机械振动与机械波
大学物理机械振动和机械波ppt课件

2024/1/26
12
03
驻波形成条件及其性质分析
Chapter
2024/1/26
13
驻波产生条件及特点描述
产生条件
两列沿相反方向传播、振幅相同、频 率相同的波叠加。
特点描述
波形不传播,能量在波节和波腹之间 来回传递,形成稳定的振动形态。
2024/1/26
14
驻波能量分布规律探讨
能量分布
驻波的能量主要集中在波腹处,波节处能量为零。
2024/1/26
16
04
多普勒效应原理及应用举例
Chapter
2024/1/26
17
多普勒效应定义及公式推导
2024/1/26
定义
当波源与观察者之间存在相对运动时,观察者接收到的波的频率会发生变化,这种现象 称为多普勒效应。
公式推导
设波源发射频率为f0,波速为v,观察者与波源相对运动速度为vr,则观察者接收到的 频率为f=(v±vr)/v×f0,其中“+”号表示观察者向波源靠近,“-”号表示观察者远离
Chapter
2024/1/26
25
非线性振动概念引入和分类
非线性振动定义
描述系统振动特性不满足叠加原理的振动现象。
分类
根据振动性质可分为自治、非自治、周期激励和 随机激励等类型。
与线性振动的区别
线性振动满足叠加原理,而非线性振动则不满足 。
2024/1/26
26Biblioteka 混沌理论基本概念阐述混沌定义
确定性系统中出现的内在随 机性现象。
受迫振动
物体在周期性外力作用下所发生的振动。
共振现象
当外力的频率与物体的固有频率相等时,物体的振幅达到最大的现象。
高中物理知识点之机械振动与机械波

高中物理知识点之机械振动与机械波机械振动与机械波是高中物理中的重要知识点,涉及到物理学中的振动和波动的相关理论及应用。
下面将从机械振动的基本概念、机械振动的特性、机械波的传播和机械波的特性等方面进行详细介绍。
一、机械振动的基本概念机械振动是物体在作用力的驱动下沿其中一轴向或其中一平面上来回往复运动的现象。
常见的机械振动有单摆振动、弹簧振动等。
1.单摆振动:单摆是由一根细线或细杆悬挂的可以在竖直平面内摆动的物体。
摆动过程中,单摆的重心沿圆弧形轨迹在竖直平面内来回运动。
2.弹簧振动:弹簧振动是指将一端固定,另一端悬挂质点的弹簧在作用力的驱动下做往复振动的现象。
弹簧振动有线性振动和简谐振动两种形式。
二、机械振动的特性1.幅度:振动中物体运动的最大偏离平衡位置的距离。
2.周期:振动一次所需要的时间,记为T。
3.频率:振动在单位时间内所完成的周期数,记为f。
频率和周期之间的关系为f=1/T。
4.角频率:单位时间内振动角度的增量,记为ω。
角频率和频率之间的关系为ω=2πf。
5.相位:刻画振动状态的物理量。
任何时刻振动的状态都可由物体与参照物的相对位移和相对速度来描述。
三、机械波的传播机械波是指质点或介质在空间传播的波动现象。
按传播方向的不同,机械波可以分为纵波和横波。
1.纵波:波动传播的方向与波的传播方向一致。
纵波的传播特点是质点沿着波动方向做往复运动,如声波就是一种纵波。
2.横波:波动传播的方向与波的传播方向垂直。
横波的传播特点是质点沿波动方向做往复运动,如水波就是一种横波。
四、机械波的特性1.波长:波的传播方向上,相邻两个相位相同的点之间的距离。
记为λ。
2.波速:波的传播速度。
波速和频率、波长之间的关系为v=λf。
3.频率:波动现象中,单位时间内波的传输周期数。
记为f。
4.能量传递:机械波在传播过程中,能量从一个质点传递到另一个质点,并随着传播的距离逐渐减弱。
5.反射和折射:机械波在传播过程中,遇到不同介质的边界时会发生反射和折射现象。
机械振动和机械波知识点总结分析

机械振动和机械波一、知识构造二、重点知识回忆1机械振动〔一〕机械振动物体〔质点〕在*一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置的力即回复力。
回复力是以效果命名的力,它可以是一个力或一个力的分力,也可以是几个力的合力。
产生振动的必要条件是:a、物体离开平衡位置后要受到回复力作用。
b、阻力足够小。
〔二〕简谐振动1. 定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。
简谐振动是最简单,最根本的振动。
研究简谐振动物体的位置,常常建立以中心位置〔平衡位置〕为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移。
因此简谐振动也可说是物体在跟位移大小成正比,方向跟位移相反的回复力作用下的振动,即F=-k*,其中“-〞号表示力方向跟位移方向相反。
2. 简谐振动的条件:物体必须受到大小跟离开平衡位置的位移成正比,方向跟位移方向相反的回复力作用。
3. 简谐振动是一种机械运动,有关机械运动的概念和规律都适用,简谐振动的特点在于它是一种周期性运动,它的位移、回复力、速度、加速度以及动能和势能〔重力势能和弹性势能〕都随时间做周期性变化。
〔三〕描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情况常引入下面几个物理量。
1. 振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“A 〞表示,它是标量,为正值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动在振动过程中,动能和势能相互转化而总机械能守恒。
2. 周期和频率,周期是振子完成一次全振动的时间,频率是一秒钟振子完成全振动的次数。
振动的周期T 跟频率f 之间是倒数关系,即T=1/f 。
振动的周期和频率都是描述振动快慢的物理量,简谐振动的周期和频率是由振动物体本身性质决定的,与振幅无关,所以又叫固有周期和固有频率。
〔四〕单摆:摆角小于5°的单摆是典型的简谐振动。
61 第十三章 第2讲 机械波

波形的隐含 而其余信息均处于隐含状态。这样,波形就有多种情况,形成波动
性形成多解 问题的多解性。
2.解决波的多解问题的一般思路
规律方法
求解波的图像与振动图像综合问题的技巧
【针对训练】 1.【波的图像与振动图像的综合】 (2021·辽宁高考)一列沿x轴负方向传播的简谐横波,t=2 s时的波形如图 (a)所示,x=2 m处质点的振动图像如图(b)所示,则波速可能是
√A.15 m/s
B.25 m/s
C.35 m/s
D.45 m/s
3.【由两个时刻的波的图像判定质点的振动图像】 (多选)(2021·山东等级考)一列简谐横波沿x轴传播,如图所示,实线为t1 =2 s时的波形图,虚线为t2=5 s时的波形图。以下关于平衡位置在O处 质点的振动图像,可能正确的是
√ √
AC [机械波的传播方向不确定,所以需要考虑机械波传播方向的不确定
2.波的传播方向与质点振动方向的互判
沿波的传播方向,“上坡”时质点向下 “上下坡”法
振动,“下坡”时质点向上振动
“同侧”法
波形图上某点表示传播方向和振动方 向的箭头在图线同侧
“微平移”法
将波形沿传播方向进行微小的平移, 再由对应同一x坐标的两波形曲线上的 点来判断质点振动方向
【典例精析】 考向 1 波的形成及波速公式的应用 例 1 (2022·北京高考)在如图所示的 xOy 坐标系中,一条弹性绳沿 x 轴放 置,图中小黑点代表绳上的质点,相邻质点的间距为 a。t=0 时,x=0 处 的质点 P0 开始沿 y 轴做周期为 T、振幅为 A 的简谐运动。t=34 T 时的波形 如图所示。下列说法正确的是
机械振动及机械波知识点(全)

