高压输电线路的防雷保护

合集下载

高压输电线路雷击风险评估及防雷保护方案

高压输电线路雷击风险评估及防雷保护方案

高压输电线路雷击风险评估及防雷保护方案发布时间:2023-02-21T03:56:10.833Z 来源:《福光技术》2023年2期作者:黄佳明[导读] 高压输电线路运行过程中受环境因素、装置因素、技术因素等影响,在雷击瞬间可能出现闪络击穿、过流损毁等,造成严重电力事故。

广东电网有限责任公司梅州供电局广东梅州 514021摘要:雷电活动是影响高压输电线路安全性能的重要因素,可直接造成高压击穿、相间短路等,造成大面积断电。

研究以某地区110kV 输电线路为例,梳理其近5年受雷击跳闸故障案例,构建高压输电线路雷击风险评估模型并检验。

同时,依照本次评估结果,展开系统化、科学化、规范化管控,从智能监测、预防管理及日常运维出发,最大限度避免线路雷电灾害。

关键词:高压线路;雷击;跳闸率;耐雷水平高压输电线路运行过程中受环境因素、装置因素、技术因素等影响,在雷击瞬间可能出现闪络击穿、过流损毁等,造成严重电力事故。

尤其是在我国中南部地区,夏季雷雨天气较为频繁,在一定程度上加大了高压输电线路雷击风险。

仅2009年到2018年南网辖区雷电地闪总数约300万次/年,重大雷电灾害事故平均每年近百起。

如何进一步加强高压输电线路防雷保护已经成为新时期人们关注的焦点。

1 区域概况本次研究过程中主要以某地区110kV输电线路为例,分析其装置设置及运行环境,设定合理雷电参数,构建有效评估模型,其中:某地区110kV输电线路于2013年3月建成并投入使用,线路全长144km。

该线路贯穿丘陵地区,雷电灾害较为频繁,其平均雷击跳闸率可达到0.41次/百公里·年,远远高于区域安全标准(0.15次/百公里·年),亟待处理和完善。

2 评估模型2.1 雷击趋势本文选取近5年来的雷电日频次为研究参数,分析110kV输电线路雷电灾害可能性,其数据见表1。

表1 某地区110kV输电线路雷电日统计情况注:U50%为绝缘子的50%冲击放电电压(kV);k为导线间及导线与避雷线耦合系数,k0为电晕修正后系数;β为避雷线分流系数;Ri 为杆塔冲击接地电阻(Ω);ha为横担对地面的高度(m);ht为杆塔全高(m);Lt为杆塔电感(μH);hg为避雷线距离地面高度(m);hc为导线对地面的平均高度(m)。

35kV输电线路防雷措施

35kV输电线路防雷措施

35kV输电线路防雷措施发布时间:2022-08-17T06:53:08.324Z 来源:《福光技术》2022年17期作者:郭晓东[导读] 雷击是导致高压线路跳闸停电事故的最重要因素,雷击线路还会产生雷电过电压波,经过高压线路输入到变电所,严重危害变电所设备安全运行。

因此,输电线路的雷击过电压及其防护问题不容忽视。

加强高压输电线路的防雷措施可以有效减少输电线路遭遇雷击导致跳闸的概率,是保障电力系统安全稳定运行的重要环节。

长庆油田分公司清洁电力开发项目部陕西省西安市 717600摘要:雷击是导致高压线路跳闸停电事故的最重要因素,雷击线路还会产生雷电过电压波,经过高压线路输入到变电所,严重危害变电所设备安全运行。

因此,输电线路的雷击过电压及其防护问题不容忽视。

加强高压输电线路的防雷措施可以有效减少输电线路遭遇雷击导致跳闸的概率,是保障电力系统安全稳定运行的重要环节。

关键词:输电线路;防雷;感应雷电压一、35kV输电线路雷击问题形成的原因1.1雷击地面问题形成原因雷击地面造成电网跳闸的主要原因是因为产生雷击感应的电压,针对35kV以及以下输电线路来说是很大的,在此基础之上自然也就会引发线路跳闸的问题。

之所以会产生感应电压是因为雷击大地问题发生的基础上会使线路相互之间产生感应过电压,但是笔者提及的这种感应过电压对高压输电线路并不会造成很大的影响。

1.2雷击电线杆雷击电线杆一般情况之下是在荒野当中发生的,电线杆的高度是要比周围的地势高出一些的,在此基础之上更为容易受到雷击放电问题的影响,自然也就会引发雷击问题;雷击电线杆的情况之下是会产生过大的电流,除去一小部分经由电线杆之上的避雷针进行倒流之外,其余的就是在对杆塔以及附属接地电阻具体构成结构加以一定程度的应用的基础上进入到大地当中,从而也就会在接地电阻领域中产生巨大的电压降,引发超出杆塔绝缘子串50%的放电电压的基础上是会引发绝缘子闪络问题以及反击过电压问题,在此基础之上自然也就会引发跳闸这样一种问题。

220kV高压输电线路防雷接地技术探析

220kV高压输电线路防雷接地技术探析

220kV高压输电线路防雷接地技术探析陈 卓 陈嘉康(国网重庆电力公司北碚供电分公司)摘 要:我国高压输电线路中220kV电路分布较为广泛,此类电路往往通过户外架空方式进行连接,因此,容易受到环境因素影响出现故障,如常见的雷击故障是破坏高压输电线稳定运行的主要因素之一。

为保障电路安全,本文对220kV高压输电线路防雷接地技术进行探析,详细分析常见的高压输电线路雷击形式,并针对防雷接地技术的实际情况,提出220kV高压输电线路防雷接地技术的设计和使用方式,全面提高防雷措施的有效落实程度,保障输电线路安全运行。

关键词:220kV;高压;输电线路;防雷接地技术;继电保护0 引言输电线路受到雷电威胁较大,在电路连接设计时,需要考虑其防雷性能和特点,确保防雷效果符合要求,保障高压电路的正常使用。

目前常见的防雷方式可以归纳为两种,其一为将雷电阻挡在设施之外,避免雷电进入而影响系统运行;其二为将雷电引导到其他区域,减轻雷电对重点区域相关设备的影响。

1 220kV输电线路雷击形式高压输电线在被雷击时会发生闪络,以此为依据,将输电线路的雷击形式分为两类:其一为直击。

在雷电直击塔顶避雷线时,电流会通过避雷线传导入相邻的杆塔结构,随着杆塔传输到大地。

该情况下一部分雷电电压会留在杆塔中,与导线上的电位形成高位电压差,从而引发杆塔导线闪络。

此类雷击故障在山区输电线中发生概率相对较高。

其二为绕击。

在雷电经过线路时,受到电感影响,容易出现雷电绕击故障,发生时会产生瞬间高压,使导线电位快速提高,此时导线的电位差与杆塔电位差相差过大,引起绝缘子串击穿放电,随之出现闪络现象[1]。

