工程材料及成型基础知识点整理

合集下载

工程材料及其成型基础大纲

工程材料及其成型基础大纲

工程材料及其成型基础大纲一、概述1.工程材料及其成型的定义和概念2.工程材料的分类及应用领域3.工程材料的性能要求和测试方法二、金属材料1.金属材料的分类和特点2.金属的晶体结构和缺陷3.金属的力学性能及其测试方法4.金属材料的热处理和强化机制5.常见金属材料的应用和加工工艺三、非金属材料1.非金属材料的分类和特点2.非金属材料的结构和性能3.非金属材料的应用领域和特殊性能4.非金属材料的加工和成型工艺四、高分子材料1.高分子材料的分类和特点2.高分子材料的结构和性能3.高分子材料的加工和改性方法4.常见高分子材料的应用领域和加工工艺五、复合材料1.复合材料的概念和分类2.复合材料的结构和性能3.复合材料的增强机制和界面特性4.复合材料的制备和成型工艺5.常见复合材料的应用领域和加工方法六、成型工艺1.金属材料的成型方法和工艺流程2.非金属材料的成型方法和工艺流程3.高分子材料的成型方法和工艺流程4.复合材料的成型方法和工艺流程七、表面处理与涂装1.表面处理的目的和方法2.金属材料的表面处理工艺3.非金属材料的表面处理工艺4.涂装技术及其应用八、工程材料的环境损伤与防护1.工程材料在使用过程中的损伤类型和机理2.工程材料的防护措施和方法3.工程材料的可持续发展和环境保护九、新材料与材料设计1.新型工程材料的研究和应用现状2.材料设计的原则和方法3.材料设计与工程实践以上为工程材料及其成型基础大纲的主要内容,通过对材料基本概念、分类、性能和加工工艺的介绍,使学生能够掌握工程材料的选择、设计和加工方法,进而提高工程实践能力。

材料成形技术基础 知识点总结

材料成形技术基础 知识点总结

材料成形技术基础知识点总结滑移系:晶体中一个滑移面及该面上的一个华滑移方向的组合。

纤维组织:金属经冷加工变形后,晶粒形状发生改变,其变化趋势大致与金属的宏观变形一致,若变形程度很大,则晶粒呈现一片纤维状的条纹。

拉深:当凸模下降与坯料接触,坯料首先弯曲,于凸模圆角接触的材料发生胀形形变,凸模继续下降,法兰部分坯料在切向压应力,径向拉应力的作用下沿凹模圆角向直壁流动,形成筒部,进行拉深变形。

自发形核:在单一的液相中,通过自身的结构起伏形成新相核心的过程。

非自发形核:在不均匀的液体中,依靠外来杂质和容器壁面提供衬底而进行形核的过程。

焊接热循环:在焊接热源的作用下,焊件上的某一点温度随时间变化的过程。

焊接残余应力:由于焊接过程中的不均匀加热等因素而导致的焊接结构中存在残余应力。

温度场:加热和冷却过程中某一瞬间温度分布。

材料成型过程中的三种流:材料流,能量流,信息流。

液态金属在凝固和冷却到室温时发生:液态,凝固,固态三种收缩。

减小及消除焊接残余应力的措施有:热处理,温差拉伸,拉力载荷,爆炸冲击,振动法等。

液态金属结构:液态金属有许多近程有序的原子集团组成,原子集团内部原子规则排列,其结构与原固体相似;有大的能量起伏,激烈的热运动和大量的空穴;所有原子集团和空穴时聚时散,时小时大,始终处于瞬息万变的状态。

形核剂应具备哪些条件:失配度小,粗糙度大,分散性好,高温稳定性好。

加工硬化:金属经冷塑性变形后,随着变形程度的增加,金属的强度硬度增加,而塑性韧性降低,这种现象叫。

其成因与位错的交互作用有关,随着塑性变形的进行,位错密度不断增加,位错反应和相互交割加剧,结果产生固定割阶,位错缠结等障碍,以致形成胞装亚结构,使位错难以越过这些障碍而被限制在一定范围内运动,这样,要使金属继续变形就需要不断增加外力才能克服位错间强大的交互作用力。

滑移变形时通常把滑移因子u为0.5或接近0.5的取向称为软取向,把u为0或接近0 的取向称为硬取向。

工程材料知识点

工程材料知识点

工程材料知识点1. 工程材料分类1.1 金属材料1.1.1 铁碳合金1.1.2 非铁金属1.1.2.1 铜合金1.1.2.2 铝合金1.2 非金属材料1.2.1 塑料1.2.2 陶瓷1.2.3 复合材料1.3 特种材料1.3.1 纳米材料1.3.2 生物材料2. 材料性能2.1 力学性能2.1.1 强度2.1.2 硬度2.1.3 韧性2.1.4 疲劳性能2.2 物理性能2.2.1 密度2.2.2 热膨胀系数2.2.3 导热性能2.3 化学性能2.3.1 耐腐蚀性2.3.2 化学稳定性3. 材料选择原则3.1 满足工程设计要求 3.1.1 功能需求 3.1.2 经济性3.1.3 可加工性 3.2 考虑环境因素3.2.1 温度3.2.2 湿度3.2.3 化学介质 3.3 考虑可持续性3.3.1 材料回收 3.3.2 环保性4. 材料加工工艺4.1 铸造4.2 锻造4.3 焊接4.4 热处理4.5 机械加工4.5.1 切削加工 4.5.2 非传统加工5. 材料测试与评估5.1 力学性能测试5.1.1 拉伸试验 5.1.2 冲击试验 5.2 物理性能测试5.2.1 热导率测试 5.2.2 密度测定 5.3 化学性能测试5.3.1 耐腐蚀测试5.3.2 化学成分分析6. 材料应用案例6.1 建筑行业6.1.1 结构材料6.1.2 装饰材料6.2 汽车工业6.2.1 车身材料6.2.2 发动机材料6.3 航空航天6.3.1 轻质高强度材料6.3.2 耐高温材料7. 材料发展趋势7.1 智能材料7.2 绿色材料7.3 3D打印材料8. 结语工程材料是现代工业和建筑的基础,了解不同材料的特性、性能和应用对于工程设计和产品开发至关重要。