机械波的产生和传播知识点一:波的形成和传播〔一〕介质能够传播振动的媒介物叫做介质。
〔如:绳、弹簧、水、空气、地壳等〕〔二〕机械波机械振动在介质中的传播形成机械波。
〔三〕形成机械波的条件〔1〕要有 ;〔2〕要有能传播振动的 。
注意:有机械波 有机械振动,而有机械振动 能产生机械波。
〔四〕机械波的传播特征〔1〕机械波传播的仅仅是 这种运动形式,介质本身并不随波 。
沿波的传播方向上各质点的振动都受它前一个质点的带动而做 振动,因此波动的过程是介质中相邻质点间依次“带动”、由近及远相继振动起来的过程,是将这种运动形式在介质中依次向外传播的过程。
对简谐波而言各质点振动的振幅和周期都 ,各质点仅在各自的 位置附近振动,并 随波动过程的发生而沿波传播方向发生迁移。
〔2〕波是传递能量的一种运动形式。
波动的过程也是由于相邻质点间由近及远地依次做功的过程,所以波动过程也是能量由近及远的传播过程。
因此机械波也是传播 的一种形式。
〔五〕波的分类波按照质点 方向和波的 方向的关系,可分为:〔1〕横波:质点的振动方向与波的传播方向 的波,其波形为 相间的波。
凸起的最高处叫 ,凹下的最底处叫 。
〔2〕纵波:质点的振动方向与波的传播方向 的波,其波形为 相间的波。
质点分布最密的地方叫作 ,质点分布最疏的地方叫作 。
知识点二:描述机械波的物理量知识〔一〕波长〔λ〕两个 的、在振动过程中对 位置的位移总是相等的质点间的距离叫波长。
在横波中,两个 的波峰〔或波谷〕间的距离等于波长。
在纵波中,两个 的密部〔或疏部〕间的距离等于波长。
振动在一个 内在介质中传播的距离等于一个波长。
〔二〕频率〔f 〕波的频率由 决定,一列波,介质中各质点振动频率都相同,而且都等于波源的频率。
在传播过程中,只要波源的振动频率一定,则无论在什么介质中传播,波的频率都不变。
〔三〕波速〔v 〕 振动在介质中传播的速度,指单位时间内振动向外传播的距离,即x v t∆=∆。
机械振动和机械波知识点总结

机械振动和机械波知识点总结一、机械振动的基本概念1.简谐振动:具有恢复力的物体围绕平衡位置作周而复始的往复运动,其运动规律满足简谐振动的规律。
2.振幅:振动的最大偏离量,表示振动的幅度大小。
3.周期:振动完成一次往复运动所经历的时间。
4.频率:单位时间内振动的循环次数。
5.角频率:单位时间内振动的循环角度。
6.动能和势能:振动物体在做往复运动过程中,动能和势能不断转化。
7.谐振:当外力与物体的振动频率相同时,产生共振现象,能量传递效率最高。
二、机械振动的描述方法1.运动方程:描述物体随时间变化的位置。
2.振动曲线:以时间为横轴,位置或速度为纵轴,绘制出的曲线。
3.波形图:以距离为横轴,垂直方向的位移、压强或密度为纵轴,绘制出的曲线。
三、机械振动的特性1.振动的幅度、周期和频率可以通过测量来确定。
2.振动的速度和加速度随时间变化而变化,速度与位置之间呈正弦关系,加速度与位置之间呈负弦关系。
3.振动的能量在物体各个部分之间以波动形式传递,不断发生能量转化。
4.振动物体的相对稳定位置是平衡位置,物体相对平衡位置的偏离量越大,能量传递越快,振幅越大。
四、机械波的基本概念1.机械波是一种能量的传递方式,通过介质中的相互作用使得能量沿介质传播。
2.波的传播速度与介质的性质有关,弹性固体中传播速度最大,液体次之,气体最小。
3.机械波分为横波和纵波。
横波的传播方向与振动方向垂直,如水波;纵波的传播方向与振动方向一致,如声波。
五、机械波的描述方法1.波的频率、波长和传播速度之间存在关系:波速=频率×波长。
2.波谱分析:将波的复杂振动分解成一系列简单谐波的叠加。
3.波的传播可分为反射、折射、干涉、衍射和驻波等现象。
六、机械波的特性1.超前传播:波的传播速度比振动速度快。
2.波的干涉:两个波相遇时,根据叠加原理,产生增强或减弱的效果。
3.波的衍射:波通过孔隙或物体边缘时发生的现象。
4.驻波:两个等幅、频率相同的波在空间中相遇,发生干涉,形成波节和波腹。
机械振动和机械波知识点总结(最新整理)

机械振动和机械波一、知识结构二、重点知识回顾1机械振动(一)机械振动物体(质点)在某一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置的力即回复力。
回复力是以效果命名的力,它可以是一个力或一个力的分力,也可以是几个力的合力。
产生振动的必要条件是:a、物体离开平衡位置后要受到回复力作用。
b、阻力足够小。
(二)简谐振动1. 定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。
简谐振动是最简单,最基本的振动。
研究简谐振动物体的位置,常常建立以中心位置(平衡位置)为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移。
因此简谐振动也可说是物体在跟位移大小成正比,方向跟位移相反的回复力作用下的振动,即F=-k x,其中“-”号表示力方向跟位移方向相反。
2. 简谐振动的条件:物体必须受到大小跟离开平衡位置的位移成正比,方向跟位移方向相反的回复力作用。
3. 简谐振动是一种机械运动,有关机械运动的概念和规律都适用,简谐振动的特点在于它是一种周期性运动,它的位移、回复力、速度、加速度以及动能和势能(重力势能和弹性势能)都随时间做周期性变化。
(三)描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情况常引入下面几个物理量。
1. 振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“A ”表示,它是标量,为正值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动在振动过程中,动能和势能相互转化而总机械能守恒。
2. 周期和频率,周期是振子完成一次全振动的时间,频率是一秒钟内振子完成全振动的次数。
振动的周期T 跟频率f 之间是倒数关系,即T=1/f 。
振动的周期和频率都是描述振动快慢的物理量,简谐振动的周期和频率是由振动物体本身性质决定的,与振幅无关,所以又叫固有周期和固有频率。
(四)单摆:摆角小于5°的单摆是典型的简谐振动。
机械振动和机械波

机械振动和机械波1. 引言机械振动和机械波是物理学中重要的概念,涉及到物体在空间中的运动和传播。
机械振动是指物体围绕平衡位置往复运动的现象,而机械波则是指在介质中能够传播的能量和信息。
本文将介绍机械振动和机械波的基本概念、特征和数学描述以及相关应用。
2. 机械振动机械振动是物体做往复运动的现象,它包括周期性振动和非周期性振动。
周期性振动是指物体在一定时间内反复做相同的运动,而非周期性振动则是指物体在一定时间内做不同的运动。
2.1 周期性振动周期性振动是最常见的一种机械振动。
一个周期性振动经历从平衡位置到最大位移再回到平衡位置的过程,称为一个完整的振动周期。
振动周期的时间称为周期,用符号T表示。
频率是指单位时间内振动的次数,用符号f表示,它的倒数即为周期:T = 1/f。
周期性振动的周期和频率可以通过以下公式计算:T = 2π√(m/k)f = 1/(2π)√(k/m)其中,m是振动物体的质量,k是恢复力常数或振动系统的刚度。
2.2 非周期性振动非周期性振动是指物体在一定时间内做不同的运动。
非周期性振动的描述需要使用更复杂的数学模型,例如分解为不同频率的正弦波,通过傅里叶变换等方法进行分析。
3. 机械波机械波是能量和信息在介质中传播的现象。
介质可以是固体、液体或气体。
机械波可以分为两类:横波和纵波。
横波是指波的传播方向和振动方向垂直的波动,例如水波;纵波是指波的传播方向和振动方向平行的波动,例如声波。
3.1 横波横波的传播方式是通过介质中的粒子振动引起相邻粒子的振动,从而使波沿垂直方向传播。
典型的横波是水波,当我们抛入一颗石头后,水面上就会出现圆形的波纹,波纹垂直传播,而水分子只是在垂直方向上做上下振动。
3.2 纵波纵波的传播方式是通过介质中的粒子振动引起相邻粒子的振动,从而使波沿传播方向传播。
典型的纵波是声波,当我们在空气中发出声音时,声音会以纵波的形式传播,空气分子在声波传播的方向上做着来回的压缩和膨胀。
机械振动机械波