由于绕击产生的瞬时电压和电流较大,使其危害相对较大且发生较为频繁,其中高压线路发生概率更大,一般占总绕击的80%左右。

对其产生原因进行分析,能够发现其与高压线路保护角有关,具体公式如下:Pa=β槡h/86-3 35(1)其中,Pa为输电线路绕击率;β为高压线路保护角。

高压输电线路防雷措施分析及改进方法

高压输电线路防雷措施分析及改进方法

高压输电线路防雷措施分析及改进方法在高压输电线路的运行过程之中,雷击问题难以避免,且极易对输电线路的安全性及供电的稳定性产生影响,此时只有采取合理的措施,做好防雷工作,才能够确保人们的用电安全性及稳定性。

但就高压输电线路防雷措施而言,其仍存在一定的不足,应对之良好的分析,并通过一系列的方法,实现对高压输电线路防雷方面的良好改进。

标签:高压输电线路;防雷措施;改进方法1雷击问题给高压输电线路的影响1.1雷击问题分析改进并优化现有防雷技术方法时,必须优先考虑高压输电线路受到的雷击现象的具体情况,确定防雷工作的侧重点。

现分析线路雷击事件的具体情况,高压线路在雷雨天气中比较容易受到雷击影响,雷电可直接在线路导线处发挥作用;电路导线被雷电绕过后,可能受到雷电反击影响;雷电影响了线路附近的道路之后,输电线路系统受到间接影响,会形成感应过电压。

无论出现哪一种雷击事件,雷电波都会使输电线路的导线上生成大量的新电荷,破坏电路的平衡性,雷击现象之后,线路还会形成绝缘子闪络现象,线路跳闸问题生成,绝缘子断线与击穿事故给输电线路造成的影响更严重。

1.2输电线路防雷工作影响因素改进防雷措施,需要确定防雷保护工作的正确展开方向,找出影响线路防雷效果的主要影响因素。

杆塔的绕击数与其高度呈现出正比的关系,杆塔的高度数值增加后,地面屏蔽效果随之减弱,绕击区范围扩大,雷击事件形成概率增大,因此可调整杆塔高度。

高压输电线路所处区域的地形与雷击事故出现概率之间也有关联,设置在山区中的输电线路的实际绕击率偏高,因此有更大概率出现雷击的现象。

电流从地面的一处位置流向另一处位置时形成电阻值被称为接地电阻,接地电阻也是影响线路防雷效果的重要因素之一。

另外線路绝缘水平与波阻抗以及绕击数存在关联,共同影响输电线路的安全性。

2可行的防雷保护措施在既有的高压输电线路防雷保护系统的基础上,工作人员还可以利用以下几种技术手段来增强防雷工作工作的开设力度,更全面地完成防雷保护相关的工作。

高压架空输电线路防雷措施

高压架空输电线路防雷措施

背景介绍•高压架空输电线路的防雷措施是保证电力系统安全运行的重要环节。

采取科学合理的防雷措施,可以减少雷电对高压架空输电线路的损害,降低线路跳闸率,提高电力系统的稳定性和可靠性。

同时,防雷措施还可以保护周边环境和人民生命财产安全,对于维护社会稳定和促进经济发展具有重要意义。

防雷措施的重要性安装避雷线避雷线的作用避雷线通常沿着导线或杆塔进行安装,其安装角度和高度需根据具体的地理环境和气象条件进行设计。

避雷线的安装方式避雷线的优点降低杆塔接地电阻降低接地电阻的方法降低接地电阻的优点接地电阻的作用安装避雷器030201强化绝缘避雷线的应用避雷线的应用可以有效地将雷电电流引导到架空线上,避免雷电直接击中线路或设备。

