项指标的样本平均数分别记为x 和y ,样本方差分别记为21s 和22s .(1)求x ,y ,21s ,22s ;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果y x -≥,则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高).答案:见解析解析:9.810.31010.29.99.81010.110.29.71010x ++++++++==+;10.110.410.11010.110.310.610.510.410.510.310y ++++++++==+.211(0.040.090.040.010.040.010.040.09)10s =+++++++10.360.03610=⨯=221(0.040.010.040.090.040.090.040.010.04)10s =++++++++10.40.0410=⨯=.(2)10.3100.3y x -=-===∵则0.3=>=,所以可判断新设备生产产品的该项指标的均值较旧设备有显著提高;没有显著提高.18.如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,M 为BC 的中点,且PB AM ⊥.(1)证明:平面PAM ⊥平面PBD ﹔(2)若1PD DC ==,求四棱锥P ABCD -的体积.答案:见解析解析:19.设{}n a 是首项为1的等比数列,数列{}n b 满足3n n na b =.已知1a ,23a ,39a ,成等差数列.(1)求{}n a 和{}n b 的通项公式;(2)记n S ,和n T 分别为{}n a 和{}n b 的前n 项和.证明:2n n S T <.答案:见解析解析:设{}n a 的公比为q ,则1n n a q -=,因为1a ,23a ,39a 成等差数列,所以21923q q +=⨯,解得13q =,故11()3n n a -=,11313(1)12313n n n S -==--.又3n n n b =,则1231123133333n n n n n T --=+++++ ,两边同乘13,则234111231333333n n n n n T +-=+++++ ,两式相减,得23412111113333333n n n n T +=+++++- ,即1111(1)1133(1)332333121n n n n n n n T ++-=-=---,整理得31323(14323423n n n n n n T +=--=-⨯⨯,323314322())04232323n n n n nn n T S ++-=---=-<⨯⨯,故2n n S T <.20.已知抛物线C :22(0)y px p =>的焦点F 到准线的距离为2.(1)求C 的方程,(2)已知O 为坐标原点,点P 在C 上,点Q 满足9PQ QF = ,求直线OQ 斜率的最大值.答案:见解析解析:(1)由焦点到准线的距离为p ,则2p =.抛物线c 的方程:24y x =.(2)设点200(,)4y P y ,(,)Q Q Q x y ,(1,0)F .∵9PQ QF = .∴2022000009499(,)9(1,)4104910Q Q Q Q Q Q Q Q Q Q y y x x x y x y y x y y y x y y ⎧+⎪⎧-=-=⎪⎪--=--⇒⇒⎨⎨⎪⎪-=-⎩=⎪⎩则020*********QOQ Q y y k y y x y ===≤++.∴直线OQ 斜率的最大值为13.21.已知函数32()1f x x x ax =-++.(1)讨论()f x 的单调性;(2)求曲线()y f x =过坐标原点的切线与曲线()y f x =的公共点的坐标.答案:见解析解析:(1)2()32f x x x a'=-+(i)当4120a ∆=-≤,即13a ≥时,()0f x '≥恒成立,即()f x 在()f x 在x ∈R 上单调递增.(ii)当4120∆=->,即13a <时,()0f x '=解得,11133x -=,21133x +=.∴()f x 在113(,)3a --∞,113()3a -+∞单调递增,在113113()33a a --++单调递减,综上所述:当13a ≥时,()f x 在R 上单调递增;当13a <时,()f x 在113113()33a a -++单调递减.(2)设可原点切线的切点为32(,1)t t t at -++,切线斜率2()32k f t t t a '==-+.又321t t at k t -++=,可得322132t t at t t a t-++=-+.化简得2(1)(21)0t t t -++=,即1t =.∴切点为(1,1)a +,斜率1k a =+,切线方程为(1)y a x =+,将(1)y a x =+,321y x x ax =-++联立可得321(1)x x ax a x -++=+,化简得2(1)(1)0x x -+=,解得11x =,21x =-.∴过原点的切线与()y f x =公共点坐标为(1,1)a +,(1,1)a ---.22.在直角坐标系xOy 中,C 的圆心为)(2,1C ,半径为1.(1)写出C 的一个参数方程;(2)过点)(4,1F 作C 的两条切线.以坐标原点为极点,x 轴正半轴为极轴建立坐标系,求这两条切线的极坐标方程.答案:见解析解析:(1)C 的参数方程为2cos 1sin x y θθ=+⎧⎨=+⎩(θ为参数)(2)C 的方程为22(2)(1)1x y -+-=①当直线斜率不存在时,直线方程为4x =,此时圆心到直线距离为2r >,舍去;②当直线斜率存在时,设直线方程为1(4)y k x -=-,化简为410kx y k --+=,此时圆心(2,1)C 到直线的距离为1d r ===,化简得2||k =,两边平方有2241k k =+,所以33k =±代入直线方程并化简得40x +=或40x +-=化为极坐标方程为5cos sin 4sin()46πρθθρθ-=-⇔+=-或cos sin 4sin()46πρθθρθ+=++=+.23.已知函数()|||3|f x x a x =-++.(1)当1a =时,求不等式()6f x ≥的解集;(2)若()f x a >-,求a 的取值范围.答案:见解析解析:当1a =时,()6|1||3|6f x x x ≥⇔-++≥,当3x ≤-时,不等式136x x ⇔---≥,解得4x ≤-;当31x -<<时,不等式136x x ⇔-++≥,解得x ∈∅;当1x ≥时,不等式136x x ⇔-++≥,解得2x ≥.综上,原不等式的解集为(,4][2,)-∞-+∞ .(2)若()f x a >-,即min ()f x a >-,因为()|||3||()(3)||3|f x x a x x a x a =-++≥--+=+(当且仅当()(3)0x a x -+≤时,等号成立),所以min ()|3|f x a =+,所以|3|a a +>-,即3a a +<或3a a +>-,解得3(,)2a ∈-+∞.。
2023年全国乙卷文科高考数学试题+答案解析
绝密★启用前2023年普通高等学校招生全国统一考试(全国乙卷∙文科)数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.2+i 2+2i 3 =()A.1B.2C.5D.5【答案】C【解析】∵2+i 2+2i 3=2-2i -1=1-2i ,∴|2+i 2+2i 3|=1-2i =12+(-2)2=5,选C 。
2.设全集U ={0,1,2,4,6,8},集合M ={0,4,6},N ={0,1,6},则M ⋃C U N =()A.{0,2,4,6,8} B.{0,1,4,6,8}C.{1,2,4,6,8}D.U【答案】A【解析】∵N ={2,4,8},∴M ⋃C U N ={0,2,4,6,8},选A.3.如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为()A.24B.26C.28D.30【答案】D【解析】如图所示,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2, AA 1=3,点H ,I ,J ,K 为所在棱上靠近点B 1,C 1,D 1,A 1的三等分点,O ,L ,M ,N 为所在棱的中点,则三视图所对应的几何体为长方体ABCD -A 1B 1C 1D 1去掉长方体ONIC 1-LMHB 1之后所得的几何体,该几何体表面积为:2×(2×2)+4×(2×3)-2×(1×1)=30,选D 。
4.在△BC 中,内角A,B,C 的对边分别是a,b,c,若acosB -bcosA =c,且C =π5,则∠B =()A.π10B.π5C.3π10D.2π5【答案】C【解析】∵sinAcosB -sinBcosA =sinC,即sinAcosB -sinBcosA =sin (A +B )=sinAcosBsinBcosA,∴sinBcosA =0,∵B ∈(0,π),∴sinB >0,∴cosA =0,A =π2,∴B =π-A -C =3π10,选C 。
2020年全国统一高考数学试题(文科)(新课标Ⅰ卷)(带解析)
A. B. C. D.
4.设O为正方形ABCD的中心,在O,A,B,C,D中任取3点,则取到的3点共线的概率为()
A. B.
C. D.
5.某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:°C)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据 得到下面的散点图:
由此散点图,在10°C至40°C之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是()
(1)若a= c,b=2 ,求 的面积;
(2)若sinA+ sinC= ,求C.
19.如图, 为圆锥的顶点, 是圆锥底面的圆心, 是底面的内接正三角形, 为 上一点,∠APC=90°.
(1)证明:平面PAB⊥平面PAC;
(2)设DO= ,圆锥的侧面积为 ,求三棱锥P−ABC的体积.
20.已知函数 .
(1)当 时,讨论 的单调性;
(2)若 有两个零点,求 的取值范围.
21.已知A、B分别为椭圆E: (a>1)的左、右顶点,G为E的上顶点, ,P为直线x=6上的动点,PA与E的另一交点为C,PB与E的另一交点为D.
(1)求E的方程;
(2)证明:直线CD过定点.
22.在直角坐标系 中,曲线 的参数方程为 为参数 .以坐标原点为极点, 轴正半轴为极轴建立极坐标系,曲线 的极坐标方程为 .
精品解析:2023年高考全国乙卷数学(文)真题(解析版)
2023年普通高等学校招生全国统一考试(全国乙卷)文科数学一、选择题1.232i 2i ++=()A.1B.2C.D.5【答案】C 【解析】【分析】由题意首先化简232i 2i ++,然后计算其模即可.【详解】由题意可得232i 2i 212i 12i ++=--=-,则232i 2i 12i ++=-==.故选:C.2.设全集{}0,1,2,4,6,8U =,集合{}{}0,4,6,0,1,6M N ==,则U M N ⋃=ð()A.{}0,2,4,6,8 B.{}0,1,4,6,8 C.{}1,2,4,6,8 D.U【答案】A 【解析】【分析】由题意可得U N ð的值,然后计算U M N ⋃ð即可.【详解】由题意可得{}2,4,8U N =ð,则{}0,2,4,6,8U M N = ð.故选:A.3.如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为()A.24B.26C.28D.30【答案】D【分析】由题意首先由三视图还原空间几何体,然后由所得的空间几何体的结构特征求解其表面积即可.【详解】如图所示,在长方体1111ABCD A B C D -中,2AB BC ==,13AA =,点,,,H I J K 为所在棱上靠近点1111,,,B C D A 的三等分点,,,,O L M N 为所在棱的中点,则三视图所对应的几何体为长方体1111ABCD A B C D -去掉长方体11ONIC LMHB -之后所得的几何体,该几何体的表面积和原来的长方体的表面积相比少2个边长为1的正方形,其表面积为:()()()22242321130⨯⨯+⨯⨯-⨯⨯=.故选:D.4.在ABC 中,内角,,A B C 的对边分别是,,a b c ,若cos cos a B b A c -=,且5C π=,则B ∠=()A.10π B.5π C.310π D.25π【答案】C 【解析】【分析】首先利用正弦定理边化角,然后结合诱导公式和两角和的正弦公式求得A ∠的值,最后利用三角形内角和定理可得A ∠的值.【详解】由题意结合正弦定理可得sin cos sin cos sin A B B A C -=,即()sin cos sin cos sin sin cos sin cos A B B A A B A B B A -=+=+,整理可得sin cos 0B A =,由于()0,πB ∈,故sin 0B >,据此可得πcos 0,2A A ==,则ππ3πππ2510B AC =--=--=.5.已知e ()e 1xax x f x =-是偶函数,则=a ()A.2-B.1- C.1D.2【答案】D 【解析】【分析】根据偶函数的定义运算求解.【详解】因为()e e 1x ax x f x =-为偶函数,则()()()()1e e e e 0e 1e 1e 1a x x x x ax ax ax x x x f x f x ---⎡⎤--⎣⎦--=-==---,又因为x 不恒为0,可得()1e e 0a x x --=,即()1e e a x x -=,则()1x a x =-,即11a =-,解得2a =.故选:D.6.正方形ABCD 的边长是2,E 是AB 的中点,则EC ED ⋅=()A.B.3C. D.5【答案】B 【解析】【分析】方法一:以{},AB AD 为基底向量表示,EC ED uu u r uu u r,再结合数量积的运算律运算求解;方法二:建系,利用平面向量的坐标运算求解;方法三:利用余弦定理求cos DEC ∠,进而根据数量积的定义运算求解.【详解】方法一:以{},AB AD为基底向量,可知2,0AB AD AB AD ==⋅=uu u r uuu r uu u r uuu r ,则11,22EC EB BC AB AD ED EA AD AB AD =+=+=+=-+uu u r uu r uu u r uu u r uuu r uu u r uu r uuu r uuu r uuu r ,所以22111143224EC ED AB AD AB AD AB AD ⎛⎫⎛⎫⋅=+⋅-+=-+=-+= ⎪ ⎪⎝⎭⎝⎭uu u r uu u r uu u r uuu r uu u r uuu r uuu r uuu r ;方法二:如图,以A 为坐标原点建立平面直角坐标系,则()()()1,0,2,2,0,2E C D ,可得()()1,2,1,2EC ED ==-uu u r uu u r,所以143EC ED ⋅=-+=uu u r uu u r;方法三:由题意可得:2ED EC CD ===,在CDE 中,由余弦定理可得2223cos25DE CE DC DEC DE CE +-∠===⋅,所以3cos 35EC ED EC ED DEC ⋅=∠==uu u r uu u r uu u r uu u r .故选:B.7.设O 为平面坐标系的坐标原点,在区域(){}22,14x y xy ≤+≤内随机取一点,记该点为A ,则直线OA的倾斜角不大于π4的概率为()A.18 B.16C.14D.12【答案】C 【解析】【分析】根据题意分析区域的几何意义,结合几何概型运算求解.【详解】因为区域(){}22,|14x y xy ≤+≤表示以()0,0O 圆心,外圆半径2R =,内圆半径1r =的圆环,则直线OA 的倾斜角不大于π4的部分如阴影所示,在第一象限部分对应的圆心角π4MON ∠=,结合对称性可得所求概率13π143π4P ⨯==.故选:C.8.函数()32f x x ax =++存在3个零点,则a 的取值范围是()A.(),2-∞- B.(),3-∞- C.()4,1-- D.()3,0-【答案】B 【解析】【分析】写出2()3f x x a '=+,并求出极值点,转化为极大值大于0且极小值小于0即可.【详解】3()2f x x ax =++,则2()3f x x a '=+,若()f x 要存在3个零点,则()f x 要存在极大值和极小值,则a<0,令2()30f x x a '=+=,解得3a x -=3a -,且当,,33a ax ⎛⎫--∈-∞-+∞ ⎪ ⎪⎝⎭时,()0f x '>,当33a a x ⎛--∈ ⎝,()0f x '<,故()f x 的极大值为3f a ⎛ -⎝,极小值为3f a -,若()f x 要存在3个零点,则0303a f a f ⎧⎛-->⎪ ⎪⎝⎨-⎪<⎪⎩,即2033320333a a a a a a ⎧-->⎪⎪⎨---⎪++<⎪⎩,解得3a <-,故选:B.9.