乙酸乙酯皂化反应实验报告
乙酸乙酯皂化反应速率常数的测定实验报告
乙酸乙酯皂化反应速率常数的测定实验报告乙酸乙酯皂化反应速率常数的测定实验报告引言:皂化反应是化学中一种常见的酯水解反应,通过酸催化下的水解反应,可以将酯转化为相应的醇和酸。
本实验旨在通过测定乙酸乙酯的皂化反应速率常数,探究反应速率与反应物浓度的关系,以及酸催化对反应速率的影响。
实验方法:1. 实验装置:实验室常规玻璃仪器设备,包括反应瓶、温度计、搅拌器等。
2. 实验药品:乙酸乙酯、氢氧化钠溶液、稀硫酸溶液。
3. 实验步骤:1)将100 mL 反应瓶洗净并干燥。
2)称取适量乙酸乙酯(约10 mL)加入反应瓶中。
3)加入适量氢氧化钠溶液,并用温度计测量反应混合物的初始温度。
4)快速搅拌反应混合物,并记录反应开始的时间。
5)在一定时间间隔内,取出反应混合物的一小部分,加入稀硫酸溶液中,使反应停止。
6)用酸碱指示剂检测溶液的酸碱性,当溶液呈酸性时,停止取样。
7)重复以上步骤,记录不同时间点的反应混合物的酸碱性。
实验结果:根据实验数据,我们可以得到反应混合物的酸碱性随时间的变化曲线。
通过测量不同时间点的酸碱性,我们可以计算出反应速率常数。
实验讨论:1. 反应速率与反应物浓度的关系:通过实验数据的分析,我们可以得到反应速率与反应物浓度之间的关系。
根据反应速率方程,反应速率与反应物浓度的关系可以表示为一个指数函数。
在本实验中,我们可以通过改变乙酸乙酯的初始浓度,来观察反应速率的变化。
实验结果表明,反应速率与乙酸乙酯浓度呈正相关关系,即乙酸乙酯浓度越高,反应速率越快。
2. 酸催化对反应速率的影响:在皂化反应中,酸催化可以显著加快反应速率。
通过实验数据的对比分析,我们可以得出酸催化对反应速率的显著影响。
在实验中,我们可以通过添加不同浓度的酸催化剂,比如稀硫酸溶液,来观察反应速率的变化。
实验结果表明,酸催化剂的浓度越高,反应速率越快。
结论:通过本实验,我们成功测定了乙酸乙酯皂化反应速率常数,并探究了反应速率与反应物浓度以及酸催化对反应速率的影响。
乙酸乙酯皂化反应实验报告
乙酸乙酯皂化反应速度常相数的测定一、实验目的1.通过电导法测定乙酸乙酯皂化反应速度常数。
2.求反应的活化能。
3.进一步理解二级反应的特点。
4.掌握电导仪的使用方法。
二、基本原理乙酸乙酯的皂化反应是一个典型的二级反应:325325CH COOC H OH CH COO C H OH --+−−→+设在时间t 时生成浓度为x ,则该反应的动力学方程式为()()dxk a x b x dt-=-- (8-1) 式中,a ,b 分别为乙酸乙酯和碱的起始浓度,k 为反应速率常数,若a=b,则(8-1)式变为2()dxk a x dt=- (8-2) 积分上式得: 1()xk t a a x =⨯- (8-3)由实验测的不同t 时的x 值,则可根据式(8-3)计算出不同t 时的k 值。
如果k 值为常数,就可证明反应是二级的。
通常是作()xa x -对t 图,如果所的是直线,也可证明反应是二级反应,并可从直线的斜率求出k 值。
不同时间下生成物的浓度可用化学分析法测定,也可用物理化学分析法测定。
本实验用电导法测定x 值,测定的根据是:(1)溶液中OH -离子的电导率比离子(即3CH COO -)的电导率要大很多。
因此,随着反应的进行,OH -离子的浓度不断降低,溶液的电导率就随着下降。
(2)在稀溶液中,每种强电解质的电导率与其浓度成正比,而且溶液的总电导率就等于组成溶液的电解质的电导率之和。
依据上述两点,对乙酸乙酯皂化反应来说,反映物和生成物只有NaOH 和NaAc 是强电解质,乙酸乙酯和乙醇不具有明显的导电性,它们的浓度变化不至于影响电导率的数值。
如果是在稀溶液下进行反应,则01A a κ= 2A a κ∞=12()t A a x A x κ=-+式中:1A ,2A 是与温度、溶剂、电解质NaOH 和NaAc 的性质有关的比例常数;0κ,κ∞分别为反应开始和终了是溶液的总电导率;t κ为时间t 时溶液的总电导率。
乙酸乙酯皂化实验报告
乙酸乙酯皂化实验报告乙酸乙酯皂化实验报告引言:皂化反应是一种重要的有机化学反应,通过碱与脂肪酸酯之间的反应,产生肥皂和甘油。
本实验旨在通过乙酸乙酯与碱的皂化反应,探究皂化反应的机理和影响因素。
实验材料与仪器:1. 乙酸乙酯2. 碱溶液(氢氧化钠)3. 醇灯4. 温度计5. 烧杯6. 搅拌棒7. 试管8. 蒸馏水实验步骤:1. 在实验室通风良好的条件下进行实验。
2. 准备两个烧杯,分别称取适量的乙酸乙酯和碱溶液。
3. 将乙酸乙酯倒入一个试管中,加入少量的碱溶液,搅拌均匀。
4. 将试管放入醇灯上方加热,保持适当的温度(约60-70摄氏度),并用温度计测量温度。
5. 观察实验过程中的变化,记录下颜色、气味等观察结果。
6. 实验结束后,用蒸馏水洗净实验器具。
结果与讨论:在实验过程中,观察到了以下现象:乙酸乙酯在加入碱溶液后迅速变为乳白色悬浊液,并伴有一股刺激性气味。
随着加热时间的增加,悬浊液逐渐变得透明,并分层,上层为透明的甘油,下层为混合物。
实验结束后,甘油与水可以通过分液漏斗分离。
皂化反应的机理是碱水解脂肪酸酯生成肥皂和甘油。
在本实验中,乙酸乙酯是脂肪酸酯的模型化合物。
碱溶液中的氢氧化钠(NaOH)起到催化剂的作用,使皂化反应加速进行。
乙酸乙酯中的乙酸基与碱溶液中的氢氧化钠反应生成乙酸钠盐和甘油。
实验中温度的控制对皂化反应的速率和产物的性质有重要影响。
较高的温度可以加快反应速率,但过高的温度可能导致产物的分解。
在本实验中,适当的温度范围(60-70摄氏度)有利于皂化反应的进行,同时可以避免产物的分解。
此外,实验中观察到的气味是由于乙酸乙酯的挥发性导致的。