随着科技的进步,新材料的研发和应用将不断推动各行各业的发展,提高产品性能,降低成本,同时更加注重环保和可持续性。

因此,工程师和设计师需要不断更新材料知识,掌握最新的材料技术和应用趋势。

常用工程材料的基础知识

常用工程材料的基础知识

常用工程材料的基础知识在工程领域中,材料是构建各种结构和产品的基础。

了解常用工程材料的特性、性能和应用,对于工程师和技术人员来说至关重要。

这不仅有助于在设计和制造过程中做出明智的选择,还能确保工程项目的质量、可靠性和经济性。

一、金属材料金属材料在工程中应用广泛,具有良好的力学性能、导电性和导热性。

1、钢铁钢铁是最常见的金属材料之一。

根据其碳含量的不同,可分为低碳钢、中碳钢和高碳钢。

低碳钢具有较好的韧性和可加工性,常用于制造薄板、钢丝等;中碳钢强度较高,常用于制造机械零件,如齿轮、轴等;高碳钢硬度高,常用于制造刀具、模具等。

此外,合金钢通过添加合金元素,如铬、镍、钼等,改善了钢的性能,使其具有更高的强度、耐磨性、耐腐蚀性等。

例如,不锈钢含有铬元素,能在空气中形成一层致密的氧化膜,具有良好的耐腐蚀性,常用于制造化工设备、餐具等。

2、铝及铝合金铝是一种轻质金属,具有良好的导电性和导热性,耐腐蚀性也较好。

铝合金通过添加其他元素,如铜、镁、锌等,提高了强度和硬度,同时保持了铝的轻质特性。

铝合金广泛应用于航空航天、汽车制造、建筑等领域,如飞机外壳、汽车轮毂、铝合金门窗等。

3、铜及铜合金铜具有良好的导电性和导热性,常用于制造电线、电缆、电器元件等。

铜合金如黄铜(铜锌合金)、青铜(铜锡合金)等,具有不同的性能特点。

黄铜具有较好的耐磨性和耐腐蚀性,常用于制造阀门、管件等;青铜强度较高,常用于制造轴承、弹簧等。

二、非金属材料1、塑料塑料是一类具有高分子量的有机化合物。

其优点包括重量轻、耐腐蚀、绝缘性好、易于加工成型等。

常见的塑料有聚乙烯(PE)、聚丙烯(PP)、聚苯乙烯(PS)、聚氯乙烯(PVC)等。

聚乙烯常用于制造薄膜、管材等;聚丙烯具有较高的强度和耐热性,常用于制造汽车零部件、家电外壳等;聚苯乙烯透明度高,常用于制造包装材料、玩具等;聚氯乙烯具有良好的耐腐蚀性,常用于制造管道、板材等。

工程塑料如聚酰胺(PA,俗称尼龙)、聚碳酸酯(PC)、聚甲醛(POM)等,具有更高的强度、耐热性和耐磨性,广泛应用于机械制造、电子电器等领域。

工程材料学基础知识

工程材料学基础知识
Zn<30-32%:则溶解于铜内﹐塑性好﹐并随Zn增加 其强度和塑性都提高﹐当Zn>45%后﹐强度和塑性急剧 降低。
编号﹕ H80
铜含量 黄的拼音
3.青铜(Cu-Sn﹐ Cu-Al﹐ Cu-Be等合金)﹕
以Cu-Sn为例﹕其机械性能受其Sn含 量 影响。并随Sn增加其强度和塑性都提 高﹐当Sn >5-6%后﹐塑性急剧降低﹐工 业用锡青铜的Sn含量一般在3-14%之间 。
放入金属模中﹐经加热﹐加压后使其固 化成型。也可采用此法﹐将浸有树脂的薄 片材料﹐迭加起来﹐经加热﹐加压后﹐制 成塑料层压板﹐称为层压法。
5.浇铸成型﹕将含有固化剂或催化剂和 其它添加剂的熔融树脂浇入模具中﹐树脂 经过固化反应﹐便固化成型。
8.聚碳酸脂(PC) ﹕抗拉﹐抗弯强度 高﹐并有较高的透光率(85%)﹐可以制作 齿轮﹐大型灯罩﹐防护玻璃等。
9.聚四氟乙烯(F-4)﹕不受任何化学药 品的腐蚀﹐此化学稳定性优于金属﹐陶瓷。 被称为“塑料王”。有毒﹐黏度高﹐所以 只能采用类似粉末冶金的模压﹐烧结成型 工艺。
塑料材料名词释义
二.热固性材料﹕ 1.酚醛塑料(PF)﹕以粉状供应﹐是常用的
三.塑料的成型方法﹕
1.注塑成型﹕将粉状或粒状塑料放在注塑 机的料简内﹐加热融化后﹐用很高的速度 将其注入合的模具内﹐冷却后脱模﹐获 得所需形状的塑料制品。
2.挤压成型﹕又称挤出成型﹐将塑料粉末 或颗粒﹐通过料斗加入挤压筒内﹐经加热 使塑料熔融呈流动状态﹐并随着螺杆的转 动不断向前推进﹐然后将塑料在压力下通
5.ABS塑料﹕A代表丙烯蜻﹐B代表丁二 烯﹐S代表丙乙烯。冲击强度高﹐硬度高﹐ 良好的耐磨性﹐尺寸稳定。用途广泛﹕机 械中可以制作齿轮﹐设备外科﹐化工设备 的各种容器﹐管道等。电器工业中的仪 表﹐设备的各种配件等。

