化工原理填料塔分解
化工原理课程设计甲醇填料吸收塔设计

投资估算及经济效益分析
投资估算
根据甲醇填料吸收塔的设计方案,对设备、材料、安装、调试等各方面的费用进行详细估算,以确保投资预算的 准确性。
经济效益分析
通过对比不同设计方案的经济效益,包括投资回报率、净现值、内部收益率等指标,评估甲醇填料吸收塔的经济 效益,为决策提供依据。
环保法规遵守情况说明
在甲醇吸收塔周围设置防火墙或 防火带,防止火灾蔓延。同时, 塔体上应设置明显的安全警示标 志和灭火器材。
防爆措施
对于可能存在爆炸危险的区域, 应采取相应的防爆措施,如设置 防爆门、防爆窗等。此外,还应 对塔体进行定期检查和维修,确 保设备完好无损。
防毒措施
甲醇具有一定的毒性,因此在设 计过程中应采取相应的防毒措施 。例如,在塔体上设置排风口和 通风设备,确保空气流通;工作 人员在操作时应佩戴防毒面具和 防护服等个人防护用品。
化工原理课程设计甲 醇填料吸收塔设计
目录
• 课程设计背景与目的 • 甲醇填料吸收塔基本原理 • 设计方案制定与参数选择
目录
• 工艺流程设计与优化 • 设备布置与管道设计 • 控制系统设计与实现 • 经济评价与环保考虑
01
课程设计背景与目的
化工原理课程设计意义
01 02
理论与实践结合
化工原理课程设计是连接化工理论学习与工程实践的重要桥梁,通过课 程设计,学生可以将所学的化工原理知识应用于实际工程问题中,加深 对理论知识的理解和掌握。
塔内件设计与优化
通过对塔内件(如分布器、收集器、再分布器等)的设计和优化,实现气液均匀分布、减少返混和降低压降等目标, 从而提高吸收效率和降低能耗。
操作条件优化
通过对操作条件(如温度、压力、流量等)的优化,使吸收塔在最佳工况下运行,提高吸收效率和产品 质量,降低能耗和废弃物排放。
化工原理实验报告-填料塔吸收实验

填料吸收塔吸收操作及体积吸收系数的测定课程名称:过程工程原理实验(乙)指导老师:成绩:__________________实验名称:同组学生姓名:一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得一、实验目的1.了解填料吸收塔的构造并熟悉吸收塔的操作。
2.观察填料吸收塔的液泛显现,测定泛点空塔气速。
3.测定填料层压降ΔP与空塔气速u的关系曲线。
4.测定含氨空气—水系统的体积吸收系数K Yα。
二、实验装置1.本实验装置的流程示意图见图5-1。
主体设备是内径70毫米的吸收塔,塔内装10×9×1陶瓷拉西环填料。
2.物系是(水—空气—氨气)。
惰性气体空气由漩涡气泵提供,氨气由液氨钢瓶供应,吸收剂水采用自来水,它们分别通过转子流量计测量。
水葱塔顶喷淋至填料层与自下而上的含氨空气进行吸收过程,溶液由塔底经液封管流出塔外,塔底有液相取样口,经吸收后的尾气由塔顶排至室外,自塔顶引出适量尾气,用化学分析法对其进行组成分析。
1—填料吸收塔2—旋涡气泵3—空气转子流量计4—液氨钢瓶5—氨气压力表6—氨气减压阀7—氨气稳压罐8—氨气转子流量计9—水转子流量计10—洗气瓶11—湿式流量计12—三通旋塞13、14、15、16—U型差压计17、18、19—温度计20—液位计 图5-1填料塔吸收操作及体积吸收系数测定实验装置流程示意图三、基本原理(一)填料层压力降ΔP 与空塔气速u 的关系气体通过干填料层时(喷淋密度L =0),其压力降ΔP 与空塔气速u 如图6中直线A 所示,此直线斜率约为1.8,与气体以湍流方式通过管道时ΔP 与u 的关系相仿。
如图6可知,当气速在L 点以下时,在一定喷淋密度下,由于持液量增加而使空隙率减小,使得填料层的压降随之增加,又由于此时气体对液膜的流动无明显影响,在一定喷淋密度下,持液量不随气速变化,故其ΔP ~u 关系与干填料相仿。
填料塔原理

填料塔原理
填料塔原理是一种常见的化工设备,用于气体或液体的分离、净化和反应等过程。
其基本原理是利用填料的大表面积和多孔性,增加气液接触面积,从而提高传质和反应效率。
填料塔通常由塔体、填料层、进出口管道、分布器、收集器、排气管道等组成。
填料层是填料塔的核心部分,其作用是将气体或液体均匀地分布在填料上,使其与填料表面接触,从而实现传质和反应。
填料的种类和形状不同,对填料塔的传质和反应效率有着重要影响。
填料塔的工作原理是将待处理的气体或液体从塔底进入填料层,经过填料层的传质和反应后,从塔顶排出。
在填料层中,气体或液体与填料表面接触,发生传质和反应。
传质过程包括扩散、对流和反应等,其中扩散是主要的传质方式。
反应过程则是指化学反应或物理吸附等过程。
填料塔的传质和反应效率取决于填料的种类和形状、气体或液体的流速、温度、压力等因素。
填料塔广泛应用于化工、石油、制药、环保等领域。
例如,在炼油厂中,填料塔用于分离和净化原油中的不同组分;在化工生产中,填料塔用于催化反应、吸收、脱水等过程;在环保领域,填料塔用于废气处理、废水处理等。
填料塔原理是一种重要的化工原理,其应用广泛,对于提高化工生产效率、保护环境等方面都有着重要的作用。
化工原理氧解吸实验