乙酸乙酯具有刺激性气味,因此在实验过程中要注意通风,避免吸入过多挥发物。
结论:通过乙酸乙酯皂化实验,我们了解到了皂化反应的机理和影响因素。
在适当的温度下,乙酸乙酯可以与碱溶液发生皂化反应,生成甘油和乙酸钠盐。
实验过程中观察到的悬浊液逐渐变为透明的现象,以及产物的分层和气味变化,都是皂化反应进行的证据。
实验报告_电导法测定乙酸乙酯皂化反应的速率
用准一级反应的方法测定乙酸乙酯皂化反应的速率常数一.[实验目的]①学习用准一级反应方法研究非一级反应的方法。
②用电导法测定乙酸乙酯反应常数。
③掌握测量原理, 并熟悉电导率仪的使用。
二.[实验原理]乙酸乙醋的皂化反应为:CH 3COOC 2H 5+NaOH →CH 3COONa +C 2H 5OH在该反应中, 设乙酸乙酯和碱的起始浓度分别为a 和b(a>>b), x 为t 时刻反应物已反应掉的浓度(也就是不同时刻生成的NaAc 的浓度)CH 3COOC 2H 5+NaOH →CH 3COONa +C 2H 5OHt=0 a b 0 0t= t a-x b-x x x t= ∞ →a-x →b-x →b →b则其反应速率公式可写为但是a>>b 所以(a-x)→a 则上式可写为)(x b Ka dtdx n -= (1) 对(l)式进行积分得反应速度常数K 的表达式为 ln t ka bx b n -=- 显然, 只要测出反应进程中t 时的x 值, 再将a, b 代入上式, 就可以算出反应速率常数k 值。
由于反应在水溶液中进行, 可以假定CH3COONa 全部电离。
溶液中参与导电的离子有Na+, OH-和CH3COO-等, 而Na+ 反应前后不变, OH-的迁移率比CH3COO-的迁移率大得多。
随反应时间的增加, OH-不断减少, 而CH3COO-不断增加, 所以, 体系的电导率值不断下降。
在一定的范围内, 可以认为体系电导率的减少与CH3COONa 的浓度x 的增加量成正比, 即t=t: x=β(κ0-κt ) t=∞: b=β(κ0-κ∞)式中κ0为t=0时的初始电导率, κt 为t=t 时溶液的电导率值, κ∞为t →∞, 即反应完全后溶液的电导率值, β为比例常数。
将x 和a 及电导率的关系式分别代入积分式得:-ka n t=In ∞-∞-k k k kt 从上式可知, 只要测定κ0, κ∞以及一组相应于t 时kt 值, 以 对t 作图, 可得一直线, 由直线的斜率即可求得反应速率k 值, k 的单位为min-1mol-1L三.[实验仪器与试剂]DDS 一11A 电导率仪(上海第二分析仪器厂)1台;501型超级恒温水浴(重庆试验仪器厂) 1台;双管电导池(带胶塞与大洗耳球)2个, 25mL, 10mL 移液管各1支;50mL 容量瓶2个;停表1支.NaOH (分析纯)CH 3COOC 2H 5 (分析纯)CH 3COONa (分析纯)四.[试验步骤]1.启用恒温槽, 调节至实验所需温度(20℃)。
乙酸乙酯皂化反应实验报告
乙酸乙酯皂化反应实验报告本实验旨在认识乙酸乙酯的皂化反应,并掌握实验操作技能。
实验原理:皂化反应是指脂类跟碱或碱性物质(如NaOH、KOH等)作用生成皂质和甘油的化学反应。
脂肪酸的碱性钠盐或钾盐称为“皂”,故皂化反应也称为“肥皂化”或“皂酸化”反应。
乙酸乙酯的化学式为CH3COOCH2CH3。
在皂化反应中,乙酸乙酯和NaOH反应生成NaCH3COO(乙酸钠)和CH3CH2OH(乙醇)。
其反应方程式为:CH3COOCH2CH3 + NaOH →CH3CH2OH + NaCH3COO实验过程:1、称取一定量的乙酸乙酯,装入250mL锥形瓶中;2、加入等量的NaOH固体,用搅拌棒挑不散,放进烘箱,恒温反应15分钟;3、取出烘箱,放凉,用水稀释稍微搅拌;4、过滤,收集滤液;5、将滤液用盐酸溶液酸化,得到乙酸乙酯的皂化反应产物。
实验结果:通过实验,得到了乙酸乙酯的皂化反应产物。
皂化反应后,原来清澈的乙酸乙酯变为了乳白色的混合物,滤液呈乳状。
加入盐酸溶液酸化后,溶液变为透明,且有一定的酸味。
实验分析:通过实验结果可以得到,经过皂化反应后,乙酸乙酯分解成了乙醇和乙酸钠。
乙酸钠可以被酸化生成乙酸,并反应生成气体CO2,所以盐酸酸化后溶液能有明显的酸味。
此外,皂化反应后的乳状物质就是皂,因此可以得出乙酸乙酯皂化反应的方程式。
反应方程式:CH3COOCH2CH3 + NaOH →CH3CH2OH + NaCH3COO乙酸钠与盐酸反应方程式:NaCH3COO + HCl →CH3COOH + NaCl实验结论:通过乙酸乙酯的皂化反应实验,我们认识了皂化反应的基本原理,掌握了实验操作技能,并得到了实验结果。
同时,也发现了皂化反应产物的特性,如皂的产生和盐酸酸化后溶液有酸味等。
乙酸乙酯的皂化实验报告
乙酸乙酯的皂化实验报告乙酸乙酯的皂化实验报告实验目的:通过乙酸乙酯的皂化实验,了解皂化反应的原理和过程,并探究不同条件下皂化反应的影响因素。
实验原理:皂化反应是一种酯水解反应,酯与碱反应生成相应的盐和醇。
乙酸乙酯是一种常见的酯类化合物,其分子结构为CH3COOCH2CH3。
在碱的存在下,乙酸乙酯会与碱反应生成乙酸盐和乙醇。
乙酸盐的形成使溶液呈碱性。
实验步骤:1. 准备实验器材和试剂:乙酸乙酯、氢氧化钠溶液、酚酞指示剂、酒精灯、试管、滴管等。
2. 在试管中加入适量的乙酸乙酯。
3. 加入少量的酚酞指示剂,溶液变为粉红色。
4. 用滴管滴加氢氧化钠溶液,同时观察溶液的颜色变化。
5. 不断滴加氢氧化钠溶液,直到溶液的颜色变为淡红色,停止滴加。
6. 记录滴加氢氧化钠溶液的用量。
实验结果:在实验过程中,我们观察到乙酸乙酯溶液由无色变为粉红色,随着氢氧化钠溶液的滴加,溶液颜色逐渐变为淡红色。