工程材料及成形技术基础

工程材料及成形技术基础

工程材料及成形技术基础工程材料是指在工程中使用的各种原材料和制品,包括金属材料、非金属材料和复合材料等。

在工程实践中,材料的选择和成形技术的应用对工程设计和制造具有重要影响。

本文将重点介绍工程材料及成形技术的基础知识,希望能够为工程技术人员提供一些参考和帮助。

首先,工程材料的选择是工程设计的重要环节。

不同的工程应用需要不同性能的材料,比如在航空航天领域需要轻质高强度的材料,而在建筑领域则需要耐久性强、抗压抗拉的材料。

工程材料的性能包括力学性能、物理性能、化学性能等多个方面,工程师需要根据具体的工程要求来选择合适的材料。

其次,工程材料的成形技术是指将原材料通过加工、成型、焊接等工艺加工成具有一定形状和性能的制品的技术。

常见的成形技术包括锻造、铸造、焊接、切割、热处理等。

这些成形技术在工程制造中起着至关重要的作用,能够满足工程设计对材料形状、尺寸、性能等方面的要求。

工程材料及成形技术的基础知识包括材料结构、性能、加工工艺等多个方面。

材料结构包括晶体结构、晶粒结构、晶界等,这些结构对材料的性能具有重要影响。

材料性能包括力学性能(强度、硬度、韧性等)、物理性能(密度、导热性、导电性等)、化学性能(耐腐蚀性、耐热性等)等,工程师需要了解不同材料的性能特点,以便选择合适的材料。

加工工艺包括成形技术、热处理工艺、表面处理工艺等,这些工艺能够改善材料的性能和形状,满足工程设计的要求。

在工程实践中,工程师需要根据具体工程要求选择合适的材料和成形技术,以确保工程制品具有良好的性能和质量。

同时,工程师需要不断学习和掌握新的材料和成形技术,以适应工程技术的发展和变化。

通过不断的实践和经验积累,工程师能够更好地应用工程材料及成形技术,为工程设计和制造提供更好的支持。

总之,工程材料及成形技术是工程技术领域的重要基础知识,工程师需要深入学习和掌握这些知识,以提高工程设计和制造的水平和质量。

希望本文能够为工程技术人员提供一些参考和帮助,促进工程技术的发展和进步。

第四章工程材料基本知识

第四章工程材料基本知识

用标准试样的冲击吸收功Ak表示
5)疲劳强度
材料在无数次重复“交变应力”作用下,而不引起断裂的最 大应力值
6)耐磨性
材料在一定工作条件下抵抗磨损的能力 用体积磨损量、质量磨损量和长度磨损量来评定
退出
回 章 首
(2)工程材料的物理、化学及工艺性能 物理性能:指材料在重力、电磁场、热力等物理因素作用
下所表现出来的性能或属性,包括材料的密度、熔点、导 电性、磁性能、导热性、热膨胀性等
1) 金属材料 : 包括黑色金属(钢铁)和有色金属材料 2) 工程陶瓷 : 由金属和非金属元素的化合物所构成的
各种无机非金属材料 3) 有机高分子材料 :工程中常见的有塑料、橡胶和胶
粘剂 4) 复合材料 :将上述两种或多种单一材料人工合成到
一起的材料
退出
2. 工程材料的主要性能
(1)工程材料的力学性能 1)强度 2)塑性 3)硬度 4)冲击韧性 5)疲劳强度 6)耐磨性
化学性能:主要指材料的抗氧化性、耐蚀性和耐酸性等, 反映了材料在常温或高温环境下抵抗各种化学作用的能力。
材料工艺性能:指材料对各种加工工艺的适应性
退出
§4-2常用金属材料
1 . 碳素钢和合金钢
碳素钢 碳素钢工具钢 合金钢 合金钢工具钢
2 . 铸铁
灰铸铁 球墨灰铸铁 可锻铸铁 合金铸铁
3 . 有色金属材料
KT 200, KT 350,
保留灰铸铁优点,具有中碳钢优点
应用 发动机曲轴、连杆等
退出
• 合金铸铁
代号
KT + H + 数字 + 数字
最小抗拉强度 断后延长率
特点
KT 200, KT 350, 保留灰铸铁优点,具有中碳钢优点