实验名称:氧解吸实验实验摘要本实验测定不同气速下干填料塔和湿填料塔的压降,得到填料层压降—空塔气速关系曲线,确定塔的处理能力及找到最佳操作点。
然后用吸收柱使水吸收纯氧形成富氧水,送入解析塔再用空气进行解吸,进而可计算出不同气液流量比下液相体积总传质系数K x a,液相总传质单元高度H OL,液相总传质单元数N OL。
关键词:氧气解吸液相体积总传质系数液相总传质单元高度液相总传质单元数一、实验目的1、测量填料塔的流体力学性能2、测量填料塔的吸收-解吸传质性能3、比较不同填料的差异二、实验原理1、填料塔流体力学性能为保证填料塔的正常运行,通常需要控制操作气速处于液泛气速的0.5~0.8倍之间。
如图4-1在双对数坐标系下,气体自下而上通过填料层时,塔压降ΔP与空塔气速u符合关系式0.2~8.1P u∆,∝∆.当有液体喷下,低气速操作时,0.2~8.1=P u此时的ΔP比无液体喷下时要高。
气速增加到d点,气液两相的流动开始互相影响,以上2.∆,此时的操作点称为载液点。
气速在增大到e点时,气液两相的P∝u交互影响恶性发展,导致塔内大量积液且严重返混,以上10∆,此时的操作点P∝u称为泛液点,对应的气速就是液泛气速。
本次实验直接测量填料塔性能参数,确定其液泛气速,另外还可以用公式法、关联图法等确定。
全塔压降直接读仪表,空塔气速u由孔板流量计测定:s P A V/m 1.07854.0)25.110002(018.07854.061.0u 25.0孔板2⨯÷⨯∆⨯⨯⨯== 式中ΔP 孔板——孔板压降,Kpa2、H O 2P E 20.9Kpa解吸过程的平衡线与操作线都是直线,传质单元数可用对数平均推动力法计算:eee e m x xeOL w w w w x x x x x x x x x dx 112211221221ln ln N --≈--≈∆-=-=⎰)/()ln()x (-)(11221122e e e e m x x x x x x x x ----=∆)1.07854.0/(055.02水⨯⋅=V LH ——填料高度,0.75m ;V 水——水流量,L/h;L ——水摩尔流率,Kmol/(m 2.h),喷淋密度大于7.3m 3/(m 2.h); K xa ——液相体积传质系数,Kmol/(m 3.h);w 2——富氧水质量浓度,mg/L;w 1——贫氧水质量浓度,mg/L ; w 2e ,w 1e ——富氧水、贫氧水平衡含氧量,查表或实验测定,mg/L;根据以上各式,测量出水温度t ,水流量V 水,氧浓度w 1、w 2,即可算出填料塔传质系数K xa图4-2 气液流向和组成三、 实验流程1、吸塔四、1、2、3、固定水流量,从小到大改变气量,每个点稳定后,记录数据4、塔开始液泛时,记录最后一组数据,粗略确定泛点,完成湿料实验5、调节气量到当前值得一半,稳定2min,塔釜取样测量w e=11.13mg/L6、检查氧气罐压力约为0.05Mpa,打开防水倒灌阀和流量调节阀同氧气7、载点附近完成解吸操作,每个点稳定3min,顶、釜同时取样(两次)测量氧浓度8、实验结束后,关闭防水倒灌阀门,总阀门,溶氧仪等举例计算:以第四组数据为例:孔板压降ΔP=2.42kPa,全塔压降ΔP=0.85kPa, 空气流量V=32.0 m 3/h ,填料高度h=0.75m 塔径d=0.1m5.02举例计算同表1表3、解吸实验数据记录表1e 传质单元高度m N h H OL OL197.0805.375.0===水摩尔流量97.10591.07854.0150055.0)1.07854.0/(055.022水=⨯⨯=⨯⋅=V L Kmol/(m 2.h)体积传质单元数5.5377197.097.1059===OL xa H L K kmol.m -3.h -1 六、 作图分析湿塔填料数据 干经origin 曲线1:曲线3:曲线4:实验图表分析1、干塔填料实验,在上图中ΔP=u5.1(与实际的ΔP=u1.8~2.0相差较大)原因在于实验过程中读取全塔压降的读数偏大,导致实验结果偏大。
化工原理下册第三章-填料塔-本科讲课稿

练习题目
思考题
1.填料有哪些主要类型? 2.填料的几何特性包括哪些参数? 作业题: 无
第3章 蒸馏和吸收塔设备
3.2 填料塔 3.2.3 填料塔的流体力学性能
一、填料层的持液量
填料层的持液量是指在一定操作的条件下,在 单位体积填料层内所积存的液体体积。
总持液量 Ht
持液量 动持液量 Hc
静持液量 Hs
二、填料的性能及其评价
(3)填料因子
填料的比表面积与空隙率三次方的比值称为填
料因子,以 表示,其单位为1/m。
3
干填料 因子
分析
~
生产能力 流动阻力
传质效率
二、填料的性能及其评价
在操作状态下
L ~ ~
湿填料 因子
湿填料因子
P
△p
F
△pF
压降填料因子 P 泛点填料因子 F
操作气速 u 泛点气速 uF
单位体积填料层的表面积称为比表面积,以
表示,其单位为 m2/m3。
分析
~ 传质面积 ~ 传质效率
~ 流动阻力 ~ 生产能力
二、填料的性能及其评价
(2)空隙率
单位体积填料层的空隙体积称为空隙率,以
表示,其单位为 m3/m3,或以%表示。
分析
~流动阻力 ~塔压降 ~ 生产能力 ~ ~ 流动阻力 传质效率
波纹板片上轧成细小沟纹,可起到细分配板片 上的液体、增强表面润湿性能的作用。金属孔 板波纹填料强度高,耐腐蚀性强,特别适用于 大直径塔及气液负荷较大的场合。
丝网波纹 板波纹
一、填料的类型
金属孔板波纹填料
金属丝网波纹填料
一、填料的类型
陶瓷板波纹填料
塑料板波纹填料
化工原理课程设计(水吸收氨填料吸收塔设计)

化工原理课程设计(水吸收氨填料吸收塔设计)目录第1节前言31.1填料塔的主体结构与特点31.2填料塔的设计任务及步骤31.3填料塔设计条件及操作条件4第2节精馏塔主体设计方案的确定42.1装置流程的确定42.2吸收剂的选择52.3填料的类型与选择52.3.1填料种类的选择52.3.2填料规格的选择52.3.3填料材质的选择62.4基础物性数据62.4.1液相物性数据62.4.2气相物性数据72.4.3气液相平衡数据72.4.4物料横算8第3节填料塔工艺尺寸的计算93.1塔径的计算93.2填料层高度的计算及分段113.2.1传质单元数的计算113.2.2传质单元高度的计算113.2.3填料层的分段143.3填料层压降的计算14第4节填料塔内件的类型及设计154.1塔内件类型154.2塔内件的设计164.2.1液体分布器设计的基本要求:164.2.2液体分布器布液能力的计算16注:171.填料塔设计结果一览表 (17)2.填料塔设计数据一览 (18)3.参考文献 (19)4.后记及其他 (19)附件一:塔设备流程图20附件二:塔设备设计图20表索引表 21工业常用吸收剂 (5)表 22 常用填料的塔径与填料公称直径比值D/d的推荐值 (6)图索引图 11 填料塔结构图 (3)图 31 Eckert图 (15)第1节前言1.1填料塔的主体结构与特点结构图错误!文档中没有指定样式的文字。
1所示:图错误!文档中没有指定样式的文字。
1 填料塔结构图填料塔不但结构简单,且流体通过填料层的压降较小,易于用耐腐蚀材料制造,所以她特别适用于处理量小,有腐蚀性的物料及要求压降小的场合。
液体自塔顶经液体分布器喷洒于填料顶部,并在填料的表面呈膜状流下,气体从塔底的气体口送入,流过填料的空隙,在填料层中与液体逆流接触进行传质。
因气液两相组成沿塔高连续变化,所以填料塔属连续接触式的气液传质设备。
1.2填料塔的设计任务及步骤设计任务:用水吸收空气中混有的氨气。
化工原理课程设计填料塔的设计