机械振动机械波机械振动和机械波是物理学中重要的概念,涉及到了物体的振动和波动特性。
机械振动是指物体或系统在受到外界力的作用下发生的周期性或非周期性的振动运动,而机械波是指机械振动在介质中传播的能量传递过程。
机械振动有两个重要的参数,即振动周期和振幅。
振动周期是指一个完整的振动循环所需要的时间,通常用秒(s)表示。
振幅则是指振动的最大位移或最大速度,通常用米(m)来表示。
机械振动分为简谐振动和非简谐振动两种。
简谐振动是指当物体受到恢复力的作用后,其振动状态可以通过正弦或余弦函数来描述。
而非简谐振动则是指物体受到的恢复力不满足线性关系,振动状态无法通过简单的正弦或余弦函数来描述。
机械振动的运动可以通过振动方程来描述。
对于简谐振动而言,振动方程可以表示为x(t) = A * sin(ωt + φ),其中x(t)是物体的位移,A是振幅,ω是角频率,t是时间,φ是相位差。
振动方程可以描述物体振动的位移、速度和加速度的关系,从而提供了对振动状态的全面了解。
机械波是机械振动在介质中传播的能量传递过程。
波动是由于介质中某一点的振动引起附近点的振动,从而传递能量。
机械波有两种主要类型,即横波和纵波。
横波是指波动的振动方向垂直于能量传播方向的波动,例如水波。
纵波则是指波动的振动方向与能量传播方向一致的波动,例如声波。
机械波的传播速度可以通过介质的性质和条件来确定。
对于弹性介质而言,传播速度可以表示为v = √(E/ρ),其中v是波速,E是介质的杨氏模量,ρ是介质的密度。
不同介质的波速是不同的,比如在空气中,声速大约为343m/s,而在水中,水波的波速则约为1480m/s。
机械波的特性还包括波长和频率。
波长是指相邻两个振动峰或波谷之间的距离,通常用λ表示,单位是米。
频率是指在单位时间内波动中的相邻振动周期的个数,通常用赫兹(Hz)表示。
波长和频率之间有一个简单的关系,即v = λ * f,其中v是波速,λ是波长,f 是频率。
机械振动与机械波

机械振动与机械波机械振动与机械波机械振动和机械波是物理学中常见的现象,它涉及到固体、液体和气体。
机械振动是物体在弹性力的作用下做来回运动的现象,机械波是一种能够传播的机械振动现象。
在机械振动和机械波中,物体随着时间的推移而产生能量的传输。
机械振动机械振动是指物体围绕平衡位置做往返运动的现象,这种运动通常是周期性的,周期是指物体达到相同位置所需的时间。
机械振动的强度通常是通过振幅来衡量的。
振幅是物体在振动过程中距离平衡位置的最大位移。
物体振动的频率是指物体完成一次往返运动所需的时间,单位是赫兹(Hz)。
常见的机械振动包括弹簧振动、简谐振动和自由振动。
弹簧振动是指在弹簧的弹性作用下,物体做有规律的往返振动。
弹簧振动的频率和振幅都取决于弹簧的弹性系数和物体的质量。
简谐振动是指物体在弹性力作用下做正弦振动的现象。
这种振动通常可以用简单的正弦函数来描述。
自由振动是指物体在没有外力干扰的情况下产生的振动。
在这种情况下,物体在达到最大振幅后会向平衡位置回复,然后再产生不同的振动。
机械波机械波是物理学中的另一个重要现象,它是一种能够在物质中传输能量的物理现象。
机械波的传播需要物质作为媒介,它的传播速度取决于媒介的密度、弹性模量和黏度。
机械波可分为纵波和横波。
在纵波中,物质在波的传播方向上做振动,而在横波中,物质在垂直于波的传播方向上做振动。
机械波通常可以分为两类:机械横波和机械纵波。
机械横波也称为横振动,这种波是一种波动方向与波传播方向互相垂直的波。
机械横波的传播需要一定的弹力支持,这种波可以通过弹性杆或电缆进行传播。
机械纵波是一种沿着波的传播方向振动的波。
这种波是由分子间的振动传递产生的,它可以在任何物质中自由传播,包括固体、液体和气体。
总结机械振动和机械波是物理学中常见的现象,它们通过能量传输的方式将能量传递给媒介。
机械波的传播需要物质作为媒介,而机械振动通常是由弹性力产生的。
在工程领域中,了解机械振动和机械波的基本原理是非常重要的,因为这可以帮助我们设计更优秀的产品和工程系统。
机械振动与机械波

1.机械振动:物体或物体的一部分在平衡位置附近周期性的往复运动,简称振动。
平衡位置:原来静止时的位置,或者振动方向上合力为零的位置。
一个完整的振动过程称为一次全振动。
2.简谐运动:质点所受的力与它偏离平衡位置位移的大小成正比,并且总是指向平衡位置,平衡位置两侧对称点各物理量大小相等,x 、F 回、a 方向相反,v 方向相同或相反,x 、v 、a 正弦或余弦周期性变化,系统的机械能守恒、振幅A 不变.x =Asin(ωt +φ),(ωt +φ)代表简谐运动的相位,φ叫做初相,相位差:两个具有相同频率的简谐运动的相位的差值,相位超前或落后Δφ。
回复力:使物体返回到平衡位置的力,总是指向平衡位置,属于效果力,可以是某一个力,也可以是几个力的合力或某个力的分力,F 回=-kx 。
弹簧振子单摆(1)弹簧质量可忽略 (2)无摩擦等阻力 (3)在弹簧弹性限度内 (1)摆线为不可伸缩的轻细线(2)无空气阻力 (3)最大摆角很小(<弹簧的弹力 摆球重力沿圆弧切线方向的分力弹簧原长处 最低点T =2π√m T =2π√l 3. 振幅随时间逐渐减小的振动叫阻尼振动。
受迫振动:系统在周期性的外力(驱动力)作用下的振动,频率等于驱动力的频率,与系统的固有频率无关.驱动力:作用在振动物体上的周期性外力,驱动力的频率与物体的固有频率相差越小,受迫振动的振幅越大。
共振:驱动力的频率等于系统的固有频率时,受迫振动的振幅最大的现象,振幅最大,驱动力的频率等于系统的固有频率.4.机械振动(波源)在介质中传播,形成了机械波。
质点不随波迁移只在平衡位置附近振动,起振方向和振源相同,传播的是振动形式(波在向前平移)、能量、信息。
振源停止振动,波长各质点的振动频率都是相同的,都等于波源的振动频率.波速v=λT =λf由介质的性质决定,与机械波的频率无关.图像是正弦曲线叫简谐波,横轴表示各质点的平衡位置,纵轴表示该时刻各质点的位移,图像表示在波的传播方向上,某时刻各质点离开平衡位置的位移.5.反射:波传播到两种介质的分界面时,一部分返回来继续传播的现象。
高中物理机械振动和机械波