某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,则甲、乙两位参赛同学抽到不同主题概率为()A.56B.23C.12D.13【答案】A 【解析】【分析】对6个主题编号,利用列举列出甲、乙抽取的所有结果,并求出抽到不同主题的结果,再利用古典概率求解作答.【详解】用1,2,3,4,5,6表示6个主题,甲、乙二人每人抽取1个主题的所有结果如下表:乙甲1234561(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)2(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)3(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)4(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)5(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)6(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)共有36个不同结果,它们等可能,其中甲乙抽到相同结果有(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),共6个,因此甲、乙两位参赛同学抽到不同主题的结果有30个,概率305366P ==.故选:A10.已知函数()sin()f x x ωϕ=+在区间π2π,63⎛⎫⎪⎝⎭单调递增,直线π6x =和2π3x =为函数()y f x =的图像的两条相邻对称轴,则5π12f ⎛⎫-= ⎪⎝⎭()A. B.12-C.12D.2【答案】D【解析】【分析】根据题意分别求出其周期,再根据其最小值求出初相,代入5π12x =-即可得到答案.【详解】因为()sin()f x x ωϕ=+在区间π2π,63⎛⎫⎪⎝⎭单调递增,所以2πππ2362T =-=,且0ω>,则πT =,2π2w T ==,当π6x =时,()f x 取得最小值,则ππ22π62k ϕ⋅+=-,Z k ∈,则5π2π6k ϕ=-,Z k ∈,不妨取0k =,则()5πsin 26f x x ⎛⎫=- ⎪⎝⎭,则5π5π3sin 1232f ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭,故选:D.11.已知实数,x y 满足224240x y x y +---=,则x y -的最大值是()A.12+B.4C.1+D.7【答案】C 【解析】【分析】法一:令x y k -=,利用判别式法即可;法二:通过整理得()()22219x y -+-=,利用三角换元法即可,法三:整理出圆的方程,设x y k -=,利用圆心到直线的距离小于等于半径即可.【详解】法一:令x y k -=,则x k y =+,代入原式化简得()22226440y k y k k +-+--=,因为存在实数y ,则0∆≥,即()()222642440k k k --⨯--≥,化简得22170k k --≤,解得11k -≤≤+故x y -的最大值是1+,法二:224240x y x y +---=,整理得()()22219x y -+-=,令3cos 2x θ=+,3sin 1y θ=+,其中[]0,2πθ∈,则π3cos 3sin 114x y θθθ⎛⎫-=-+=++ ⎪⎝⎭,[]0,2θπ∈ ,所以ππ9π,444θ⎡⎤+∈⎢⎥⎣⎦,则π2π4θ+=,即74πθ=时,x y -取得最大值1,法三:由224240x y x y +---=可得22(2)(1)9x y -+-=,设x y k -=,则圆心到直线x y k -=的距离3d =≤,解得11k -≤≤+故选:C.12.设A ,B 为双曲线2219y x -=上两点,下列四个点中,可为线段AB 中点的是()A.()1,1B.()1,2- C.()1,3 D.()1,4--【答案】D 【解析】【分析】根据点差法分析可得9AB k k ⋅=,对于A 、B 、D :通过联立方程判断交点个数,逐项分析判断;对于C :结合双曲线的渐近线分析判断.【详解】设()()1122,,,A x y B x y ,则AB 的中点1212,22x x y y M ++⎛⎫⎪⎝⎭,可得1212121212122,2ABy y y y y y k k x x x x x x +-+===+-+,因为,A B 在双曲线上,则221122221919y x y x ⎧-=⎪⎪⎨⎪-=⎪⎩,两式相减得()2222121209y y x x ---=,所以221222129AB y y k k x x -⋅==-.对于选项A :可得1,9AB k k ==,则:98AB y x =-,联立方程229819y x y x =-⎧⎪⎨-=⎪⎩,消去y 得272272730x x -⨯+=,此时()2272472732880∆=-⨯-⨯⨯=-<,所以直线AB 与双曲线没有交点,故A 错误;对于选项B :可得92,2AB k k =-=-,则95:22AB y x =--,联立方程22952219y x y x ⎧=--⎪⎪⎨⎪-=⎪⎩,消去y 得245245610x x +⨯+=,此时()224544561445160∆=⨯-⨯⨯=-⨯⨯<,所以直线AB 与双曲线没有交点,故B 错误;对于选项C :可得3,3AB k k ==,则:3AB y x=由双曲线方程可得1,3a b ==,则:3AB y x =为双曲线的渐近线,所以直线AB 与双曲线没有交点,故C 错误;对于选项D :94,4AB k k ==,则97:44AB y x =-,联立方程22974419y x y x ⎧=-⎪⎪⎨⎪-=⎪⎩,消去y 得2631261930x x +-=,此时21264631930∆=+⨯⨯>,故直线AB 与双曲线有交两个交点,故D 正确;故选:D.二、填空题13.已知点(A 在抛物线C :22y px =上,则A 到C 的准线的距离为______.【答案】94【解析】【分析】由题意首先求得抛物线的标准方程,然后由抛物线方程可得抛物线的准线方程为54x =-,最后利用点的坐标和准线方程计算点A 到C 的准线的距离即可.【详解】由题意可得:221p =⨯,则25p =,抛物线的方程为25y x =,准线方程为54x =-,点A 到C 的准线的距离为59144⎛⎫--= ⎪⎝⎭.故答案为:94.14.若π10,,tan 22⎛⎫∈= ⎪⎝⎭θθ,则sin cos θθ-=________.【答案】55-【解析】【分析】根据同角三角关系求sin θ,进而可得结果.【详解】因为π0,2θ⎛⎫∈ ⎪⎝⎭,则sin 0,cos 0θθ>>,又因为sin 1tan cos 2θθθ==,则cos 2sin θθ=,且22222cos sin 4sin sin 5sin 1+=+==θθθθθ,解得5sin 5θ=或5sin 5θ=-(舍去),所以sin cos sin 2sin sin 5-=-=-=-θθθθθ.故答案为:5-.15.若x ,y 满足约束条件312937x y x y x y -≤-⎧⎪+≤⎨⎪+≥⎩,则2z x y =-的最大值为______.【答案】8【解析】【分析】作出可行域,转化为截距最值讨论即可.【详解】作出可行域如下图所示:2z x y =-,移项得2y x z =-,联立有3129x y x y -=-⎧⎨+=⎩,解得52x y =⎧⎨=⎩,设()5,2A ,显然平移直线2y x =使其经过点A ,此时截距z -最小,则z 最大,代入得8z =,故答案为:8.16.已知点,,,S A B C 均在半径为2的球面上,ABC 是边长为3的等边三角形,SA ⊥平面ABC ,则SA =________.【答案】2【解析】【分析】先用正弦定理求底面外接圆半径,再结合直棱柱的外接球以及求的性质运算求解.【详解】如图,将三棱锥S ABC -转化为直三棱柱SMN ABC -,设ABC 的外接圆圆心为1O ,半径为r ,则2sin 32AB r ACB ==∠,可得r =,设三棱锥S ABC -的外接球球心为O ,连接1,OA OO ,则112,2OA OO SA ==,因为22211OA OO O A =+,即21434SA =+,解得2SA =.故答案为:2.【点睛】方法点睛:多面体与球切、接问题的求解方法(1)涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题求解;(2)若球面上四点P 、A 、B 、C 构成的三条线段PA 、PB 、PC 两两垂直,且PA =a ,PB =b ,PC =c ,一般把有关元素“补形”成为一个球内接长方体,根据4R 2=a 2+b 2+c 2求解;(3)正方体的内切球的直径为正方体的棱长;(4)球和正方体的棱相切时,球的直径为正方体的面对角线长;(5)利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.三、解答题17.某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率.甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为i x ,()1,2,,10i y i =⋅⋅⋅.试验结果如下:试验序号i 12345678910伸缩率i x 545533551522575544541568596548伸缩率iy 536527543530560533522550576536记()1,2,,10i i i z x y i =-=⋅⋅⋅,记1210,,,z z z ⋅⋅⋅的样本平均数为z ,样本方差为2s .(1)求z ,2s ;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果z ≥,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高)【答案】(1)11z =,261s =;(2)认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高.【解析】【分析】(1)直接利用平均数公式即可计算出,x y ,再得到所有的i z 值,最后计算出方差即可;(2)根据公式计算出的值,和z 比较大小即可.【小问1详解】545533551522575544541568596548552.310x +++++++++==,536527543530560533522550576536541.310y +++++++++==,552.3541.311z x y =-=-=,i i i z x y =-的值分别为:9,6,8,8,15,11,19,18,20,12-,故2222222222(911)(611)(811)(811)(1511)0(1911)(1811)(2011)(1211)6110s -+-+-+--+-++-+-+-+-==【小问2详解】由(1)知:11z =,==,故有z ≥所以认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高.18.记n S 为等差数列{}n a 的前n 项和,已知21011,40a S ==.(1)求{}n a 的通项公式;(2)求数列{}n a 的前n 项和n T .【答案】(1)152n a n=-(2)2214,71498,8n n n n T n n n ⎧-≤=⎨-+≥⎩【解析】【分析】(1)根据题意列式求解1,a d ,进而可得结果;(2)先求n S ,讨论n a 的符号去绝对值,结合n S 运算求解.【小问1详解】设等差数列的公差为d ,由题意可得211011110910402a a d S a d =+=⎧⎪⎨⨯=+=⎪⎩,即1111298a d a d +=⎧⎨+=⎩,解得1132a d =⎧⎨=-⎩,所以()1321152n a n n =--=-,【小问2详解】因为()213152142n n n S n n +-==-,令1520n a n =->,解得152n <,且*n ∈N ,当7n ≤时,则0n a >,可得2121214n n n n T a a a a a a S n n =++⋅⋅⋅+=++⋅⋅⋅+==-;当8n ≥时,则0n a <,可得()()121278n n n T a a a a a a a a =++⋅⋅⋅+=++⋅⋅⋅+-+⋅⋅⋅+()()()222777221477141498n n S S S S S n n n n =--=-=⨯---=-+;综上所述:2214,71498,8n n n n T n n n ⎧-≤=⎨-+≥⎩.19.如图,在三棱锥-P ABC 中,AB BC ⊥,2AB =,BC =PB PC ==,,BP AP BC 的中点分别为,,D E O ,点F 在AC 上,BF AO ⊥.(1)求证:EF //平面ADO ;(2)若120POF ∠=︒,求三棱锥-P ABC 的体积.【答案】(1)证明见解析(2)263【解析】【分析】(1)根据给定条件,证明四边形ODEF 为平行四边形,再利用线面平行的判定推理作答.(2)作出并证明PM 为棱锥的高,利用三棱锥的体积公式直接可求体积.【小问1详解】连接,DE OF ,设AF tAC =,则(1)BF BA AF t BA tBC =+=-+ ,12AO BA BC =-+,BF AO ⊥,则2211[(1)]()(1)4(1)4022BF AO t BA tBC BA BC t BA tBC t t ⋅=-+⋅-+=-+=-+= ,解得12t =,则F 为AC 的中点,由,,,D E O F 分别为,,,PB PA BC AC 的中点,于是11//,,//,22DE AB DE AB OF AB OF AB ==,即,//DE OF DE OF =,则四边形ODEF 为平行四边形,//,EF DO EF DO =,又EF ⊄平面,ADO DO ⊂平面ADO ,所以//EF 平面ADO .【小问2详解】过P 作PM 垂直FO 的延长线交于点M ,因为,PB PC O =是BC 中点,所以PO BC ⊥,在Rt PBO △中,12PB BO BC ===,所以2PO ===,因为,//AB BC OF AB ⊥,所以OF BC ⊥,又PO OF O ⋂=,,PO OF ⊂平面POF ,所以BC⊥平面POF ,又PM ⊂平面POF ,所以BC PM ⊥,又BC FM O = ,,BC FM ⊂平面ABC ,所以PM ⊥平面ABC ,即三棱锥-P ABC 的高为PM ,因为120POF ∠=︒,所以60POM ∠=︒,所以3sin 6022PM PO =︒=⨯=,又11222ABC S AB BC =⋅=⨯⨯=△所以11333P ABC ABC V S PM -=⋅=⨯=△.20.已知函数()()1ln 1f x a x x ⎛⎫=++⎪⎝⎭.(1)当1a =-时,求曲线()y f x =在点()()1,f x 处的切线方程.(2)若函数()f x 在()0,∞+单调递增,求a 的取值范围.【答案】(1)()ln 2ln 20x y +-=;(2)1|2a a ⎧⎫≥⎨⎬⎩⎭.【解析】【分析】(1)由题意首先求得导函数的解析式,然后由导数的几何意义确定切线的斜率和切点坐标,最后求解切线方程即可;(2)原问题即()0f x '≥在区间()0,∞+上恒成立,整理变形可得()()()21ln 10g x ax x x x =+-++≥在区间()0,∞+上恒成立,然后分类讨论110,,022a a a ≤≥<<三种情况即可求得实数a 的取值范围.【小问1详解】当1a =-时,()()()11ln 11f x x x x ⎛⎫=-+>-⎪⎝⎭,则()()2111ln 111x f x x x x ⎛⎫'=-⨯++-⨯ ⎪+⎝⎭,据此可得()()10,1ln 2f f '==-,所以函数在()()1,1f 处的切线方程为()0ln 21y x -=--,即()ln 2ln 20x y +-=.【小问2详解】由函数的解析式可得()()()2111=ln 111f x x a x x x x ⎛⎫⎛⎫'-+++⨯>- ⎪ ⎪+⎝⎭⎝⎭,满足题意时()0f x '≥在区间()0,∞+上恒成立.