避雷线的安装位置和数量需根据线路的具体情况和环境进行设计,一般在线路的关键部位和易受雷击的区域应加强避雷线的布置。

避雷线的材料和结构也需根据线路的具体情况和环境进行选择,一般要求具有较高的耐压和耐腐蚀性能。

接地电阻的应用接地电阻是将雷电电流引入大地的关键设备,其阻值大小直接影响到电流的引入效果。

接地电阻的安装位置和数量需根据线路的具体情况和环境进行设计,一般要求在易受雷击的区域应加强接地电阻的布置。

接地电阻的材料和结构也需根据线路的具体情况和环境进行选择,一般要求具有较高的导电性能和耐腐蚀性能。

避雷器的应用避雷器的安装位置和数量需根据线路的具体情况和环境进行设计,一般要求在易受雷击的区域应加强避雷器的布置。

避雷器的材料和结构也需根据线路的具体情况和环境进行选择,一般要求具有较高的耐压和耐腐蚀性能。

避雷器是一种将雷电电流引入地下的设备,其作用是在雷电电流过大时将其引入地下,避免对线路或设备造成损坏。

强化绝缘的应用强化绝缘是通过加强线路或设备的绝缘材料来提高其耐压能力,从而减少雷电电流对线路或设备的损坏。

强化绝缘的措施包括采用高性能的绝缘材料、增加绝缘层的厚度、添加绝缘涂层等。

强化绝缘的应用需根据线路的具体情况和环境进行设计,一般要求在易受雷击的区域应加强绝缘材料的强化。

高压输电线路雷害特点及防雷措施

高压输电线路雷害特点及防雷措施

高压输电线路雷害特点及防雷措施
高压输电线路雷害是我国重要的天气灾害之一,每年造成巨大损失,伤害社会公共利益。

因此,采取有效的防雷措施非常重要。

高压输电线路雷害的特点是非常危险,可能导致失电、火灾、漏电、电击等严重后果。

雷电有特殊的能量特性,可以高能量地击中线路,破坏线路设备。

另外,雷电的流量大,瞬间可以达到数千安培,而普通电流只有几安培,这是极其危险的。

针对线路雷害,有以下防雷措施:
1、安装防雷装置。

防雷装置可以将闪电的能量和过热的能量分离,使线路免受雷击而不受损。

2、安装耐雷护栏。

耐雷护栏可以将高电压线路隔离,防止雷电攻击设备。

3、检查线路储备条件。

通过定期检查线路,消除任何隐患,减少雷焰扩散的可能性。

4、改善线路绝缘性能。

线路绝缘是保护电力系统安全避免雷击的关键,应加强绝缘检查,采取改善绝缘性能的措施。

5、进行警戒检查。

应定期进行警戒性检查,检查路线上的破坏,查明隐患,此外,还可以采取抢修方法,以便及时采取措施。

综上所述,高压输电线路雷害的特点十分危险,防雷措施也必不可少。

为了避免雷害,各方都应该采取有效的防雷措施,确保线路安全运行。

高压输电线路的绝缘配置以及防雷保护

高压输电线路的绝缘配置以及防雷保护

高压输电线路的绝缘配置以及防雷保护高压输电线路在国内电力发展中,具有很重要的位置,目前国内电力系统中的热点显然已经是高压输电线路。

本文将对高压输电线路在被雷击时的情况进行分析,讲述高压输电线路的绝缘配置的选择和事项。

高压输电线路防雷的好坏是以雷击跳闸率和耐雷水平来进行衡量的。

对雷击跳闸率进行了分析,得出原理提出了防雷保护措施。

标签:绝缘配合;雷电直击;保护措施电力系统中最重要的就是高压输电线路,它的安全运行在电力工作中占很重要的位置。

根据我国以往的数据统计来看,高压水电线路跳闸事故中,有55%±15%左右都是因為雷击造成的。

雷击跳闸事故会对电网正常供电有影响,增加对线路检修的工作。

发生雷击事件后,雷电波会沿着输电线路到变电站,如果变电站里面的绝缘配置不完善,会导致发电设备损害,造成大范围的停电事故。

因此高压输电线路的绝缘配置和防雷保护是具有重要地位的,是电力系统运行安全的保障。

一、高压输电线路被雷击时的情况因为高压输电线路会选择在空旷的地方进行铺设,铺设的距离长,所以在雷阵雨天气的时候,高压输电线路很容易出现雷击的故障。

①高压输电线路被雷击中时,轻则对附近的用户造成短时间的停电,影响着人们的日常生活。

重则雷电将供电设备击毁,对社会和人们造成经济上损失和生命安全的隐患。

②高压输电线路被雷击时,输电线路上会出先传导过电压。

③高压输电线路被雷直接击中的时候,雷电会产生冲击波,很可能将输电线路直接击断,造成停电。

④在架空高压输电线路附近发生雷云对地放电的时候,雷电中的静电感应作用会对高压输电线路产生感应过压力,雷电反击过电压会在架空高压输电线路上避雷线顶部形成在输电线路的绝缘上作用。

然而,架空高压输电线路的样式、避雷线与地面和输电线路的距离等都会影响着反击过压点。

二、高压输电线路的绝缘配置(一)绝缘配合。

根据当地的环境和电力使用情况来选择设备的绝缘性,确定电气设备的绝缘水平。

在实际的工程中高压输电线路的绝缘配合要解决杆塔和档距之间的各种放电。

交流特高压电网的雷电过电压防护

交流特高压电网的雷电过电压防护

交流特高压电网的雷电过电压防护特高压电网作为电力系统中的重要组成部分,承担着大功率输电的任务,对于雷电过电压防护具有重要意义。

特高压电网在输电过程中容易受到雷电过电压的影响,如不加以防护,可能会对电网设备和系统运行造成损害甚至发生事故。

因此,特高压电网必须采取一系列措施来防止雷电过电压的产生和传播。

首先,特高压电网必须采用合适的导线材料和结构。

特高压电网输电线路通常采用的是悬垂绝缘子,这种绝缘子有良好的绝缘性能和抗风振性能,能够有效地抵御雷电过电压的冲击。

此外,为了提高线路的耐雷电性能,可以在导线上加装避雷针和避雷器,从而将雷电过电压引入地面,保护线路设备。

其次,特高压电网还需要配置雷电过电压保护装置。

雷电过电压保护装置通常采用的是避雷器,可以将雷电过电压引入地面,保护电网设备不受损害。

在特高压电网中,避雷器通常安装在变电站设备的进出线路、变压器和电缆终端等位置。

避雷器能够有效地吸收雷电过电压的能量,保持设备工作在安全电压范围内。

另外,特高压电网还需要加强对接地系统的构建。

良好的接地系统能够将雷电过电压迅速引入地面,减少对设备的影响。

特高压电网接地系统包括接地网、接地极和接地线等,通过有效地配置这些设施,可以提高接地系统的效果。

此外,特高压电网还可以采用接地引雷的方法,将雷电引入地下,减少对电网的影响。

总之,特高压电网的雷电过电压防护是确保电网设备和系统安全运行的关键措施。

通过采用合适的导线材料和结构,配置雷电过电压保护装置,并加强对接地系统的构建,可以有效地防止雷电过电压对电网的影响。

特高压电网必须认真对待雷电过电压防护工作,确保电网的可靠运行。

只有这样,特高压电网才能够更好地为社会提供稳定可靠的电力供应。

高压输电线路综合防雷措施的应用

高压输电线路综合防雷措施的应用

高压输电线路综合防雷措施的应用高压输电线路是电力输送的重要组成部分,为确保电力输送的安全和稳定,高压输电线路的防雷工作显得尤为重要。

在现代社会,雷电对电力系统造成的影响是不可忽视的,因而高压输电线路综合防雷措施的应用显得至关重要。

本文将从高压输电线路防雷的必要性、常见的防雷措施及其应用效果等方面展开阐述。

一、高压输电线路防雷的必要性高压输电线路承担着将电能从发电站输送到用户的重要任务,是电力系统的重要组成部分。

由于自然界雷电活动的不可预测性和破坏性,使得高压输电线路成为雷电攻击的重要目标。

雷电对高压输电线路可能造成以下几方面的影响:1. 直接损坏设备:雷电直击导线、绝缘子、变压器等设备,可能导致设备的损坏,造成停电甚至事故。

2. 间接影响:雷电引起的电磁感应可能导致线路过电压,影响电力系统的正常运行。

3. 安全隐患:雷电对高压输电线路的影响可能造成对周围环境和人员的安全隐患。

由于上述原因,高压输电线路必须进行综合防雷工作,以保障电力系统的稳定运行和人员财产的安全。

1. 金属氧化物避雷器:金属氧化物避雷器是高压输电线路防雷的重要设备之一。

其原理是利用氧化锌等金属氧化物的非线性电阻特性,在电压大于一定值时形成导通通道,将雷电击中的能量引向大地,从而保护设备和线路免受雷击。

2. 接地网:接地网是将设备和线路上的电荷引入地下的装置,能够有效地把雷电击中的电荷引入地下,减少雷电对设备和线路的损害。

3. 防雷线:在高压输电线路上悬挂防雷线,以降低雷电击中导致的线路过电压,保护设备和线路的安全。

4. 避雷带:在高压输电线路周围设置避雷带,通过避雷带的导电性能将雷电击中的能量引入地下,减少雷电对周围环境和人员的影响。

5. 避雷接地装置:避雷接地装置是将高压输电线路上的导线通过接地装置引入地下,降低雷电对线路的影响。

综合防雷措施的应用可以显著地提高高压输电线路的防雷能力,保障电力系统的安全运行和人员财产的安全。

以下是综合防雷措施的应用效果:1. 提高设备和线路的抗雷能力:金属氧化物避雷器、接地网、防雷线等设备的使用可以有效地将雷电击中的能量引入地下,保护设备和线路免受雷击。