3.受迫振动
(1)驱动力:作用于振动系统的周期性外力。
(2)受迫振动:物体在外界驱动力作用下的振动。 思考: 物体做受迫振动时,振动稳定后的频率与什么 有关?
视频
(3)受迫振动的特点
物体做受迫振动时,振动稳定后的频 率等于驱动力的频率,跟物体的固有频率 无关。
4.共振
(1)定义:驱动力的频率f等于物体的固有频 率f0时,受迫振动的振幅最大,这种现象叫 做共振。 (2)共振曲线
摆角 1º 2º 3º 4º 5º 6º 7º 8º 9º 10º 11º 12º 13º 14º 15º 20º 30º 45º 60º 90º
正弦值 0.01754 0.03490 0.05234 0.06976 0.08716 0.10453 0.12187 0.13917 0.15643 0.17365 0.19081 0.20791 0.22495 0.24192 0.25882 0.34202 0.50000 0.70711 0.86603 1.00000
(2)图象法:由单摆周期公式不难推出:l=4gπ2T2,因此,分别测 出一系列摆长 l 对应的周期 T,作 l-T2 的图象,图象应是一条通过 原点的直线,求出图线的斜率 k=ΔΔTl2,即可利用 g=4π2k=4ΔπT2Δ2l求得 重力加速度值,如图所示.
练习
某同学在正确操作和测量的情况下,测得多组摆长 L 和对应的周 期 T,画出 L-T2 图线,如图所示.出现这一结果最可能的原因是: 摆 球 重 心 不 在 球 心 处 , 而 是 在 球 心 的 正 ____ 方 ( 选 填 “ 上 ” 或 “下”).为了使得到的实验结果不受摆球重心位置无法准确确定的 影响,他采用恰当的数据处理方法:在图线上选 取 A、B 两个点,找出两点相应的横纵坐标,如 图所示.用表达式 g=________计算重力加速度, 此结果即与摆球重心就在球心处的情况一样。
机械振动和机械波.(DOC)

机械振动机械波复习一、机械振动质点沿着直线或弧线绕平衡位置往复运动叫做机械振动.1.产生振动的必要条件 1有回复力(回复力是效果力) 2阻力很小回复力:振动的质点所受诸外力在指向平衡位置方向(振动方向)上的合力.例如;弹簧振子;弹簧的弹力提供振动的回复力单摆;重力在切线方向上的分力mgsinθ提供振动的回复力2.描述振动的物理量(1)振幅(A):振动质点离开平衡位置的最大距离振幅是标量,是表示质点振动强弱的物理量.(2)周期(T):振动质点经过一次全振动所需的时间.表示质点振动快慢的物理量.全振动:振动质点经过一次全振动后其振动状态又恢复到原来的状态.(3)频率(f):一秒钟内振动质点完成全振动的次数.(4)相位(拍):表示质点振动的步调的物理量3.简谐振动(1)简谐振动的特点:1)回复力的特点:F=-kx 是周期性变化的.可作为判别一个物体是否作简谐振动的依据.振动物体所受回复力的大小跟振动中的位移(x)成正比,方向始终与位移方向相反,指向平衡位置.注意:.位移必须从平衡位置起向外指向(2)加速度的特点振动物体的加速度跟位移大小成正比,方向与位移方向相反.(加速度方向和回复力方向一样永远指向平衡位置.),简谐振动是一种变加速运动.3)振动质点速度的特点:v=sin(ωt+ψ)(超纲)振动物体的速度的大小总是随位移的增大而减小,随位移的减小而增大.在平衡位置时,振动物体的速度最大.如表所示.4)振动中位移随时间变化规律:按正弦(或余弦)曲线变化[x=Acos(ωt+ψ)](超纲)5)振动物体能量的特点:机械能是恒量,遵守机械能守恒定律.振幅越大,能量越大.(2)简谐振动的规律:1)振动图象:振动位移-时间的函数图象.物理意义:a)从图象上可知振动的振幅A; b)从图象上可知振动的周期;c)从图象上可知质点在不同时刻的位移,d)从图象上可比较质点在各个时刻速度大小及符号(表示方向);e)从图象上可比较质点在各个时刻加速度的大小及符号.f)从图象可看出质点在不同时刻间的相差.2)简谐振动的周期:4.受迫振动(1)受迫振动产生条件:质点在周期性驱动力作用下的振动.(2)受迫振动特点:受迫振动的频率等于驱动力的频率,与物体的固有频率无关.(3)共振——受迫振动特例.当策动力的频率等于受迫振动物体本身的固有频率时,受迫振动的振幅达到最大值,二、机械波机械振动在弹性媒质中的传播运动叫机械波.我们应特别注意,在振动的传播过程中,每个参与传播振动的质点不沿振动传播方向定向移动(质点不随之迁移),它们只在各自的平衡位置附近振动.1.产生条件(1 )振动振动振源(2)传播振动的媒质2.波的分类(1)横波:振动方向与波的传播方向垂直;横波波型有波峰和波谷.只有在固体中传播(2)纵波:质点振动方向与波的传播方向在一条直线上;纵波波型有密部和疏部.在固体,液体,气体中均能传播3.描述波的物理量(1)频率(f):波的频率与波源的振动频率相同.在传播过程中是不变的(2)波速(v):波速是波传播的速度——质点振动状态传播的速度.取决于媒质的性质.同种媒质传播不同频率的同类机械波时,传播速度是相同的.(3)波长(λ):两个相邻的、在振动过程中对平衡位置的位移总是相同的质点间的距离.或者说,在一个周期内波传播的距离的大小.波长是标量.(4)波长、频率和波速的关系:4.波的图象波传播过程中,在某一时刻媒质各质点的位移末端连线,图线上各质点均为媒质中振动的质点,横坐标表示质点的平衡位置,纵坐标表示质点的位移.物理意义:a)能表示出质点振动的振幅(A); b)能表示各质点振动的位移(y);c)能表示出波长(λ); d)能表示出各质点的振动方向、加速度大小及符号;e)能表示出各质点间的相位关系.特别注意:波的图象与振动图象的区别.5.波的一般性质(1)波的反射:(2)波的折射:(3)波的干涉:1)产生条件:相干波——两列波频率相同;(相差恒定);2)现象:在相干区域内,增强区与减弱区相间.其中Δs为该点至两波源的距离差(波程差).3)对干涉现象应注意:a)增强是指振动质点的能量增大,即振幅增大,并不是速度增大;减弱是振幅减小.b)增强区或减弱区位置是确定的,即增强点(域)始终增强;减弱区的点始终减弱.c)不论增强区或是减弱区,各质点都作与相干波源周期相同的振动,各质点振动的位移是周期性变化的.(4)波的衍射:波在煤质传播,可以绕过障碍物或小孔到继续传播形成明显衍射的条件障碍物或小孔的大小和波长相差不多或比波长小(5)波的共振:波在媒质中传播时,如果遇到的物体的固有周期和波的周期相同时,能够引起物体振幅最大的振动.6 波的多解问题 1波的空间,时间的周期性 2 波的称性 3波的双向性一. 机械振动和机械波的联系与区别1. 从产生条件看:振动是波动的成因,波动是振动在介质中的传播,2. 从运动现象看:振动是单个质点在平衡位置的往复运动;波动是介质中大量质点依次振动而形成的,而且质点并不随波的传播而迁移。
机械振动与机械波