令()2111ln 101x a x x x ⎛⎫⎛⎫-+++≥ ⎪ ⎪+⎝⎭⎝⎭,则()()()21ln 10x x x ax -++++≥,令()()()2=1ln 1g x ax x x x +-++,原问题等价于()0g x ≥在区间()0,∞+上恒成立,则()()2ln 1g x ax x '=-+,当0a ≤时,由于()20,ln 10ax x ≤+>,故()0g x '<,()g x 在区间()0,∞+上单调递减,此时()()00g x g <=,不合题意;令()()()2ln 1h x g x ax x '==-+,则()121h x a x -'=+,当12a ≥,21a ≥时,由于111x <+,所以()()0,h x h x '>在区间()0,∞+上单调递增,即()g x '在区间()0,∞+上单调递增,所以()()>00g x g ''=,()g x 在区间()0,∞+上单调递增,()()00g x g >=,满足题意.当102a <<时,由()1201h x a x =-=+'可得1=12x a-,当10,12x a ⎛⎫∈- ⎪⎝⎭时,()()0,h x h x '<在区间10,12a ⎛⎫- ⎪⎝⎭上单调递减,即()g x '单调递减,注意到()00g '=,故当10,12x a ⎛⎫∈- ⎪⎝⎭时,()()00g x g ''<=,()g x 单调递减,由于()00g =,故当10,12x a ⎛⎫∈- ⎪⎝⎭时,()()00g x g <=,不合题意.综上可知:实数a 得取值范围是1|2a a ⎧⎫≥⎨⎬⎩⎭.【点睛】方法点睛:(1)求切线方程的核心是利用导函数求切线的斜率,求函数的导数要准确地把函数拆分成基本初等函数的和、差、积、商,再利用运算法则求导,合函数求导,应由外到内逐层求导,必要时要进行换元.(2)由函数的单调性求参数的取值范围的方法①函数在区间(),a b 上单调,实际上就是在该区间上()0f x '≥(或()0f x '≤)恒成立.②函数在区间(),a b 上存在单调区间,实际上就是()0f x '≥(或()0f x '≤)在该区间上存在解集.21.已知椭圆2222:1(0)C b b x a a y +>>=的离心率是53,点()2,0A -在C 上.(1)求C 的方程;(2)过点()2,3-的直线交C 于,P Q 两点,直线,AP AQ 与y 轴的交点分别为,M N ,证明:线段MN 的中点为定点.【答案】(1)22194y x +=(2)证明见详解【解析】【分析】(1)根据题意列式求解,,a b c ,进而可得结果;(2)设直线PQ 的方程,进而可求点,M N 的坐标,结合韦达定理验证2M Ny y +为定值即可.【小问1详解】由题意可得222253b a b c c e a ⎧⎪=⎪⎪=+⎨⎪⎪==⎪⎩,解得32a b c ⎧=⎪=⎨⎪=⎩,所以椭圆方程为22194y x +=.【小问2详解】由题意可知:直线PQ 的斜率存在,设()()()1122:23,,,,PQ y k x P x y Q x y =++,联立方程()2223194y k x y x ⎧=++⎪⎨+=⎪⎩,消去y 得:()()()222498231630k x k k x k k +++++=,则()()()2222Δ64236449317280kk k k k k =+-++=->,解得0k <,可得()()2121222163823,4949k k k k x x x x k k +++=-=++,因为()2,0A -,则直线()11:22y AP y x x =++,令0x =,解得1122y y x =+,即1120,2y M x ⎛⎫⎪+⎝⎭,同理可得2220,2y N x ⎛⎫⎪+⎝⎭,则()()1212121222232322222y y k x k x x x x x +++++⎡⎤⎡⎤++⎣⎦⎣⎦=+++()()()()()()12211223223222kx k x kx k x x x +++++++⎡⎤⎡⎤⎣⎦⎣⎦=++()()()()1212121224342324kx x k x x k x x x x +++++=+++()()()()()()222222323843234231084949336163162344949k k k k k k k k k k k k k k k +++-++++===++-+++,所以线段MN 的中点是定点()0,3.【点睛】方法点睛:求解定值问题的三个步骤(1)由特例得出一个值,此值一般就是定值;(2)证明定值,有时可直接证明定值,有时将问题转化为代数式,可证明该代数式与参数(某些变量)无关;也可令系数等于零,得出定值;(3)得出结论.【选修4-4】(10分)22.在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为ππ2sin 42⎛⎫=≤≤ ⎪⎝⎭ρθθ,曲线2C :2cos 2sin x y αα=⎧⎨=⎩(α为参数,2απ<<π).(1)写出1C 的直角坐标方程;(2)若直线y x m =+既与1C 没有公共点,也与2C 没有公共点,求m 的取值范围.【答案】(1)()[][]2211,0,1,1,2x y x y +-=∈∈(2)()(),0-∞+∞ 【解析】【分析】(1)根据极坐标与直角坐标之间的转化运算求解,注意,x y 的取值范围;(2)根据曲线12,C C 的方程,结合图形通过平移直线y x m =+分析相应的临界位置,结合点到直线的距离公式运算求解即可.【小问1详解】因为2sin ρθ=,即22sin ρρθ=,可得222x y y +=,整理得()2211x y +-=,表示以()0,1为圆心,半径为1的圆,又因为2cos 2sin cos sin 2,sin 2sin 1cos 2x y ======-ρθθθθρθθθ,且ππ42θ≤≤,则π2π2≤≤θ,则[][]sin 20,1,1cos 21,2x y =∈=-∈θθ,故()[][]221:11,0,1,1,2C x y x y +-=∈∈.【小问2详解】因为22cos :2sin x C y αα=⎧⎨=⎩(α为参数,ππ2α<<),整理得224x y +=,表示圆心为()0,0O ,半径为2,且位于第二象限的圆弧,如图所示,若直线y x m =+过()1,1,则11m =+,解得0m =;若直线y x m =+,即0x y m -+=与2C相切,则20m =>⎩,解得m =,若直线y x m =+与12,C C均没有公共点,则m >或0m <,即实数m 的取值范围()(),0-∞+∞ .【点睛】【选修4-5】(10分)23.已知()22f x x x =+-.(1)求不等式()6f x x ≤-的解集;(2)在直角坐标系xOy 中,求不等式组()60f x y x y ≤⎧⎨+-≤⎩所确定的平面区域的面积.【答案】(1)[2,2]-;(2)8.【解析】【分析】(1)分段去绝对值符号求解不等式作答.(2)作出不等式组表示的平面区域,再求出面积作答.【小问1详解】依题意,32,2()2,0232,0x x f x x x x x ->⎧⎪=+≤≤⎨⎪-+<⎩,不等式()6f x x ≤-化为:2326x x x >⎧⎨-≤-⎩或0226x x x ≤≤⎧⎨+≤-⎩或0326x x x <⎧⎨-+≤-⎩,解2326x x x >⎧⎨-≤-⎩,得无解;解0226x x x ≤≤⎧⎨+≤-⎩,得02x ≤≤,解0326x x x <⎧⎨-+≤-⎩,得20x -≤<,因此22x -≤≤,所以原不等式的解集为:[2,2]-【小问2详解】作出不等式组()60f x y x y ≤⎧⎨+-≤⎩表示的平面区域,如图中阴影ABC ,由326y x x y =-+⎧⎨+=⎩,解得(2,8)A -,由26y x x y =+⎧⎨+=⎩,解得(2,4)C ,又(0,2),(0,6)B D ,所以ABC 的面积11|||62||2(2)|822ABC C A S BD x x =⨯-=-⨯--= .。
2023年高考数学(四川卷)(文科)(word版+答案)全解析
2023年普通高等学校招生全国统一考试(四川)数 学(文史类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3到8页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己地姓名、准考证号、考试科目涂写在答题卡上。
2.每小题选出解析后,用铅笔把答题卡上对应题目地解析标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它解析标号。
不能答在试卷卷上。
3.本卷共12小题,每小题5分,共60分。
在每小题给出地四个选项中,只有一项是符合题目要求地。
参考公式:如果事件A 、B 互斥,那么 球是表面积公式)()()(B P A P B A P +=+ 24RS π=如果事件A 、B 相互独立,那么 其中R 表示球地半径)()()(B P A P B A P ⋅=⋅ 球地体积公式如果事件A 在一次试验中发生地概率是P,那么334R V π=n 次独立重复试验中恰好发生k 次地概率 其中R 表示球地半径kn k kn n P P C k P --=)1()(一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出地四个选项中,只有一项是符合题目要求地。
1、设集合U={1,2,3,4,5},A={1,2,3},B={2,3,4} ,则C U (A ∩B )=(A ){2,3} (B ) {1,4,5} (C ){4,5} (D ){1,5}2、函数1ln(21),()2y x x =+>-地反函数是(A )11()2x y e x R =- ∈ (B )21()x y e x R =- ∈ (C ) 1(1()2xy e x R =- ) ∈ (D )21()xy e x R =- ∈3、 设平面向量(3,5(2,1)a b = ) ,=- ,则2a b -=(A )(7,3) (B )(7,7) (C )(1,7) (D )(1,3)4、(tanx+cotx)cos 2x=(A )tanx (B )sinx (C )cosx (D )cotx 5、不等式2||2x x -<地解集为(A )(-1,2) (B )(-1,1) (C )(-2,1) (D )(-2,2)6、将直线3y x =绕原点逆时针旋转90°,再向右平移1个单位,所得到地直线为(A )1133y x =-+ (B )113y x =-+ (C )33y x =- (D )31y x =+7、△ABC 地三个内角A 、B 、C 地对边边长分别是a b c 、、 ,若a =,A=2B,则cosB=(A ) (B (C (D学校 班级 姓名 考号/密///////////封/////////////线/////////////内/////////////不/////////////要/////////////答/////////////题///////8、设M 是球O 地半径OP 地中点,分别过M 、O 作垂直于OP 地平面,截球面得到两个圆,则这两个圆地面积比值为(A )14(B )12(C )23(D )349、定义在R 上地函数()f x 满足:()(2)13,(1)2,f x f x f ∙+==则(99)f =(A )13 (B ) 2 (C )132(D )21310、设直线l α⊂平面,过平面α外一点A 且与l 、α都成30°角地直线有且只有(A )1条 (B )2条 (C )3条 (D )4条11、已知双曲线22:1916x y C -=地左右焦点分别为F 1、F 2 ,P 为C 地右支上一点,且||||212PF F F =,则△PF 1F 2 地面积等于(A )24 (B )36 (C )48 (D )9612、若三棱柱地一个侧面是边长为2地正方形,另外两个侧面都是有一个内角为60°地菱形,则该棱柱地体积为(A(B) (C)(D)第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分。
2021年高考真题:数学(文科)(全国甲卷)【含答案及解析】
2021年普通⾼等学校招⽣全国统⼀考试(甲卷)⽂科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合{}{}1,3,5,7,9,27M N x x ==>,则M N =I ()A.{}7,9 B.{}5,7,9 C.{}3,5,7,9 D.{}1,3,5,7,92. 为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:根据此频率分布直方图,下面结论中不正确的是()A.该地农户家庭年收入低于4.5万元的农户比率估计为6%B.该地农户家庭年收入不低于10.5万元的农户比率估计为10%C.估计该地农户家庭年收入的平均值不超过6.5万元D.估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间3. 已知2(1)32i z i -=+,则z =()A.312i --B.312i -+ C.32i -+ D.32i --4.下列函数中是增函数的为()A.()f x x=- B.()23xf x æö=ç÷èøC.()2f x x= D.()f x =5. 点()3,0到双曲线221169x y -=的一条渐近线的距离为()A.95B.85C.65D.456.青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L 和小数记录表的数据V 的满足5lg L V =+.已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据为()( 1.259»)A.1.5B.1.2C.0.8D.0.67. 在一个正方体中,过顶点A 的三条棱的中点分别为E ,F ,G .该正方体截去三棱锥A EFG -后,所得多面体的三视图中,正视图如图所示,则相应的侧视图是()A. B. C. D.8.在ABC V 中,已知120B =°,AC =,2AB =,则BC =()A.1B.C.D.39.记n S 为等比数列{}n a 的前n 项和.若24S =,46S =,则6S =()A. 7B. 8C. 9D. 1010.将3个1和2个0随机排成一行,则2个0不相邻的概率为()A. 0.3B. 0.5C. 0.6D. 0.811.若cos 0,,tan 222sin p a a a a æöÎ=ç÷-èø,则tan a =()A.15B.5C.3D.312. 设()f x 是定义域为R 的奇函数,且()()1f x f x +=-.若1133f æö-=ç÷èø,则53f æö=ç÷èø()A.53-B.13-C.13D.53二、填空题:本题共4小题,每小题5分,共20分.13.若向量,a b r r满足3,5,1a a b a b =-=×=r r r r r ,则b =r _________.14. 已知一个圆锥的底面半径为6,其体积为30p 则该圆锥的侧面积为________.15. 已知函数()()2cos f x x w j =+的部分图像如图所示,则2f p æö=ç÷èø_______________.16.已知12,F F 为椭圆C :221164x y+=的两个焦点,P ,Q 为C 上关于坐标原点对称的两点,且12PQ F F =,则四边形12PFQF 的面积为________.三、解答题:共70分.解答应写出交字说明、证明过程程或演算步骤,第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17. 甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:一级品二级品合计甲机床15050200乙机床12080200合计270130400(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?(2)能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异?附:22()()()()()n ad bc K a b c d a c b d -=++++()2P K k ³0.0500.0100.001k3.8416.63510.82818.记n S 为数列{}n a 的前n 项和,已知210,3n a a a >=,且数列是等差数列,证明:{}na 是等差数列.19. 已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,11BF A B ^.(1)求三棱锥F EBC -的体积;(2)已知D 为棱11A B 上的点,证明:BF DE ^.20.设函数22()3ln 1f x a x ax x =+-+,其中0a >.(1)讨论()f x 的单调性;(2)若()y f x =的图象与x 轴没有公共点,求a 的取值范围.21.抛物线C 的顶点为坐标原点O .焦点在x 轴上,直线l :1x =交C 于P ,Q 两点,且OP OQ ^.已知点()2,0M ,且M e 与l 相切.(1)求C ,M e 的方程;(2)设123,,A A A 是C 上的三个点,直线12A A ,13A A 均与M e 相切.