工程材料及成形技术基础

工程材料及成形技术基础

工程材料及成形技术基础工程材料是工程技术的基础,它直接关系到产品的性能、质量和使用寿命。

工程材料的选择和应用对产品的设计、制造和使用具有重要的影响。

工程材料及成形技术基础是工程技术人员必须掌握的基础知识之一,本文将对工程材料及成形技术基础进行介绍。

首先,工程材料包括金属材料、非金属材料和复合材料。

金属材料主要包括钢铁、铝、铜、镁等,具有良好的导电性、导热性和机械性能,广泛应用于机械制造、建筑结构等领域。

非金属材料包括塑料、橡胶、陶瓷、玻璃等,具有较好的耐腐蚀性、绝缘性和轻质化特性,广泛应用于化工、电子、航空航天等领域。

复合材料是由两种或两种以上的材料组合而成,具有综合性能优良的特点,广泛应用于航空航天、汽车制造等高端领域。

其次,成形技术是指将原材料通过加工、成型、焊接等工艺,制成所需形状和尺寸的工艺技术。

常见的成形技术包括锻造、铸造、焊接、切割、冲压等。

锻造是利用模具将金属材料加热至一定温度后,通过冲击或挤压使其产生塑性变形,获得所需形状和尺寸的工艺技术。

铸造是将熔化的金属倒入模具中,冷却后得到所需形状和尺寸的工艺技术。

焊接是利用熔化的金属或非金属材料填充材料,将两个或两个以上的材料连接在一起的工艺技术。

切割是利用切割设备将原材料切割成所需形状和尺寸的工艺技术。

冲压是利用模具将金属材料冲压成所需形状和尺寸的工艺技术。

最后,工程材料及成形技术基础的学习和掌握对工程技术人员具有重要的意义。

只有深入了解和掌握工程材料的种类、性能、加工工艺等知识,才能更好地进行产品设计、制造和使用。

同时,只有熟练掌握成形技术,才能更好地实现对材料的加工和成型,提高产品的生产效率和质量。

总之,工程材料及成形技术基础是工程技术人员必须掌握的基础知识之一,它直接关系到产品的性能、质量和使用寿命。

通过对工程材料及成形技术基础的学习和掌握,可以更好地进行产品设计、制造和使用,提高产品的竞争力和市场占有率。

希望本文能够对工程技术人员的学习和工作有所帮助。

材料工程基础复习要点及知识点整理(全)

材料工程基础复习要点及知识点整理(全)

材料工程基础复习要点第一章粉体工程基础粉体:粉末质粒与质粒之间的间隙所构成的集合。

*粉末:最大线尺寸介于0.1~500μm的质粒。

*粒度与粒径:表征粉体质粒空间尺度的物理量。

粉体颗粒的粒度及粒径的表征法:1.网目值表示——(目数越大粒径越小)直接表征,如果粉末颗粒系统的粒径相等时可用单一粒度表示。

2.投影径——用显微镜测试,对于非球形颗粒测量其投影图的投影径。

①法莱特(Feret)径D F:与颗粒投影相切的两条平行线之间的距离②马丁(Martin)径D M:在一定向上将颗粒投影面积分为两等份的直径③克伦贝恩(Krumbein)径D K:在一定向上颗粒投影的最大尺度④投影面积相当径D H:与颗粒投影面积相等的圆的直径⑤投影长相当径D C:与颗粒投影长相等的圆的直径3.轴径——被测颗粒外接立体的长L、宽B、高T。

①二轴径长L与宽B②三轴径长L与宽B及高T4.球当量径——把颗粒看做相当的球,并以其直径代表颗粒的有效径的表示法。

(容易处理)*粉体的工艺特性:流动性、填充性、压缩性和成形性。

*粉体的基本物理特性:1.粉体的能量——具备较同质的块状固体材料高得多的能量。

2.分体颗粒间的作用力——高表面能,固相颗粒之间容易聚集(分子间引力、颗粒间异性静电引力、固相侨联力、附着水分的毛细管力、磁性力、颗粒表面不平滑引起的机械咬合力)。

3.粉体颗粒的团聚。

第二章粉体加工与处理粉体制备法:1.机械法——捣磨法、切磨法、涡旋磨法、球磨法、气流喷射粉碎法、高能球磨法。

①脆性大的材料:捣磨法、涡旋磨法、球磨法、气流喷射粉碎法、高能球磨法②塑性较高材料:切磨法、涡旋磨法、气流喷射粉碎法③超细粉与纳米粉:气流喷射粉碎法、高能球磨法2.物理化学法①物理法(雾化法、气化或蒸发-冷凝法):只发生物理变化,不发生化学成分的变化,适于各类材料粉末的制备②物理-化学法:用于制备的金属粉末纯度高,粉末的粒度较细③还原法:可直接利用矿物或利用冶金生产的废料及其他廉价物料作原料,制的粉末的成本低④电解法:几乎可制备所有金属粉末、合金粉末,纯度高3.化学合成法——指由离子、原子、分子通过化学反应成核和长大、聚集来获得微细颗粒的法①固相法:以固态物质为原始原料(热分解反应法、化合反应法、水热法等)②液相沉淀法:最常见的法沉淀法(直接沉淀法、均匀沉淀法、共沉淀法)、溶胶-凝胶法影响颗粒粉碎的因素:易碎性、碰撞速度(碎料例子碰撞速度、粉碎介质碰撞速度)粉体的分级:把粉体材料按某种粒度大小或不同种类颗粒进行分选的操作。

工程材料及成型基础知识点整理教材

工程材料及成型基础知识点整理教材

PPT填空题和简答题1一、填空题1、金属结晶包括形核与长大两个过程。

3、晶粒和晶粒之间的界面称为晶界。

4、在结晶过程中,细化晶粒的措施有提高冷却速度、变质处理、振动。

5、由于溶质原子的溶入,固溶体发生晶格畸变,变形抗力增大,使金属的强度、硬度升高的现象称为固溶强化。

6、常见的金属晶格类型体心立方、面心立方和密排立方。

7、在晶体缺陷中,点缺陷主要有空位、间隙原子、置换原子,线缺陷主要有刃型位错、螺型位错,面缺陷主要有晶界、亚晶界8、金属结晶时,实际结晶温度必须低于理论结晶温度,结晶过冷度主要受冷却速度影响。