机械振动与机械波1. 机械振动机械振动是指物体围绕平衡位置作往复运动的现象。
在机械振动中,物体会沿着某一方向来回运动,并且周期性地经历相同的过程。
机械振动可以分为强迫振动和自由振动两种类型。
1.1 强迫振动强迫振动是指外力对物体施加周期性作用力而引起的振动。
在强迫振动中,物体受到外力的作用,它与自由振动不同,其振幅和频率可以不同。
1.1.1 振幅振幅是指物体振动过程中,离开平衡位置的最大位移量。
振幅越大,物体运动的范围越大。
振幅的单位通常使用米(m)。
1.1.2 频率频率是指物体在单位时间内完成振动周期的次数。
频率与周期的倒数有关。
频率的单位通常使用赫兹(Hz),即每秒钟完成的振动周期次数。
1.1.3 共振现象共振是指振动系统的频率与外力的频率相同或接近时,物体受到的外力作用最大化的现象。
共振现象可以引起物体发生剧烈振动,甚至导致破坏。
1.2 自由振动自由振动是指物体在没有外力作用的情况下由于受到初位置或初速度的影响而发生的振动。
在自由振动中,物体的振幅和频率是恒定的。
1.2.1 阻尼阻尼是指自由振动中受到的摩擦力或空气阻力等因素导致振动能量的损失。
阻尼可以分为三种类型:无阻尼、临界阻尼和过阻尼。
•无阻尼:振动系统没有阻尼,振动会持续下去,但振幅会随时间不断变小,直到最后停止。
•临界阻尼:振动系统的阻尼恰好使得振动停下来的时间最短,但不会发生振幅的衰减。
•过阻尼:振动系统的阻尼使振动停下来需要更长的时间,并且振幅在停止前会逐渐减小。
1.2.2 振动的周期和频率自由振动的周期是指物体完成一次完整振动所需的时间。
周期和频率之间有如下关系:\[ T = \frac{1}{f} \]其中,T为周期,单位为秒;f为频率,单位为赫兹。
2. 机械波机械波是由弹性介质传播的波动现象。
在机械波中,波动会导致物质的振动,并传递能量。
2.1 纵波纵波是指波动方向与波的传播方向相同的机械波。
纵波沿着波的传播方向,介质中的质点在向前方向和向后方向进行振动。
(完整版)机械振动和机械波知识点总结

机械振动 考点一 简谐运动的描述与规律1. 机械振动:物体在平衡位置附近所做的往复运动,简称振动。
回复力是指振动物体所受的总是指向平衡位置的合外力。
回复力是产生振动的条件,它使物体总是在平衡位置附近振动。
它属于效果力,其效果是使物体再次回到平衡位置。
回复力可以是某一个力,也可以是几个力的合力或某个力的分力。
平衡位置是指物体所受回复力为零的位置!2.简谐运动: 物体在跟位移大小成正比并且总是指向平衡位置的回复力作用下的振动。
简谐运动属于最简单、最基本的振动形式,其振动过程关于平衡位置对称,是一种周期性的往复运动。
例如弹簧振子、单摆。
注: (1)描述简谐运动的物理量①位移x :由平衡位置指向振动质点所在位置的有向线段,是矢量.②振幅A :振动物体离开平衡位置的最大距离,是标量,它表示振动的强弱.③周期T 和频率f :物体完成一次全振动所需的时间叫做周期,而频率则等于单位时间 内完成全振动的次数.它们是表示振动快慢的物理量,二者互为倒数关系:T =1/f. (2)简谐运动的表达式①动力学表达式:F =-kx ,其中“-”表示回复力与位移的方向相反.②运动学表达式:x =A sin (ωt +φ),其中A 代表振幅,ω=2πf 表示简谐运动的快慢, (ωt +φ)代表简谐运动的相位,φ叫做初相.(可借助于做匀速圆周运动质点在水平方向的投影理解)(3)简谐运动的运动规律①变化规律:位移增大时⎩⎪⎨⎪⎧回复力、加速度增大⎭⎬⎫速度、动能减小势能增大机械能守恒振幅、周期、频率保持不变注意:这里所说的周期、频率为固有周期与固有频率,由振动系统本身构造决定。
振幅是反映振动强弱的物理量,也是反映振动系统所具备能量多少的物理量。
②对称规律:I 、做简谐运动的物体,在关于平衡位置对称的两点,回复力、位移、加速度具有等大反向的关系,另外速度的大小、动能具有对称性,速度的方向可能相同或相反.II 、振动物体来回通过相同的两点间的时间相等,如t BC =t CB ;振动物体经过关于平衡位置对称的等长的两线段的时间相等,如t BC =t B ′C ′,③运动的周期性特征:相隔T 或nT 的两个时刻振动物体处于同一位置且振动状态相同.注意:做简谐运动的物体在一个周期内的路程大小一定为4A ,半个周期内路程大小一定为2A ,四分之一个周期内路程大小不一定为A 。
2023届高考物理一轮复习课件:机械振动 机械波

3
B.振动 A 的相位滞后振动 B 的相位 π
4
5
C.振动 A 的相位滞后振动 B 的相位 π
4
D.两个振动没有位移相等的时刻
+ )cm,x B=8sin(4π
x
t
4.周期T:①1T走4A。 1T后回到原位置
②T/2走2A。T/2后到达O点对称位置
x.v.a大小相等方向相反
③T/4不一定走A
A
A/2
示,下列说法正确的是(
C)
A.t=0.6 s时,振子在O点右侧6 cm处
B.振子在t=0.2 s和t=1.0 s时的速度相同
C.t=1.2 s时,振子的加速度方向水平向右
D.t=1.0 s到t=1.4 s的时间内,振子的加速度和速度都逐渐增大
考点2
[典例 2]
机械波
一振动片以频率 f 做简谐振动时,固定在振动片上的两根细
平衡位置:mg=kx0
F回=kx1-mg =kx1-kx0
mg
二、简谐运动
ɵ
1.动力学:
T
2.运动学:
3.振幅A:
x
4.周期T:
mg
5.种类:
①弹簧振子 T=2π
②单摆 ɵ<50 T=2π
注意:简谐运动T与振幅无关。受迫振动时=f驱的周期。
驱动力的周期等于简谐运动的固有周期时振幅
最大,即发生共振。
)
C
A.小球振动的固有频率是4 Hz
B.小球做受迫振动时周期一定是4 s
C.圆盘转动周期在4 s附近时,小球振幅显著增大
D.圆盘转动周期在4 s附近时,小球振幅显著减小
3.如图甲所示,弹簧振子以O点为平衡位置,在光滑水平面上的A
重难点12 机械振动和机械波(解析版)