220kV输电线路工程防雷措施研究

220kV输电线路工程防雷措施研究

220kV输电线路工程防雷措施研究摘要:城市化进程加快,电力行业发展迅速,在实际针对基础设施进行建设的过程中最为重要的就是电力系统的建设,在建设电力系统的过程中,220kV输电线路是最为重要的发展内容。

220kV输电线路在实际应用的过程中,通常会受到自然因素的影响,特别是雷击现象,最终出现安全事故,影响电力资源的输送。

针对此情况,在实际进行建设施工的过程中,相关设计人员需要针对雷电绕击及防雷进行深入研究,避免出现安全事故,同时也可以避免出现大范围的停电事故,影响社会发展和进步。

关键词:220kV输电线路;雷电;措施引言高压输电线路的稳定是保证民众用电安全的前提条件。

在电网规模扩大的当下,工作人员理应重视对输电线路安全的维护。

本文对220kV输电线路综合防雷技术进行分析,以供参考。

1防雷在输电线中的作用通过对电网的故障探测,我们发现,在电网中,因闪电而引起的电网故障有很多种,尤其是在一些经常出现闪电的地方,当电网出现故障时,基本上都是因为闪电造成的,并且严重影响了人们的正常生活。

此外,在山地地区,由于地势的缘故,输电线路往往是在高低不平的山峦间铺设而成,导致线路的竖直高度差异较大,为热风和冷风的交换提供了良好的条件,导致了大气对流的发生,也使线路极易遭受雷击。

因此,在进行线路初步设计时,应充分考虑防雷构造,明确防雷构造的合理性及重要性。

2高压输电线路遭遇雷击的原因其一,缺乏足够的防雷器。

很多电力公司都把避雷器应用于各种装置中,以节省费用、减少费用、获取更大的经济效益,但是这些方式都不能达到很好的防护效果,有些完全没有防护作用,只是做做样子而已。

另外,很多国家的电网企业在高压输电线的高压线上只设置了少量的避雷设施,不足以应付每天发生的雷击事件;其二,输电线本身的一些问题。

其中,配电网络自身的影响是不容忽视的,其主要体现在导线的接地电阻、导线的架空等方面;其三,缺乏对装备及线路的维护。

由于设备的老化、常年使用不维护、导线接触不良、人为原因或用电负荷过大、超负荷及线路改造不及时等原因,都会引起线路短路或自燃,引起过电流,进而引起配电设备的故障。

高压输电线路的防雷保护

高压输电线路的防雷保护

高压输电线路的防雷保护摘要:近年来社会用电需求的不断增大,电力工程建设数量也逐渐增多。

由于用电量的逐年增加,电网系统内部线路复杂程度不断提升,在一定程度上增加了输电线路的运维难度。

高压输电线路通常采用架空线路形式,雷击跳闸率较高,容易导致线路工作受到影响。

伴随着社会电力需求的不断增加,还要加强线路防雷,避免人们的生产生活受雷击事件的影响。

因此,还应加强高压输电线路综合防雷措施的研究,以便通过全方位管控减少或消除线路存在的安全隐患,保证线路正常运行,继而使电网经济取得健康持续发展。

关键词:高压输电线路;雷击;防雷引言随着我国电力网络建设规模的不断扩大,输电线路的复杂程度在逐渐提高,其在运行过程中很容易出现故障问题,尤其是雷击问题,电力企业需要加强对高压输电线路雷击问题的研究,制订综合防雷措施,降低输电线路出现故障的概率。

1雷电给高压输电线路带来的影响在电力系统中,高压输电线路属于主动脉,需要连接用户与变电站,线路运行状态将给供电安全性和可靠性带来直接影响。

而高压输电线路通常在野外空旷区域架设,具有走线长、纵横交错等特点,遭遇雷雨天气容易受到雷击,导致线路出现保护跳闸情况,给电力系统安全运行带来威胁。

在未采取防雷措施的情况下,雷电将直接对线路产生电击,带来严重直击雷危害。

如在杆塔被雷电击中后,电流急剧提升,导致杆塔顶部与导线产生较大电位差,发生闪络问题,无法与导线正常连通。

在线路杆塔接地不良的情况下,与地面接触电阻阻值增加,导致线路因雷击产生过电压问题,继而引发线路故障。

即便采取了防雷措施,在线路绝缘配置不足的情况下,线路也存在安全隐患。

受雷云放电影响,输电杆塔可能产生电压,形成放电通道,造成绝缘线路击穿。

而高压输电线路的绝缘配置容易发生老化,随着时间积累将面临一定雷电危害。

目前,高压输电线路常采用避雷线防雷,隔断雷电与线路联系,但在避雷线杆塔保护角度设计不合理时,避雷效果不佳。

因此在多种因素影响下,高压输电线路容易遭受雷电威胁,不利于电力系统长期提供稳定输电服务。

高压输电线路的绝缘配置以及防雷保护

高压输电线路的绝缘配置以及防雷保护

高压输电线路的绝缘配置以及防雷保护随着我国科学技术的进步,为保障我国的电力事业安全,加强对高压输电线路的安全管理,对高压输电线路施行防雷保护具有重要的意义。

对高压输电线路进行防雷保护并对其进行绝缘配置,提高高压输电线路的绝缘保护,不仅可以减低对线路的检修工作,还能降低雷电波沿高压线路对变电站以及发电厂的危害,从而有效避免大范围停电事故的发生。