当溶液呈现淡红色时,停止滴加氢氧化钠溶液,并记录下滴加的用量。
实验讨论:1. 皂化反应的原理:皂化反应是一种酯水解反应,酯与碱反应生成相应的盐和醇。
在本实验中,乙酸乙酯与氢氧化钠反应生成乙酸盐和乙醇。
乙酸盐的形成使溶液呈碱性。
2. 氢氧化钠的用量:实验中我们记录了滴加氢氧化钠溶液的用量。
这个用量可以反映出乙酸乙酯的皂化程度。
用量越大,说明皂化程度越高。
3. 反应速率与温度的关系:皂化反应的速率与温度有关。
在一定范围内,温度升高可以加快皂化反应的速率。
因此,在实验中可以尝试在不同温度下进行皂化反应,观察反应速率的变化。
4. 反应速率与浓度的关系:皂化反应的速率与反应物的浓度有关。
在实验中可以尝试改变乙酸乙酯或氢氧化钠的浓度,观察反应速率的变化。
5. 反应产物的性质:乙酸盐和乙醇是皂化反应的产物。
可以通过进一步的实验探究它们的性质和用途。
实验总结:通过乙酸乙酯的皂化实验,我们深入了解了皂化反应的原理和过程。
实验结果和讨论提供了一些启示,可以进一步探究皂化反应的影响因素和反应产物的性质。
乙酸乙酯皂化反应实验报告
乙酸乙酯皂化反应实验报告一、实验目的1、了解二级反应的特点,学会用图解法求二级反应的速率常数。
2、掌握用电导法测定乙酸乙酯皂化反应速率常数和活化能的方法。
3、熟悉电导率仪的使用方法。
二、实验原理乙酸乙酯的皂化反应是一个典型的二级反应:CH₃COOC₂H₅+NaOH → CH₃COONa + C₂H₅OH在反应过程中,各物质的浓度随时间而改变。
若乙酸乙酯和氢氧化钠的初始浓度相同,均为 c₀,则反应速率方程为:r = dc/dt = kc²式中,c 为时间 t 时反应物的浓度,k 为反应速率常数。
积分上式可得:kt = 1/c 1/c₀由于反应是在稀的水溶液中进行,因此可以认为反应过程中溶液的体积不变。
同时,NaOH 和 CH₃COONa 是强电解质,在浓度不大时,电导率与其浓度成正比。
设溶液在起始时的电导率为κ₀,反应完全结束时的电导率为κ∞,在时间 t 时的电导率为κt。
则:κ₀= A₁c₀(A₁为比例常数)κ∞ = A₂c₀(A₂为比例常数)κt = A₁(c₀ c) + A₂c所以:c =(κ₀ κt) /(κ₀ κ∞)将其代入速率方程积分式,可得:kt =(κ₀ κt) / c₀(κ₀ κ∞)t通过实验测定不同时间 t 时的κt,以κt 对(κ₀ κt) / t 作图,应得到一条直线,直线的斜率即为反应速率常数 k。
三、实验仪器与试剂1、仪器电导率仪恒温水浴槽秒表移液管(25ml)容量瓶(100ml)烧杯(100ml)2、试剂乙酸乙酯(AR)氢氧化钠(AR)去离子水四、实验步骤1、配制溶液配制 00200 mol/L 的 NaOH 溶液:用电子天平称取 08000 g NaOH固体,溶解于去离子水中,然后转移至 1000 ml 容量瓶中,定容至刻度,摇匀。
配制 00200 mol/L 的乙酸乙酯溶液:用量筒量取 218 ml 乙酸乙酯,放入 100 ml 容量瓶中,用去离子水定容至刻度,摇匀。
乙酸乙酯皂化反应速率常数实验报告
乙酸乙酯皂化反应速率常数实验报告实验目的:1.测定乙酸乙酯的皂化反应速率常数;2.探究温度对皂化反应速率常数的影响。
实验原理:皂化反应是指脂肪酯与碱反应生成甘油和相应的碱盐。
皂化反应可用以下反应方程表示:脂肪酯+碱→甘油+碱盐皂化反应速率可用速率常数k表示,速率常数k与温度T的关系可由阿纳拉基方程表示:k=A*e^(-Ea/RT)其中,k为皂化反应速率常数,A为阿纳拉基常数,Ea为活化能,R为气体常数,T为温度。
实验步骤:1.实验前制备所有需要的试剂和设备,包括乙酸乙酯、氢氧化钠溶液、烧杯、温水槽等。
2.准备10个实验组,分别在不同温度下进行实验。
温度范围选择20℃至60℃,每隔5℃一组。
3.在10个烧杯中分别加入10mL乙酸乙酯。
4.将10个烧杯放置在温水槽中,使温度分别达到实验组设定的温度。
5.向每个烧杯中依次加入0.2mL氢氧化钠溶液。
6.快速搅拌烧杯内溶液,以促进反应进行。
7.观察反应过程,当反应完全停止后,停止加热。
8.记录实验组的反应时间和实验温度。
9.重复以上步骤,获得数据。
数据处理:1.根据实验记录,计算每组试验的反应时间。
2.计算每组试验的温度。
3.对数化反应时间和倒数化温度。
4.构建反应时间与温度的线性关系图。
5.根据线性拟合求出y轴截距和斜率。
6.根据由阿纳拉基方程可以得到的公式计算速率常数k。
7.计算每组实验的速率常数k值。
结果分析:根据实验数据,我们可以得到每组实验的反应时间、温度和速率常数k值。
通过分析速率常数k与温度的关系,我们可以得出乙酸乙酯皂化反应速率常数随温度的变化规律。
通常情况下,随着温度的升高,速率常数k值也会增加,反应速率加快。
这是因为温度升高会增加反应分子的热运动速率,增加反应发生的机会。
结论:本实验通过测定乙酸乙酯皂化反应的速率常数,得出了乙酸乙酯皂化反应速率常数随温度变化的规律。
实验结果表明,在所选的温度范围内,随着温度的升高,乙酸乙酯的皂化反应速率常数增加,反应速率加快。
二级反应乙酸乙酯皂化实验报告
二级反应乙酸乙酯皂化实验报告实验报告:二级反应乙酸乙酯皂化实验一、实验目的:通过反应观察,了解二级反应的基本规律,掌握乙酸乙酯皂化反应实验的操作方法和实验步骤,并验证化学动力学的相关理论规律。
二、实验原理:乙酸乙酯的皂化反应是二级反应,其反应速率通常遵循以下几个规律:1. 当反应开始时,反应物的浓度较高,因此反应初始速率较快;2. 随着反应进行,反应物浓度逐渐降低,反应速率逐渐变慢;3. 在反应过程中,反应物浓度不断降低,但反应速率并非一直减小,而是递减的。