2022年高考物理【热点·重点·难点】专练(全国通用)重难点12 机械振动和机械波【知识梳理】一 简谐运动的特征 受力特征 回复力F =-kx ,F (或a )的大小与x 的大小成正比,方向相反运动特征靠近平衡位置时,a 、F 、x 都减小,v 增大;远离平衡位置时,a 、F 、x 都增大,v 减小能量特征振幅越大,能量越大.在运动过程中,系统的动能和势能相互转化,机械能守恒周期性特征质点的位移、回复力、加速度和速度随时间做周期性变化,变化周期就是简谐运动的周期T ;动能和势能也随时间做周期性变化,其变化周期为T 2对称性特征关于平衡位置O 对称的两点,速度的大小、动能、势能相等,相对平衡位置的位移大小相等;由对称点到平衡位置O 用时相等二 简谐运动的振动图象 1.对简谐运动图象的认识(1)简谐运动的图象是一条正弦或余弦曲线,如图所示.(2)图象反映的是位移随时间的变化规律,随时间的增加而延伸,图象不代表质点运动的轨迹.(3)任一时刻图象上过该点切线的斜率数值表示该时刻振子的速度大小.正负表示速度的方向,正时沿x 正方向,负时沿x 负方向.2.图象信息(1)由图象可以得出质点做简谐运动的振幅、周期. (2)可以确定某时刻质点离开平衡位置的位移.(3)可以根据图象确定某时刻质点回复力、加速度和速度的方向.①回复力和加速度的方向:因回复力总是指向平衡位置,故回复力和加速度在图象上总是指向t 轴.②速度的方向:速度的方向可以通过下一时刻位移的变化来判断,下一时刻位移如增加,振动质点的速度方向就是远离t轴,下一时刻位移如减小,振动质点的速度方向就是指向t轴.3.简谐运动图象问题的两种分析方法法一图象-运动结合法解此类题时,首先要理解x-t图象的意义,其次要把x-t图象与质点的实际振动过程联系起来.图象上的一个点表示振动中的一个状态(位置、振动方向等),图象上的一段曲线对应振动的一个过程,关键是判断好平衡位置、最大位移及振动方向.法二直观结论法简谐运动的图象表示振动质点的位移随时间变化的规律,即位移-时间的函数关系图象,不是物体的运动轨迹.三波的形成、传播与图象1.机械波的传播特点(1)波传到任意一点,该点的起振方向都和波源的起振方向相同.(2)介质中每个质点都做受迫振动,因此,任一质点振动频率和周期都和波源的振动频率和周期相同.(3)波从一种介质进入另一种介质,由于介质的情况不同,它的波长和波速可能改变,但频率和周期都不会改变.(4)波经过一个周期T完成一次全振动,波恰好向前传播一个波长的距离,所以v =λT=λf. 2.波的图象特点(1)质点振动nT(波传播nλ)时,波形不变.(2)在波的传播方向上,当两质点平衡位置间的距离为nλ(n=1,2,3…)时,它们的振动步调总相同;当两质点平衡位置间的距离为(2n+1)λ2(n=0,1,2,3…)时,它们的振动步调总相反.(3)波源的起振方向决定了它后面的质点的起振方向,各质点的起振方向与波源的起振方向相同.3.波的传播方向与质点振动方向的互判方法内容图象“上下坡”法沿波的传播方向,“上坡”时质点向下振动,“下坡”时质点向上振动“同侧”法波形图上某点表示传播方向和振动方向的箭头在图线同侧“微平移”法将波形沿传播方向进行微小的平移,再由对应同一x坐标的两波形曲线上的点来判断振动方向四振动图象和波动图象的综合应用振动图象波动图象研究对象一个振动质点沿波传播方向的所有质点研究内容某一质点的位移随时间的变化规律某时刻所有质点的空间分布规律图象物理意义表示同一质点在各时刻的位移表示某时刻各质点的位移图象信息(1)质点振动周期(2)质点振幅(3)某一质点在各时刻的位移(4)各时刻速度、加速度的方向(1)波长、振幅(2)任意一质点在该时刻的位移(3)任意一质点在该时刻加速度的方向(4)传播方向、振动方向的互判图象变化随时间推移图象延续,但已有形状不变随时间推移,图象沿传播方向平移一个完整曲线占横坐标的距离表示一个周期表示一个波长五波的多解问题1.造成波动问题的多解的三大因素周期性(1)时间周期性:时间间隔Δt与周期T的关系不明确(2)空间周期性:波传播距离Δx与波长λ的关系不明确双向性(1)传播方向双向性:波的传播方向不确定(2)振动方向双向性:质点振动方向不确定波形的隐含性问题中,只给出完整波形的一部分,或给出几个特殊点,而其余信息均处隐含状态,波形就有多种情况2.解决波的多解问题的思路一般采用从特殊到一般的思维方法,即找出一个周期内满足条件的关系Δt 或Δx ,若此关系为时间,则t =nT +Δt (n =0,1,2…);若此关系为距离,则x =nλ+Δx (n =0,1,2…).六 波的干涉和衍射 多普勒效应1.波的干涉中振动加强点和减弱点的判断:某质点的振动是加强还是减弱,取决于该点到两相干波源的距离之差Δr .(1)当两波源振动步调一致时若Δr =nλ(n =0,1,2,…),则振动加强; 若Δr =(2n +1)λ2(n =0,1,2,…),则振动减弱.(2)当两波源振动步调相反时若Δr =(2n +1)λ2(n =0,1,2,…),则振动加强;若Δr =nλ(n =0,1,2,…),则振动减弱.2.波的衍射现象是指波能绕过障碍物继续传播的现象,产生明显衍射现象的条件是缝、孔的宽度或障碍物的尺寸跟波长相差不大或者小于波长.3.多普勒效应的成因分析(1)接收频率:观察者接收到的频率等于观察者在单位时间内接收到的完全波的个数.当波以速度v 通过观察者时,时间t 内通过的完全波的个数为N =vtλ,因而单位时间内通过观察者的完全波的个数,即接收频率.(2)当波源与观察者相互靠近时,观察者接收到的频率变大,当波源与观察者相互远离时,观察者接收到的频率变小.【命题特点】这部分知识主要考查机械振动和机械波相结合的问题,尤其要注意机械波的多解问题和机械波传播方向与介质中质点振动方向的关系问题。
机械振动和机械波知识点的归纳

机械振动和机械波知识点的归纳一、简谐运动1、定义:物体在跟偏离平衡位置的位移大小成正比,并且总是指向平衡位置的回复力的作用下的振动,叫做简谐运动,又称简谐振动。
2、简谐运动的特征:回复力F=-kx,加速度a=-kx/m,方向与位移方向相反,总指向平衡位置。
简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大。
3. 描述简谐运动的物理量(1)位移x:由平衡位置指向振动质点所在位置的有向线段,是矢量,其最大值等于振幅。
(2)振幅A:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱。
(3)周期T和频率f:表示振动快慢的物理量,二者互为倒数关系,即T=1/f。
4. 简谐运动的图像(1)意义:表示振动物体位移随时间变化的规律,注意振动图像不是质点的运动轨迹。
(2)特点:简谐运动的图像是正弦(或余弦)曲线(3)应用:可直观地读取振幅A、周期T以及各时刻的位移x,判定回复力、加速度方向,判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况二、弹簧振子定义:周期和频率只取决于弹簧的劲度系数和振子的质量,与其放置的环境和放置的方式无任何关系。
如某一弹簧振子做简谐运动时的周期为T,不管把它放在地球上、月球上还是卫星中;是水平放置、倾斜放置还是竖直放置;振幅是大还是小,它的周期就都是T。
三、单摆1. 定义:摆线的质量不计且不可伸长,摆球的直径比摆线的长度小得多,摆球可视为质点。
单摆是一种理想化模型。
2. 单摆的振动可看作简谐运动的条件是:最大摆角α<5°。
3. 单摆的回复力是重力沿圆弧切线方向并且指向平衡位置的分力。
4. 作简谐运动的单摆的周期公式为:T=2π(1)在振幅很小的条件下,单摆的振动周期跟振幅无关。
(2)单摆的振动周期跟摆球的质量无关,只与摆长L和当地的重力加速度g 有关.(3)摆长L是指悬点到摆球重心间的距离,在某些变形单摆中,摆长L应理解为等效摆长,重力加速度应理解为等效重力加速度(一般情况下,等效重力加速度g'等于摆球静止在平衡位置时摆线的张力与摆球质量的比值)。
机械振动和机械波知识点