06 结论与展望
课程设计的总结与收获
01
02
03
04
设计流程掌握
通过填料塔的设计,掌握了从 需求分析、方案设计、详细设 计到最终实现的完整流程。
理论知识应用
将所学的化工原理知识应用于 实际设计中,加深了对理论知
识的理解和应用能力。
团队协作能力
在小组合作中,提高了团队协 作和沟通能力,学会了如何在
热力学第一定律
能量守恒定律,表示系统 能量的转化和守恒。
热力学第二定律
熵增加原理,表示自发反 应总是向着熵增加的方向 进行。
理想气体定律
描述气体状态变化的基本 规律。
填料塔的热量平衡与效率
热量平衡
填料塔在操作过程中,需要保持 热量平衡,即进料和出料的热量 与热源和冷源的热量交换达到平 衡状态。
效率计算
填料的作用
填料在填料塔中起到关键作用,它能够提供足够大的表面 积以促进气液间的接触,从而实现高效的传质和传热。
填料塔的工作原理
在填料塔中,液体从顶部淋下,通过填料层时与气体充分 接触,实现传质和传热。气体在填料的缝隙中流动,与液 体进行逆流接触,完成传质和传热过程。
02 填料塔的工艺设计
工艺流程
提高解决问题能力
面对实际工程问题,学生需要 独立思考、分析和解决问题, 提高解决实际问题的能力。
培养团队协作精神
课程设计通常以小组形式进行 ,学生需要分工合作、相互配
合,培养团队协作精神。
填料塔的基本概念和原理
填料塔的定义
填料塔是一种常用的化工设备,主要用于气液传质和传热 过程。它由塔体、填料、液体分布器、气体分布器和再分 布器等组成。
填料塔的流体力学性能
流体阻力
化工原理 填 料 塔

• 单位堆积体积内的填料数目n:由填料尺寸决定, n↑→ε↓, a↑→阻力↑。
二、气液两相在填料内的流动
• 液体的流动 :液体借重力在填料表面作膜状流动,流动阻力来自液膜 与填料表面及液膜与上升气流之间的摩擦。显然气速↑,阻力越大,膜 内液体流速越小;液体流量及气体流量越大,则液膜越厚填料层内的持 液量也越大 。不过气速较低时,气速造成的阻力较小,液膜厚度与气 速关系不大,但当气速较高时,则关系较大。
气液传质设备
• 塔设备的基本功能在于提供气液两相以充分接触的机会,使传质 传热能够迅速有效的进行;还要能使接触之后的汽、液两相能 够及时分开、互不夹带。
• 评价塔设备性能的指标: (1)生产能力 即单位塔截面上单位时间的物料处理量。 (2)分离效率 板式塔指每块塔板的分离程度、填料塔指单位填
料高度能达到的分离程度。 (3)操作弹性 指对各种物料性质和适应性以及在负荷波动时维
• 填料塔的结构与塔填料 • 填料塔的水力学性能 • 填料塔的传质性能 • 填料塔的附件
一、填料塔与塔填料
1. 塔的介绍
1、规整填料 2、支撑栅板 3、液体收集器 4、集液环 5、多级槽式液 体分布器
6、填料压圈 7、支撑栅板 8、蒸汽入口管 9、塔底 10、至再沸器 循环管
11、裙座 12、底座环
• 气体的流动 : 近似于流体在颗粒间的流动,区别是:流体在颗粒间流 速较低通常处于层流状态,流动阻力与气速成正比;而在填料层内,由 于填料尺寸较颗粒大,气体的流速也较高,一般处于湍流状况,气体通 过干填料层的压降与流量的关系为一直线,斜率为1.8~2.0。
化工原理课程设计--填料吸收塔的设计