9、当金属化合物呈细小颗粒均匀分布在固溶体基体上时,将使合金的强度、硬度及耐磨性明显提高,这一现象称为固溶强化。

10.再结晶退火的前提是冷变形+足够高的温度,它与重结晶的区别在于无晶体结构转变。

1.奥氏体的晶格类型是面心立方。

2.铁素体的晶格类型是体心立方。

11.亚共析钢的室温组织是F+P 。

1.钢的淬透性是指钢淬火时所能达到的最高硬度值。

23.渗碳钢渗碳后的热处理包括淬火和低温回火,以保证足够的硬度。

24.在光学显微镜下观察,上贝氏体显微组织特征是羽毛状,下贝氏体显微组织特征呈针状。

5.零件失效的基本类型为_表面损伤、过量变形、断裂。

2.线型无定型高聚物的三种力学状态为玻璃态、高弹态、粘流态。

1、一个钢制零件,带有复杂形状的内腔,该零件毛坯常用铸造方法生产。

2、金属的流动性主要决定于合金的成分3、流动性不好的铸件可能产生冷隔和浇不足缺陷。

4、铸造合金充型能力不良易造成冷隔和浇不足等缺陷,12.过共析钢的室温组织是P+Fe3C 。

13.共晶反应的产物是Ld1. 20钢齿轮、45钢小轴、T12钢锉的正火的目的分别是:提高硬度,满足切削加工的要求、作为最终热处理,满足小轴的使用要求、消除网状渗碳体。

2、在正火态的20钢、45钢、T8钢;、T13钢中,T8 钢的σb值最高。

3、在正火态的20钢、45钢、T8钢;、T13钢中,T13钢的HBS值最高。

整理工程材料与成形技术基础习题(含答案)

整理工程材料与成形技术基础习题(含答案)

20 年 月 日A4打印 / 可编辑x2040251工程材料及成型技术基础课程教学大纲x2040251工程材料及成型技术基础课程教学大纲课程名称:工程材料及成型技术基础英文名称:Engineering Materials and Moulding Technology Foundation课程编码:x2040251学时数:48其中实践学时数:4 课外学时数:学分数:3.0适用专业:机械设计制造及其自动化机械电子工程机械工程过程装备与控制工程一、课程简介《工程材料及成型技术基础》是机械类专业学生的一门重要专业基础课,与先修课程《工程训练》、后续课程《机械制造技术基础》共同探讨机械制造全过程——即从选择材料、制造毛坯、直到加工出零件所涉及的各个方面内容。

要求学生了解机械工程材料的一般知识,掌握常用材料的成分、组织、性能与加工工艺之间的关系及其用途,使学生具有合理选用材料、正确确定加工方法的能力,并初步掌握零件的结构工艺性,为学生今后的学习、设计、工作打下必备的基础。