直到反应物浓度降低到很低的水平时,反应速率才下降到不能忽略的水平。
三、实验步骤:1. 取一小段酸性环境下所通的一段玻璃毛细管,稍加修整后,在一端钳夹处烧毛,并吹净;2. 用已量得的30毫升乙酸乙酯在体积瓶中,加入适量的酚酞指示剂溶液和1mL浓NaOH溶液慢慢移进量筒中,加入一定量的水,开始进行皂化反应;3. 微调调节成大约一分钟左右流过小试管体积的流速,在小试管接头处加入白蜡状钠片,并迅速旋紧塞子;4. 可以大致评估反应的完成情况(水层和乙醇层的分界)后,原位打破小试管中纯净NaOH的衔接处,使其与反应混合物相互接触;5. 立即开启计时器,每过5秒观察一次水层中剩余的NaOH片子,直到全部消失为止。
四、实验结果:1. 反应开始时,玻璃管中液体不流动,环境表面出现白雾。
这是乙酸乙酯蒸发受热所致;2. 随着反应进行,观察到管内白雾逐渐消失,液面下降并逐渐转变为白色。
这表明皂化反应开始进行,乙酸乙酯逐渐转化为乙酸钠、乙醇和水;3. 反应进行过程中,乙醇上升到玻璃管顶部,形成一层透明的液滴。
玻璃管内出现白色沉淀和透明液滴,表明皂化反应已基本完成;4. 实验结果符合化学动力学二级反应所描述的规律,反应速率随着反应物浓度的降低而递减。
五、实验结论:通过本次实验,我们成功验证了乙酸乙酯的皂化反应是二级反应,并掌握了相关实验操作方法和实验步骤。
同时,也通过实验观察得出了化学动力学所描述的二级反应规律。
乙酸乙酯皂化反应动力学实验报告t
乙酸乙酯皂化反应动力学一、实验目的1.了解二级反应的特点;2.用电导法测定乙酸乙酯皂化反应的速率常数;3.由不同温度下的反应速率常数求反应的活化能。
二、实验原理1.乙酸乙酯在碱性水溶液中的水解反应即皂化反应,其反应式为:反应是二级反应,反应速率与错误!未找到引用源。
及错误!未找到引用源。
的浓度成正比。
2.反应开始时错误!未找到引用源。
,反应物浓度为错误!未找到引用源。
,有:错误!未找到引用源。
其中,错误!未找到引用源。
为反应速率常数,错误!未找到引用源。
表示在时间间隔错误!未找到引用源。
内反应了的乙酸乙酯或氢氧化钠的浓度。
在一定温度下,由实验测得不同错误!未找到引用源。
时的错误!未找到引用源。
值,可计算出错误!未找到引用源。
值。
3.本实验通过测量溶液的电导率代替测量生成物浓度错误!未找到引用源。
由公式错误!未找到引用源。
,以错误!未找到引用源。
对错误!未找到引用源。
作图为一直线,斜率为错误!未找到引用源。
,由此可求错误!未找到引用源。
其中,初始浓度错误!未找到引用源。
为实验中配制溶液时确定,通过实验可测错误!未找到引用源。
和错误!未找到引用源。
,错误!未找到引用源。
为截距。
4.求得热力学温度错误!未找到引用源。
时的反应速率常数错误!未找到引用源。
、错误!未找到引用源。
,根据Arrhenius方程的定积分式,变化可得求错误!未找到引用源。
值的公式为:错误!未找到引用源。
三、试剂及仪器试剂:错误!未找到引用源。
溶液(约错误!未找到引用源。
),乙酸乙酯(错误!未找到引用源。
)。
仪器:恒温槽,电导率仪,电导电极,茶行电导池,秒表,滴定管(碱式),移液管错误!未找到引用源。
,容量瓶错误!未找到引用源。
,磨口塞锥形瓶错误!未找到引用源。
四、实验步骤1.将叉形电导池洗净烘干,调节恒温槽至错误!未找到引用源。
2.配制错误!未找到引用源。
浓度约错误!未找到引用源。
的乙酸乙酯水溶液。
称量乙酸乙酯的质量尽量接近于错误!未找到引用源。
乙酸乙酯皂化反应实验报告及处理方法
乙酸乙酯皂化反应速率常数的测定一、预习提问1.为什么可用电导法测定乙酸乙酯皂化反应的速率常数?2.二级反应有什么特点?3.怎样使用DDS-307型电导率仪?4.各代表什么?如何测定?t κκ、0二、实验目的及要求1.了解测定化学反应速率常数的一种物理方法----电导法。
2.了解二级反应的特点,学会用图解法求二级反应的速率常数。
3.掌握DDS-307 型数字电导率仪和控温仪使用方法。
三、实验原理1.二级反应的动力学方程产物→+B A t=0 a a t=t a-x a-x(1)2)()(x a k dtdxdt x a d dt dc A -==--=-定积分得: (2)xa xta k -⋅=1以作图若所得为直线,证明是二级反应,并从直线的斜率求出。
t xa x~-k 如果知道不同温度下的速率常数,按阿仑尼乌斯方程计算出该反应的活化能)()(21T k T k 和。
E (3)()()(ln122112T T TT R T k T k E -⨯=2.乙酸乙酯皂化反应是二级反应,反应式为:OH H C COONa CH NaOH H COOC CH 523523+→+t=0 a a 0 0t=t a-x a-x x x t=∞ 0 0 a a反应前后对电导率的影响不大,可忽略。
故反应前只考虑OH H C H COOC CH 52523和的电导率,反应后只考虑的电导率。
对稀溶液而言,强电解质NaOH κCOONa CH 3κ的电导率与其浓度成正比,而且溶液的总电导率就等于组成该溶液的电解质电导率之和。
κ故存在如下关系式:a A ⋅=10κa A ⋅=∞2κx A x a A t 21)(+-=κ由上三式得:,代入(2)式得 a x t ⋅--=∞)(00κκκκ)(10∞--⋅=κκκκt tta k 重新排列得:∞+-=κκκκtka tt 01因此,以作图为一直线即为二级反应,并从直线的斜率求出。
乙酸乙酯皂化反应实验报告.doc
乙酸乙酯皂化反应速度常相数的测定一、实验目的1.通过电导法测定乙酸乙酯皂化反应速度常数。
2.求反应的活化能。
3.进一步理解二级反应的特点。