化工原理课程设计--填料吸收塔的设计《化工原理》课程设计填料吸收塔的设计学院南华大学船山学院专业制药工程班级 10级姓名龙浩学号 20109570111指导教师王延飞2012年11月25日1.水吸收氨气填料塔工艺设计方案简介任务及操作条件①混合气(空气、NH3 )处理量:10003/m h;②进塔混合气含NH3 7% (体积分数);温度:20℃;③进塔吸收剂(清水)的温度:20℃;④NH3回收率:96%;⑤操作压力为常压101.3k Pa。
1设计方案的确定用水吸收氨气属于等溶解度的吸收过程,为提高传质效率,选用逆流吸收过程。
因用水做座位吸收剂,且氨气不作为产品,股采用纯溶剂。
该填料塔中,氨气和空气混合后,经由填料塔的下侧进入填料塔中,与从填料塔顶流下的清水逆流接触,在填料的作用下进行吸收。
经吸收后的混合气体由塔顶排除,吸收了氨气的水由填料塔的下端流出。
2填料的选择对于水吸收氨气的过程,操作温度计操作压力较低。
工业上通常是选用塑料散装填料。
在塑料散装中,塑料阶梯环填料的综合性能较好,见下图:根据所要处理的混合气体,可采用水为吸收剂,其廉价易得,物理化学性能稳定,选择性好,符合吸收过程对吸收剂的基本要求。
设计选用填料塔,填料为散装聚丙烯DN50阶梯环填料。
国内阶梯环特性数据52. 工艺计算2.1基础物性数据 2.1.1液相物性数据对低浓度吸收过程,溶液的物性数据可近似取纯水的物性数据。
由手册查的,20℃水的有关物性数据如下: 密度为 ρ1 =998.2Kg /m 3粘度为 μL =1.005mPa ·S =0.001Pa ·S=3.6Kg /(m ·h ) 表面张力为 σL =72.6dyn /cm=940 896Kg /h 2氨气在水中的扩散系数:D L =1.80×10-9 m 2/s=1.80×10-9×3600 m 2/h=6.480 ×10-6m 2/h2.1.2气相物性的数据 混合气体平均摩尔质量为M VM =Σy i M i =0.101×17+0.899×28=26.889混合气体的平均密度为ρvm =RTPM VN=101.3×26.889/(8.314×293)=1.116Kg /m 3 混合气体的粘度可近似取为空气的粘度,查手册的20℃空气的粘度为μV =1.81×10—5Pa ·s=0.065Kg /(m ·h )查手册得氨气在20℃空气中扩散系数为D v = 0.189 cm 2/s=0.068 m 2/s2.1.3气液相平衡数据20C 下氨在水中的溶解度系数:)/(725.03kpa m kmol H ⋅=,常压下20℃时亨利系数:SLHM E ρ==998.2/(0.725×18.02)=76.40Kpa相平衡常数为755.01.10140.76===P E m溶解度系数为717.02.184.762.98=⨯==SLEM H ρ998.20.7540.72518101.3s S E m P HM P ρ====⨯⨯ 2.1.4 物料衡算 进塔气相摩尔比为Y 1=11y 1y —=0.101/(1—0.101)=0.11235 出塔气相摩尔比为Y 2=Y 1(1—φ)=0.11235×(1—0.9996)=0.000045进塔惰性气相流量为V=1000/22.4×273/(273+20)×(1—0.101)=34.29Kmol /h该吸收过程属低浓度吸收,平衡关系为直线,最小液气比可按下式计算,即;(V L )min =2121m X Y Y Y —/— 对纯溶剂吸收过程,进塔液相组成为 X 2=0(VL)min =(0.11235—0.000045)/[0.11235/(0.754—0)]=0.753 取操作液气比为最小液气比1.8VL=1.8×0.753=1.355 L=1.355×34.29=46.516Kmol /hV (Y 1—Y 2)=L (X 1—X 2)X 1=34.29×(0.11235—0.000045) /46.516=0.08278 5填料塔的工艺尺寸的计算 1) 塔径的计算采用Eckert 通用关联图计算泛点气速 塔径气相质量流量为V ω=1000×1.103=1103Kg /h液相质量流量可近似按纯水的流量计算,即:L ω=46.516×18.02=838.218㎏/hEckert 通过关联图的横坐标为025.0)2.998116.1(1103218.838)(5.05.0=⨯=L V V L w w ρρ 21.02.02=ψΦL LV F F g u μρρ1170-=Φm F95.01116.111702.99881.921.021.02.02.0=⨯⨯⨯⨯⨯=ψΦ=L V F L F g u μρρ729.0665.014.33600/100044=⨯⨯==uV D Sπ圆整塔经,取D=0.8ms m u u F /665.095.07.07.0=⨯==泛点率校核:)%(69%1008.0785.03600/10002在允许范围内=⨯⨯=u填料规格校核:805.2138800>==d D112480.23lg f t v v L L L v L u a W A K g W ρρμρρε⎡⎤⎛⎫⎛⎫=-⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦即()20.231184223 1.166lg () 1.0049.81998.20.90 1.1660.204 1.750.666998.20.476f u ⎡⎤⎢⎥⎢⎥⎣⎦⎛⎫=-⨯⨯ ⎪⎝⎭=-3.017/f u m s = ()0.50.85f u u =-取泛点率为0.8 取u =0.8u F =0.8×3.017m/s =2.41m/sD =u4πSV = [(4×1000/3600)/(3.14×2.41)] 0.5=0.38m 圆整后取 ()()0.4400D m mm ==2.泛点率校核:210003600 2.212/0.7850.4u m s ==⨯ 2.2120.7333.017F u u ==(在0.5到0.85范围之间) 3.填料规格校核:40016825D d ==> 4.液体喷淋密度校核:取最小润湿速率为:U min =(L W )min · a t =0.101×114.2=11.534m 3/m 2·h 查常用散装填料的特性参数表,得at=114.2m 2/m 3 U=46.516×18.02/998.2/(0.785×0.42)=6.717>U min经以上校核可知,填料塔直径选用D= 400mm 是合理的。
填料塔化工原理课程设计