判断直线23A A 与M e 的位置关系,并说明理由.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为r q =.(1)将C 的极坐标方程化为直角坐标方程;(2)设点A 的直角坐标为()1,0,M 为C 上的动点,点P 满足AP =u u u ru u u r,写出Р的轨迹1C 的参数方程,并判断C 与1C 是否有公共点.[选修4-5:不等式选讲]23.已知函数()2,()2321f x x g x x x =-=+--.(1)画出()y f x =和()y g x =的图像;(2)若()()f x a g x +³,求a 的取值范围.答案及解析一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合{}{}1,3,5,7,9,27M N x x ==>,则M N =I ()A.{}7,9 B.{}5,7,9 C.{}3,5,7,9 D.{}1,3,5,7,9【答案】B 【解析】【分析】求出集合N 后可求M N Ç.【详解】7,2N æö=+¥ç÷èø,故{}5,7,9M N Ç=,故选:B.2. 为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:根据此频率分布直方图,下面结论中不正确的是()A.该地农户家庭年收入低于4.5万元的农户比率估计为6%B.该地农户家庭年收入不低于10.5万元的农户比率估计为10%C.估计该地农户家庭年收入的平均值不超过6.5万元D.估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间【答案】C 【解析】【分析】根据直方图的意义直接计算相应范围内的频率,即可判定ABD,以各组的中间值作为代表乘以相应的频率,然后求和即得到样本的平均数的估计值,也就是总体平均值的估计值,计算后即可判定C.【详解】因为频率直方图中的组距为1,所以各组的直方图的高度等于频率.样本频率直方图中的频率即可作为总体的相应比率的估计值.该地农户家庭年收入低于4.5万元的农户的比率估计值为0.020.040.066%+==,故A 正确;该地农户家庭年收入不低于10.5万元的农户比率估计值为0.040.0230.1010%+´==,故B 正确;该地农户家庭年收入介于4.5万元至8.5万元之间的比例估计值为0.100.140.2020.6464%50%++´==>,故D 正确;该地农户家庭年收入的平均值的估计值为30.0240.0450.1060.1470.2080.2090.10100.10110.04120.02130.02140.027.68´+´+´+´+´+´+´+´+´+´+´+´=(万元),超过6.5万元,故C 错误.综上,给出结论中不正确的是C.故选:C.【点睛】本题考查利用样本频率直方图估计总体频率和平均值,属基础题,样本的频率可作为总体的频率的估计值,样本的平均值的估计值是各组的中间值乘以其相应频率然后求和所得值,可以作为总体的平均值的估计值.注意各组的频率等于´频率组距组距.3. 已知2(1)32i z i -=+,则z =()A.312i --B.312i -+C.32i -+ D.32i --【答案】B 【解析】【分析】由已知得322iz i+=-,根据复数除法运算法则,即可求解.【详解】2(1)232i z iz i -=-=+,32(32)23312222i i i i z i i i i ++×-+====-+--×.故选:B.4.下列函数中是增函数的为()A.()f x x =-B.()23xf x æö=ç÷èøC.()2f x x= D.()f x =【答案】D 【解析】【分析】根据基本初等函数的性质逐项判断后可得正确的选项.【详解】对于A ,()f x x =-为R 上的减函数,不合题意,舍.对于B ,()23xf x æö=ç÷èø为R 上的减函数,不合题意,舍.对于C ,()2f x x =在(),0-¥为减函数,不合题意,舍.对于D ,()f x =为R 上的增函数,符合题意,故选:D.5. 点()3,0到双曲线221169x y -=的一条渐近线的距离为()A.95B.85C.65 D.45【答案】A 【解析】【分析】首先确定渐近线方程,然后利用点到直线距离公式求得点到一条渐近线的距离即可.【详解】由题意可知,双曲线的渐近线方程为:220169x y -=,即340±=x y ,结合对称性,不妨考虑点()3,0到直线340x y +=的距离:d =故选:A.6. 青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L 和小数记录表的数据V 的满足5lg L V =+.已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据为()( 1.259»)A. 1.5 B. 1.2C. 0.8D. 0.6【答案】C 【解析】【分析】根据,L V 关系,当 4.9L =时,求出lg V ,再用指数表示V ,即可求解.【详解】由5lg L V =+,当 4.9L =时,lg 0.1V =-,则10.11010100.8V --===».故选:C .7.在一个正方体中,过顶点A 的三条棱的中点分别为E ,F ,G .该正方体截去三棱锥A EFG -后,所得多面体的三视图中,正视图如图所示,则相应的侧视图是()A. B. C. D.【答案】D 【解析】【分析】根据题意及题目所给的正视图还原出几何体的直观图,结合直观图进行判断.【详解】由题意及正视图可得几何体的直观图,如图所示,所以其侧视图为故选:D8. 在ABC V 中,已知120B =°,AC =,2AB =,则BC =()A.1B.C.3【答案】D 【解析】【分析】利用余弦定理得到关于BC 长度的方程,解方程即可求得边长.【详解】设,,AB c AC b BC a ===,结合余弦定理:2222cos b a c ac B =+-可得:21942cos120a a =+-´´o ,即:22150a a +-=,解得:3a =(5a =-舍去),故3BC =.故选:D.【点睛】利用余弦定理及其推论解三角形的类型:(1)已知三角形的三条边求三个角;(2)已知三角形的两边及其夹角求第三边及两角;(3)已知三角形的两边与其中一边的对角,解三角形.9. 记n S 为等比数列{}n a 的前n 项和.若24S =,46S =,则6S =()A.7 B.8 C.9 D.10【答案】A 【解析】【分析】根据题目条件可得2S ,42S S -,64S S -成等比数列,从而求出641S S -=,进一步求出答案.【详解】∵n S 为等比数列{}n a 的前n 项和,∴2S ,42S S -,64S S -成等比数列∴24S =,42642S S -=-=∴641S S -=,∴641167S S =+=+=.故选:A.10. 将3个1和2个0随机排成一行,则2个0不相邻的概率为()A. 0.3B. 0.5C. 0.6D. 0.8【答案】C 【解析】【分析】利用古典概型的概率公式可求概率.【详解】解:将3个1和2个0随机排成一行,可以是:00111,01011,01101,01110,10011,10101,10110,11001,11010,11100,共10种排法,其中2个0不相邻的排列方法为:01011,01101,01110,10101,10110,11010,共6种方法,故2个0不相邻的概率为6=0.610,故选:C.11.若cos 0,,tan 222sin p a a a a æöÎ=ç÷-èø,则tan a =()A.15B.5C.3D.3【答案】A 【解析】【分析】由二倍角公式可得2sin 22sin cos tan 2cos 212sin a a a a a a ==-,再结合已知可求得1sin 4a =,利用同角三角函数的基本关系即可求解.【详解】cos tan 22sin aa a=-Q 2sin 22sin cos cos tan 2cos 212sin 2sin a a a aa a a a\===--,0,2p a æöÎç÷èøQ ,cos 0a \¹,22sin 112sin 2sin a a a \=--,解得1sin 4a =,cos 4a \==,sin tan cos 15a a a \==.故选:A.【点睛】关键点睛:本题考查三角函数的化简问题,解题的关键是利用二倍角公式化简求出sin a .12.设()f x 是定义域为R 的奇函数,且()()1f x f x +=-.若1133f æö-=ç÷èø,则53f æö=ç÷èø()A.53-B.13-C.13D.53【答案】C 【解析】【分析】由题意利用函数的奇偶性和函数的递推关系即可求得53f æöç÷èø的值.【详解】由题意可得:522213333f f f f æöæöæöæö=+=-=-ç÷ç÷ç÷ç÷èøèøèøèø,而21111133333f f f f æöæöæöæö=-==--=-ç÷ç÷ç÷ç÷èøèøèøèø,故5133f æö=ç÷èø.故选:C.【点睛】关键点点睛:本题主要考查了函数的奇偶性和函数的递推关系式,灵活利用所给的条件进行转化是解决本题的关键.二、填空题:本题共4小题,每小题5分,共20分.13.若向量,a b r r满足3,5,1a a b a b =-=×=r r r r r ,则b =r _________.【答案】【解析】【分析】根据题目条件,利用a b -r r模的平方可以得出答案【详解】∵5a b -=r r∴222229225a b a b a b b -=+-×=+-=r r r r r r r∴b =r.故答案为:14.已知一个圆锥的底面半径为6,其体积为30p 则该圆锥的侧面积为________.【答案】39p 【解析】【分析】利用体积公式求出圆锥的高,进一步求出母线长,最终利用侧面积公式求出答案.【详解】∵216303V h p p =×=∴52h =∴132l ===∴136392S rl p p p ==´´=侧.故答案为:39p .15.已知函数()()2cos f x x w j =+的部分图像如图所示,则2f p æö=ç÷èø_______________.【答案】【解析】【分析】首先确定函数的解析式,然后求解2f p æöç÷èø的值即可.【详解】由题意可得:31332,,241234T T Tp p p pp w =-=\===,当1312x p =时,()131322,2126x k k k Z p w j j p j p p +=´+=\=-Î,令1k =可得:6pj =-,据此有:()52cos 2,2cos 22cos62266f x x f p p p p p æöæöæö=-=´-==ç÷ç÷ç÷èøèøèø.故答案为:.【点睛】已知f (x )=Acos (ωx +φ)(A >0,ω>0)的部分图象求其解析式时,A 比较容易看图得出,困难的是求待定系数ω和φ,常用如下两种方法:(1)由ω=2Tp即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x 0,则令ωx 0+φ=0(或ωx 0+φ=π),即可求出φ.(2)代入点的坐标,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A ,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.16.已知12,F F 为椭圆C :221164x y+=的两个焦点,P ,Q 为C 上关于坐标原点对称的两点,且12PQ F F =,则四边形12PFQF 的面积为________.【答案】8【解析】【分析】根据已知可得12PF PF ^,设12||,||PF m PF n ==,利用勾股定理结合8m n +=,求出mn ,四边形12PFQF 面积等于mn ,即可求解.【详解】因为,P Q 为C 上关于坐标原点对称的两点,且12||||PQ F F =,所以四边形12PFQF 为矩形,设12||,||PF m PF n ==,则228,48m n m n +=+=,所以22264()2482m n m mn n mn =+=++=+,8mn =,即四边形12PFQF 面积等于8.故答案为:8.三、解答题:共70分.解答应写出交字说明、证明过程程或演算步骤,第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:一级品二级品 合计甲机床15050200乙机床12080200合计270130400(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?(2)能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异?附:22()()()()()n ad bc K a b c d a c b d -=++++()2P K k ³0.0500.0100.001k 3.841 6.63510.828【答案】(1)75%;60%;(2)能.【解析】【分析】根据给出公式计算即可【详解】(1)甲机床生产的产品中的一级品的频率为15075%200=,乙机床生产的产品中的一级品的频率为12060%200=.(2)()22400150801205040010 6.63527013020020039K ´-´==>>´´´,故能有99%的把握认为甲机床的产品与乙机床的产品质量有差异.18.记n S 为数列{}n a 的前n 项和,已知210,3n a a a >=,且数列是等差数列,证明:{}na 是等差数列.【答案】证明见解析.【解析】【分析】先根据的公差d ,进一步写出的通项,从而求出{}na 的通项公式,最终得证.【详解】∵数列是等差数列,设公差为d =-==(n =+-=,()n *ÎN ∴12n S a n =,()n *ÎN ∴当2n ³时,()221111112n n n a S S a n a n a n a -=-=--=-当1n =时,11121=a a a ´-,满足112n a a n a =-,∴{}n a 的通项公式为112n a a n a =-,()n *ÎN ∴()()111111221=2n n a a a n a a n a a --=----éùëû∴{}n a 是等差数列.【点睛】在利用1n n n a S S -=-求通项公式时一定要讨论1n =的特殊情况.19. 已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,11BF A B ^.(1)求三棱锥F EBC -的体积;(2)已知D 为棱11A B 上的点,证明:BF DE ^.【答案】(1)13;(2)证明见解析.【解析】【分析】(1)首先求得AC 的长度,然后利用体积公式可得三棱锥的体积;(2)将所给的几何体进行补形,从而把线线垂直的问题转化为证明线面垂直,然后再由线面垂直可得题中的结论.【详解】(1)如图所示,连结AF ,由题意可得:BF ===,由于AB ⊥BB 1,BC ⊥AB ,1BB BC B =I ,故AB ^平面11BCC B ,而BF Ì平面11BCC B ,故AB BF ^,从而有3AF ===,从而AC ===,则222,AB BC AC AB BC +=\^,ABC V 为等腰直角三角形,111221222BCE ABC S s æö==´´´=ç÷èø△△,11111333F EBC BCE V S CF -=´´=´´=△.(2)由(1)的结论可将几何体补形为一个棱长为2的正方体1111ABCM A B C M -,如图所示,取棱,AM BC 的中点,H G ,连结11,,A H HG GB ,正方形11BCC B 中,,G F 为中点,则1BF B G ^,又111111,BF A B A B B G B ^=I ,故BF ^平面11A B GH ,而DE Ì平面11A B GH ,从而BF ^DE .【点睛】求三棱锥的体积时要注意三棱锥的每个面都可以作为底面,例如三棱锥的三条侧棱两两垂直,我们就选择其中的一个侧面作为底面,另一条侧棱作为高来求体积.对于空间中垂直关系(线线、线面、面面)的证明经常进行等价转化.20. 设函数22()3ln 1f x a x ax x =+-+,其中0a >.(1)讨论()f x 的单调性;(2)若()y f x =的图象与x 轴没有公共点,求a 的取值范围.【答案】(1)()f x 的减区间为10,a æöç÷èø,增区间为1,+a æö¥ç÷èø;(2)1a e >.【解析】【分析】(1)求出函数的导数,讨论其符号后可得函数的单调性.(2)根据()10f >及(1)的单调性性可得()min 0f x >,从而可求a 的取值范围.【详解】(1)函数的定义域为()0,¥+,又()23(1)()ax ax f x x+-¢=,因为0,0a x >>,故230ax +>,当10x a <<时,()0f x ¢<;当1x a>时,()0f x ¢>;所以()f x 的减区间为10,a æöç÷èø,增区间为1,+a æö¥ç÷èø.