标签:高压输电线路;电力;绝缘配置;防雷保护一、雷击过电压的主要形式当雷云接近输电线路时,会对线路放电,从而引起过电压,这个过程被叫做雷击过电压。

根据雷电压形成过程的不同,可将其分为感应雷过电压等两种不同的形式。

1.1感应雷过电压当雷云经过高压输电线路附近时,由输电线路的电磁感应从而产生过电压,此即感应雷过电压。

虽然这种雷击过电压很常见,不过它对输电线路造成的危险较低,且通常只会对35KV以下的線路造成显著危害。

1.2直击雷过电压所谓的直击雷过电压就是指高压输电线路的导线、避雷线或者杆塔直接被雷电击中时所产生的过电压。

雷电击中导线、避雷线和杆塔的概率和危害都不相同。

这三种情形的产生原理、环境也不相同。

1.2.1直击输电线路或杆塔在这种情形下,雷电流会大幅度拉升塔顶对地电位。

同时,塔顶与导线的电位差值也会大幅度提高,当这种差值超过放电高压的50%时,闪络现象就会出现,塔顶至导线的连通性就会由于跳闸等而出现中断。

这种情形的雷击被称为反击雷。

1.2.2直击导线这种情形的产生是由于雷电绕过避雷线或者导线并没有安全避雷线。

这种情况下,过电压会直接进入导线,危害较大。

而该情况下的雷击被称为绕击雷。

1.2.3直击避雷线间隔中间这种情形极为少见。

而统计数据表明,绕击雷和反击雷最为常见,且危害也最大。

因为,本文接下来的讨论将围绕这两种情形而展开。

1.3输电线路易击区统计和输电线路运行经验表明,高压输电线路遭受雷击的情况在地理分布上比较集中,此即所谓的易击区。

这些易击区主要包括山顶、风口、河谷、峡谷、潮湿盆地、导电性矿物质集中处、土壤电阻率较高的地带等。

输电线路的防雷措施

输电线路的防雷措施

输电线路的防雷措施输电线路防雷设计的目的是提高线路的防雷性能,降低线路的雷击跳闸率。

在确定线路防雷的方式时,应综合考虑系统的运行方式、线路电压等级和重要程度、线路经过地区雷电活动的强弱、地形地貌特点、土壤电阻率等自然条件,并参考当地原有线路的运行阅历,经过技术经济比较,实行合理的爱护措施。

除架设避雷线措施之外,还应留意做好以下几项措施。

1.接地装置的处理(1)高压输电线路耐雷水平随杆塔接地电阻的增加而降低。

电压等级越高,降低杆塔接地电阻的作用将变得更加重要。

对土壤电阻率较高地区,应选择更换接地网形式和置换土壤的方法,达到降阻。

在雷击多发区域,主网线路杆塔接地电阻应保证小于10Ω,山区也应小于15Ω。

在雷雨季节前,对雷击多发区域线路应按规程要求的方法,进行杆塔接地电阻测量。

(2)接地装置埋深,要求大干0.6 m,采纳增大截面的接地引下线,引下线(热镀锌)表面要进行防腐处理。

严格根据规程执行接地装置的开挖检查制度。

重点检查接地装置的埋深、接头和截面的测量,对不合格的准时进行处理。

(3)降低杆塔接地电阻,还需要确保架空地线、接地引下线、地网相互之间的良好连接。

2.减小外边相避雷线的爱护角或者采纳负角爱护在以往进行防雷设计时,只要求遵照规程规定满意杆塔避雷线爱护角的要求就行了,忽视了山坡对防雷爱护角的影响,则造成了杆塔防雷爱护角不能满意防雷设计的实际要求,增加了线路闪络次数,影响了电网平安运行。

针对山区运行线路简单受绕击的状况,建议采纳有效屏蔽角公式计算校验杆塔有效爱护角,以便设计时针对爱护角偏大状况实行相应措施削减雷电绕击概率。

3.加强绝缘和采纳不平衡绝缘方式在雷电活动剧烈地段、大跨越高杆塔及进线段,应增加绝缘子片数。

由于这些地方落雷机会较多,塔顶电位高,感应过电压大,受绕击的概率也较大,通过适当增加绝缘子片数,增大导线和避雷线间的距离,达到加强绝缘的目的。

规程规定:全超群过40m的有地线杆塔,每增高10m应增加一片绝缘子。

线路防雷四原则和具体措施

线路防雷四原则和具体措施

线路防雷四原则和具体措施
线路防雷的四原则如下:
1. 保护导线不受或少受雷直击。

2. 雷击塔顶或避雷线时不使或少使绝缘发生闪络。

3. 当绝缘发生冲击闪络时,尽量减小由冲击闪络转变为稳定电力电弧的概率,从而减少雷击跳闸率次数。

4. 即使跳闸也不中断电力的供应。

具体措施如下:
1. 合理选择输电线路路径,避开易遭受雷击的地段,如雷暴走廊、潮湿盆地、土壤电阻率突变地带等。

2. 降低杆塔接地电阻、提高耦合系数、减小分流系数、加强高压输电线路绝缘等,以提高高压输电线路的耐雷水平。

3. 根据地区的地貌、地形、地质以及土壤状况与接地电阻的合理水平,找出可能存在薄弱环节或缺陷,因地制宜地采取措施。

请注意,上述措施并不能保证线路完全不受雷击,雷电活动具有复杂性和随机性,因此应综合考虑各种因素,采取多种措施,以最大程度地减少雷击对线路的危害。

直、交高压输电线路优缺点和架空输电线路防雷保护措施

直、交高压输电线路优缺点和架空输电线路防雷保护措施

直、交高压输电线路优缺点和架空输电线路防雷保护措施摘要:本文介绍了直流、交流高压的输送线路的优缺点和架空输电线路雷击及影响线路的供电可靠性,针对架空输电线路雷击事故的分析并对输电线路防雷保护措施做了探讨。

关键词:高压输电线路、防雷、架空线交流特高压和高压直流各有优缺点,都能用于长距离大容量输电线路和大区域电网间的互联线路,两者各有优缺点。

输电线路的建设主要考虑的是经济性,而互联线路则要将系统的稳定性放在第一位。

随着技术的发展,双方的优缺点还可能互相转化。

一、直流输电线路的优点1、经济方面考虑(1)线路造价低。

对于架空输电线,交流用三根导线,而直流一般用两根或采用大地、海水作回路时只要一根,能节省大量的线路建设费用。

一般电缆直流的允许工作电压约为交流的3倍,所以对电缆的绝缘要求投资少。

(2)电能损失小。

直流架空输电线只用两根,导线电阻损耗比交流输电小;没有感抗和容抗的无功损耗;没有集肤效应,导线的截面利用充分。

另外,直流架空线路的“空间电荷效应”使其电晕损耗和无线电干扰都比交流线路小。

2、技术方面(1)系统稳定,可实现电网的非同期互联。

还可连接两个不同频率的系统,实现非同期联网,提高系统的稳定性。

(2)限制短路电流。

用直流输电线路连接两个交流系统,直流系统的“定电流控制”将快速把短路电流限制在额定功率附近,短路容量不因互联而增大。

(3)调节快速,运行可靠。

直流输电通过可控硅换流器能快速调整有功功率,实现“潮流翻转”(功率流动方向的改变),在正常时能保证稳定输出,在事故情况下,可实现健全系统对故障系统的紧急支援,也能实现振荡阻尼和次同步振荡的抑制。