二、课程目标与毕业要求关系表三、课程教学内容、基本要求、重点和难点(一)工程材料的结构与性能1. 教学内容晶体材料的原子排列;合金的晶体结构;工程材料的性能2. 基本要求(1)了解部分:晶体结构及缺陷的形式;单晶体和多晶体;相与组织之间的关系;固溶体和化合物性能;机械性能的概念;材料物理化学性能的概念;陶瓷和高聚物的结构(2)理解部分:刚度、强度、塑性、韧性与材料之间的关系应用;材料工艺性能的含义(3)掌握部分:晶体结构缺陷与材料性能之间的关系;合金的相的种类及对性能的影响;硬度的测量、表示方法及应用(4)熟练掌握:材料强化方式3. 重点和难点(1)重点:金属的三种典型晶体结构;实际金属中的三类晶体缺陷;合金的相结构;材料的力学性能指标σS、σb、δ、αk、HB、HRC及与材料之间的关系(2)难点:材料强化方式(二)金属材料的凝固与固态相变1. 教学内容金属结晶过程的基本规律;二元合金相图的分析;铁碳相图的分析;钢在加热和冷却时的转变2. 基本要求(1)了解部分:金属结晶过程的基本规律及影响因素;铁的同素异构转变;二元相图的意义和基本类型;钢在加热时的转变(2)理解部分:细化晶粒的方法;二元相图的基本类型和结晶过程特点;相图与材料使用性能和工艺性能之间关系;连续冷却转变曲线;钢在冷却时的转变产物及性能特点(3)掌握部分:杠杆定律;匀晶相图;共晶转变;包晶转变;共析转变(4)熟练掌握:铁碳相图的规律及应用3. 重点和难点(1)重点:铁碳合金的基本相;碳钢室温下的平衡组织组成;含碳量对铁碳合金的组织及性能的影响;铁碳相图的应用(2)难点:铁碳相图(三)金属材料的塑性变形1. 教学内容金属的塑性变形;塑性变形对金属组织和性能的影响;回复与再结晶;冷、热变形;金属的可锻性2. 基本要求(1)了解部分:单晶体与多晶体金属的塑性变形特点;加工硬化现象;残余应力的危害及消除(2)理解部分:塑性变形金属在加热时组织与性能的变化;金属可锻性的概念及影响因素(3)掌握部分:加工硬化现象的应用;回复与再结晶的特点;冷、热变形的对比;纤维组织对性能的影响及应用(4)熟练掌握:无3. 重点和难点(1)重点:加工硬化现象的应用;回复与再结晶的应用;冷、热变形的选择;纤维组织对性能的应用(2)难点:无(四)金属材料热处理1. 教学内容钢的热处理工艺(退火、正火、淬火、回火、渗碳、感应加热表面淬火)2. 基本要求(1)了解部分:热处理的分类及工序安排;固溶处理和时效强化;热处理零件结构工艺性;先进热处理工艺;渗氮的特点和应用(2)理解部分:退火、正火、淬火、回火的工艺;感应加热表面淬火的参数选择;渗碳过程(3)掌握部分:退火、正火、淬火、回火、渗碳、感应加热表面淬火的目的、组织及应用(4)熟练掌握:退火、正火、淬火、回火、渗碳、感应加热表面淬火的目的、组织及应用3. 重点和难点(1)重点:退火、正火、淬火、回火、渗碳、感应加热表面淬火的目的,组织和应用(2)难点:无(五)金属表面改性处理1. 教学内容金属表面改性处理的目的、意义、特点和方法2. 基本要求(1)了解部分:金属表面改性处理的意义(2)理解部分:转化膜、电镀、离子沉积、热喷涂、涂装、表面着色等工艺的特点和应用场合(3)掌握部分:无(4)熟练掌握:无3. 重点和难点(1)重点:无(2)难点:无(六)金属材料1. 教学内容合金钢的概述;合金元素的作用;结构钢;工具钢;特殊性能钢;铸铁2. 基本要求(1)了解部分:合金钢的分类、编号方法、化学成分和主要用途;特殊性能钢(主要是不锈钢)的性能特点、热处理工艺及主要用途;有色金属和新型金属材料(2)理解部分:合金元素对钢的组织和性能影响规律(3)掌握部分:工具钢、灰铸铁的性能特点及应用;弹簧钢、轴承钢、易切削钢成分、性能特点及主要用途(4)熟练掌握:普通碳素结构钢和普通低合金结构钢、调质钢、渗碳钢成分、性能特点、热处理工艺、典型牌号及应用3. 重点和难点(1)重点:普通碳素结构钢和普通低合金结构钢、调质钢、渗碳钢成分、性能特点、热处理工艺、典型牌号及应用(2)难点:无(七)铸造1. 教学内容合金铸造性能;砂型铸造工艺;特种铸造;铸件结构设计;常用合金铸造生产2. 基本要求(1)了解部分:特种铸造的特点和应用;铸造技术新进展(2)理解部分:砂型铸造工艺选择(3)掌握部分:砂型铸造工艺和常用合金的铸造生产(4)熟练掌握:合金的铸造性能;灰铸铁的铸造性能;铸件结构设计3. 重点和难点(1)重点:合金的铸造性能;灰铸铁的铸造生产;铸件结构设计(2)难点:无(八)压力加工1. 教学内容自由锻;模锻;板料冲压;压力加工件结构设计2. 基本要求(1)了解部分:自由锻的工序;模锻的工序;挤压、轧制、拉拔方法;塑性加工新进展(2)理解部分:自由锻、模锻的特点及应用;板料冲压的工序、特点及应用(3)掌握部分:自由锻工艺规程制订;模锻工艺规程制订(4)熟练掌握:压力加工件结构设计3. 重点和难点(1)重点:压力加工件结构设计(2)难点:无(九)焊接1. 教学内容电弧焊;电阻焊;摩擦焊;焊接件结构工艺性;常用金属材料的焊接2. 基本要求(1)了解部分:电阻焊、摩擦焊、压力焊的特点;焊接技术新进展(2)理解部分:电弧焊接基本原理;焊接接头形式;铸铁的焊接;铜、铝合金的焊接(3)掌握部分:电弧焊方法及应用;碳钢和合金钢的焊接性(4)熟练掌握:焊接结构设计3. 重点和难点(1)重点:电弧焊方法及应用;碳钢和合金钢的焊接性;焊接结构设计(2)难点:无(十)机械零件材料及成型工艺的选用1. 教学内容工程材料及成型工艺选用的基本原则;具体成型方法及改性工艺的选用;典型零件的材料及成型工艺选择2. 基本要求(1)了解部分:无(2)理解部分:无(3)掌握部分:工程材料及成型工艺选用的基本原则;具体成型方法及改性工艺的选用(4)熟练掌握:典型零件的材料及成型工艺选择3. 重点和难点(1)重点:典型零件的材料及成型工艺选择(2)难点:无四、教学方式及学时分配五、课程其他教学环节要求(一)实验教学课:实验一铁碳合金平衡组织的显微分析要求:观察和识别铁碳合金在平衡状态下的显微组织,掌握铁碳合金的成分、组织和性能之间的对应关系实验二碳钢热处理的性能与组织分析要求:掌握钢的退火、正火、淬火、回火工艺;掌握含碳量、加热温度、冷却速度、回火温度对碳钢性能的影响;了解碳钢热处理的基本组织。

