勾股定理单元测试题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题

1.如图:在△ABC 中,∠B=45°,D 是AB 边上一点,连接CD ,过A 作AF ⊥CD 交CD 于G ,交BC 于点F .已知AC=CD ,CG=3,DG=1,则下列结论正确的是( )

①∠ACD=2∠FAB ②27ACD S ∆= ③272CF

=- ④ AC=AF A .①②③ B .①②③④ C .②③④ D .①③④

2.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由三角形较长直角边长为a ,较短直角边长为b ,若(a +b )2=21,大正方形的面积为13,则小正方形的面积为( )

A .3

B .4

C .5

D .6

3.如图,在△ABC 中,∠BAC =90°,AC =2AB ,点D 是AC 的中点,将一块锐角为45°的直角三角板ADE 如图放置,连接BE ,EC .下列判

断:①△ABE ≌△DCE ;②BE =EC ;③BE ⊥EC ;④EC =3DE .其中正确的有( )

A .1个

B .2个

C .3个

D .4个

4.如图,Rt △ABC 中,∠ACB =90°,∠ABC =60°,BC =5,AC =53,CB 的反向延长线上有一动点D ,以AD 为边在右侧作等边三角形,连CE ,CE 最短长为( )

A .5

B .53

C .532

D .534

5.如图,A 、B 两点在直线l 的两侧,点A 到直线l 的距离AC=4,点B 到直线l 的距离BD=2,且CD=6,P 为直线CD 上的动点, 则PA PB -的最大值是( )

A .62

B .22

C .210

D .6

6.如图,已知AB AC =,则数轴上C 点所表示的数为( )

A .3-

B .5-

C .13-

D .15-

7.勾股定理是“人类最伟大的十个科学发现之一”.我国对勾股定理的证明是由汉代的赵爽在注解《周髀算经》时给出的,他用来证明勾股定理的图案被称为“赵爽弦图”.2002年在北京召开的国际数学大会选它作为会徽.下列图案中是“赵爽弦图”的是( )

A .

B .

C .

D .

8.下列四组线段中,可以构成直角三角形的是( )

A .1、2、3

B .2、3、4

C .1、2、3

D .4、5、6

9.如图,在ABC ∆中,D 、E 分别是BC 、AC 的中点.已知90ACB ∠=︒,4BE =,7AD =,则AB 的长为( )

A .10

B .53

C .213

D .1510.已知三角形的两边分别为3、4,要使该三角形为直角三角形,则第三边的长为( )

A .5

B 7

C .57

D .3或4 二、填空题

11.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方

形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为S1,S2,S3,若S 1+S 2+S 3=10,则S2的值是_________.

12.如图,在平面直角坐标系中,等腰直角三角形OA 1A 2的直角边OA 1在y 轴的正半轴上,且OA 1=A 1A 2=1,以OA 2为直角边作第二个等腰直角三角形OA 2A 3,以OA 3为直角边作第三个等腰直角三角形OA 3A 4,…,依此规律,得到等腰直角三角形OA 2018A 2019,则点A 2019的坐标为________.

13.如图,在矩形ABCD 中,AB =6,AD =8,矩形内一动点P 使得S △PAD =13

S 矩形ABCD ,则点P 到点A 、D 的距离之和PA +PD 的最小值为_____.

14.在△ABC 中,若222225,75a b a b c -+===,,则最长边上的高为_____.

15.若ABC ∆为直角三角形,90B ∠=︒,6AB =,8BC =,点D 在斜边AC 上,且2AC BD =,则AD 的长为__________.

16.如图在三角形纸片ABC 中,已知∠ABC =90º,AC =5,BC=4,过点A 作直线l 平行于BC ,折叠三角形纸片ABC ,使直角顶点B 落在直线l 上的点P 处,折痕为MN ,当点P 在直线l 上移动时,折痕的端点M 、N 也随之移动,若限定端点M 、N 分别在AB 、BC 边上

(包括端点)移动,则线段AP 长度的最大值与最小值的差为________________.

17.如图,在锐角ABC ∆中,2AB =,60BAC ∠=,BAC ∠的平分线交BC 于点D ,M ,N 分别是AD 和AB 上的动点,则BM MN +的最小值是______.

18.如图,△ABC 中,∠ABC =45°,∠BCA =30°,点D 在BC 上,点E 在△ABC 外,且AD =AE =CE ,AD ⊥AE ,则AB BD

的值为____________.

19.四边形ABCD 中AB =8,BC =6,∠B =90°,AD =CD =52ABCD 的面积是_______.

20.在△ABC 中,∠A=30°,∠B=90°,AC=8,点 D 在边 AB , 且3,点 P 是△ABC 边上的一个动点,若 AP=2PD 时,则 PD 的长是____________.

三、解答题

21.如图,,90,8,6,,ABC B AB cm BC cm P Q ︒

∆∠===是边上的两点,点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 沿B C A →→运动,且速度为每秒2cm ,它们同时出发,设出发的时间为t 秒.

(1)出发2秒后,求线段PQ 的长;

(2)求点Q 在BC 上运动时,出发几秒后,PQB 是等腰三角形;

(3)点Q 在边CA 上运动时,求能使BCQ ∆成为等腰三角形的运动时间.

相关文档
最新文档