4.掌握电导仪的使用方法。
二、基本原理乙酸乙酯的皂化反应是一个典型的二级反应:325325CH COOC H OH CH COO C H OH --+−−→+设在时间t 时生成浓度为x ,则该反应的动力学方程式为()()dx k a x b x dt-=-- (8-1) 式中,a ,b 分别为乙酸乙酯和碱的起始浓度,k 为反应速率常数,若a=b,则(8-1)式变为2()dx k a x dt=- (8-2) 积分上式得: 1()x k t a a x =⨯- (8-3) 由实验测的不同t 时的x 值,则可根据式(8-3)计算出不同t 时的k 值。
如果k 值为常数,就可证明反应是二级的。
通常是作()x a x -对t 图,如果所的是直线,也可证明反应是二级反应,并可从直线的斜率求出k 值。
不同时间下生成物的浓度可用化学分析法测定,也可用物理化学分析法测定。
本实验用电导法测定x 值,测定的根据是:(1) 溶液中OH -离子的电导率比离子(即3CH COO -)的电导率要大很多。
因此,随着反应的进行,OH -离子的浓度不断降低,溶液的电导率就随着下降。
(2) 在稀溶液中,每种强电解质的电导率与其浓度成正比,而且溶液的总电导率就等于组成溶液的电解质的电导率之和。
依据上述两点,对乙酸乙酯皂化反应来说,反映物和生成物只有NaOH 和NaAc 是强电解质,乙酸乙酯和乙醇不具有明显的导电性,它们的浓度变化不至于影响电导率的数值。
如果是在稀溶液下进行反应,则01A a κ=2A a κ∞=12()t A a x A x κ=-+式中:1A ,2A 是与温度、溶剂、电解质NaOH 和NaAc 的性质有关的比例常数;0κ,κ∞分别为反应开始和终了是溶液的总电导率;t κ为时间t 时溶液的总电导率。
乙酸乙酯皂化反应速率常数实验报告
乙酸乙酯皂化反应速率常数实验报告实验目的:本实验旨在通过测定乙酸乙酯的皂化反应速率常数,了解乙酸乙酯与水的反应速率,探究因素对反应速率的影响。
实验原理:乙酸乙酯与水的皂化反应是一种酯水解反应,反应式为酯+水→醇+酸。
本实验中,乙酸乙酯和水在碱催化下进行反应,生成乙醇和乙酸。
皂化反应是一个准一级反应,可以通过以下的速率方程进行表达:v=k[C]。
实验步骤:1.准备工作:清洗实验仪器、称取所需乙酸乙酯和水的质量。
2.在反应容器中加入一定量的碱溶液,使之充分溶解。
3.称取所需质量的乙酸乙酯,加入到反应容器中,并立即加热,以促进反应速率。
4.记录所需时间内反应液的体积变化。
5.根据所得实验数据,计算反应速率常数。
实验结果与分析:根据实际实验数据计算可得反应速率常数,通过对反应物质量、温度、催化剂浓度等因素进行改变,可以得到不同的速率常数。
在本实验中条件不变的情况下,反应物质量的变化会直接影响反应速率常数的大小。
实验结论:通过本实验可以得出乙酸乙酯皂化反应速率常数的实验结果,并且通过分析实验数据可以了解到反应物质量对于反应速率常数的影响。
这对于理解反应速率的调控以及研究相关反应机理具有重要意义。
实验中可能存在的误差及改进措施:1.实验中,加热乙酸乙酯和水的过程中可能有一部分乙酸乙酯挥发掉,造成实验结果的不准确。
应该采取遮盖或者使用密闭容器的方式,防止挥发现象的发生。
2.实验中,应该确保所用的碱溶液浓度稳定,以免对实验结果造成干扰。
可以使用多次实验并取平均值的方式,降低误差的影响。
3.实验中,应该注意反应温度的控制,避免过高或过低的温度对实验结果的干扰。
可以使用水浴或恒温培养箱等设备来保持稳定的实验温度。
总结:本实验通过测定乙酸乙酯皂化反应速率常数,对于了解反应速率、反应条件对反应速率的影响具有重要意义。
通过实验数据的分析,可以得到乙酸乙酯与水反应速率常数的实验结果,并且在实验中的改进措施可以提高实验的准确性和可靠性。
乙酸乙酯皂化反应实验报告
乙酸乙酯皂化反应实验报告实验目的:1.了解乙酸乙酯的皂化反应;2.掌握通过测定棕榈酸钠溶液的浓度来计算出乙酸乙酯的皂化价的方法;3.理解酯类在碱性溶液中的转化机理。
实验原理:乙酸乙酯(CH3COOC2H5)是一种常见的酯类物质,在碱性条件下可以发生皂化反应。
皂化是指酯在碱性溶液中,水解为相应的酸盐和醇。
乙酸乙酯的皂化反应可以用以下化学方程式表示:CH3COOC2H5+NaOH→CH3COONa+C2H5OH根据上述方程式,可以看出一摩尔的乙酸乙酯与一摩尔的氢氧化钠发生反应后,生成一摩尔的乙醇和一摩尔的乙酸钠。
实验步骤:1. 预先准备好0.05mol/L的棕榈酸钠溶液;2.用针筒量取一定体积的乙酸乙酯,使其完全滴入250mL锥形瓶中;3.在加入乙酸乙酯的同时,加入适量的棕榈酸钠溶液;4.快速地搅拌混合物并观察反应沉淀的产生情况;5.等沉淀产生稳定后,用取10mL混合液于滴定瓶中,加入几滴酚酞指示剂;6. 用0.05mol/L盐酸标准溶液滴定,记录消耗滴定溶液的体积;7.重复3至6步骤,直到得到一组滴定数据为止;8.就计算所得的数据,计算乙酸乙酯的皂化价和皂化度。
实验结果:通过实验记录的滴定数据,可以计算乙酸乙酯的皂化价。
假设一次滴定所需的盐酸体积为V mL,棕榈酸钠的浓度为C mol/L,则棕榈酸钠的滴定反应可以表示为:C mol/L * V mL = 0.05 mol/L * 10 mL由此可以计算出棕榈酸钠的浓度C。
假设一摩尔的乙酸乙酯与一摩尔的棕榈酸钠发生反应生成x摩尔的乙酸钠,由此可以计算乙酸乙酯的皂化度:皂化度(%)=x/1*100%实验讨论:在实验中,乙酸乙酯与棕榈酸钠的皂化反应可以较快地发生,反应产物是乙酸钠和乙醇。
通过滴定棕榈酸钠溶液,可以得到棕榈酸钠的浓度,从而计算出乙酸乙酯的皂化价和皂化度。
本实验中所用到的棕榈酸钠溶液浓度为0.05mol/L,这是一种适中的浓度。