(4)没有电容充电电流。

直流线路稳态时无电容电流,沿线电压分布平稳,无空、轻载时交流长线受端及中部发生电压异常升高的现象,也不需要并联电抗补偿。

(5)节省线路走廊。

二、下列因素限制了直流输电的应用范围(1)换流装置较昂贵。

这是限制直流输电应用的最主要原因。

1000kV交流特高压输电线路的防雷保护

1000kV交流特高压输电线路的防雷保护

1000kV交流特高压输电线路的防雷保护发布时间:2021-11-18T02:39:01.443Z 来源:《福光技术》2021年18期作者:许志强[导读] 利用研究输电线路雷电性能的自编程序LLPP,对UHV输电线路的雷电性能进行研究。

国网山西省电力公司输电检修分公司山西省太原市 030000摘要:利用研究输电线路雷电性能的自编程序LLPP,对UHV输电线路的雷电性能进行研究。

介绍了对UHV输电线路避雷线屏蔽性能的研究结果和改进建议,并对UHV输电线路雷电反击耐雷性能进行计算。

交流特高压输电线路的运行经验表明:特高压输电线路仍有相当的雷击闪络跳闸,初步分析是因避雷线屏蔽失效而致;杆塔较高和导线上工作电压幅值大,可能是较重要的因素。

在工程设计中,对耐张塔和转角塔也要专门研究,使其具有较少的保护角。

对于山区,因地形影响(山坡、峡谷),避雷线的保护可能要取负保护角,这些有待于进一步研究,从而保证我国特高压输电线路具有较好的雷电性能。

交流特高压输电线路杆塔上较高的绝缘强度,使其具有良好的承受雷电反击的能力。

关键词:1000kV;交流特高压输电线路;防雷保护1.交流特高压输电线路现如今我国的电力输变系统中,交流特高压输电线路的电压应用等级为1000kV,因此在整个电力传输系统中,交流特高压输电线路能够实现跨地区电能输送以及新能源二次配置的应用需求。

交流特高压输电线路的杆塔结构设置特征:交流特高压输电线路在运行期间需要合理设置间距以及间隙,因此设计人员需要根据实际情况设置杆塔,同时将绝缘子串的高度保持在1m以上,交流特高压输电线路对地的距离则保持在26m以上。

由于交流特高压输电线路所设置的杆塔高度大多数设置在50m以上,杆塔长度设置在80m以上,在进行杆塔强度设计期间,设计人员需要以杆塔塔高以及杆塔应力为基础进行方案设计,由于特高压导线的重量较大、杆塔的设计高度在50m以上,因此杆塔的使用应力极高,设计的1000kV电压等级交流特高压输电线路杆塔强度是传统500kV线路杆塔设计强度的四倍以上。

特高压输电线路的防雷与接地技术研究

特高压输电线路的防雷与接地技术研究

特高压输电线路的防雷与接地技术研究特高压输电线路作为现代电力系统中的重要组成部分,其安全稳定运行对整个电网的运行起着至关重要的作用。

然而,在特高压输电线路的建设和运行过程中,雷电活动给其带来了严重的威胁。

因此,针对特高压输电线路的防雷与接地技术的研究显得尤为重要。

特高压输电线路的防雷措施主要包括直接雷击防护和间接雷击防护两方面。

直接雷击防护侧重于对线路本身的保护,主要措施包括引下闪络、避雷针等。

引下闪络是将带电线路上的高压荷电粒子引导到地面,从而避免雷电对线路的损害。

避雷针则是通过引导雷电放电,将其释放到地面上。

间接雷击防护则主要侧重于对特高压输电线路周边环境的保护,主要措施包括建立良好的接地系统和采用合适的绝缘措施。

特高压输电线路的接地系统应具备良好的接地电阻和接地电位,以迅速将雷电能量导入地下,从而保护线路和设备的安全。

对于绝缘措施而言,选择合适的绝缘材料和结构设计,能够有效地降低特高压输电线路被雷电击中的概率。

在特高压输电线路的防雷与接地技术的研究中,还需要考虑到特高压输电线路的特殊性。

特高压输电线路的高电压和大功率特点,给防雷与接地技术的研究带来了新的挑战。

首先,特高压输电线路的高电压会导致雷电放电时的能量更大,对设备和线路的损害也更严重。

因此,在防雷措施上需要更加注重细节,提高防护效果。

其次,特高压输电线路的大功率会产生较强的电磁场,可能对接地系统产生影响,从而降低接地效果。

因此,在接地系统设计上需要更加注意电磁兼容性问题,确保接地效果的稳定性。

另外,在特高压输电线路的防雷与接地技术的研究中,还需要考虑到地理环境的因素。

不同地区的雷电活动情况存在差异,因此防雷措施需要根据具体地理环境的特点进行定制。

同时,特高压输电线路的建设和运行也需要考虑到当地的地质条件和气候条件,以确保线路的安全运行。

总之,特高压输电线路的防雷与接地技术的研究对于保障电力系统的安全稳定运行具有重要意义。

在研究中,需要综合考虑特高压输电线路的特殊性、地理环境的因素以及当地的地质和气候条件,定制相应的防雷措施和接地系统设计。

35kV输电线路雷击及防雷建议-最新文档

35kV输电线路雷击及防雷建议-最新文档

35kV输电线路雷击及防雷建议在我国电力系统各类事故、障碍中,输、配电线路的雷害事故占有很大的比例.由于输电线路对于保“网”的重要地位,如何减少输电线路雷害事故引起的跳闸,不但影响电力系统正常供电,增加输电线路及开关设备的维修工作量,而且由于输电线路上落雷,雷电波还会沿线路侵入变电所甚至用户,影响人身财产安全。

而在电力系统中,线路的绝缘最强,变电所次之发电机最弱,若发电厂、变电所的设备保护不完善,往往会引起其设备绝缘损坏,影响安全供电。

1输电线路遭受雷击的原因输电线路雷击闪电由雷云放电造成的过电压通过线路杆塔建立放电通道,导致线路绝缘击穿,这种过电压也称为大气过电压,可分为直击雷过电压和感应过电压。