(2)因为()2110f a a =++>且()y f x =的图与x 轴没有公共点,所以()y f x =的图象在x 轴的上方,由(1)中函数的单调性可得()min 1133ln 33ln f x f a a a æö==-=+ç÷èø,故33ln 0a +>即1a e>.【点睛】方法点睛:不等式的恒成立问题,往往可转化为函数的最值的符号来讨论,也可以参变分离后转化不含参数的函数的最值问题,转化中注意等价转化.21. 抛物线C 的顶点为坐标原点O .焦点在x 轴上,直线l :1x =交C 于P ,Q 两点,且OP OQ ^.已知点()2,0M ,且M e 与l 相切.(1)求C ,M e 的方程;(2)设123,,A A A 是C 上的三个点,直线12A A ,13A A 均与M e 相切.判断直线23A A 与M e 的位置关系,并说明理由.【答案】(1)抛物线2:C y x =,M e 方程为22(2)1x y -+=;(2)相切,理由见解析【解析】【分析】(1)根据已知抛物线与1x =相交,可得出抛物线开口向右,设出标准方程,再利用对称性设出,P Q 坐标,由OP OQ ^,即可求出p ;由圆M 与直线1x =相切,求出半径,即可得出结论;(2)先考虑12A A 斜率不存在,根据对称性,即可得出结论;若121323,,A A A A A A 斜率存在,由123,,A A A 三点在抛物线上,将直线121223,,A A A A A A 斜率分别用纵坐标表示,再由1212,A A A A 与圆M 相切,得出2323,y y y y +×与1y 的关系,最后求出M 点到直线23A A 的距离,即可得出结论.【详解】(1)依题意设抛物线200:2(0),(1,),(1,)C y px p P y Q y =>-,20,1120,21OP OQ OP OQ y p p ^\×=-=-=\=uu u r uu u r Q ,所以抛物线C 的方程为2y x =,(0,2),M M e 与1x =相切,所以半径为1,所以M e 的方程为22(2)1x y -+=;(2)设111222333(),(,),(,)A x y A x y A x y 若12A A 斜率不存在,则12A A 方程为1x =或3x =,若12A A 方程为1x =,根据对称性不妨设1(1,1)A ,则过1A 与圆M 相切的另一条直线方程为1y =,此时该直线与抛物线只有一个交点,即不存在3A ,不合题意;若12A A 方程为3x =,根据对称性不妨设12(3,A A则过1A 与圆M 相切的直线13A A为(3)3y x -=-,又1313313131,03A A y y k y x x y y -====\=-+,330,(0,0)x A =,此时直线1323,A A A A 关于x 轴对称,所以直线23A A 与圆M 相切;若直线121323,,A A A A A A 斜率均存在,则121323121323111,,A A A A A A k k k y y y y y y ===+++,所以直线12A A 方程为()11121y y x x y y -=-+,整理得1212()0x y y y y y -++=,同理直线13A A 的方程为1313()0x y y y y y -++=,直线23A A 的方程为2323()0x y y y y y -++=,12A A Q 与圆M相切,1=整理得22212121(1)230y y y y y -++-=,13A A 与圆M 相切,同理22213131(1)230y y y y y -++-=所以23,y y 为方程222111(1)230y y y y y -++-=的两根,2112323221123,11y y y y y y y y -+=-×=--,M 到直线23A A的距离为:2123|2|y -+=221==,所以直线23A A 与圆M 相切;综上若直线1213,A A A A 与圆M 相切,则直线23A A 与圆M 相切.【点睛】关键点点睛:(1)过抛物线上的两点直线斜率只需用其纵坐标(或横坐标)表示,将问题转化为只与纵坐标(或横坐标)有关;(2)要充分利用1213,A A A A 的对称性,抽象出2323,y y y y +×与1y 关系,把23,y y 的关系转化为用1y 表示.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为r q =.(1)将C 的极坐标方程化为直角坐标方程;(2)设点A 的直角坐标为()1,0,M 为C 上的动点,点P 满足AP =u u u ru u u r,写出Р的轨迹1C 的参数方程,并判断C 与1C 是否有公共点.【答案】(1)(222x y -+=;(2)P 的轨迹1C 的参数方程为32cos 2sin x y qqì=-+ïí=ïî(q 为参数),C 与1C 没有公共点.【解析】【分析】(1)将曲线C 的极坐标方程化为2cos r q =,将cos ,sin x y r q r q ==代入可得;(2)设(),P x y ,设)Mq q +,根据向量关系即可求得P 的轨迹1C 的参数方程,求出两圆圆心距,和半径之差比较可得.【详解】(1)由曲线C 的极坐标方程r q =可得2cos r q =,将cos ,sin x y r q r q ==代入可得22x y +=,即(222x y -+=,即曲线C 的直角坐标方程为(222x y +=;(2)设(),P x y ,设)Mq qQAP =u u u r u u u r,())()1,22cos x y q q q q \-=+-=+,则122cos 2sin x y q q ì-=+ïí=ïî,即32cos 2sin x y q q ì=+ïí=ïî,故P 的轨迹1C 的参数方程为32cos 2sin x y qqì=+ïí=ïî(q 为参数)Q曲线C 的圆心为),曲线1C 的圆心为()3-,半径为2,则圆心距为3-,32-<-Q ,\两圆内含,故曲线C 与1C 没有公共点.【点睛】关键点睛:本题考查参数方程的求解,解题的关键是设出M 的参数坐标,利用向量关系求解.[选修4-5:不等式选讲]23.已知函数()2,()2321f x x g x x x =-=+--.(1)画出()y f x =和()y g x =的图像;(2)若()()f x a g x +³,求a 的取值范围.【答案】(1)图像见解析;(2)112a ³【解析】【分析】(1)分段去绝对值即可画出图像;(2)根据函数图像数形结和可得需将()y f x =向左平移可满足同角,求得()y f x a =+过1,42A æöç÷èø时a 的值可求.【详解】(1)可得2,2()22,2x x f x x x x -<ì=-=í-³î,画出图像如下:34,231()232142,2214,2x g x x x x x x ì-<-ïïï=+--=+-£<íïï³ïî,画出函数图像如下:(2)()|2|f x a x a +=+-,如图,在同一个坐标系里画出()(),f x g x 图像,()y f x a =+是()y f x =平移了a 个单位得到,则要使()()f x a g x +³,需将()y f x =向左平移,即0a >,当()y f x a =+过1,42A æöç÷èø时,1|2|42a +-=,解得112a =或52-(舍去),则数形结合可得需至少将()y f x =向左平移112个单位,112a \³.【点睛】关键点睛:本题考查绝对值不等式的恒成立问题,解题的关键是根据函数图像数形结合求解.。
2021年全国统一高考真题数学试卷(文科)(含答案及解析)
2021年普通高等学校招生全国统一考试(全国乙卷) 数学(文)一、选择题1.已知全集{1,2,3,4,5}U =,集合{1,2}M =,{3,4}N =,则)(U C M N =( )A.{5}B.{1,2}C.{3,4}D.{1,2,3,4} 2.设43iz i =+,则z =( )A.34i --B.–34i +C.34i -D.34i +3.已知命题:,sin 1p x R x ∃∈<;命题||:,1x q x R e ∈∀≥,则下列命题中为真命题的是( ) A.p q ∧ B.p q ⌝∧ C.p q ∧⌝ D.()p q ⌝∨4.函数()sincos 33x xf x =+的最小正周期和最大值分别是( ) A.3πB.3π和2C.6πD.6π和25.若,x y 满足约束条件2,3,4,y x y x y ≤≤+≥⎧⎪-⎨⎪⎩则3z x y =+的最小值为( )A.18B.10C.6D.46.225coscos 1212ππ-=( ) A.12B.3C.2D.27.在区间1(0,)2随机取1个数,则取到的数小于13的概率为( ) A.34 B.23 C.13 D.168.下列函数中最小值为4的是( )A.224y x x =++ B.4|sin ||sin |y x x =+C.222x xy -=+ D.4n ln l y x x=+9.设函数1(1)xf x x-=+,则下列函数中为奇函数的是( ) A.1()1f x -- B.1()1f x -+ C.1()1f x +- D.1()1f x ++10.在正方体1111ABCD A B C D -中,P 为11B D 的中点,则直线PB 与1AD 所成的角为A.2π B.3π C.4π D.6π 11.设B 是椭圆C :2215x y +=的上顶点,点P 在C 上,则PB 的最大值为A.52212.设0a ≠,若x a =为函数2()()()f x a x a x b =--的极大值点,则A.a b <B.a b >C.2ab a <D.2ab a > 二、填空题13.已知向量(2,5)a =,(,4)b λ=,若//a b ,则λ= .14.双曲线22145x y -=的右焦点到直线280x y +-=的距离为 .15.记ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,面积为,60B =︒,223a c ac +=,则b = .16.以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为 (写出符合要求的一组答案即可).17.某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下: 旧设备 9.810.310.0 10.2 9.9 9.8 10.0 10.1 10.2 9.7 新设备 10.1 10.410.110.010.110.310.610.510.410.5旧设备和新设备生产产品的该项指标的样本平均数分别记为x 和y ,样本方差分别记为21s 和22s .(1)求x ,y ,21s ,22s ;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果2212210s s y x +-≥不认为有显著提高).18.如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,M 为BC 的中点,且PB AM ⊥.(1)证明:平面PAM ⊥平面PBD ﹔(2)若1PD DC ==,求四棱锥P ABCD -的体积.19.设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a ,成等差数列.(1)求{}n a 和{}n b 的通项公式;(2)记n S ,和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <. 20.已知抛物线C :22(0)y px p =>的焦点F 到准线的距离为2. (1)求C 的方程,(2)已知O 为坐标原点,点P 在C 上,点Q 满足9PQ QF =,求直线OQ 斜率的最大值. 21.已知函数32()1f x x x ax =-++. (1)讨论()f x 的单调性;(2)求曲线()y f x =过坐标原点的切线与曲线()y f x =的公共点的坐标. 22.在直角坐标系xOy 中,C 的圆心为)(2,1C ,半径为1.(1)写出C 的一个参数方程;(2)过点)(4,1F 作C 的两条切线.以坐标原点为极点,x 轴正半轴为极轴建立坐标系,求这两条切线的极坐标方程. 23.已知函数()|||3|f x x a x =-++. (1)当1a =时,求不等式()6f x ≥的解集; (2)若()f x a >-,求a 的取值范围.答案及解析一、选择题1.已知全集{1,2,3,4,5}U =,集合{1,2}M =,{3,4}N =,则)(U C M N =( )A.{5}B.{1,2}C.{3,4}D.{1,2,3,4}2.设43iz i =+,则z =( ) A.34i -- B.–34i + C.34i - D.34i +3.已知命题:,sin 1p x R x ∃∈<;命题||:,1x q x R e ∈∀≥,则下列命题中为真命题的是( ) A.p q ∧B.p q ⌝∧C.p q ∧⌝D.()p q ⌝∨答案: A 解析:根据正弦函数的值域sin [1,1]x ∈-,sin 1x <,故x R ∃∈,p 为真命题,而函数||x y e =为偶函数,且0x ≥时,1x y e =≥,故x R ∀∈,||1x y e =≥恒成立.则q 也为真命题,所以p q∧为真,选A. 4.函数()sin cos 33x xf x =+的最小正周期和最大值分别是( )A.3πB.3π和2C.6πD.6π和2 答案: C 解析:()sin()34x f x π=+max ()f x =,2613T ππ==. 故选C.5.若,x y 满足约束条件2,3,4,y x y x y ≤≤+≥⎧⎪-⎨⎪⎩则3z x y =+的最小值为( )A.18B.10C.6D.4答案: C 解析:根据约束条件可得图像如下,3z x y =+的最小值,即3y x z =-+,y 轴截距最小值.根据图像可知3y x z =-+过点(1,3)B 时满足题意,即min 336z =+=.6.225cos cos 1212ππ-=( ) A.12B.33 C.22 3 答案: D 解析:2222223()sin cos 25cos cos cos cos cos 12121212121262ππππππππ-=-=--==∴选D. 7.在区间1(0,)2随机取1个数,则取到的数小于13的概率为( ) A.34 B.23 C.13 D.16答案: B解析:在区间1(0,)2随机取1个数,可知总长度12d =,取到的数小于13,可知取到的长度范围13d '=,根据几何概型公式123132d p d '===,∴选B.8.下列函数中最小值为4的是( ) A.224y x x =++ B.4|sin ||sin |y x x =+C.222x xy -=+D.4n ln l y x x=+答案: C 解析:对于A ,22224213(1)33y x x x x x =++=+++=++≥.不符合, 对于B ,4|sin ||sin |y x x =+,令|sin |[0,1]t x =∈,∴4y t t=+,根据对勾函数min 145y =+=不符合, 对于C ,242222x x x xy -==++,令20xt =>,∴4224y t t =+≥=⨯=, 当且仅当2t =时取等,符合,对于D ,4n ln l y x x =+,令ln t x R =∈,4y t t=+. 根据对勾函数(,4][4,)y ∈-∞-+∞,不符合.9.设函数1(1)xf x x-=+,则下列函数中为奇函数的是( ) A.1()1f x --B.1()1f x -+C.1()1f x +-D.1()1f x ++答案: B 解析:12()111x f x x x-==-+++, ()f x 向右平移一个单位,向上平移一个单位得到2()g x x=为奇函数. 所以选B.10.在正方体1111ABCD A B C D -中,P 为11B D 的中点,则直线PB 与1AD 所成的角为A.2πB.3πC.4πD.6π 答案: D 解析:做出图形,11//AD BC ,所以1PBC ∠为异面直线所成角,设棱长为1.1BC,12B P =,12PC =,BP =. 2221111312cos 22BC BP C P PBC BP BC +-+-∠===⋅,即16PBC π∠=,故选D.11.设B 是椭圆C :2215x y +=的上顶点,点P 在C 上,则PB 的最大值为 A.526 5D.2 答案: A 解析:方法一:由22:15x C y +=,(0,1)B 则C 的参数方程:5sin x y θθ⎧=⎪⎨=⎪⎩.22||(sin 1)(5cos )PB θθ=-+24sin 2sin 6θθ=--+212554(sin )442θ=-++≥.∴max 5||2PB =,故选A. 