填料塔化⼯原理课程设计摘要在化⼯⽣产中,⽓体吸收过程是利⽤⽓体混合物中,各组分在液体中溶解度或化学反应活性的差异,在⽓液两相接触是发⽣传质,实现⽓液混合物的分离。
在化学⼯业中,经常需将⽓体混合物中的各个组分加以分离,其⽬的是:①回收或捕获⽓体混合物中的有⽤物质,以制取产品;②除去⼯艺⽓体中的有害成分,使⽓体净化,以便进⼀步加⼯处理;或除去⼯业放空尾⽓中的有害物,以免污染⼤⽓。
实际过程往往同时兼有净化和回收双重⽬的。
吸收是利⽤混合⽓体中各组分在液体中的溶解度的差异来分离⽓态均相混合物的⼀种单元操作。
在化⼯⽣产中主要⽤于原料⽓的净化,有⽤组分的回收等。
⽓液两相的分离是通过它们密切的接触进⾏的,在正常操作下,⽓相为连续相⽽液相为分散相,⽓相组成呈连续变化,⽓相中的成分逐渐被分离出来。
填料塔是⽓液呈连续性接触的⽓液传质设备,属微分接触逆流操作过程。
塔的底部有⽀撑板⽤来⽀撑填料,并允许⽓液通过。
⽀撑板上的填料有整砌和乱堆两种⽅式。
填料层的上⽅有液体分布装置,从⽽使液体均匀喷洒于填料层上。
填料层的空隙率超过90%,⼀般液泛点较⾼,单位塔截⾯积上填料塔的⽣产能⼒较⾼,研究表明,在压⼒⼩于0.3MPa 时,填料塔的分离效率明显优于板式塔。
这次课程设计的任务是⽤⽔吸收空⽓中的⼆氧化硫,然后再进⾏解吸处理得到⼆氧化硫。
要求设计包括塔径、填料塔⾼度、塔管的尺⼨等,需要通过物料衡算得到所需要的基础数据,然后进⾏所需尺⼨的计算得到各种设计参数,为图的绘制打基础,提供数据参考。
⽬录摘要.............................................................. I ⽬录............................................................. II 第⼀章设计⽅案的内容 (1)1.1流程⽅案 (1)1.2设备⽅案 (1)第⼆章设计⽅案的确定 (2)2.1吸收流程选择 (2)2.1.1吸收⼯艺流程的确定 (2)2.1.2流程装置的确定 (3)2.2吸收剂的选择 (3)2.3吸收剂再⽣⽅法的选择 (4)2.4操作温度和压⼒的确定 (4)2.4.1操作温度的确定 (4)2.4.2操作压⼒的确定 (5)第三章吸收塔设备及填料类型与选择 (6)3.1吸收塔设备的选择 (6)3.2填料类型的选择 (6)3.3填料规格的选择 (7)3.4填料材质的选择 (7)第四章吸收塔⼯艺条件的计算 (8)4.1基础物性数据 (8)4.1.1液相物性数据 (8)4.1.2⽓相物性数据 (8)4.2确定⽓液平衡的关系 (9)4.3吸收剂及操作线的确定 (9)4.3.1吸收剂⽤量的确定 (9)4.3.2操作线⽅程的确定 (10)4.4塔径计算 (11)4.4.1采⽤Eckert通⽤关联图法计算泛点速率 (11) 4.4.2操作⽓速: (13)4.4.3塔径计算: (13)4.4.4单位⾼度填料层压降的校核 (14)4.5填料层⾼度计算 (14)4.5.1传质系数的计算 (14)4.5.2 填料层⾼度 (17)4.6填料塔附属⾼度的计算 (18)第五章填料吸收塔附属装置的选型 (19)5.1液体分布器的简要设计 (19)5.1.1液体分布器的选型 (19)5.1.2分布点密度及布液孔数的计算 (20)5.2.塔底液体保持管⾼度的计算 (21)5.3其它附属塔内件的选择 (22)5.3.1 填料⽀撑板 (22)5.3.2 填料压紧装置与床层限制板 (22)第六章辅助设备的选型 (23)6.1管径的选择 (23)6.1.1进液管管径 (23)6.1.2出液管管径 (23)6.1.3进⽓管管径 (24)6.1.4出⽓管管径 (24)6.2泵的选取: (24)6.3风机的选型: (26)第七章关于填料塔设计的选材 (27)参考⽂献 (28)附录 (29)致谢 (34)第⼀章设计⽅案的内容1.1流程⽅案指完成设计任务书所达的任务采⽤怎样的⼯艺路线,包括需要哪些装置设备,物料在个设备间的⾛向,哪些地⽅需要有观测仪表、调节装置,那些取样点以及是否需要有备⽤设备等,按上述内容绘制流程图。
重庆理工大学《化工原理》第3章 蒸馏和吸收塔设备

泡沫接触状态
38
1. 塔板上气液两相的接触状态
4) 喷射接触状态
当气速继续增加,把板 上液体向上喷成大小不等的 液滴,直径较大的液滴受重 力作用落回到塔板上,直径 较小的液滴被气体带走,形 成液沫夹带。液滴回到塔板 上又被分散,这种液滴反复 形成和聚集,使传质面积增 加,表面不断更新,是一种 较好的接触状态。
①鼓泡接触状态; ②蜂窝接触状态; ③泡沫接触状态; ④喷射接触状态。
35
1. 塔板上气液两相的接触状态
1) 鼓泡接触状态
气速较低时,气 体以鼓泡形式通过液 层。由于气泡的数量 不多,形成的气液混 合物基本上以液体为 主,气液两相接触的 表面积不大,传质效 率很低。
鼓泡接触状态
36
1. 塔板上气液两相的接触状态
板应考虑哪些问题?
作业题: 无
54
2.塔板的负荷性能图
1)塔板负荷性能图的构造 板式塔设计完成后,需要绘制负荷性能图来检
验工艺设计是否合理,考核该塔正常操作的气液流量 范围,了解塔的操作弹性,判断有无增产能力,减负 荷能否正常运行等。
筛板塔比起泡罩塔,生产能力可增大10%~ 15%,板效率约提高15%,单板压降可降低30%左 右,造价可降低20%~50%。
19
3.浮阀塔板
浮阀塔板的结构特点是在塔板上开有若干个 阀孔(标准孔径为39mm),每个阀孔装有一个可上 下浮动的阀片,阀片本身连有几个阀腿,插入阀 孔后将阀腿底脚拨转90°,以限制阀片升起的最 大高度,并防止阀片被气体吹走。阀片周边冲出 几个略向下弯的定距片,当气速很低时,由于定 距片的作用,阀片与塔板呈点接触而坐落在阀孔 上,可防止阀片与板面的黏结。
喷射接触状态
39
2.塔板压降
化工原理 吸收(或解析)塔计算

NOG仅与气体的进出口浓度、相平衡关系有关,与塔的结构、 操作条件(G、L)无关,反映分离任务的难易程度。
(2)传质单元高度
H
=
OG
K
G y a
kmol 单位: m2 • s m
kmol m3 • s
HOG与操作条件G、L、物系的性质、填料几何特性有关,是吸收 设备性能高低的反映。其值由实验确定,一般为0.15~1.5米。
y4
•B
y3
E3
yN1
y2
y1 A
E1
E2
x0 x1
x2
x3
解析法求理论板数
x0
y1
平衡线方程:y=mx
y1
操作线方程:y=y1+L/G(x-x0)
由第一板下的截面到塔顶作物料衡算:
y2
y1
L G
x1
x0
y1 mx1
y2
y1
L G
y1 m
x0
(1
A) y1
Amx0
1
2
x1 y2
x2 y3
xN 2 y N 1
N 11 A A1
N-1
N xN 1 y N
yN 1
xN
y2
x2
吸收
y1
x1
y1
解吸
y2
六、塔板数
• 板式塔与填料塔的区别在于组成沿塔高是阶跃 式而不是连续变化的。
x0
y1
1
x1 y2
2
x2 y3
xN 2 y N 1
N-1
yN
N xN 1
xN
理论板:气液两相在塔板上充分接触, 传质、传热达平衡。
相平衡关系:yn f (xn )
化工原理下册第三章-填料塔-本科