材料工程基础复习要点及知识点整理全

材料工程基础复习要点及知识点整理全

材料工程基础复习要点及知识点整理全材料工程是工科的一个重要领域,它研究材料的特性、性能和结构,以及材料的制备、改性和应用。

在材料工程的学习和研究中,掌握基础的知识和复习要点是非常重要的。

本文将从材料的分类、性能和结构、制备方法以及常见材料的特点等方面进行全面的整理,帮助读者回顾和巩固材料工程的基础知识。

一、材料的分类材料可以根据其组成和性质的不同进行分类。

常见的材料分类有金属材料、非金属材料和复合材料。

1. 金属材料金属材料具有良好的导电性、导热性和可塑性。

常见的金属材料有铁、铜、铝等。

金属材料常用于制造机械、汽车等工业产品。

2. 非金属材料非金属材料分为有机材料和无机材料。

有机材料具有较高的灵活性和可塑性,如塑料、橡胶等;无机材料具有较高的硬度和稳定性,如陶瓷、玻璃等。

非金属材料广泛应用于建筑、电子等领域。

3. 复合材料复合材料是由两种或两种以上的材料组成,具有优异的综合性能。

常见的复合材料有纤维增强复合材料、层状复合材料等。

复合材料在航空航天、汽车等领域得到了广泛应用。

二、材料的性能和结构材料的性能包括力学性能、物理性能、化学性能和热性能等。

1. 力学性能力学性能是材料的力学特征。

常见的力学性能有强度、韧性、硬度等。

强度表示材料抗拉、抗压、抗弯等载荷作用下的能力;韧性表示材料的抗断裂性能;硬度表示材料抵抗表面形变和划伤的能力。

2. 物理性能物理性能描述材料在物理方面的特性。

常见的物理性能有导电性、导热性、磁性等。

导电性表示材料传导电流的能力;导热性表示材料传导热量的能力;磁性表示材料受磁场作用的特性。

3. 化学性能化学性能是材料对外界化学物质的反应特性。

常见的化学性能有耐腐蚀性、稳定性等。

耐腐蚀性表示材料抵抗酸碱等侵蚀的能力;稳定性表示材料在不同条件下的性能变化情况。

4. 热性能热性能描述材料在温度变化下的特性。

常见的热性能有热导率、热膨胀系数等。

热导率表示材料传导热量的能力;热膨胀系数表示材料在温度变化下的膨胀程度。

材料工程基础复习要点及知识点整理全

材料工程基础复习要点及知识点整理全

材料工程基础复习要点及知识点整理全材料工程是化学、物理的交叉学科,它涉及到材料的物理、化学以及其结构等方面知识。

在学习材料工程基础时,我们需要掌握一些重要的复习要点和知识点,本文将对其进行系统的整理。

一、晶体结构与晶体缺陷晶体结构是材料工程基础的核心内容之一,其对材料的性质和应用有着非常重要的影响。

晶体结构的种类包括金属晶体、离子晶体、共价晶体、分子晶体等,每种结构都有其独特的特点和性质。

晶体缺陷是晶体中存在的缺陷或异质物,它对材料的性质和应用也有着重要的影响。

晶体缺陷包括点缺陷(空位、间隙、杂质)、线缺陷(位错、蚀刻通道)和面缺陷(晶界、界面)等。

二、材料的物理性质材料的物理性质包括密度、比热、热导率、电导率、热膨胀系数、磁性、光学性能等。

这些性质对于材料的性能和应用起着决定性的作用,因此学习和掌握这些物理性质是非常重要的。

三、材料的力学性质材料的力学性质包括弹性模量、屈服强度、断裂韧性、硬度等。

这些性质是衡量材料强度和耐久性的重要指标,对于材料的设计和应用也具有非常重要的作用。

四、材料的组织结构和相变材料的组织结构指的是材料内部的微观结构和相互之间的关系,包括晶体结构、晶粒大小、晶体缺陷、晶格畸变、相分布等。

了解和掌握材料的组织结构对于材料的性能和应用具有重要的意义。

材料的相变指的是材料在不同条件下发生的状态变化现象,包括固态相变、液态相变和气态相变等。

了解和掌握材料的相变规律可以为材料的制备和性能提高提供重要的理论依据和工程指导。

五、材料加工和处理材料加工和处理是将材料转变成所需的形态、结构和性能的过程。

常见的加工和处理方式包括热处理、冷加工、焊接、表面处理、涂层等。

了解和掌握这些加工和处理过程对于材料的制备和性能提高非常重要。

六、材料的应用材料的应用是材料工程学科的最终目的。

掌握材料的应用知识可以为实际工程和生产提供重要的理论基础和实践指导。

总之,材料工程基础涉及到的知识点非常丰富和复杂,需要我们通过多种途径进行学习和掌握。

工程材料与成型技术基础期末考试复习(百度的答案)

工程材料与成型技术基础期末考试复习(百度的答案)

期末考试复习题型:1.单项选择题15小题占15% (基本理论知识的应用)2.名词解释6个占18% (重要名词)3.问答题3题占26%(重要知识点)4.分析题2大题占20-30%(铁碳相图,热处理)5.作图计算题或计算题占11-21% (铁碳二元相图及杠杆定律))复习X围重要名词:单晶体,单晶体是指样品中所含分子(原子或离子)在三维空间中呈规则、周期排列的一种固体状态。