机械振动和机械波一、什么是机械振动机械振动是指机械系统的动力学行为,是指机械系统内部的物理变化,其中包括机械系统的位移、速度和加速度的变化。
机械振动是机械系统的一种动态特性,它可以反映机械系统的动力学状态。
二、机械振动的类型机械振动可以分为简谐振动、非简谐振动、混沌振动等。
1. 简谐振动简谐振动是指振动的频率和振幅是定值,振动的方向和位置是定值,振动的周期是定值,振动的形状是定值的振动。
简谐振动的特点是振动的频率、振幅、方向和位置都是定值,振动的周期和形状也是定值,振动的运动轨迹是定值的曲线。
2. 非简谐振动非简谐振动是指振动的频率、振幅、方向和位置都不是定值,振动的周期和形状也不是定值,振动的运动轨迹不是定值的曲线。
非简谐振动的特点是振动的频率、振幅、方向和位置都是变化的,振动的周期和形状也是变化的,振动的运动轨迹也是变化的曲线。
3. 混沌振动混沌振动是指振动的频率、振幅、方向和位置都是变化的,振动的周期和形状也是变化的,振动的运动轨迹也是变化的曲线,但是振动的运动轨迹是一种不可预测的混沌运动轨迹。
三、什么是机械波机械波是指机械系统内部的物理变化,是一种振动的波形,它可以反映机械系统的动力学行为。
机械波可以分为空气波、液体波、地壳波等。
1. 空气波空气波是指由空气中的振动产生的波,它的特点是波的传播速度比较快,波的频率也比较高,波的振幅也比较大。
空气波的运动轨迹是一个椭圆形的曲线,它们可以用来传播声音、光、热、电等信号。
2. 液体波液体波是指由液体中的振动产生的波,它的特点是波的传播速度比较慢,波的频率也比较低,波的振幅也比较小。
液体波的运动轨迹是一个圆形的曲线,它们可以用来传播液体中的物质。
3. 地壳波地壳波是指由地壳中的振动产生的波,它的特点是波的传播速度比较慢,波的频率也比较低,波的振幅也比较小。
地壳波的运动轨迹是一个圆形的曲线,它们可以用来传播地壳中的物质。
四、机械振动和机械波的应用机械振动和机械波在工程中有着广泛的应用,它们可以用来检测机械系统的动力学状态,以及检测机械系统的可靠性和可靠性。
教科版 高中物理选修3-4 机械振动+机械波