方法二:设00(,)P x y ,则220001([1,1])5x y y +=∈-①,(0,1)B . 因此22200||(1)PB x y =+-②将①式代入②式化简得:22012525||4()444PB y =-++≥,当且仅当014y =-时||PB 的最大值为52,故选A.12.设0a ≠,若x a =为函数2()()()f x a x a x b =--的极大值点,则A.a b <B.a b >C.2ab a <D.2ab a > 答案: D 解析:2()2()()()()(32)f x a x a x b a x a a x a x b a '=--+-=---当0a >时,原函数先增再减后增.原函数在()0f x '=的较小零点时取得极大值. 即23a b a +<,即a b <,∴2a ab <. 当0a <时,原函数先减再增后减.原函数在()0f x '=的较大零点时取得极大值. 即23a b a +>,a b >,2a ab <,故选D. 二、填空题13.已知向量(2,5)a =,(,4)b λ=,若//a b ,则λ= . 答案:85解析:由已知//a b 可得82455λλ⨯=⇒=. 14.双曲线22145x y -=的右焦点到直线280x y +-=的距离为 . 答案:5解析:22145x y -=的右焦点为(3,0),到直线280x y +-=的距离22|38|512d -==+. 15.记ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,面积为3,60B =︒,223a c ac +=,则b = .答案:22解析: 由面积公式1sin 32S ac B ==,且60B =︒,解得4ac =, 又由余弦定理2222cos b a c ac B =+-,223a c ac +=,且0b > 解得22b =.16.以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为 (写出符合要求的一组答案即可).答案: ②⑤或③④ 解析:由高度可知,侧视图只能为②或③.侧视图为②,如图(1),平面PAC ⊥平面ABC ,2PA PC ==5BA BC ==2AC =,俯视图为⑤.俯视图为③,如图(2),PA ⊥平面ABC ,1PA =,5AC AB ==,2BC =,俯视图为④.17.某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下: 旧设备 9.810.310.0 10.2 9.9 9.8 10.0 10.1 10.2 9.7 新设备 10.1 10.4 10.110.010.110.310.610.510.410.5旧设备和新设备生产产品的该项指标的样本平均数分别记为x 和y ,样本方差分别记为21s 和22s .(1)求x ,y ,21s ,22s ;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果2212210s s y x +-≥不认为有显著提高). 答案:见解析 解析:9.810.31010.29.99.81010.110.29.71010x ++++++++==+;10.110.410.11010.110.310.610.510.410.510.310y ++++++++==+.211(0.040.090.040.010.040.010.040.09)10s =+++++++10.360.03610=⨯= 221(0.040.010.040.090.040.090.040.010.04)10s =++++++++10.40.0410=⨯=. (2)10.3100.3y x -=-=22120.0360.04221010s s ++=20.0076=. ∵则0.30.0920.0760.0304=>=,所以可判断新设备生产产品的该项指标的均值较旧设备有显著提高; 没有显著提高.18.如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,M 为BC 的中点,且PB AM ⊥.(1)证明:平面PAM ⊥平面PBD ﹔(2)若1PD DC ==,求四棱锥P ABCD -的体积.答案: 见解析 解析:19.设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a ,成等差数列.(1)求{}n a 和{}n b 的通项公式;(2)记n S ,和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <. 答案: 见解析 解析:设{}n a 的公比为q ,则1n n a q -=,因为1a ,23a ,39a 成等差数列,所以21923q q +=⨯,解得13q =, 故11()3n n a -=,11313(1)12313n n n S -==--. 又3n n n b =,则1231123133333n n n n nT --=+++++,两边同乘13,则234111231333333n n n n nT +-=+++++,两式相减,得23412111113333333n n n nT +=+++++-,即1111(1)1133(1)332333121n n n n n n n T ++-=-=---, 整理得31323(1)4323423n n n nn n T +=--=-⨯⨯, 323314322()(1)04232323n n n n nn n T S ++-=---=-<⨯⨯,故2n n S T <.20.已知抛物线C :22(0)y px p =>的焦点F 到准线的距离为2. (1)求C 的方程,(2)已知O 为坐标原点,点P 在C 上,点Q 满足9PQ QF =,求直线OQ 斜率的最大值. 答案:见解析 解析:(1)由焦点到准线的距离为p ,则2p =. 抛物线c 的方程:24y x =.(2)设点200(,)4y P y ,(,)Q Q Q x y ,(1,0)F .∵9PQ QF =.∴222000009499(,)9(1,)4104910Q Q Q Q Q Q Q Q Q Q y y x x x y x y y x y y y x y y ⎧+⎪⎧-=-=⎪⎪--=--⇒⇒⎨⎨⎪⎪-=-⎩=⎪⎩则020001193944Q OQ Qy y k y y x y ===≤=++. ∴直线OQ 斜率的最大值为13. 21.已知函数32()1f x x x ax =-++. (1)讨论()f x 的单调性;(2)求曲线()y f x =过坐标原点的切线与曲线()y f x =的公共点的坐标. 答案: 见解析 解析:(1)2()32f x x x a '=-+(i )当4120a ∆=-≤,即13a ≥时,()0f x '≥恒成立,即()f x 在()f x 在x ∈R 上单调递增.(ii )当4120∆=->,即13a <时,()0f x '=解得,113x =,213x +=.∴()f x 在113(,)3a --∞,113()3a -+∞单调递增,在113113(33a a-+单调递减,综上所述:当13a ≥时,()f x 在R 上单调递增;当13a <时,()f x 在113113(,33a a-++单调递减.(2)设可原点切线的切点为32(,1)t t t at -++,切线斜率2()32k f t t t a '==-+.又321t t at k t -++=,可得322132t t at t t a t-++=-+.化简得2(1)(21)0t t t -++=,即1t =.∴切点为(1,1)a +,斜率1k a =+,切线方程为(1)y a x =+,将(1)y a x =+,321y x x ax =-++联立可得321(1)x x ax a x -++=+,化简得2(1)(1)0x x -+=,解得11x =,21x =-.∴过原点的切线与()y f x =公共点坐标为(1,1)a +,(1,1)a ---.22.在直角坐标系xOy 中,C 的圆心为)(2,1C ,半径为1.(1)写出C 的一个参数方程;(2)过点)(4,1F 作C 的两条切线.以坐标原点为极点,x 轴正半轴为极轴建立坐标系,求这两条切线的极坐标方程. 答案: 见解析 解析: (1)C 的参数方程为2cos 1sin x y θθ=+⎧⎨=+⎩(θ为参数)(2)C 的方程为22(2)(1)1x y -+-=①当直线斜率不存在时,直线方程为4x =,此时圆心到直线距离为2r >,舍去;②当直线斜率存在时,设直线方程为1(4)y k x -=-,化简为410kx y k --+=, 此时圆心(2,1)C 到直线的距离为1d r ===,化简得2||k =,两边平方有2241k k =+,所以k =代入直线方程并化简得40x -+=或40x +-=化为极坐标方程为5cos sin 4sin()46πρθθρθ=⇔+=或cos sin 4sin()46πρθθρθ+=⇔+=+23.已知函数()|||3|f x x a x =-++.(1)当1a =时,求不等式()6f x ≥的解集; (2)若()f x a >-,求a 的取值范围. 答案: 见解析 解析:当1a =时,()6|1||3|6f x x x ≥⇔-++≥,当3x ≤-时,不等式136x x ⇔---≥,解得4x ≤-; 当31x -<<时,不等式136x x ⇔-++≥,解得x ∈∅; 当1x ≥时,不等式136x x ⇔-++≥,解得2x ≥. 综上,原不等式的解集为(,4][2,)-∞-+∞. (2)若()f x a >-,即min ()f x a >-,因为()|||3||()(3)||3|f x x a x x a x a =-++≥--+=+(当且仅当()(3)0x a x -+≤时,等号成立),所以min ()|3|f x a =+,所以|3|a a +>-,即3a a +<或3a a +>-,解得3(,)2a ∈-+∞.。
2023年全国统一高考数学试卷(文科)(乙卷)(解析版)
2023年全国统一高考数学试卷(文科)(乙卷)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)|2+i2+2i3|=( )A.1B.2C.D.5【答案】C【解答】解:由于|2+i2+2i3|=|1﹣2i|=.故选:C.2.(5分)设全集U={0,1,2,4,6,8},集合M={0,4,6},N={0,1,6},则M∪∁U N =( )A.{0,2,4,6,8}B.{0,1,4,6,8}C.{1,2,4,6,8}D.U【答案】A【解答】解:由于∁U N={2,4,8},所以M∪∁U N={0,2,4,6,8}.故选:A.3.(5分)如图,网格纸上绘制的是一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为( )A.24B.26C.28D.30【答案】D【解答】解:根据几何体的三视图转换为直观图为:该几何体是由两个直四棱柱组成的几何体.如图所示:故该几何体的表面积为:4+6+5+5+2+2+2+4=30.故选:D.4.(5分)在△ABC中,内角A,B,C的对边分别是a,b,c,若a cos B﹣b cos A=c,且C=,则∠B=( )A.B.C.D.【答案】C【解答】解:由a cos B﹣b cos A=c得sin A cos B﹣sin B cos A=sin C,得sin(A﹣B)=sin C=sin(A+B),即sin A cos B﹣sin B cos A=sin A cos B+sin B cos A,即2sin B cos A=0,得sin B cos A=0,在△ABC中,sin B≠0,∴cos A=0,即A=,则B=π﹣A﹣C==.故选:C.5.(5分)已知f(x)=是偶函数,则a=( )A.﹣2B.﹣1C.1D.2【答案】D【解答】解:∵f(x)=的定义域为{x|x≠0},又f(x)为偶函数,∴f(﹣x)=f(x),∴,∴,∴ax﹣x=x,∴a=2.故选:D.6.(5分)正方形ABCD的边长是2,E是AB的中点,则•=( )A.B.3C.2D.5【答案】B【解答】解:正方形ABCD的边长是2,E是AB的中点,所以=﹣1,,,=2×2=4,则•=()•()=+++=﹣1+0+0+4=3.故选:B.7.(5分)设O为平面坐标系的坐标原点,在区域{(x,y)|1≤x2+y2≤4}内随机取一点,记该点为A,则直线OA的倾斜角不大于的概率为( )A.B.C.D.【答案】C【解答】解:如图,PQ为第一象限与第三象限的角平分线,根据题意可得构成A的区域为圆环,而直线OA的倾斜角不大于的点A构成的区域为图中阴影部分,∴所求概率为=.故选:C.8.(5分)函数f(x)=x3+ax+2存在3个零点,则a的取值范围是( )A.(﹣∞,﹣2)B.(﹣∞,﹣3)C.(﹣4,﹣1)D.(﹣3,0)【答案】B【解答】解:f′(x)=3x2+a,若函数f(x)=x3+ax+2存在3个零点,则f′(x)=3x2+a=0,有两个不同的根,且极大值大于0极小值小于0,即判别式Δ=0﹣12a>0,得a<0,由f′(x)>0得x>或x<﹣,此时f(x)单调递增,由f′(x)<0得﹣<x<,此时f(x)单调递减,即当x=﹣时,函数f(x)取得极大值,当x=时,f(x)取得极小值,则f(﹣)>0,f()<0,即﹣(﹣+a)+2>0,且(﹣+a)+2<0,即﹣×+2>0,①,且×+2<0,②,则①恒成立,由×+2<0,2<﹣×,平方得4<﹣×,即a3<﹣27,则a<﹣3,综上a<﹣3,即实数a的取值范围是(﹣∞,﹣3).故选:B.9.(5分)某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,则甲、乙两位参赛同学抽到不同主题概率为( )A.B.C.D.【答案】A【解答】解:某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,甲、乙两位参赛同学构成的基本事件总数n=6×6=36,其中甲、乙两位参赛同学抽到不同主题包含的基本事件个数m==30,则甲、乙两位参赛同学抽到不同主题概率为P===.故选:A.10.(5分)已知函数f(x)=sin(ωx+φ)在区间(,)单调递增,直线x=和x=为函数y=f(x)的图像的两条对称轴,则f(﹣)=( )A.﹣B.﹣C.D.【答案】D【解答】解:根据题意可知=,∴T=π,取ω>0,∴ω==2,又根据“五点法“可得,k∈Z,∴φ=,k∈Z,∴f(x)=sin(2x)=sin(2x﹣),∴f(﹣)=sin(﹣)=sin(﹣)=sin=.故选:D.11.(5分)已知实数x,y满足x2+y2﹣4x﹣2y﹣4=0,则x﹣y的最大值是( )A.1+B.4C.1+3D.7【答案】C【解答】解:根据题意,x2+y2﹣4x﹣2y﹣4=0,即(x﹣2)2+(y﹣1)2=9,其几何意义是以(2,1)为圆心,半径为3的圆,设z=x﹣y,变形可得x﹣y﹣z=0,其几何意义为直线x﹣y﹣z=0,直线y=x﹣z与圆(x﹣2)2+(y﹣1)2=9有公共点,则有≤3,解可得1﹣3≤z≤1+3,故x﹣y的最大值为1+3.故选:C.12.(5分)设A,B为双曲线x2﹣=1上两点,下列四个点中,可为线段AB中点的是( )A.(1,1)B.(﹣1,2)C.(1,3)D.(﹣1,﹣4)【答案】D【解答】解:设A(x1,y1),B(x2,y2),AB中点为(x0,y0),,①﹣②得k AB==9×=9×,即﹣3<9×<3⇒,即或,故A、B、C错误,D正确.故选:D.二、填空题:本题共4小题,每小题5分,共20分。
2020年全国统一高考数学试卷(文科)(新课标ⅲ)(含解析版)
【点睛】本题考查等比数列通项公式基本量的计算,以及等差数列求和公式的应用,考查计算求解能力,属于基础题目.
18.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):
锻炼人次
空气质量等级
[0,200]
(200,400]
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合 , ,则A∩B中元素的个数为()
A.2B.3C.4D.5
【答案】B
【解析】
【分析】
采用列举法列举出 中元素的即可.
【详解】由题意, ,故 中元素的个数为3.
故选:B
【点晴】本题主要考查集合 交集运算,考查学生对交集定义的理解,是一道容易题.
【详解】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,
其中 ,且点M为BC边上的中点,
设内切圆的圆心为 ,
由于 ,故 ,
设内切圆半径为 ,则:
,
解得: ,其体积: .
故答案为: .
【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.
2.若 ,则z=()
A. 1–iB. 1+iC. –iD.i
【答案】D
【解析】
【分析】
先利用除法运算求得 ,再利用共轭复数的概念得到 即可.