二、填料的性能及其评价
(2)空隙率 单位体积填料层的空隙体积称为空隙率,以 表示,其单位为 m3/m3,或以%表示。 分析
~ 流动阻力 ~ 塔压降 ~ 生产能力 ~ 流动阻力 ~ 传质效率
26
二、填料的性能及其评价
(3)填料因子 填料的比表面积与空隙率三次方的比值称为填 料因子,以 表示,其单位为1/m。
60
二、填料塔工艺尺寸的计算
2.填料层高度的计算 (1)传质单元高度法
Z H OG NOG
(2)等板高度法
Z NT HETP
注意问题: ①填料层的分段; ②设计填料层高度 Z 1.3 ~ 1.5 Z。
61
三、填料层压降的计算
1.散装填料压降的计算
计算方法:由埃克特通用关联图计算。 2.规整填料压降的计算 计算方法: ①由压降关联式计算; ②由实验曲线计算。
2.填料规格的选择 (1)散装填料规格的选择 散装填料常用的规格(公称直径)有 DN16 DN25 DN38 DN50 DN76 填料规格
~ 传质效率 ~ 填料层压降
填料 公称 直径
54
选择原则:D/d ≥ 8
塔 径
一、填料的选择
(2)规整填料规格的选择 规整填料常用的规格(比表面积)有 125 150 250 350 500 700 同种类型的规整填料,其比表面积越大,传 质效率越高,但阻力增加,通量减少,填料费用 也明显增加。故选用时,应从分离要求、通量要 求、场地条件、物料性质以及设备投资、操作费 用等方面综合考虑。
经验值
39
第3章 蒸馏和吸收塔设备
3.2 填料塔 3.2.4 填料塔的内件
40
一、填料支承装置
化工原理第五章第五节

2013-1-7
2013-1-7
3.增大传质面积A
传质面积即为气液相间的接触面积。传质面积的形式有
两种方式:一种是使气体以小气泡状分散在液层中,另一种 是使液体以液膜或液滴状分散在气流中,实际设备操作中这 两种情况不是截然分开的。显然,要增大传质面积,必须设 法增大气体或液体的分散度。
总之,强化吸收操作过程要权衡得失,综合考虑,得到经 济而合理的方案。
(1)拉西环 拉西环是最早的一种填料,为外径与高度相
等的空心圆柱体,如图所示,它是具有内外表面的环状实 壁填料。
拉西环
拉西环形状简单,制造容易,但当拉西环横卧放置时, 内表层不易被液体润湿且气体不能通过,而且彼此容易重叠, 使部分表面互相屏蔽,因而气液有效接触面积降低,流体阻 力增大。
2013-1-7
要增大吸收系数,必须设法降低吸收总阻力,而总阻力是气膜阻力
和液膜阻力之和。对不同的吸收过程,此二膜阻力对总阻力有不同程度 的影响。所以,要降低总阻力,必须有针对性地降低气膜阻力或液膜阻
力。
易溶气体属于气膜控制,难溶气体属于液膜控制。在一定的操作条 件下,一般降低吸收阻力的措施是增大流体速度及改进设备结构以增大 流体的湍动程度,从而增强扩散过程中的涡流扩散效果。
第
五 章 吸 收
一、填料塔的结构及 填料性能 二、气液两相在填料
第 五 节 填 料 塔
层内的流动
三、塔径的计算 四、填料塔的附件
2013-1-7
一、填料塔的结构及填料性能
(一)、填料塔的构造
填料塔由塔体、填料、液体分布 装置、填料压板,填料支承装置、液 体再分布装置等构成,如图5-26所示。 填料塔操作时,液体自塔上部进入, 通过液体分布器均匀喷洒在塔截面上并 沿填料表面成膜状流下。经填料支承装 置由塔下部排出。
填 料 塔

填料塔
(3) 弧鞍填料。弧鞍填料属鞍形填料的一种, 其形状如同马鞍,如图7-15(d)所示,一般采用 瓷质材料制成。弧鞍的表面不分内外,全部敞开, 液体在表面两侧均匀流动,表面利用率高,流动阻 力小。其缺点是堆放时填料容易叠合,使传质效率 降低。弧鞍填料强度较差,容易破碎,工业生产中 应用不多。
填料塔
填料塔
图7-15 常用填料的形状
填料塔
(7)网状填料。网状填料是用丝网 或多孔金属片为基本材料制成一定形状的 填料,如θ网环、鞍形网、波纹网等。其特 点是网质轻,填料尺寸小,比表面积和空 隙率都大,液体分布能力强。
填料塔
3. 填料的性能评价
填料塔能否正常操作关键是填料的性能,填料的性能主 要包括比表面积、空隙率、填料因子等。
填料塔
ห้องสมุดไป่ตู้
图7-14
1.塔壳体 2.
4.
5.
6.填料支承板
3.填料压板
填料塔
填料塔属于连续接触式气液传质设 备,两相组成沿塔高连续变化,在正常 操作状态下,气相为连续相,液相为分 散相。
填料塔
2. 填料的类型
填料的种类很多,通常可分为实体填料 和网状填料两大类。实体填料有环形填料、 鞍形填料、栅板填料及波纹填料等。网状填 料有鞍形网、θ网、波纹网等。图7-15所示为 几种常用的填料的外形。
(1)比表面积。单位体积填料层所具有的表面积称为 比表面积,以σ表示,其单位为m2/m3。显然,填料的比表 面积越大,所提供的气液传质面积越大。
(2)空隙率。单位体积填料层中所具有的空隙体积称 为空隙率,以ε表示,其单位为m3/m3。填料的空隙率越大, 气体通过的能力越大,阻力越小。
填料塔
(3)填料因子。填料的比表面积与空隙率三次方的比值, 即σ/ε3,称为填料因子,其单位为1/m。填料因子分为干填料因 子与湿填料因子,填料未被液体润湿时称为干填料因子,以f表 示,它是表示填料阻力和液泛条件的重要参数之一;填料被液体 润湿后,由于部分空隙被液体占据,空隙率减小,比表面积也会 发生相应的变化,此时称为湿填料因子,以Ф表示,它表示填料 的流体力学性能。
化工原理实验——填料吸收实验

