变容二极管直接调频电路
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012 ~2013学年第1 学期
《高频电子线路》
课程设计报告
题目:变容二极管直接调频电路的设计专业:电子信息工程
班级: 10信息(2)班
电气工程系
2012年12月17日
1、任务书
变容二极管直接调频电路的设计
摘要
调频电路具有抗干扰性能强、声音清晰等优点,获得了快速的发展。主要应用于调频广播、广播电视、通信及遥控。调频电台的频带通常大约是200~250kHz,其频带宽度是调幅电台的数十倍,便于传送高保真立体声信号。由于调幅波受到频带宽度的限制,在接收机中存在着通带宽度与干扰的矛盾,因此音频信号的频率局限于30~8000Hz的范围内。在调频时,可以将音频信号的频率范围扩大至30~15000Hz,使音频信号的频谱分量更为丰富,声音质量大为提高。
变容二极管调频电路是一种常用的直接调频电路,广泛应用于移动通信和自动频率微调系统。其优点是工作频率高,固有损耗小且线路简单,能获得较大的频偏,其缺点是中心频率稳定度较低。较之中频调制和倍频方法,这种方法的电路简单、性能良好、副波少、维修方便,是一种较先进的频率调制方案。
本课题载波由LC电容反馈三端振荡器组成主振回路,振荡频率有电路电感和电容决定,当受调制信号控制的变容二极管接入载波振荡器的振荡回路,则振荡频率受调制信号的控制,从而实现调频。
关键字:变容二极管;直接调频;LC振荡电路。
变容二极管直接调频电路的设计
目录
第一章设计思路 (1)
第二章调频电路工作原理 (2)
2.1 间接调频原理 (2)
2.2 直接调频原理 (2)
2.3 变容二极管直接调频原理 (2)
第三章电路设计 (5)
3.1 主振电路设计原理分析 (5)
3.2 变容二极管直接调频电路设计原理分析 (6)
第四章电路元器件参数设置 (8)
4.1 LC震荡电路直流参数设置 (8)
4.2 变容管调频电路参数设置 (8)
4.3 T2管参数设置 (8)
5.1 mulitisim11软件介绍 (9)
5.2 电路仿真 (9)
小结 (12)
附录一元器件清单 (13)
附录二参考文献 (14)
第一章设计思路
变容二极管为特殊二极管的一种。当外加顺向偏压时,有大量电流产生,PN(正负极)接面的耗尽区变窄,电容变大,产生扩散电容效应;当外加反向偏压时,则会产生过渡电容效应。但因加顺向偏压时会有漏电流的产生,所以在应用上均供给反向偏压。在变容二极管直接调频电路中,变容二极管作为一压控电容接入到谐振回路中,当变容二极管的结电容随加到变容二极管上的电压变化时,由变容二极管的结电容和其他回路元件决定的谐振回路的谐振频率也就随之变化,若此时谐振回路的谐振频率与加到变容二极管上的调制信号呈线性关系,就完成了调频的功能,这也是变容二极管调频的原理。
第二章调频电路工作原理
频率调制是对调制信号频谱进行非线性频率变换,而不是线性搬移,因而不能简单地用乘法器和滤波器来实现。实现调频的方法分为两大类:直接调频法和间接调频法。
2.1 间接调频原理
先将调制信号进行积分处理,然后用它控制载波的瞬时相位变化,从而实现间接控制载波的瞬时频率变化的方法,称为间接调频法。
根据前述调频与调相波之间的关系可知,调频波可看成将调制信号积分后的调相波。这样,调相输出的信号相对积分后的调制信号而言是调相波,但对原调制信号而言则为调频波。这种实现调相的电路独立于高频载波振荡器以外,所以这种调频波突出的优点是载波中心频率的稳定性可以做得较高,但可能得到的最大频偏较小。
2.2 直接调频原理
用调制信号直接控制振荡器的瞬时频率变化的方法称为直接调频法。如果受控振荡器是产生正弦波的LC 振荡器,则振荡频率主要取决于谐振回路的电感和电容。将受到调制信号控制的可变电抗与谐振回路连接,就可以使振荡频率按调制信号的规律变化,实现直接调频。
可变电抗器件的种类很多,其中应用最广的是变容二极管。作为电压控制的可变电容元件,它有工作频率高、损耗小和使用方便等优点。具有铁氧体磁芯的电感线圈,可以作为电流控制的可变电感元件。此外,由场效应管或其它有源器件组成的电抗管电路,可以等效为可控电容或可控电感。
直接调频法原理简单,频偏较大,但中心频率不易稳定。在正弦振荡器中,若使可控电抗器连接于晶体振荡器中,可以提高频率稳定度,但频偏减小。
2.3 变容二极管直接调频原理
变容二极管具有PN结,利用PN结反向偏置时势垒电容随外加反向偏压变化的机理,在制作半导体二极管的工艺上进行特殊处理,以控制半导体的掺杂浓度和掺杂分布,可以使二极管的势垒电容灵敏地随反偏电压变化且呈现较大的变化,这样就制作成了变容二极管。
变容二极管的结电容Cj,与在其而端所加反向电压u之间存在着如下关系:
n
B V
u Cj Cj ⎪⎪⎭
⎫ ⎝
⎛+=
10 (Ⅰ)
式中,V B 为PN 结的势垒位差(硅管约为0.7V,锗管约为0.3V),C j0为变容二极管在零偏置时的结电容值,n 为变容二极管的结电容变化指数,它取决于PN 结的杂质分布规律:n=1/3对于缓变结,扩散型管多属此种; n=1/2为突变结,合金型管属于此类。采用特殊工艺制程的超突变结的n 在1~5之间。
变容二极管的结电容变化曲线如所示。
图2.1 变容二极管的Cj-u 特性曲线
加到变容二极管上的反向电压包括直流偏压V0和调制信号电压V Ω(t)= V Ωcos Ωt ,即t cos V V m Q ΩΩΩ+=+=V V u Q ……………………………………(Ⅱ) 将式(Ⅱ)带入(Ⅰ),得
()
n
Q m V Cj Cj -+=⎪
⎪⎭
⎫ ⎝⎛++⎪⎪⎭
⎫ ⎝
⎛+=
⎪⎪⎭
⎫ ⎝⎛++=t cos 1Cj t cos V V V 11
V
V 1Cj V t cos 1Q n
B Q m n
B Q 0n
B 0
ΩΩΩΩ