【详解】因为 ,所以 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四川省高考数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题, 每小题5分, 共50分.在每小题给出的四个选项中, 只有一个是符合题目要求的.1.(5分)(2020•四川)设集合A={x|﹣1<x<2}, 集合B={x|1<x<3}, 则A∪B=()A .{x|﹣1<x<3}B.{x|﹣1<x<1}C.{x|1<x<2} D.{x|2<x<3}考点:并集及其运算.专题:集合.分析:直接利用并集求解法则求解即可.解答:解:集合A={x|﹣1<x<2}, 集合B={x|1<x<3},则A∪B={x|﹣1<x<3}.故选:A.点评:本题考查并集的求法, 基本知识的考查.2.(5分)(2020•四川)设向量=(2, 4)与向量=(x, 6)共线, 则实数x=()A .2 B.3 C.4 D.6考点:平面向量共线(平行)的坐标表示.专题:平面向量及应用.分析:利用向量共线的充要条件得到坐标的关系求出x.解答:解;因为向量=(2, 4)与向量=(x, 6)共线,所以4x=2×6, 解得x=3;故选:B.点评:本题考查了向量共线的坐标关系;如果两个向量向量=(x, y)与向量=(m, n)共线, 那么xn=yn.3.(5分)(2020•四川)某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异, 拟从这三个年级中按人数比例抽取部分学生进行调查, 则最合理的抽样方法是()A .抽签法B.系统抽样法C.分层抽样法D.随机数法考点:收集数据的方法.专题:应用题;概率与统计.分析:若总体由差异明显的几部分组成时, 经常采用分层抽样的方法进行抽样.解答:解:我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而事先已经了解到三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异, 这种方式具有代表性, 比较合理.故选:C.点评:本小题考查抽样方法, 主要考查抽样方法, 属基本题.4.(5分)(2020•四川)设a, b为正实数, 则“a>b>1”是“log2a>log2b>0”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件考点:充要条件.专题:简易逻辑.分析:先求出log2a>log2b>0的充要条件, 再和a>b>1比较, 从而求出答案.解答:解:若log2a>log2b>0, 则a>b>1,故“a>b>1”是“log2a>log2b>0”的充要条件,故选:A.点评:本题考察了充分必要条件, 考察对数函数的性质, 是一道基础题.5.(5分)(2020•四川)下列函数中, 最小正周期为π且图象关于原点对称的函数是()A .y=cos(2x+)B.y=sin(2x+)C .y=sin2x+cos2xD.y=sinx+cosx考点:两角和与差的正弦函数;三角函数的周期性及其求法.专题:三角函数的图像与性质.分析:求出函数的周期, 函数的奇偶性, 判断求解即可.解答:解:y=cos(2x+)=﹣sin2x, 是奇函数, 函数的周期为:π, 满足题意, 所以A正确y=sin(2x+)=cos2x, 函数是偶函数, 周期为:π, 不满足题意, 所以B不正确;y=sin2x+cos2x=sin(2x+), 函数是非奇非偶函数, 周期为π, 所以C不正确;y=sinx+cosx=sin(x+), 函数是非奇非偶函数, 周期为2π,所以D不正确;故选:A.点评:本题考查两角和与差的三角函数, 函数的奇偶性以及红丝带周期的求法, 考查计算能力.6.(5分)(2020•四川)执行如图所示的程序框图, 输出s的值为()A .﹣B.C.﹣D.考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图, 依次写出每次循环得到的k的值, 当k=5时满足条件k>4, 计算并输出S的值为.解答:解:模拟执行程序框图, 可得k=1k=2不满足条件k>4, k=3不满足条件k>4, k=4不满足条件k>4, k=5满足条件k>4, S=sin=,输出S的值为.故选:D.点评:本题主要考查了循环结构的程序框图, 属于基础题.7.(5分)(2020•四川)过双曲线x2﹣=1的右焦点且与x轴垂直的直线, 交该双曲线的两条渐近线于A、B两点, 则|AB|=()A .B.2C.6 D.4考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:求出双曲线的渐近线方程, 求出AB的方程, 得到AB坐标, 即可求解|AB|.解答:解:双曲线x2﹣=1的右焦点(2, 0), 渐近线方程为y=,过双曲线x2﹣=1的右焦点且与x轴垂直的直线, x=2,可得y A=2, y B=﹣2,∴|AB|=4.故选:D.点评:本题考查双曲线的简单性质的应用, 考查基本知识的应用.8.(5分)(2020•四川)某食品保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=e kx+b(e=2.718…为自然对数的底数, k, b为常数).若该食品在0℃的保鲜时间是192小时, 在22℃的保鲜时间是48小时, 则该食品在33℃的保鲜时间是()A .16小时B.20小时C.24小时D.28小时考点:指数函数的实际应用.专题:函数的性质及应用.分析:由已知中保鲜时间与储藏温度是一种指数型关系, 由已知构造方程组求出e k,e b的值, 运用指数幂的运算性质求解e33k+b即可.解答:解:y=e kx+b(e=2.718…为自然对数的底数, k, b为常数).当x=0时, e b=192,当x=22时e22k+b=48,∴e16k==e11k=e b=192当x=33时, e33k+b=(e k)33•(e b)=()3×192=24故选:C点评:本题考查的知识点是函数解析式的运用, 列出方程求解即可, 注意整体求解.9.(5分)(2020•四川)设实数x, y满足, 则xy的最大值为()A .B.C.12 D.16考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域, 利用基本不等式进行求解即可.解答:解:作出不等式组对应的平面区域如图;则动点P在BC上运动时, xy取得最大值,此时2x+y=10,则xy==,当且仅当2x=y=5,即x=, y=5时, 取等号,故xy的最大值为,故选:A点评:本题主要考查线性规划以及基本不等式的应用, 利用数形结合是解决本题的关键.10.(5分)(2020•四川)设直线l与抛物线y2=4x相交于A、B两点, 与圆(x﹣5)2+y2=r2(r>0)相切于点M, 且M为线段AB的中点, 若这样的直线l恰有4条, 则r 的取值范围是()A .(1, 3)B.(1, 4)C.(2, 3)D.(2, 4)考点:抛物线的简单性质;直线与圆的位置关系.专题:综合题;直线与圆;圆锥曲线的定义、性质与方程.分析:先确定M的轨迹是直线x=3, 代入抛物线方程可得y=±2, 所以交点与圆心(5, 0)的距离为4, 即可得出结论.解答:解:设A(x1, y1), B(x2, y2), M(x0, y0), 则斜率存在时, 设斜率为k, 则y12=4x1, y22=4x2, 利用点差法可得ky0=2,因为直线与圆相切, 所以=﹣, 所以x0=3,即M的轨迹是直线x=3,代入抛物线方程可得y=±2, 所以交点与圆心(5, 0)的距离为4,所以2<r<4时, 直线l有2条;斜率不存在时, 直线l有2条;所以直线l恰有4条, 2<r<4,故选:D.点评:本题考查直线与抛物线、圆的位置关系, 考查点差法, 考查学生分析解决问题的能力, 属于中档题.二、填空题:本大题共5小题, 每小题5分, 共25分.11.(5分)(2020•四川)设i是虚数单位, 则复数i﹣=2i.考点:复数代数形式的混合运算.专题:数系的扩充和复数.分析:直接利用复数的运算法则求解即可.解答:解:复数i﹣=i﹣=i+i=2i.故答案为:2i.点评:本题考查复数的基本运算, 考查计算能力.12.(5分)(2020•四川)lg0.01+log216的值是2.考点:对数的运算性质.专函数的性质及应用.题:分析:直接利用对数的运算法则化简求解即可.解答:解:lg0.01+log216=﹣2+4=2.故答案为:2.点评:本题考查对数的运算法则的应用, 考查计算能力.13.(5分)(2020•四川)已知sinα+2cosα=0, 则2sinαcosα﹣cos2α的值是﹣1.考点:同角三角函数基本关系的运用.专题:三角函数的求值.分析:已知等式移项变形求出tanα的值, 原式利用同角三角函数间的基本关系化简, 将tanα的值代入计算即可求出值.解答:解:∵sinα+2cosα=0, 即sinα=﹣2cosα,∴tanα=﹣2,则原式=====﹣1,故答案为:﹣1点评:此题考查了同角三角函数基本关系的运用, 熟练掌握基本关系是解本题的关键.14.(5分)(2020•四川)在三棱住ABC﹣A1B1C1中, ∠BAC=90°, 其正视图和侧视图都是边长为1的正方形, 俯视图是直角边长为1的等腰直角三角形, 设M, N, P分别是AB, BC, B1C1的中点, 则三棱锥P﹣A1MN的体积是.考点:棱柱、棱锥、棱台的体积.专题:空间位置关系与距离.分析:判断三视图对应的几何体的形状, 画出图形, 利用三视图的数据, 求解三棱锥P﹣A1MN的体积即可.解答:解:由三视图可知, 可知几何体的图形如图:几何体是底面为等腰直角三角形直角边长为1, 高为1的直三棱柱, 所求三棱锥的高为NP=1,底面AMN的面积是底面三角形ABC的,所求三棱锥P﹣A1MN的体积是:=.故答案为:.点评:本题考查三视图与直观图的关系, 组作出几何体的直观图是解题的关键之一, 考查几何体的体积的求法, 考查空间想象能力以及计算能力.15.(5分)(2020•四川)已知函数f(x)=2x, g(x)=x2+ax(其中a∈R).对于不相等的实数x1、x2, 设m=, n=.现有如下命题:①对于任意不相等的实数x1、x2, 都有m>0;②对于任意的a及任意不相等的实数x1、x2, 都有n>0;③对于任意的a, 存在不相等的实数x1、x2, 使得m=n;④对于任意的a, 存在不相等的实数x1、x2, 使得m=﹣n.其中的真命题有①④(写出所有真命题的序号).考点:命题的真假判断与应用.专题:函数的性质及应用.分析:运用指数函数的单调性, 即可判断①;由二次函数的单调性, 即可判断②;通过函数h(x)=x2+ax﹣2x, 求出导数判断单调性, 即可判断③;通过函数h(x)=x2+ax+2x, 求出导数判断单调性, 即可判断④.解答:解:对于①, 由于2>1, 由指数函数的单调性可得f(x)在R上递增, 即有m>0, 则①正确;对于②, 由二次函数的单调性可得g(x)在(﹣∞, ﹣)递减, 在(,+∞)递减, 则n>0不恒成立,则②错误;对于③, 由m=n, 可得f(x1)﹣f(x2)=g(x1)﹣g(x2), 考查函数h(x)=x2+ax﹣2x,h′(x)=2x+a﹣2x ln2, 当a→﹣∞, h′(x)小于0, h(x)单调递减, 则③错误;对于④, 由m=﹣n, 可得f(x1)﹣f(x2)=﹣[g(x1)﹣g(x2)], 考查函数h(x)=x2+ax+2x,h′(x)=2x+a+2x ln2, 对于任意的a, h′(x)不恒大于0或小于0, 则④正确.故答案为:①④.点评:本题考查函数的单调性及运用, 注意运用指数函数和二次函数的单调性,以及导数判断单调性是解题的关键.三、解答题:本大题共6小题, 共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)(2020•四川)设数列{a n}(n=1, 2, 3…)的前n项和S n, 满足S n=2a n ﹣a1, 且a1, a2+1, a3成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列的前n项和为T n, 求T n.考点:等差数列的前n项和;等差数列的通项公式.专题:等差数列与等比数列.分析:(Ⅰ)由条件S n满足S n=2a n﹣a1, 求得数列{a n}为等比数列, 且公比q=2;再根据a1, a2+1, a3成等差数列, 求得首项的值, 可得数列{a n}的通项公式.(Ⅱ)由于=, 利用等比数列的前n项和公式求得数列的前n项和T n.解答:解:(Ⅰ)由已知S n=2a n﹣a1, 有a n=S n﹣S n﹣1=2a n﹣2a n﹣1(n≥2),即a n=2a n﹣1(n≥2),从而a2=2a1, a3=2a2=4a1.又因为a1, a2+1, a3成等差数列, 即a1+a3=2(a2+1)所以a1+4a1=2(2a1+1),解得:a1=2.所以, 数列{a n}是首项为2, 公比为2的等比数列.故a n=2n.(Ⅱ)由(Ⅰ)得=,所以T n=+++…+==1﹣.点评:本题主要考查数列的前n项和与第n项的关系, 等差、等比数列的定义和性质, 等比数列的前n项和公式, 属于中档题.17.(12分)(2020•四川)一辆小客车上有5名座位, 其座号为1, 2, 3, 4, 5, 乘客P1, P2, P3, P4, P5的座位号分别为1, 2, 3, 4, 5.他们按照座位号顺序先后上车, 乘客P1因身体原因没有坐自己1号座位, 这时司机要求余下的乘客按以下规则就坐:如果自己的座位空着, 就只能坐自己的座位.如果自己的座位已有乘客就坐, 就在这5个座位的剩余空位中选择座位.(Ⅰ)若乘客P1坐到了3号座位, 其他乘客按规则就座, 则此时共有4种坐法.下表给出其中两种坐法, 请填入余下两种坐法(将乘客就坐的座位号填入表中空格处)乘客P1P2P3P4P5座位号 3 2 1 4 53 245 13241532541(Ⅱ)若乘客P1坐到了2号座位, 其他乘客按规则就坐, 求乘客P1坐到5号座位的概率.考点:概率的应用.专题:应用题;概率与统计.分析:(Ⅰ)根据题意, 可以完成表格;(Ⅱ)列表, 确定所有可能的坐法, 再求出乘客P1坐到5号座位的概率.