实验六填料塔流体力学特性实验一、实验目的1、了解填料塔的构造、流程及操作2、了解填料塔的流体力学性能。
3、学习填料吸收塔传质能力和传质效率的测定方法。
4、掌握以 Y为推动力的总体积吸收系数K Y a的测定方法。
二、实验内容(一)、填料塔流体力学性能测定1、测量干填料层(ΔP/Z)-u关系曲线2、测量某喷淋量下填料层(ΔP/Z)-u关系曲线:选择液相流量,在该液相流量下于最小和最大气体流量之间选择不同的值测定塔的压降,得到塔压降与空塔气速的关系,确定出液泛气速。
(二)传质实验:固定液相流量和入塔混合气氨的浓度,在液泛速度以下取两个相差较大的气相流量,分别测量塔的传质能力(传质单元数和回收率)和传质效率(传质单元高度和总体积吸收系数)。
三、实验装置(一)、实验装置流程及示意图空气由鼓风机送入空气转子流量计,空气通过流量计处的温度由温度计测量,空气流量由放空阀调节。
氨气由氨瓶送出,经过氨瓶总阀进入氨气转子流量计,氨流量由流量计调节,氨气通过转子流量计处温度由实验时大气温度代替。
氨气进入空气管道与空气混合后进入吸收塔底部。
水由自来水管经水转子流量计进入塔顶,水的流量由水转子流量计调节。
分析塔顶尾气浓度时靠降低水准瓶的位置,将塔顶尾气吸入吸收瓶和量气管。
•在吸入塔顶尾气之前,予先在吸收瓶内放入5mL已知浓度的硫酸用于吸收尾气中氨。
塔底吸收液可用三角瓶于塔底取样口取样。
填料层压降用U形管压差计测定。
鼓风机氨瓶总阀自来水吸收液取样口液封管填料塔温度计空气转子流量计氨转子流量计水转子流量计氨流量调节阀水流量调节阀U型管压差计吸收瓶量气管水准瓶仪表盘填料吸收塔实验装置流程示意图放空阀图1 填料吸收塔实验流程示意图(第一套)图2 填料吸收塔实验流程示意图(第二套)1-鼓风机;2-空气流量调节阀;3-空气转子流量计;4-空气温度;5-液封管;6-吸收液取样口;7-填料吸收塔;8-氨瓶阀门;9-氨转子流量计;10-氨流量调节阀;11-水转子流量计;12-水流量调节阀;13-U 型管压差计;14-吸收瓶;15-量气管;16-水准瓶;17-氨气瓶;18-氨气温度;20-吸收液温度;21-空气进入流量计处压力。
吸收实验(化工原理实验)

吸收实验一、实验目的1、了解填料吸收塔的一般结构和工业吸收过程流程;2、掌握吸收总传质系数K a的测定方法;x3、考察吸收剂进口条件的变化对吸收效果的影响;4、了解处理量变化对吸收效果的影响。
二、实验原理1、概述吸收过程是依据气相中各溶质组分在液相中的溶解度不同而分离气体混合物的单元操作。
在化学工业中吸收操作广泛应用于气体原料净化、有用组分的回收、产品制取和废气治理等方面。
在吸收研究过程中,一般可分为对吸收过程本身的特点或规律进行研究和对吸收设备进行开发研究两个方向。
前者的研究内容包括吸收剂的选择、确定因影响吸收过程的因素、测定吸收速率等,研究的结果可为吸收工艺设计提供依据,或为过程的改进及强化指出方向;后者研究的重点为开发新型高效的吸收设备,如新型高效填料、新型塔板结构等。
吸收通常在塔设备内进行,工业上尤其以填料塔用的普遍。
填料塔一般由以K a下几部分构成:(1)圆筒壳体;(2)填料;(3)支撑板;(4)液体预分布装置;(5) x液体再分布器;(6)捕沫装置;(7)进、出口接管等等。
其中,塔内放置的专用填料作为气液接触的媒介,其作用是使从塔顶流下的流体沿填料表面散布成大面积的液膜,并使从塔底上升的气体增强湍动,从而为气液接触传质提供良好条件。
液体预分布装置的作用是使得液体在塔内有良好的均匀分布。
而液体在从塔顶向下流动的过程中,由于靠近塔壁处的空隙大,流体阻力小,液体有逐渐向塔壁处汇集的趋向,从而使液体分布变差。
液体再分布器的作用是将靠近塔壁处的液体收集后再重新分布。
填料是填料吸收塔最重要的部分。
对于工业填料,按照其结构和形状,可以分为颗粒填料和规整填料两大类。
其中,颗粒填料是一粒粒的具有一定几何形状和尺寸的填料颗粒体,一般以散装(乱堆)的方式堆积在塔内。
常见的大颗粒填料有拉西环、鲍尔环、阶梯环、弧鞍环、矩鞍环等等。
填料等材质可以使金属、塑料、陶瓷等。
规整填料是由许多具有相同几何形状的填料单元组成,以整砌的方式装填在塔内。
化工原理课件(十一五)第五章5.6填料塔

—液体密度校正系数,
WL WV
V L
0.5
;
↓ufΒιβλιοθήκη 2gV L
L 0.2
↓
uf
9
返回
三、持液量
北京化工大学化工原理电子课件
定义:操作时单位体积填料层内持有的液体体积。 静持液量:仍然停留在填料层中的液体量。 动持液量:指一定喷淋条件下持于填料层中的液
体总量与静持液量之差。
总持液量 (静持液量与动持液量之和 )
2)L点以上,u大,拦液现象,拦 液现象时的气速为载点气速, 超过载点气速后,ΔP∝u>2.0 。
7
返回
3)液泛区
北京化工大学化工原理电子课件
u↑↑,塔内液泛,泛点气速。ΔP∼u 斜率急剧增加,
使填料塔不能正常操作。
8
返回
北京化工大学化工原理电子课件
二、泛点气速的计算
Ф—湿填料因子,1/m;
Ψ
水 L
材料:陶瓷、金属、塑料
堆放:整砌、乱堆
4
返回
北京化工大学化工原理电子课件
拉西环
鲍尔环
阶梯环
5
环
返回
北京化工大学化工原理电子课件
鞍形环
丝网波纹
板波纹
6
槽式液体分布器
返回
北京化工大学化工原理电子课件
5.6.2 填料塔的流体力学性能
一、气体通过填料的压降
L=0 干填料 L↑,空隙率ε↓,压降大。 L:载点 F:泛点 1)L点以下, u小,ΔP∝u1.8∼2.0。
10
返回
北京化工大学化工原理电子课件
5.6.3 填料塔的附件
一、支承板
二、液体分布器
11
返回
化工原理第五章(填料塔)