如果浓度过高,滴定过程可能会过于繁琐;如果浓度过低,则需要加大样品的量才能够滴定至终点,从而增加实验误差。
乙酸乙酯皂化反应动力学实验报告
乙酸乙酯皂化反应动力学实验报告乙酸乙酯皂化反应动力学实验报告引言:皂化反应是一种常见的化学反应,通过碱与脂肪酸酯之间的反应,生成相应的皂和甘油。
在本实验中,我们将研究乙酸乙酯在碱性条件下的皂化反应动力学。
实验目的:1. 了解乙酸乙酯皂化反应的基本原理;2. 研究乙酸乙酯皂化反应的速率与反应物浓度的关系;3. 探究温度对乙酸乙酯皂化反应速率的影响。
实验原理:乙酸乙酯皂化反应的化学方程式为:乙酸乙酯 + 碱→ 乙酸盐 + 醇该反应是一个酯类与碱发生酸碱中和反应的过程。
反应速率与反应物浓度、温度以及反应物之间的相对浓度有关。
实验步骤:1. 准备实验室所需的试剂和仪器设备;2. 在实验室条件下,精确称取一定质量的乙酸乙酯;3. 将乙酸乙酯溶解于一定体积的碱性溶液中,形成反应体系;4. 在不同时间点,取样分析乙酸乙酯浓度的变化;5. 根据实验数据,绘制乙酸乙酯浓度随时间变化的曲线,并计算反应速率;6. 将实验步骤4和5重复多次,以获得可靠的实验结果;7. 改变反应体系的温度,重复步骤4-6。
实验结果与数据分析:根据实验数据,我们可以绘制乙酸乙酯浓度随时间变化的曲线。
通过对曲线的斜率进行计算,可以得到不同时间点的反应速率。
我们还可以比较不同实验条件下的反应速率,以观察温度对反应速率的影响。
实验讨论:在实验过程中,我们观察到随着时间的推移,乙酸乙酯浓度逐渐降低,而乙酸盐和醇的浓度逐渐增加。
这表明乙酸乙酯与碱发生了皂化反应。
根据实验结果,我们可以得出结论:乙酸乙酯皂化反应的速率与乙酸乙酯的浓度成正比。
当乙酸乙酯浓度较高时,反应速率较快;反之,反应速率较慢。
这是因为乙酸乙酯浓度的增加会增加反应物之间的碰撞频率,从而促进反应的进行。
此外,我们还观察到温度对乙酸乙酯皂化反应速率的影响。
随着温度的升高,反应速率也随之增加。
这是因为温度的提高会增加反应物的平均动能,从而增加反应物的碰撞频率和反应速率。
结论:通过本实验,我们深入了解了乙酸乙酯皂化反应的动力学特性。
物理化学实验报告乙酸乙酯皂化反应.docx
物理化学实验报告乙酸乙酯皂化反应.docx 实验题目:乙酸乙酯皂化反应实验目的:1、加深对乙脂酸及其衍生物的理解;2、熟悉皂化反应原理及方法;3、测定乙酸乙酯皂化反应的动力学数据。
原理和背景:1、乙酸乙酯(ethyl acetate)通常被用作溶剂,也可合成于化学实验室中。
它是一个由醋酸和乙醇合成的简单酯。
其化学式为CH3COOCH2CH3,为无色透明液体。
2、皂化反应是一种酸碱反应,是指在碱(如氢氧化钠)存在下,脂肪酸酯(如乙酸乙酯)与碱反应生成相应的盐(如乙酸乙酯钠)和醇(如乙醇)。
皂化反应是肥皂制造工艺中的重要过程。
3、皂化反应的方程式为:R-CO-O-R' + NaOH → R-COONa + R'-OH其中,R和R'分别代表脂肪酸和醇的基团。
实验步骤:1、将称量好的乙酸乙酯倒入皂化瓶中;2、取一定量的氢氧化钠溶液滴入皂化瓶中,并用玻璃棒搅拌均匀;3、将皂化瓶置于恒温水浴中随时记录反应温度,在一定时间内取出样品,用硫酸滴定法测定生成的乙醇量。
4、计算并绘制反应速率、反应级数、活化能等数据。
实验数据:反应物:乙酸乙酯(4.00mol/L)、氢氧化钠溶液(2.00mol/L)反应温度:43.2℃反应时间:30min采用硫酸滴定法测定得到生成乙醇量:1.96mL实验结果分析:1、根据反应物浓度、反应温度、反应时间、反应生成物摩尔量等数据,计算得到反应速率,即乙醇的生成速率为0.130 M/min。
2、根据数据计算得到反应级数,即此皂化反应为一级反应。
3、据此可以计算出反应的活化能,即反应活化能为15.6kJ/mol。
实验结论:1、本实验测定了乙酸乙酯皂化反应的动力学参数,包括反应速率、反应级数、活化能等。
2、通过本实验可以更深入地了解酯类化合物的化学性质,深入理解皂化反应的原理及过程。
乙酸乙酯的皂化反应实验报告
乙酸乙酯的皂化反应实验报告乙酸乙酯的皂化反应实验报告一、引言乙酸乙酯是一种常见的有机化合物,具有香味,可溶于有机溶剂。
在实验室中,我们经常使用乙酸乙酯进行有机合成反应。
而皂化反应是一种重要的有机反应,通过皂化反应可以得到酯和碱的相互转化。
本实验旨在通过乙酸乙酯的皂化反应,研究其反应机理和反应条件的影响。
二、实验目的1. 了解乙酸乙酯的皂化反应机理;2. 掌握皂化反应的实验操作方法;3. 研究不同反应条件对皂化反应的影响。
三、实验原理皂化反应是指酯与碱反应生成相应的酸盐和醇。
在本实验中,我们使用乙酸乙酯作为酯,氢氧化钠作为碱,进行皂化反应。
反应方程式如下:乙酸乙酯 + 氢氧化钠→ 乙酸钠 + 乙醇这是一个酯和碱的酸碱中和反应,生成的乙酸钠是一种盐,而乙醇是一种醇。
四、实验步骤1. 准备实验器材和试剂:称取适量乙酸乙酯和氢氧化钠固体;2. 反应操作:将乙酸乙酯加入反应烧杯中,然后逐渐加入氢氧化钠固体,同时用玻璃棒搅拌混合;3. 观察反应:观察反应过程中的变化,如颜色、气味等;4. 结果记录:记录反应时间、反应物质的用量以及观察到的现象。
五、实验结果与分析在本实验中,我们进行了多组乙酸乙酯的皂化反应实验,观察到了以下现象:1. 反应速率:随着氢氧化钠的用量增加,反应速率也增加。
这是因为氢氧化钠的浓度增加,加速了皂化反应的进行。
2. 反应产物:反应过程中,乙酸乙酯逐渐转化为乙酸钠和乙醇。
乙酸钠是一种白色固体,而乙醇是一种无色液体。
3. pH值变化:在反应过程中,pH值逐渐增加。
这是由于氢氧化钠是一种强碱,加入后使反应体系呈碱性。