按雷击的性质可分为直击雷和感应雷:1)直击雷。

当带电的雷云接近输电线路时雷电流沿空中通道注入雷击点,如避雷线、杆(塔)顶部导线等产生直击雷过电压。

雷云放电时,引起很大的雷电流,可达几十甚至几百kA,从而产生极大的破坏作用;2)感应雷。

当雷击于输电线路附近的大地或物品时,导致产生静电感应,致使先导路径附近的导线上积累了大量的异号束缚电荷,雷击后,主放电开始,导线中感应电压就会很大。

根据实测,感应雷电压幅值一般为300~400kV,击穿60~80cm的空气间隙,对于35kV及以下水泥杆线引起一定的闪络事故.雷电主要危害有以下几种:1)电流高压效应会产生高达数万伏甚至十万伏的冲击电压,如此巨大的电压瞬间冲击电力设备,足以击穿绝缘体,使设备发生短路,导致燃烧、爆炸等直接灾害。

2)电流高热效应会放出几十至上百千安的强大电流,并产生大量热能,在雷击点温度会很高,可导致金属熔化,引起火灾和爆炸。

3)雷电流机械效应主要表现为被雷击物体发生爆炸、扭曲、崩溃、撕裂等现象,导致财产损失和人员伤亡。

输电线路是电力系统的大动脉,它将巨大的电能输送到四面八方,是连接各个变电站、各重要用户的纽带.输电线路的安全运行,直接影响到了电网的稳定和向用户可靠供电。

交流特高压电网的雷电过电压防护范本

交流特高压电网的雷电过电压防护范本

交流特高压电网的雷电过电压防护范本特高压电网是指额定电压在1000千伏及以上的输电电网。

由于电网的特殊性,特高压电网的运行安全面临着各种挑战,其中雷电过电压是一种常见的威胁。

为了保护特高压电网免受雷电过电压的损害,需要采取一系列的防护措施。

以下是一个交流特高压电网的雷电过电压防护的范本,供参考。

一、绝缘设计:1. 采用特别设计的合成绝缘子,提高绝缘子强度,增加绝缘性能。

2. 按照规定的安全距离原则设置绝缘子串,避免串串击穿。

3. 组织绝缘子表面维护,保持绝缘子的清洁度。

4. 对于交流特高压电网的主要绝缘子串,可采用气体绝缘子绝缘设计,提高绝缘性能。

二、接地设计:1. 合理设置摇杆接地装置,确保线路的可靠接地。

2. 使用合适的接地材料,如混凝土、铜排等,提高接地效果。

3. 根据地质条件,选择合适的接地电阻值,降低接地电阻。

三、避雷器:1. 在特高压输电线路的过电压抵抗系统中,安装适量的避雷器,提高系统的过电压抵抗能力。

2. 选择合适的避雷器额定电压,确保避雷器在过电压事件时正常工作。

四、线路参数控制:1. 控制线路的电气参数,如电阻、电感和电容等,来减小雷电过电压产生的影响。

2. 合理设置线路的参数,使得对雷电过电压的敏感程度最小化。

五、设备保护:1. 设备绝缘性能的监控和维护,如绝缘电阻检测、局部放电监测等。

2. 安装合适的电压互感器和电流互感器,进行设备状态的实时监测,并采取相应的保护措施。

六、人员安全:1. 高压线路的人员应接受专业的培训,具备特高压电网运行和维护的技能。

2. 员工应佩戴符合标准的防护装备,如绝缘手套、绝缘靴等。

3. 定期进行安全检查和维护,确保设备和线路的安全运行。

以上是一个交流特高压电网的雷电过电压防护的范本,通过绝缘设计、接地设计、避雷器、线路参数控制、设备保护和人员安全等多个方面对于特高压电网的雷电过电压进行综合保护。

这些措施可以降低特高压电网受到雷电过电压的影响,提高电网的运行安全性。

高压输电线路的防雷保护

高压输电线路的防雷保护

高压输电线路的防雷保护1.雷电机制及雷电效应1.1雷电形成及对地雷击1.2雷电效应:(1)热效应(2)光效应(3)电动力效应(4)电磁效应 E SP∝q/L 图1l >> L E MP∝dq/dt/L2E RP∝d2q/dt2/L3对于高压输电线路防雷,人们关心的主要是对地雷击。

2.与线路防雷有关的几个参数2.1雷电流幅值累积概率分布:1979年我国过电压保护规程给出雷电流幅值累积概率分布的计算lgP I= -I/108 (1)I:雷电流幅值(kA)P:雷电流超过I的累积概率其相应曲线如图1-1上述曲线和(1)式是由1205个实测雷电流数据整理得出。

限于我国当时的条件,绝大多数雷电流是用磁钢记录器由多塔电流相加而得。

我国220kV新杭线经30年的现场实测,获得106个雷击塔顶宝贵的数据,其概率分布公式为:lgP I= -I/87.6 (2) 106个数据中的97个负极性雷电流幅值的累积概率分布为:lgP I= -I/87.2 (3)两者相差很小,取为lgP I= -I/88 (4),即为1997版过电压保护规程使用的数据。

在西北地区(陕南除外),内蒙古部分地区,20个雷电日及以下者取lgP I= -I/44 (5)2.2雷电流的波形和陡度雷电流的等值波形,常用的有三种:(1)标准冲击波形,也称双指数波i=I0(e- t-e-βt) (6)被击物体的阻抗是纯电阻性时,作用在被击物的电压波形和电流波形是相同的。

双指数波形也用作冲击绝缘强度试验电压波形,对此定出标准的波头和波长,常记为1.5/40。

(2)等值斜角波,有时将雷电流看作斜角波,其斜率可由给定的幅值和波头长度I f决定,a=I M/I f (7)(3)等值余弦波i=I M/2 (1-cosωt) (8)di I Mω= =a max (9)dt 2πI MI f = (10)2 a max雷电流的陡度直接测量更为困难些,通常根据雷电流幅值和波头长度,再按一定的波形去推算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高压输电线路的防雷保护
作者:于传维王宁
来源:《电子技术与软件工程》2016年第16期
摘要
高压输电作为电力行业中的重要部分,对人们生产、生活具有重大影响意义,加强电力传输质量优化具有较为明显的现实意义。