2013-7-14
④弧鞍与矩鞍(berl saddle and intolox saddle)
【弧鞍形填料】
1931年出
现的这类填
料称弧鞍形
填料,是因
形如马鞍而
得名。
2013-7-14
【结构特点】这种填料层中主要为弧形的液体通道
,填料层内的空隙较环形填料(尤其较拉西环填料
主,增加了填料间的空隙,可以促进液膜的表面更
新,有利于传质效率的提高。
2013-7-14
2013-7-14
【性能特点】(1)由于高径比减少,使得气体绕填 料外壁的平均路径大为缩短,减少了气体通过填料
层的阻力。
(2)阶梯环的性能略优于鲍尔环,与鲍尔环相比,
生产能力可提高10%,气体阻力可降低5%左右,是
2013-7-14
金属拉西环
2013-7-14
塑料拉西环
2013-7-14
【拉西环的性能特点】 (1)拉西环是最早使用的人造填料(此前的填料为
碎石、砖块、焦炭等),制造容易,曾得到极为广
泛的应用。
(2)大量的工业实践表明,拉西环由于高径比太大,
堆积时相邻之间容易形成线接触,填料层的均匀性
差。因此,拉西环填料层中的液体存在着严重的壁
接触时间长,气液趋于平衡态,在塔内几乎不构成
有效传质区。
【结论】填料的比表面积并非有效的传质面积。
2013-7-14
(2) 空隙率ε 【定义】塔内单位体积填料层具有的空隙体积, m2/m3。 【影响】ε为一分数。ε值大则气体通过填料层的阻 力小,故ε值以高为宜。 填料的空隙率越大,气体通过的能力(处理能力 )越大且压降低。因此,空隙率是评价填料性能优 劣的又一重要指标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.3.4 填料塔的计算
2 填料层的有效高度
●1)传质单元法
●填料层高度=传质单元高度×传质单元数
●2)等板高度法
●与一层理论板传质作用相当的填料层高度 ●填料、物性、操作条件、设备尺寸 ●实验测定,经验数据,经验公式 ●填料层高度=等板高度×理论板数
●3)修正
●与气、液物性,操作条件有关
3 填料的选择
●
种类、规格、材质 ●分离要求,物料性质,填料性质
3.3.3 填料塔的流体力学性能
1 填料层的持液量
概念:一定操作条件,单位体积填料层内在填料表面和填 料空隙中积存的液体量,m3液体m3填料
●
静持液量:取决于填料和液体特性 动持液量:取决于填料和液体特性以及气液负荷
等 (1)填料特性
●比表面积,空隙率,几何形状,反映在填料因子上
(2)流体物性
●气体密度,液体粘度,液体密度
(3)液气比
●液气比大,持液量大,空隙率小,泛点气速低
●泛点气速的确定
●埃克特通用关联图
3.3.3 填料塔的流体力学性能
u g
2
V L
0.2 u V 0.2 mL 或 mL g L
●网体填料:鞍形网、网、波纹网
(2)按装填方法
●乱堆填料 ●整砌填料
2)散装填料 3)规整填料
3.3.2 填料
拉西环,鲍尔环,阶梯环,弧鞍,矩鞍,波纹板及网
3.3.2 填料
4)填料材料
●陶瓷,金属,塑料
5)填料因子
●与填料的类型、尺寸、材质、装填方式有关
●小于75mm的填料(LW)min0.08m3(m.h) ●实际喷淋密度应大于最小喷淋密度
●大于75mm的填料(LW)min=0.12m3(m.h) ●措施:增大回流比,液体再循环,减小塔径,适当增加
填料层高度
3.3.4 填料塔的计算
1 塔径
u ( 0.5 0.85) umax
3.3.1 填料塔的结构与特点
3.3.1 填料塔的结构与特点
2 特点
●结构简单,生产能力大 ●分离效率高,持液量小 ●操作弹性大,压降低 ●可处理腐蚀性物料 ●特别适用于真空精馏 ●造价高 ●不易处理含有悬浮物的原料,易聚合的物料 ●不适宜有侧线出料的场合
LOGO
3.3 填料塔
3.3.1 3.3.2 3.3.3 3.3.4 3.3.5
填料塔的结构与特点 填料 填料塔的流体力学性能 填料塔的计算 填料塔附件
3.3.1 填料塔的结构与特点
• 1 结构
3.3.1 填料塔的结构与特点
D 4 1000 / 3600 0.73m 0.6643
VS D2 4 1000 3600 ( 0.8)
2
D 0.80m
●载点
●泛点
●恒持液量区 ●载液区 ●液泛区
●操作范围:载点气速与泛点气速之间 ●不同填料不同喷淋量的曲线形状基本相同
3.3.3 填料塔的流体力学性能
3 液泛
●在泛点气速下,液体被气流大量带出塔顶的现象 ●适宜气速根据泛点气速确定
●影响泛点气速的因素:填料特性、流体物性、液气比
2 max
wL w V
V L
1 2
3.3.3 填料塔的流体力学性能
4 填料的润湿性能和液体喷淋密度
●润湿性能与传质效率密切相关
●影响因素:填料材质、表面形状、装填方法
●最小喷淋密度:单位时间,单位塔截面上喷淋的液体体
积
●(LW)min:最小润湿速率
Ht H s H c
●要求:适当的持液量对操作与传质有利,过大的持液量导
致压强降增大,生产能力降低
●持液量由实验测定或者由经验公式估算
3.3.3 填料塔的流体力学性能
2 气体通过填料层的压强降
●决定了塔的动力消耗,是塔设计的重要参数 ●以单位高度填料层压强降与空塔气速的关系表示 ●干填料 ●湿填料
3.3.4 填料塔的计算
4)填料层的分段
(1)散装填料 (2)规整填料
计算公式
表3 -8
表3 -9
3.3.4 填料塔的计算
例3-3 某矿石焙烧炉送出的气体冷却到20°C后送入填料吸 收塔中,用清水洗涤以除去其中的SO2。 SO2的体积分数为 0.06,要求吸收率=98%。已知吸收塔内绝对压强为 101.33kPa,入塔的炉气体积流量为1000m3h,炉气的平均摩 尔质量为32.16kgkmol,洗涤水耗用量为22600kgh。吸收塔 采用25mm×25mm×1.2mm的塑料鲍尔环以乱堆方式充填。试计 算塔径和填料层高度,并核算总压强降。 (1)塔径
0.618
0.2 m 2 V L umax 0.035 g L
umax
V m L 0.2
0.035 g L
0.035 9.811000 0.949m / s 0.2 285 11.338 1
3.3.4 填料塔的计算
u 0.7umax 0.7 0.949 0.6643m / s
3.3.2 填料
1 填料特性
(1)比表面积 (2)空隙率 (3)填料因子 3
●干填料因子,湿填料因子
选择填料的原则
、 性能要好,质量轻,造价低,足够的力学强度
●比表面积要大,空隙率要大,润湿
3.3.2 填料
2 填料类型
1)分类 (1)按结构
●实体填料:环形、鞍形、栅板、波纹板
1பைடு நூலகம்00 273 wV 32.16 1338kg / h 22.4 273 20
3.3.4 填料塔的计算
1338 V 1.338kg / h 1000
L 1000kg / m3
0.5
wL V wV L
0.5
22600 1.338 1338 1000