备战中考数学压轴题专题直角三角形的边角关系的经典综合题附答案解析

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

备战中考数学压轴题专题直角三角形的边角关系的经典综合题附答案解析

一、直角三角形的边角关系

1.在Rt △ACB 和△AEF 中,∠ACB =∠AEF =90°,若点P 是BF 的中点,连接PC ,PE. 特殊发现:

如图1,若点E 、F 分别落在边AB ,AC 上,则结论:PC =PE 成立(不要求证明). 问题探究:

把图1中的△AEF 绕点A 顺时针旋转.

(1)如图2,若点E 落在边CA 的延长线上,则上述结论是否成立?若成立,请给予证明;若不成立,请说明理由;

(2)如图3,若点F 落在边AB 上,则上述结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由;

(3)记AC BC

=k ,当k 为何值时,△CPE 总是等边三角形?(请直接写出后的值,不必说)

【答案】()1 PC PE =成立 ()2 ,PC PE =成立 ()3当k 3CPE V 总是等边三角形

【解析】

【分析】 (1)过点P 作PM ⊥CE 于点M ,由EF ⊥AE ,BC ⊥AC ,得到EF ∥MP ∥CB ,从而有EM FP MC PB

=,再根据点P 是BF 的中点,可得EM=MC ,据此得到PC=PE . (2)过点F 作FD ⊥AC 于点D ,过点P 作PM ⊥AC 于点M ,连接PD ,先证

△DAF ≌△EAF ,即可得出AD=AE ;再证△DAP ≌△EAP ,即可得出PD=PE ;最后根据FD ⊥AC ,BC ⊥AC ,PM ⊥AC ,可得FD ∥BC ∥PM ,再根据点P 是BF 的中点,推得PC=PD ,再根据PD=PE ,即可得到结论.

(3)因为△CPE 总是等边三角形,可得∠CEP=60°,∠CAB=60°;由∠ACB=90°,求出∠CBA=30°;最后根据

AC k BC =,AC BC

=tan30°,求出当△CPE 总是等边三角形时,k 的值是多少即可.

【详解】

解:(1)PC=PE 成立,理由如下:

如图2,过点P 作PM ⊥CE 于点M ,∵EF ⊥AE ,BC ⊥AC ,∴EF ∥MP ∥CB ,

∴EM FP

=,∵点P是BF的中点,∴EM=MC,又∵PM⊥CE,∴PC=PE;

MC PB

(2)PC=PE成立,理由如下:

如图3,过点F作FD⊥AC于点D,过点P作PM⊥AC于点M,连接PD,∵∠DAF=∠EAF,∠FDA=∠FEA=90°,在△DAF和△EAF中

,∵∠DAF=∠EAF,∠FDA=∠FEA,AF=AF,

∴△DAF≌△EAF(AAS),

∴AD=AE,在△DAP和△EAP中,

∵AD=AE,∠DAP=∠EAP,AP=AP,

∴△DAP≌△EAP(SAS),

∴PD=PE,

∵FD⊥AC,BC⊥AC,PM⊥AC,

∴FD∥BC∥PM,

∴DM FP

=,

MC PB

∵点P是BF的中点,

∴DM=MC,又∵PM⊥AC,

∴PC=PD,又∵PD=PE,

∴PC=PE;

(3)如图4,∵△CPE总是等边三角形,

∴∠CEP=60°,

∴∠CAB=60°,

∵∠ACB=90°,

∴∠CBA=90°﹣∠ACB=90°﹣60°=30°,

∵AC k BC =,AC BC

=tan30°, ∴k=tan30°=

33, ∴当k 为33

时,△CPE 总是等边三角形.

【点睛】

考点:1.几何变换综合题;2.探究型;3.压轴题;4.三角形综合题;5.全等三角形的判定与性质;6.平行线分线段成比例.

2.如图,在△ABC 中,∠ABC =90°,以AB 的中点O 为圆心,OA 为半径的圆交AC 于点D ,E 是BC 的中点,连接DE ,OE .

(1)判断DE 与⊙O 的位置关系,并说明理由;

(2)求证:BC 2=2CD•OE ;

(3)若314cos ,53

BAD BE ∠==,求OE 的长.

【答案】(1)DE 为⊙O 的切线,理由见解析;(2)证明见解析;(3)OE =

356

. 【解析】 试题分析:(1)连接OD ,BD ,由直径所对的圆周角是直角得到∠ADB 为直角,可得出△BCD 为直角三角形,E 为斜边BC 的中点,由直角三角形斜边上的中线等于斜边的一半,得到CE=DE ,从而得∠C=∠CDE ,再由OA=OD ,得∠A=∠ADO ,由Rt △ABC 中两锐角互余,从而可得∠ADO 与∠CDE 互余,可得出∠ODE 为直角,即DE 垂直于半径OD ,可得出DE 为⊙O 的切线;

(2)由已知可得OE 是△ABC 的中位线,从而有AC=2OE ,再由∠C=∠C ,∠ABC=∠BDC ,

可得△ABC∽△BDC,根据相似三角形的对应边的比相等,即可证得;

(3)在直角△ABC中,利用勾股定理求得AC的长,根据三角形中位线定理OE的长即可求得.

试题解析:(1)DE为⊙O的切线,理由如下:

连接OD,BD,

∵AB为⊙O的直径,

∴∠ADB=90°,

在Rt△BDC中,E为斜边BC的中点,

∴CE=DE=BE=BC,

∴∠C=∠CDE,

∵OA=OD,

∴∠A=∠ADO,

∵∠ABC=90°,

∴∠C+∠A=90°,

∴∠ADO+∠CDE=90°,

∴∠ODE=90°,

∴DE⊥OD,又OD为圆的半径,

∴DE为⊙O的切线;

(2)∵E是BC的中点,O点是AB的中点,

∴OE是△ABC的中位线,

∴AC=2OE,

∵∠C=∠C,∠ABC=∠BDC,

∴△ABC∽△BDC,

∴,即BC2=AC•CD.

∴BC2=2CD•OE;

(3)解:∵cos∠BAD=,

∴sin∠BAC=,

又∵BE=,E是BC的中点,即BC=,

相关文档
最新文档