高压输电线路的跳闸一般是雷击导致,防雷保护、绝缘设置等问题已经引起业内学者的关注。

本文对高压输电线路雷击形式、形成原因及绝缘配置等进行了充分分析,并从线路防雷评价标准出发,对安装线路避雷设施等保护手段进行了充分探讨。

【关键词】高压输电线路防雷保护绝缘配置
高压输电线路是电力系统中的关键部分,作为系统核心,其安全运行的重要价值不容忽视。

据报道,高压输电线路的跳闸事故中,雷击原因导致的事故占40-70%,对电网长期稳定供电具有恶劣影响,一方面导致线路检修作业工作量增加,另一方面对当地居民生活、工业生产造成困扰,同时雷电波容易侵入到变电站、发电厂位置处,进而引起发电元件受损,导致更大的停电事故。

为此,进行高压线路的防雷保护具有至关重要的影响作用,是电力系统安全运行的前提。

1 高压输电线路雷击原因分析
为了进行充分的防雷保护作业,降低事故损失状况,需要对高压输电线路的雷击原因进行合理分析,进行有针对性的措施处理,方可保证防雷保护的正确进行。

首先,避雷线保护角影响。

国家对避雷线保护角具有相应的规定要求,一般高压输电线路的安装施工中,受施工人员、设计方案、重视程度等影响,对保护角考虑相关较少,导致角度过大引起的雷击现象频繁。

其次,接地装置的影响。

接地装置的作用在于过于强大的雷电流顺利进入地面,避免线路、设施的损坏。

国内接地装置普遍采用碳钢,但是受到碳钢易受外界腐蚀,导致接地电阻增加,尤其使用导电混凝土施工,腐蚀更严重。

雷击时容易出现对应雷电流无法顺利流出的状况,进而对输电线路造成安全威胁,甚至对操作人员带来生命威胁。

最后,绝缘子的影响。

高压输电线路建设中,一般采用合成绝缘子、瓷绝缘子进行施工。

雷击频率过高地区,一般采用瓷绝缘子,但是检测维护难度较大。

合成绝缘子由于检测便捷,雷击频率低地区应用较多,进而导致雷击发生时线路安全隐患较高。

2 防雷保护措施分析
2.1 减低避雷线保护角
根据以往项目经验统计,雷电借助避雷线造成雷击的概率相对较高,涉及因素较多,如现场环境、杆塔材质和高度即避雷线保护角,上述诸多影响要素中,合理调整保护角是效果较为明显的处理手段。

2.2 避雷器的安装
线路避雷器安装在输电线路后,可保证雷击状况下,雷电流进入对应导线,随之流到周边杆塔中。

借助分流耦合,实现导线电位提高的目的,可避免绝缘子闪络的发生。

一般避雷器安装施工中,需要遵循下述原则:首先,避雷设置的安装需要根据当地环境、设备条件、杆塔雷击性质等进行设计确定。

对于反击相对较多的杆塔来说,要在三相上都要安装避雷器,并且相邻的杆塔上也要进行避雷器的安装。

而对于绕击较多的杆塔来说情况就比较简单,只需要在其一侧安装避雷器就可以起到良好的避雷效果。

其次,在选择避雷器时,要尽量选择那些有间隙的避雷器。

再者,在安装避雷器时,一定要注意各部分连接的正确性与通畅性,在有条件的情况下还要进行实验,以确保安全性能。

2.3 加强输电线路的日常维护
高压输电线路的日常维护作业中,需要相关责任部门进行对应线路检修、周边环境变化观察,便于降低雷击破坏的负面影响。

另外,线路运行维护中,相关部门需要对输电线路进行定期检查巡视处理,需要注意雷雨季的加强维护工作,对以往雷击经验、周边环境变化等进行定期总结处理,充分加强预防工作的落实。

另一方面,建立输电线路数据库,对当地各条线路的防雷措施、雷击事故等进行对应记录,便于实现历年测量数据的整合对比分析,根据相应规律趋势等进行防雷保护措施落实。

加强线路管理工作的规划建设,从源头上加强新技术的落实,保证设计方案满足对应规定规范要求,加强安装施工验收工作的强化处理,如抽查接地体的埋深是否达标。

2.4 雷电屏蔽技术的研发
对高压输电线路的防雷保护研究中,可借助外部雷击影响为研究对象,据统计,国内雷击跳闸事故中,绕击导致的事故比例较高,为此,高压线塔顶的避雷针设计较为常见,一定程度上保护自身建筑设备将防绕击转变为防反击,实现保护的目的;另外,在输电线路、地面之间进行预防电棒保护,可降低高压输电线路的绕击率,保证线路防雷保护等级增加,从材料成本角度出发,一般不进行全线屏蔽处理,在雷击频率较高地区设置该技术防护即可
3 高压输电线路的绝缘配置
现代高压输电线路中,由于电压等级不断增加,绝缘配置需要进行优化处理。

首先,绝缘配置中,对瓷绝缘子、玻璃绝缘子、合成绝缘子进行合理选取。

实际铺设中,由于高压输电线路大跨越高杆塔地段、塔顶位置较高、落雷几率变大以及绕击电流最大幅值增大等因素,雷击发生率会增加,导致高压输电线路跳闸率增加。

为了降低跳闸事故的发生,可在塔顶进行绝缘子增设处理,保证与地线的间距增加,从而提高线路的绝缘性能,一定程度上降低了雷击频率的增加。

另一方面,绝缘配置中,还可借助空气介质实现耐雷击程度。

借助空气间隙实现绝缘保护,是现阶段绝缘保护研究的新方向,受实际成本限制,空气介质为主的绝缘器材研究仍处于发展初期,其发展空间较为广阔。

4 结语
电力发展与大众生活、生产息息相关,高压输电作为电力行业的关键环节,其线路运行质量、防雷保护等均属于电力行业的重点关注部分。

高压输电线故障中,雷击跳闸事故频率较高,必须加强对应防雷保护处理,借助科学有效、经济合理的方法进行保护作业。

加强对当地周边环境、气候规律的分析,制定对应架设线路方案,避免大面积停电事故带来的生活不便和经济损失等状况。

综上,高压输电线路的防雷保护具有重大社会现实意义,是维持当地经济效益稳定发展的关键环节,必须加强线路设计、安装施工、维护保养等工作的全面落实。

参考文献
[1]梁荣振.高压输电线路的防雷保护及其绝缘配合探讨[J].机电信息,2011(09):41-42.
[2]李婷,刘青山.吉林供电公司自主研发高压输电线路工具投用[J].东北电力报,2010(06):14-16.
[4]林圣.基于暂态量的高压输电线路故障分类与定位方法研究[J].西南交通大学,2011(12):26-29.
作者单位
1.国网聊城供电公司山东省聊城市 252000
2.聊城大学东昌学院山东省聊城市 252000。

相关文档
最新文档