六、实验讨论皂化反应是一种常见的有机反应,广泛应用于化妆品、洗涤剂等行业。
通过本实验,我们了解到了乙酸乙酯的皂化反应机理和反应条件的影响。
在实际应用中,皂化反应的条件可以根据需要进行调整。
例如,如果需要加快反应速率,可以增加碱的用量或提高反应温度。
而如果需要控制反应的选择性,可以选择适当的催化剂或改变反应物的比例。
乙酸乙酯皂化反应实验报告
乙酸乙酯皂化反应实验报告实验目的,通过实验观察乙酸乙酯在碱性条件下的皂化反应过程,了解皂化反应的基本原理及实验操作技巧。
实验原理:乙酸乙酯是一种酯类化合物,它与碱发生皂化反应,生成乙醇和乙酸盐。
皂化反应是酯和碱发生水解反应,生成醇和盐。
反应机理如下:CH3COOC2H5 + NaOH → C2H5OH + CH3COONa。
实验仪器和试剂,乙酸乙酯、氢氧化钠溶液、酚酞指示剂、蒸馏水、烧杯、试管、移液管等。
实验步骤:1. 取一定量的乙酸乙酯倒入烧杯中;2. 加入少量酚酞指示剂;3. 用移液管滴加适量氢氧化钠溶液,观察溶液颜色变化;4. 持续滴加氢氧化钠溶液,直至酚酞指示剂由无色变成淡紫色,停止滴加。
实验结果:在实验过程中,我们观察到乙酸乙酯与氢氧化钠溶液发生了皂化反应,溶液由无色变成了淡紫色。
这表明乙酸乙酯在碱性条件下发生了水解反应,生成了乙醇和乙酸钠盐。
实验讨论:通过本次实验,我们深刻理解了乙酸乙酯的皂化反应原理。
在实验中,我们发现酚酞指示剂的颜色变化可以用来判断反应的终点,这为我们进行皂化反应的控制提供了重要的参考依据。
此外,我们还发现在皂化反应中生成的乙醇和乙酸钠盐可以通过蒸馏水洗涤得到纯净的产物。
实验结论:本次实验通过观察乙酸乙酯在碱性条件下的皂化反应过程,加深了我们对皂化反应原理的理解。
同时,我们也学会了如何通过酚酞指示剂的颜色变化来判断反应的终点,掌握了皂化反应的基本操作技巧。
这对我们今后的实验操作和化学研究具有重要的指导意义。
通过本次实验,我们不仅加深了对皂化反应原理的理解,也掌握了实验操作技巧,为今后的化学实验打下了坚实的基础。
希望通过今后的实践操作,能够进一步提高自己的实验技能,为科学研究贡献自己的一份力量。
乙酸乙酯的皂化反应实验报告
乙酸乙酯的皂化反应实验报告实验目的:1. 了解乙酸乙酯的化学性质及其与碱发生的皂化反应。
2. 掌握实验室中进行皂化反应的基本操作技能。
3. 观察并分析皂化反应的化学现象并推导出反应方程式。
实验原理与介绍:乙酸乙酯是一种有机溶剂,具有较强的挥发性和溶解性。
当乙酸乙酯与碱(如氢氧化钠)反应时,会发生皂化反应,生成相应的盐(如乙酸乙酯酸钠)和醇(如乙醇)。
这是一个酯的酸碱中和反应。
实验步骤:1. 实验前准备:a. 准备所需实验器材和试剂,包括乙酸乙酯、氢氧化钠溶液、酚酞指示剂。
b. 清洗玻璃仪器并进行烘干,以确保实验的准确性和可靠性。
2. 实验操作:a. 在实验室台面上放置一个干净的玻璃反应瓶,并称量(约5g)乙酸乙酯于其中。
b. 将适量的酚酞指示剂加入玻璃反应瓶中,使其溶解,并记录颜色变化。
3. 加入反应物:a. 使用滴管缓慢加入适量的氢氧化钠溶液到玻璃反应瓶中,同时以稳定的速度搅拌。
b. 当颜色变化明显时,停止滴加,继续搅拌数分钟。
4. 观察与记录:a. 观察和记录反应体系的变化,包括颜色、气泡产生情况等。
b. 观察酚酞指示剂颜色变化的程度,并记录。
5. 结果计算与分析:a. 根据反应物的量和所用滴定试剂的浓度,计算反应物的摩尔浓度。
b. 根据反应物的摩尔比例,推导出皂化反应的化学方程式。
c. 分析反应的化学现象,解释产物的形成机制。
实验结果:通过本次实验,我们观察到了以下现象:1. 初始实验体系为无色透明液体,加入酚酞指示剂后,溶液变为粉红色。
2. 在滴加氢氧化钠溶液的过程中,溶液不断搅拌并出现气泡。
3. 随着滴加氢氧化钠溶液的增多,溶液颜色由粉红色逐渐转为橙黄色。
结果分析与讨论:根据实验结果,可以得出以下结论:1. 乙酸乙酯与氢氧化钠发生了化学反应,生成了乙酸乙酯酸钠和乙醇。
2. 酚酞指示剂在反应过程中起到了指示剂的作用,通过颜色的变化,反映了溶液酸碱性质的变化。
3. 实验中观察到产生气泡的现象,是由于皂化反应释放出了二氧化碳气体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验八 乙酸乙酯皂化反应速度常相数的测定
一、实验目的
1.通过电导法测定乙酸乙酯皂化反应速度常数。
2.求反应的活化能。
3.进一步理解二级反应的特点。
4.掌握电导仪的使用方法。
二、基本原理
乙酸乙酯的皂化反应是一个典型的二级反应:
325325CH COOC H OH CH COO C H OH --+−−→+
设在时间t 时生成浓度为x ,则该反应的动力学方程式为
()()dx
k a x b x dt
-
=-- (8-1) 式中,a ,b 分别为乙酸乙酯和碱的起始浓度,k 为反应速率常数,若a=b,则(8-1)式变为
2()dx
k a x dt
=- (8-2) 积分上式得: 1()
x
k t a a x =⨯- (8-3)
由实验测的不同t 时的x 值,则可根据式(8-3)计算出不同t 时的k 值。
如果k 值为常数,就可证明反应是二级的。
通常是作
()
x
a x -对t 图,如果所的是直线,也可证明反应是二级
反应,并可从直线的斜率求出k 值。
不同时间下生成物的浓度可用化学分析法测定,也可用物理化学分析法测定。
本实验用电导法测定x 值,测定的根据是:
(1)
溶液中OH -离子的电导率比离子(即3CH COO -)的电导率要大很多。
因此,随着反应的进行,OH -离子的浓度不断降低,溶液的电导率就随着下降。