解答:解:(Ⅰ)余下两种坐法:乘客P1P2P3P4P5座位号 3 2 1 4 53 245 13 24 1 53 2 54 1(Ⅱ)若乘客P1坐到了2号座位, 其他乘客按规则就坐, 则所有可能的坐法可用下表表示为乘客P1P2P3P4P5座位号 2 1 3 4 52 3 1 4 52 3 4 1 52 3 4 5 12 3 5 4 12 43 1 52 43 5 12 534 1于是, 所有可能的坐法共8种,设“乘客P1坐到5号座位”为事件A, 则事件A中的基本事件的个数为4,所以P(A)==.答:乘客P1坐到5号座位的概率是.点评:本题考查概率的运用, 考查学生的计算能力, 列表确定基本事件的个数是关键.18.(12分)(2020•四川)一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(Ⅰ)请按字母F, G, H标记在正方体相应地顶点处(不需要说明理由)(Ⅱ)判断平面BEG与平面ACH的位置关系.并说明你的结论.(Ⅲ)证明:直线DF⊥平面BEG.考点:直线与平面垂直的判定;平面与平面之间的位置关系.专题:空间位置关系与距离.分析:(Ⅰ)直接标出点F, G, H的位置.(Ⅱ)先证BCHE为平行四边形, 可知BE∥平面ACH, 同理可证BG∥平面ACH, 即可证明平面BEG∥平面ACH.(Ⅲ)连接FH, 由DH⊥EG, 又DH⊥EG, EG⊥FH, 可证EG⊥平面BFHD, 从而可证DF⊥EG, 同理DF⊥BG, 即可证明DF⊥平面BEG.解答:解:(Ⅰ)点F, G, H的位置如图所示.(Ⅱ)平面BEG∥平面ACH, 证明如下:∵ABCD﹣EFGH为正方体,∴BC∥FG, BC=EH,又FG∥EH, FG=EH,∴BC∥EH, BC=EH,∴BCHE为平行四边形.∴BE∥CH,又CH⊂平面ACH, BE⊄平面ACH,∴BE∥平面ACH,同理BG∥平面ACH,又BE∩BG=B,∴平面BEG∥平面ACH.(Ⅲ)连接FH,∵ABCD﹣EFGH为正方体,∴DH⊥EG,又∵EG⊂平面EFGH,∴DH⊥EG,又EG⊥FH, EG∩FH=O,∴EG⊥平面BFHD,又DF⊂平面BFHD,∴DF⊥EG,同理DF⊥BG,又∵EG∩BG=G, ∴DF⊥平面BEG.点评:本题主要考查了简单空间图形的直观图、空间线面平行与垂直的判定与性质等基础知识, 考查了空间想象能力和推理论证能力, 属于中档题.19.(12分)(2020•四川)已知A、B、C为△ABC的内角, tanA, tanB是关于方程x2+px﹣p+1=0(p∈R)两个实根.(Ⅰ)求C的大小(Ⅱ)若AB=3, AC=, 求p的值.考点:正弦定理的应用;两角和与差的正切函数.专题:函数的性质及应用;解三角形.分析:(Ⅰ)由判别式△=3p2+4p﹣4≥0, 可得p≤﹣2, 或p≥, 由韦达定理,有tanA+tanB=﹣p, tanAtanB=1﹣p, 由两角和的正切函数公式可求tanC=﹣tan(A+B)=, 结合C的范围即可求C的值.(Ⅱ)由正弦定理可求sinB==, 解得B, A, 由两角和的正切函数公式可求tanA=tan75°, 从而可求p=﹣(tanA+tanB)的值.解答:解:(Ⅰ)由已知, 方程x2+px﹣p+1=0的判别式:△=(p)2﹣4(﹣p+1)=3p2+4p﹣4≥0,所以p≤﹣2, 或p≥.由韦达定理, 有tanA+tanB=﹣p, tanAtanB=1﹣p.所以, 1﹣tanAtanB=1﹣(1﹣p)=p≠0,从而tan(A+B)==﹣=﹣.所以tanC=﹣tan(A+B)=,所以C=60°.(Ⅱ)由正弦定理, 可得sinB===,解得B=45°, 或B=135°(舍去).于是, A=180°﹣B﹣C=75°.则tanA=tan75°=tan(45°+30°)===2+.所以p=﹣(tanA+tanB)=﹣(2+)=﹣1﹣.点评:本题主要考查了和角公式、诱导公式、正弦定理等基础知识, 考查了运算求解能力, 考查了函数与方程、化归与转化等数学思想的应用, 属于中档题.20.(13分)(2020•四川)如图, 椭圆E:=1(a>b>0)的离心率是, 点P(0, 1)在短轴CD上, 且•=﹣1(Ⅰ)求椭圆E的方程;(Ⅱ)设O为坐标原点, 过点P的动直线与椭圆交于A、B两点.是否存在常数λ, 使得•+λ•为定值?若存在, 求λ的值;若不存在, 请说明理由.考点:直线与圆锥曲线的综合问题.专题:向量与圆锥曲线;圆锥曲线的定义、性质与方程.分析:(Ⅰ)通过e=、•=﹣1, 计算即得a=2、b=, 进而可得结论;(Ⅱ)分情况对直线AB斜率的存在性进行讨论:①当直线AB的斜率存在时,联立直线AB与椭圆方程, 利用韦达定理计算可得当λ=1时•+λ•=﹣3;②当直线AB的斜率不存在时, •+λ•=﹣3.解答:解:(Ⅰ)根据题意, 可得C(0, ﹣b), D(0, b), 又∵P(0, 1), 且•=﹣1,∴, 解得a=2, b=,∴椭圆E的方程为:+=1;(Ⅱ)结论:存在常数λ=1, 使得•+λ•为定值﹣3.理由如下:对直线AB斜率的存在性进行讨论:①当直线AB的斜率存在时, 设直线AB的方程为y=kx+1,A(x1, y1), B(x2, y2),联立, 消去y并整理得:(1+2k2)x2+4kx﹣2=0,∵△=(4k)2+8(1+2k2)>0,∴x1+x2=﹣, x1x2=﹣,从而•+λ•=x1x2+y1y2+λ[x1x2+(y1﹣1)(y2﹣1)]=(1+λ)(1+k2)x1x2+k(x1+x2)+1==﹣﹣λ﹣2.∴当λ=1时, ﹣﹣λ﹣2=﹣3,此时•+λ•=﹣3为定值;②当直线AB的斜率不存在时, 直线AB即为直线CD,此时•+λ•=+=﹣2﹣1=﹣3;故存在常数λ=1, 使得•+λ•为定值﹣3.点评:本题考查椭圆的标准方程、直线方程等基础知识, 考查推理论证能力、运算求解能力, 考查数形结合、化归与转化、特殊与一般、分类与整合等数学思想, 注意解题方法的积累, 属于难题.21.(14分)(2020•四川)已知函数f(x)=﹣2xlnx+x2﹣2ax+a2, 其中a>0.(Ⅰ)设g(x)是f(x)的导函数, 讨论g(x)的单调性;(Ⅱ)证明:存在a∈(0, 1), 使得f(x)≥0恒成立, 且f(x)=0在区间(1, +∞)内有唯一解.考点:利用导数研究函数的极值;利用导数研究函数的单调性.专题:导数的综合应用.分析:(I)函数f(x)=﹣2xlnx+x2﹣2ax+a2, 其中a>0.可得:x>0.g(x)=f′(x)=2(x﹣1﹣lnx﹣a), 可得g′(x)==, 分别解出g′(x)<0, g′(x)>0, 即可得出单调性.(II)由f′(x)=2(x﹣1﹣lnx﹣a)=0, 可得a=x﹣1﹣lnx, 代入f(x)可得:u(x)=(1+lnx)2﹣2xlnx, 利用函数零点存在定理可得:存在x0∈(1, e), 使得u(x0)=0, 令a0=x0﹣1﹣lnx0=v(x0), 再利用导数研究其单调性即可得出.解答:(I)解:函数f(x)=﹣2xlnx+x2﹣2ax+a2, 其中a>0.可得:x>0.g(x)=f′(x)=2(x﹣1﹣lnx﹣a), ∴g′(x)==,当0<x<1时, g′(x)<0, 函数g(x)单调递减;当1<x时, g′(x)>0, 函数g(x)单调递增.(II)证明:由f′(x)=2(x﹣1﹣lnx﹣a)=0, 解得a=x﹣1﹣lnx,令u(x)=﹣2xlnx+x2﹣2(x﹣1﹣lnx)x+(x﹣1﹣lnx)2=(1+lnx)2﹣2xlnx,则u(1)=1>0, u(e)=2(2﹣e)<0,∴存在x0∈(1, e), 使得u(x0)=0,令a0=x0﹣1﹣lnx0=v(x0), 其中v(x)=x﹣1﹣lnx(x≥1),由v′(x)=1﹣≥0, 可得:函数v(x)在区间(1, +∞)上单调递增.∴0=v(1)<a0=v(x0)<v(e)=e﹣2<1, 即a0∈(0, 1), 当a=a0时, 有f′(x0)=0, f(x0)=u(x0)=0.再由(I)可知:f′(x)在区间(1, +∞)上单调递增,当x∈(1, x0)时, f′(x)<0, ∴f(x)>f(x0)=0;当x∈(x0, +∞)时, f′(x)>0, ∴f(x)>f(x0)=0;又当x∈(0, 1], f(x)=﹣2xlnx>0.故当x∈(0, +∞)时, f(x)≥0恒成立.综上所述:存在a∈(0, 1), 使得f(x)≥0恒成立, 且f(x)=0在区间(1, +∞)内有唯一解.点评:本题考查了导数的运算法则、函数的零点、利用导数研究函数的单调性极值, 考查了分类讨论思想方法、推理能力与计算能力, 属于难题.2020年四川省高考数学试卷(文科)一、选择题:本大题共10小题, 每小题5分, 共50分.在每小题给出的四个选项中, 只有一个是符合题目要求的.1.(5分)(2020•四川)设集合A={x|﹣1<x<2}, 集合B={x|1<x<3}, 则A∪B=()A.{x|﹣1<x<3} B.{x|﹣1<x<1} C.{x|1<x<2} D.{x|2<x<3}2.(5分)(2020•四川)设向量=(2, 4)与向量=(x, 6)共线, 则实数x=()A.2B.3C.4D.63.(5分)(2020•四川)某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异, 拟从这三个年级中按人数比例抽取部分学生进行调查, 则最合理的抽样方法是()A.抽签法B.系统抽样法C.分层抽样法D.随机数法4.(5分)(2020•四川)设a, b为正实数, 则“a>b>1”是“log2a>log2b>0”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件5.(5分)(2020•四川)下列函数中, 最小正周期为π且图象关于原点对称的函数是()A.y=cos(2x+)B.y=sin(2x+)C.y=sin2x+cos2x D.y=sinx+cosx6.(5分)(2020•四川)执行如图所示的程序框图, 输出s的值为()A.﹣B.C.﹣D.7.(5分)(2020•四川)过双曲线x2﹣=1的右焦点且与x轴垂直的直线, 交该双曲线的两条渐近线于A、B两点, 则|AB|=()A.B.2C.6D.48.(5分)(2020•四川)某食品保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=e kx+b(e=2.718…为自然对数的底数, k, b为常数).若该食品在0℃的保鲜时间是192小时, 在22℃的保鲜时间是48小时, 则该食品在33℃的保鲜时间是()A.16小时B.20小时C.24小时D.28小时9.(5分)(2020•四川)设实数x, y满足, 则xy的最大值为()A.B.C.12 D.1610.(5分)(2020•四川)设直线l与抛物线y2=4x相交于A、B两点, 与圆(x﹣5)2+y2=r2(r>0)相切于点M, 且M为线段AB的中点, 若这样的直线l恰有4条, 则r 的取值范围是()A.(1, 3)B.(1, 4)C.(2, 3)D.(2, 4)二、填空题:本大题共5小题, 每小题5分, 共25分.11.(5分)(2020•四川)设i是虚数单位, 则复数i﹣=.12.(5分)(2020•四川)lg0.01+log216的值是.13.(5分)(2020•四川)已知sinα+2cosα=0, 则2sinαcosα﹣cos2α的值是.14.(5分)(2020•四川)在三棱住ABC﹣A1B1C1中, ∠BAC=90°, 其正视图和侧视图都是边长为1的正方形, 俯视图是直角边长为1的等腰直角三角形, 设M, N, P分别是AB, BC, B1C1的中点, 则三棱锥P﹣A1MN的体积是.15.(5分)(2020•四川)已知函数f(x)=2x, g(x)=x2+ax(其中a∈R).对于不相等的实数x1、x2, 设m=, n=.现有如下命题:①对于任意不相等的实数x1、x2, 都有m>0;②对于任意的a及任意不相等的实数x1、x2, 都有n>0;③对于任意的a, 存在不相等的实数x1、x2, 使得m=n;④对于任意的a, 存在不相等的实数x1、x2, 使得m=﹣n.其中的真命题有(写出所有真命题的序号).三、解答题:本大题共6小题, 共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)(2020•四川)设数列{a n}(n=1, 2, 3…)的前n项和S n, 满足S n=2a n ﹣a1, 且a1, a2+1, a3成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列的前n项和为T n, 求T n.17.(12分)(2020•四川)一辆小客车上有5名座位, 其座号为1, 2, 3, 4, 5, 乘客P1, P2, P3, P4, P5的座位号分别为1, 2, 3, 4, 5.他们按照座位号顺序先后上车, 乘客P1因身体原因没有坐自己1号座位, 这时司机要求余下的乘客按以下规则就坐:如果自己的座位空着, 就只能坐自己的座位.如果自己的座位已有乘客就坐, 就在这5个座位的剩余空位中选择座位.(Ⅰ)若乘客P1坐到了3号座位, 其他乘客按规则就座, 则此时共有4种坐法.下表给出其中两种坐法, 请填入余下两种坐法(将乘客就坐的座位号填入表中空格处)乘客P1P2P3P4P5座位号 3 2 1 4 53 245 1(Ⅱ)若乘客P1坐到了2号座位, 其他乘客按规则就坐, 求乘客P1坐到5号座位的概率.18.(12分)(2020•四川)一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(Ⅰ)请按字母F, G, H标记在正方体相应地顶点处(不需要说明理由)(Ⅱ)判断平面BEG与平面ACH的位置关系.并说明你的结论.(Ⅲ)证明:直线DF⊥平面BEG.19.(12分)(2020•四川)已知A、B、C为△ABC的内角, tanA, tanB是关于方程x2+px﹣p+1=0(p∈R)两个实根.(Ⅰ)求C的大小(Ⅱ)若AB=3, AC=, 求p的值.21.(14分)(2020•四川)已知函数f(x)=﹣2xlnx+x2﹣2ax+a2, 其中a>0.(Ⅰ)设g(x)是f(x)的导函数, 讨论g(x)的单调性;(Ⅱ)证明:存在a∈(0, 1), 使得f(x)≥0恒成立, 且f(x)=0在区间(1, +∞)内有唯一解.20.(13分)(2020•四川)如图, 椭圆E:=1(a>b>0)的离心率是, 点P(0, 1)在短轴CD上, 且•=﹣1(Ⅰ)求椭圆E的方程;(Ⅱ)设O为坐标原点, 过点P的动直线与椭圆交于A、B两点.是否存在常数λ, 使得•+λ•为定值?若存在, 求λ的值;若不存在, 请说明理由.。