(1)振幅:振动物体离开平衡位置的最大距离叫做振动的振幅。
①振幅是标量。
②振幅是反映振动强弱的物理量。
(2)周期和频率:①振动物体完成一次全振动所用的时间叫做振动的周期。
②单位时间内完成全振动的次数叫做全振动的频率。
它们的关系是T=1/f 。
在一个周期内振动物体通过的路程为振幅的4倍;在半个周期内振动物体通过的路程为振幅2倍;在1/4个周期内物体通过的路程不一定等于振幅 3)简谐运动的表达式:)sin(ϕω+=t A x 4)简谐运动的图像:振动图像表示了振动物体的位移随时间变化的规律。
反映了振动质点在所有时刻的位移。
从图像中可得到的信息: ①某时刻的位置、振幅、周期②速度:方向→顺时而去;大小比较→看位移大小 ③加速度:方向→与位移方向相反;大小→与位移成正比 3、简谐运动的能量转化过程:1)简谐运动的能量:简谐运动的能量就是振动系统的总机械能。
①振动系统的机械能与振幅有关,振幅越大,则系统机械能越大。
②阻尼振动的振幅越来越小。
2)简谐运动过程中能量的转化:系统的动能和势能相互转化,转化过程中机械能的总量保持不变。
在平衡位置处,动能最大势能最小,在最大位移处,势能最大,动能为零。
(二)简谐运动的一个典型例子→单摆: 1、单摆振动的回复力:摆球重力的切向分力。
①简谐振动物体的周期和频率是由振动系统本身的条件决定的。
②单摆周期公式中的L是指摆动圆弧的圆心到摆球重心的距离,一般也叫等效摆长。
4、利用单摆测重力加速度:(三)受迫振动:1、受迫振动的含义:物体在外界驱动力的作用下的运动叫做受迫振动。
2、受迫振动的规律:物体做受迫振动的频率等于策动力的频率,而跟物体固有频率无关。
1)受迫振动的频率:物体做稳定的受迫振动时振动频率等于驱动力的频率,与物体的固有频率无关。
2)受迫振动的振幅:与振动物体的固有频率和驱动力频率差有关3、共振:当策动力的频率跟物体固有频率相等时,受迫振动的振幅最大,这种现象叫共振。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3章 机械振动与机械波3-1判断下列运动是否为简谐振动?(1) 小球沿半径很大的水平光滑圆轨道底部小幅度摆动; (2) 活塞的往复运动;(3) 质点的运动方程为sin(/3)cos(/6)x a t b t ωπωπ=+++ (4) 质点的运动方程为cos(/3)cos(2)x a t b t ωπω=++(5) 质点摆动角度的微分方程为 2221050d dtθθ++=答:(1)是简谐振动,类似于单摆运动; (2)不是简谐振动;(3)是简谐振动,为同频率、同振动方向的两个简谐振动的合成; (4)不是简谐振动,为不同频率、同振动方向的两个简谐振动的合成; (5)不是简谐振动。
3-2物体沿x 轴作简谐振动,振幅A =0.12m ,周期T =2s 。
当0=t 时,物体的位移x =0.06m ,且向x 轴正方向运动。
求:(1)此简谐振动的表达式; (2)4Tt =时物体的位置、速度和加速度; (3)物体从06.0-=x m 向x 轴负方向运动第一次回到平衡位置所需的时间。
解:(1)设此简谐振动的表达式为:0cos()x A t ωϕ=+,则振动速度0sin()dxA t dtυωωϕ==-+, 振动加速度2202cos()d xa A t dtωωϕ==-+由题意可知:0.12A =m ,2T =s ,则22Tπω==(rad/s) 又因为0t =时0.06x =m 且0υ>,把初始运动状态代入有: 00.060.12cos ϕ=,则03πϕ=±又因为0t =时0sin 0A υωϕ=->,所以03πϕ=-时故此简谐振动的表达式为:0.12cos()3x t ππ=- m(2) 把4Tt =代入简谐振动表达式:10.12cos()0.10423x ππ=⨯-==(m )把4Tt =代入简谐振动速度表达式:10.12sin()0.060.1823πυπππ=-⨯⨯-=-=-(m/s)把4Tt =代入简谐振动加速度表达式:2210.12cos() 1.0323a πππ=-⨯⨯-=-=(m/s 2)(3) 由旋转矢量法可知,物体在06.0-=x m 向x 轴负方向运动时,相位为123πϕ=,而物体从06.0-=x m 向x 轴负方向运动第一次回到平衡位置时,相位为232πϕ=,旋转的角度21325236πππθϕϕ∆=-=-=,则所需的时间为:56t θω∆∆===0.83(s)3-3 如图示,质量为g 10的子弹以速度310=v s /m 水平射入木块,并陷入木块中,使弹簧压缩而作简谐振动。
设弹簧的劲度系数3108⨯=k 1m N -⋅,木块的质量为kg 99.4,桌面摩擦不计,试求:(1)振动的振幅;(2)振动方程。
解:(1)子弹进入木块后,与木块一起做简谐振动,子弹与木块的作用习题3-3 图时间短,在水平方向动量守恒且弹簧没有形变,设子弹进入木块后木块的位置为坐标原点,水平向右的方向为正方向,子弹进入木块后与木块的共同速度为0υ,则0()m M m υυ=+,0m M mυυ=+,代入数据得:02υ=(m/s), 子弹与木块相互作用时,弹簧没有形变,即该简谐振动的初始位置00x =,弹簧简谐振动的圆频率ω=,代入数据得:40ω=(rad/s),所以A =0.05A =m 。
(2) 由0t =时,00x =且向X 轴的正方向运动,所以02πϕ=-,所以振动方程为:0.05cos(40)2x t π=- m3-4一重为p 的物体用两根弹簧竖直悬挂,如图所示,各弹簧的劲度系数标明在图上。
试求图示两种情况下,系统沿竖直方向振动的固有频率。
解:a 图中两弹簧是串联的,总劲度系数1212k k k k k =+, 弹簧振子的固有频率为ω== b 图中两弹簧是并联的,总劲度系数2K k =,弹簧振子的固有频率为ω==3-5 一匀质细圆环质量为m ,半径为R ,绕通过环上一点而与环平面垂直的水平轴在铅垂面内作小幅度摆动,求摆动的周期。
解:设转动轴与细圆环的交点为坐标原点,过原点的竖直轴为Y 轴,由转动轴定理可知,该圆环的小幅度摆动的平衡位置为圆环的质心在Y 轴时,由平行轴定理可知,圆环对通过环上一点而与环平面垂直的水平轴的转动惯量为:把圆环沿逆时针方向拉离平衡位置转动θ,则圆环对转轴的重力矩为sin M mgR θ=,方向为θ增大的反方向,由转动轴定理:M J β=, 即22d sin 0d J mgR tθθ+=,由于环做小幅度摆动,所以sin θ≈θ,可得微分方程22d 0d mgRt Jθθ+=, 摆动的圆频率为:mgRJω=, 周期为:2222J RT mgR gπππω=== 3-6. 横截面均匀的光滑的U 型管中有适量液体如图所示,液体的总长度为L ,求液面上下微小起伏的自由振动的圆频率。
解:如图所示建立坐标,两边液面登高时为坐标原点,向上为Y 轴正方向,左边液面上升y ,则右边液面下降y ,U 型管的横截面面积为S ,液体的密度为ρ,则左右液面的压力差为:2F gyS ρ=-,方向为Y 轴的负方向,由牛顿第二定律:F ma =可知,222d y gyS SL dt ρρ-=,即2220d y gy dt L+=,故液面上下微小起伏的运动为简谐振动,其振动的圆频率2g Lω=3-7 如图一细杆AB 一端在水平槽中自由滑动,另一端与连接圆盘上,圆盘转轴通过o 点且垂直圆盘和OX 轴,当圆盘以角速度ω做匀速圆周运动时,写出槽中棒端点B 的振动方程,自行设计参数,利用mathematica 软件或matlab 软件画出振动图线。
解:在 AOB 中,AB 长度不变,设为l ,圆半径OA 不变设为R ,OA 与OB 的夹角设为t θω=,则B 点的坐标x 满足关系式:上式表明,x 是时间t 的周期函数,但不是谐振动函数。
取2,1,10l R ω===,画图如下。
3-8质量为31010-⨯kg 的小球与轻弹簧组成的系统,按1.0=x )328cos(ππ+t 的规律作振动,式中t 以秒)s (计,x 以米)m (计。
求: (1)振动的圆频率、周期、振幅、初位相; (2)振动的速度、加速度的最大值;(3)最大回复力、振动能量、平均动能和平均势能;画出这振动的旋转矢量图,并在图中指明1=t 、2、10s 等各时刻的矢量位置。
解:(1)由振动的运动学方程可知:振幅0.1A =m ,圆频率8ωπ=rad/s ,周期220.258T ππωπ===(s),初相位023πϕ=。
(2)振动的速度:20.8sin(8)3dx t dt πυππ==-+,振动速度的最大值为:max 2.51υ=(m/s),振动的加速度:22226.4cos(8)3d x a t dt πππ==-+,振动加速度的最大值为:max 63.1a =(m/s 2)(3)最大回复力:max max 0.63F ma ==(N), 振动能量:222211 3.161022E kA m A ω-===⨯(J) 平均动能和平均势能:211.58102p k E E E -===⨯(J)3-9 质量为kg 25.0的物体,在弹性力作用下作简谐振动,劲度系数k 1m N 25-⋅=,如果开始振动时具有势能J 6.0和动能J 2.0,求:(1) 振幅多大?经过平衡位置的速度。
(2) 位移为多大时,动能恰等于势能?解:(1)简谐振动能量守恒,其总能等于任意时刻的动能与势能之和,即210.82k p E E E kA =+==,所以振幅0.253A =(m),在平衡位置时,弹簧为原长(假设弹簧座水平方向谐振动),此时只有动能,即210.82k E E m υ===(J),所以速度 2.53υ=(m/s).(2)要使10.42k p E E E ===(J),即210.42p E kx ==(J),则位移0.179x =±(m)。
3-10 两个质点平行于同一直线并排作同频率、同振幅简谐振动。
在振动过程中,每当它们经过振幅一半的地方时相遇,而运动方向相反。
求它们的位相差,并作旋转矢量图表示之。
解:设它们的振动方程为0cos()x A t ωϕ=+, 当2A x =时,可得位相为3πϕ=±. 由于它们在相遇时反相,可取13πϕ=-,23πϕ=它们的相差为2123πϕϕϕ∆=-=, 同理当2A x =-时,可得位相为23πϕ=±,它们的相差为43πϕ∆= 矢量图如图所示.3-11 已知两个同方向简谐振动如下:130.05cos(10)5x t ππ=+,210.06cos(10)5x t ππ=+(1) 求它们合成振动的振幅和初位相;(2) 另有一同方向简谐振动30.07cos(10)x t πϕ=+,问ϕ为何值时,31x x +的振幅为最大?ϕ为何值时,32x x +的振幅为最小?ϕ为何值时,123x x x ++的振幅最小?解:(1)由同频率、同方向的简谐振动合成可知:A =1102200110220sin sin tan cos cos A A A A ϕϕϕϕϕ+=+,其中10.05A =m ,20.06A =m ,1035πϕ=,205πϕ=,25πϕ∆=,所以它们的合振动振幅为:28.9210A -=⨯m , 它们合振动的初相位:0'06813ϕ=。
(2)由同频率、同方向的简谐振动合成可知,同相位振动,其合成振幅最大;反相位振动,其合成振幅最小。
所以要使31x x +的振幅为最大,cos 1ϕ∆=则35πϕ=;要使32x x +的振幅为最小,cos 1ϕ∆=-则65πϕ=时;要使123x x x ++的振幅最小,cos 1ϕ∆=-则0'11147ϕ=-。
3-12 三个同方向,同频率的简谐振动为)6314cos(08.01π+=t x ,)2314cos(08.02π+=t x ,)65314cos(08.03π+=t x求:(1)合振动的圆频率、振幅、初相及振动表达式;(2)合振动由初始位置运动到A x 22=所需最短时间(A 为合振动振幅)。
解:(1)合振动的圆频率为314100ωπ==(rad/s),1230.08A A A ===(m),根据公式得 112233sin sin sin 0.16y A A A A ϕϕϕ=++=(m )合振幅为:A =, 初位相为:()arctan //2y x A A ϕπ==。
合振动的方程为:0.16cos(100)2x t ππ=+(2)当/2x =时,可得cos(100/2)2t ππ+=, 解得100/2/4t πππ+=或7/4π由于0t >,所以只能取第二个解,可得所需最短时间为t = 0.0125(s) 3-13 将频率为Hz 384的标准音叉振动和一待测频率的音叉合成,测得拍频为Hz 0.3,在待测音叉的一端加上一小块物体,则拍频将减小,求待测音叉的固有频率。