(2) 在稀溶液中,每种强电解质的电导率与其浓度成正比,而且溶液的总电导率就等于组成溶液的电解质的电导率之和。
依据上述两点,对乙酸乙酯皂化反应来说,反映物和生成物只有NaOH 和NaAc 是
强电解质,乙酸乙酯和乙醇不具有明显的导电性,它们的浓度变化不至于影响电导率的数值。
如果是在稀溶液下进行反应,则
01A a κ= 2A a κ∞=
12()t A a x A x κ=-+
式中:1A ,2A 是与温度、溶剂、电解质NaOH 和NaAc 的性质有关的比例常数;
0κ,κ∞分别为反应开始和终了是溶液的总电导率;t κ为时间t 时溶液的总电导率。
由此三
式可以得到:
00(
)t
x a κκκκ∞
-=- (8-4)
若乙酸乙酯与NaOH 的起始浓度相等,将(8-4)式代入(8-3)式得:
01t
t k ta κκκκ∞
-=
⨯
- (8-5) 由上式变换为:
0t
t kat
κκκκ∞-=
+ (8-6)
作0~
t
t t
κκκ-图,由直线的斜率可求k 值,即
1m ka =
,1k ma
= 由(8-3)式可知,本反应的半衰期为:
1/21
t ka
=
(8-7) 可见,两反应物起始浓度相同的二级反应,其半衰期1/2t 与起始浓度成反比,由(8-7)
式可知,此处1/2t 亦即作图所得直线之斜率。
若由实验求得两个不同温度下的速度常数k ,则可利用公式(8-8)计算出反应的活化能a E 。
211211ln
a E k k R T T ⎛⎫=- ⎪⎝⎭
(8-8) 三、仪器和试剂
恒温槽1套; 移液管(20mL )2支; 电导仪1套;
比色管(50mL )2支; 锥形瓶(250mL )2只; 0.021mol L NaOH -⋅溶液; 停表1块;
0.021325mol L CH COOC H -⋅溶液; 烧杯(250mL )1只; 0.011mol L NaOH -⋅溶液; 容量瓶(100mL )2只;
0.0113mol L CH COONa -⋅溶液。
四、操作步骤
1.准确配制0.021mol L -⋅的NaOH 溶液和325CH COOC H 溶液。
调节恒温槽温度至25℃,调试好电导仪。
将电导池(如图8-1)及0.021mol L -⋅的NaOH 溶液和325CH COOC H 溶液浸入恒温槽中恒温待用。
2.分别取适量0.011mol L -⋅的NaOH 溶液和3CH COONa 溶液注入干燥的比色管中,插入电极,溶液面必须浸没铂黑电极,置于恒温槽中恒温15分钟,待其恒温后测其电导,分别为0G 和G ∞值,记下数据。
3.取20mL 0.021mol L -⋅的325CH COOC H 溶液和20mL 0.021mol L -⋅的NaOH 溶液,分别注入双叉管的两个叉管中(注意勿使二溶液混合),插入电极并置于恒温槽中恒温10分钟。
然后摇动双叉管,使两种溶液均匀混合并导入装有电极一侧的叉管之中,同时开动停表,作为反应的起始时间。
从计时开始,在第5、10、15、20、25、30、40、50、60分钟各测一次电导值。
4.在30℃下按上述三步骤进行实验。
五、数据记录和处理
将测得数据记录于下表:
室温:18.6℃大气压:721.5 =0.01
=0.02
25℃30℃
单位:×104单位:×104
0 / / 0 0.189 /
5 0.161 -0.017 5 0.160 -0.020
10 0.154 -0.0082 10 0.156 -0.008
15 0.145 -0.00387 15 0.151 -0.0043
20 0.134 -0.00212 20 0.144 -0.0031
25 0.128 -0.00188 25 0.135 -0.0019
30 0.127 -0.0014 30 0.130 -0.00159
40 0.120 -0.0008 40 0.125 -0.0025
说明:其中温度为30℃时的实验数据为我小组所测,25℃时的数据是参考其他小组多得。
1.利用表中数据以对作图求两温度下的。
25℃时的—图
30℃时的—图
2.利用所作之图求两温度下的,并与测量所得之进行比较。
25℃:测量的=0.1964作图所得=0.1743
30℃:测量的=0.1850作图所得=0.1638
可以看出作图所求的两温度下的比测量值小一些,说明可能是测量时间太短,反应不完全所造成的,再就是可能数据处理存在着误差,使得结果偏小。
3.求此反应在25℃和35℃时的半衰期值。
由图象法可以求出半衰期分别为:25℃: 30℃:
4.计算此反应的活化能。
六、注意事项
1.注意每次测量之前都应该校正。
2.选择合适的量程,使得读取的数值在10~100之间。
3.进行实验时,溶液面必须浸没电极,实验完毕,一定要用蒸馏水把电极冲洗干净并放入去离子水中。
七、思考题
1.为什么以0.011mol L -⋅的NaOH 溶液和0.011mol L -⋅的3CH COONa 溶液测得的电导,就可以认为是0G 和G ∞。
答:因为它们是强电解质,在稀溶液中,每种强电解质的电导率与其浓度成正比,而且溶液的总电导率就等于组成溶液的电解质的电导率之和。
2.为什么本实验要在恒温条件下进行?而且NaOH 溶液和325CH COOC H 溶液在混合前还要预先恒温?
答:不同温度条件下所得速率常数不一样。
保证温度的均一性,使得所测速率常数更加准确。
3.如何从实验结果来验证乙酸乙酯皂化反应为二级反应?
答:1()
x
k t a a x =⨯- (8-3)
由实验测的不同t 时的x 值,则可根据式(8-3)计算出不同t 时的k 值。
如果k 值为常数,就可证明反应是二级的。
通常是作
()
x
a x -对t 图,如果所的是直线,也可证明反应是二级
反应,并可从直线的斜率求出k 值。