多晶体,整个物体是由许多杂乱无章的排列着的小晶体组成的,这样的物体叫多晶体[1]。

例如:常用的金属。

原子在整个晶体中不是按统一的规则排列的,无一定的外形,其物理性质在各个方向都相同.过冷度,熔融金属平衡状态下的相变温度与实际相变温度的差值。

纯金属的过冷度等于其熔点与实际结晶温度的差值,合金的过冷度等于其相图中液相线温度与实际结晶温度的差值。

合金,合金,是由两种或两种以上的金属与非金属经一定方法所合成的具有金属特性的物质。

组元,组成合金的独立的、最基本的单元称为组元,组元可以是组成合金的元素或稳定的化合物。

相,一合金系统中的这样一种物质部分,它具有相同的物理和化学性能并与该系统的其余部分以界面分开。

合金相图,合金相即合金中结构相同、成分和性能均一并以界面分开的组成部分。

它是由单相合金和多相合金组成的。

固溶体,固溶体指的是矿物一定结晶构造位置上离子的互相置换,而不改变整个晶体的结构及对称性等。

铁素体(F), 铁或其内固溶有一种或数种其他元素所形成的晶体点阵为体心立方的固溶体。

奥氏体(A),γ铁内固溶有碳和(或)其他元素的、晶体结构为面心立方的固溶体。

渗碳体(Fe3C),晶体点阵为正交点阵,化学式近似于碳化三铁的一种间隙式化合物。

]珠光体(P), 奥氏体从高温缓慢冷却时发生共析转变所形成的,其立体形态为铁素体薄层和碳化物(包括渗碳体)薄层交替重叠的层状复相物。

广义则包括过冷奥氏体发生珠光体转变所形成的层状复相物。

莱氏体(Ld),高碳的铁基合金在凝固过程中发生共晶转变所形成的奥氏体和碳化物(或渗碳体)所组成的共晶体。

工程材料及其成形技术基础(1-5章)ppt课件

工程材料及其成形技术基础(1-5章)ppt课件
工程材料及其成形技术基础
.
绪论
1 本课程的性质
本课程是研究材料及其成形方法的技术基础课。它是 机械类及近机类各专业必修的一门课程。
2 学习目的
(1)获得常用工程材料及各类成形方法和加工工艺知 识,能合理地选材、正确地制定材料的加工程序。
(2)初步了解与本科程有关的新技术、新材料和新 工艺,为学习其它相关课程及以后从事机械设计和加 工制造方面的工作奠定必要的理论基础。
化学
金属材料
合金钢
成分
轻有色金属
分类
有色金属 重有色金属

塑料
稀有金属

有机高分子材料 合成橡胶

合成纤维

有机胶粘剂及涂料

陶瓷材料
硅酸盐材料

新型陶瓷
复合材料
非金属基复合材料 金属基复合材料 .
机械 工程 材料
功能分类
结构材料:用于制造实现运动和传递动力的零件 功能材料:用于制造实现其他功能的零件的材料
S0——试样原始横截面积(mm2 )。
.
4 塑性
即断裂前材料发生不可逆永久变形的能力。 常用的塑性判据是伸长率和断面收缩率。
.
(1)伸长率 即试样拉断后标距的伸长与原始标距的百分比。
δ=(L1 - L0)/ L0 ×100%
式中ห้องสมุดไป่ตู้
δ——伸长率(%); L1——试样拉断后标距(mm); L0 ——试样原始标距(mm)。
σs=Fs/S0
式中
σs——屈服点( MPa ); Fs——试样开始产生屈服现象时的(N); S0——试样原始横.截面积( mm2)。
(2) 抗拉强度:即试样拉断前承受的最大标称拉应力。

工程材料知识点总结(全)重点

工程材料知识点总结(全)重点

第二章材料的性能1、布氏硬度布氏硬度的优点:测量误差小,数据稳定。

缺点:压痕大,不能用于太薄件、成品件及比压头还硬的材料。

适于测量退火、正火、调质钢,铸铁及有色金属的硬度(硬度少于450HB)。

2、洛氏硬度HRA用于测量高硬度材料, 如硬质合金、表淬层和渗碳层。

HRB用于测量低硬度材料, 如有色金属和退火、正火钢等。

HRC用于测量中等硬度材料,如调质钢、淬火钢等。

洛氏硬度的优点:操作简便,压痕小,适用范围广。

缺点:测量结果分散度大。

3、维氏硬度维氏硬度所用载荷小,压痕浅,适用于测量零件表面的薄硬化层、镀层及薄片材料的硬度,载荷可调范围大,对软硬材料都适用。

4、耐磨性是材料抵抗磨损的性能,用磨损量来表示。

分类有黏着磨损(咬合磨损)、磨粒磨损、腐蚀磨损。

5、接触疲劳:(滚动轴承、齿轮)经接触压应力的反复长期作用后引起的一种表面疲劳剥落损坏的现象。

6、蠕变:恒温、恒应力下,随着时间的延长,材料发生缓慢塑变的现象。

7、应力强度因子:描述裂纹尖端附近应力场强度的指标。

第三章金属的结构与结晶1、晶体中原子(分子或离子)在空间的规则排列的方式为晶体结构。

为便于描述晶体结构,把每个原子抽象成一个点,把这些点用假想直线连接起来,构成空间格架,称为晶格。

晶格中每个点称为结点,由一系列原子所组成的平面成为晶面。

由任意两个原子之间连线所指的方向称为晶向。

组成晶格的最小几何组成单元称为晶胞。

晶胞的棱边长度、棱边夹角称为晶格常数。

①体心立方晶格晶格常数用边长a表示,原子半径为√3a/4,每个晶胞包含的原子数为1/8×8+1=2(个)。

属于体心立方晶格的金属有铁、钼、铬等。

②面心立方晶格原子半径为√2a/4,每个面心立方晶胞中包含原子数为1/8×8+1/2×6=4(个)典型金属(金、银、铝、铜等)。

③密排六方晶格每个面心立方晶胞中包含原子数为为12×1/6+2*1/2+3=6(个)。

典型金属锌等。

工程材料学知识要点

工程材料学知识要点

工程材料学知识要点工程材料学是工程领域中一门重要的学科,主要研究各种工程材料的组成、性质、加工、应用等方面的知识。

对于从事工程领域的学生或者从业人员来说,学习了解工程材料学的知识点是非常必要的。

本文将从工程材料分类、晶体结构、成分、热力学、化学、力学等方面为大家详细介绍工程材料学常见的知识点。

一、工程材料分类1.金属材料:常见的有铁、铝、铜、锌等,应用最多的材料。

2.非金属材料:常见的有陶瓷、聚合物、复合材料等。

3.半导体材料:如硅、锗等。

4.磁性材料:如铁氧体、硬磁材料等。

二、晶体结构1.晶体是由一定数量的离子、原子或分子组成,按照它们的排列方式制成的。

2.晶格:它描述了晶体内原子或离子之间的空间布局,是晶体中最基本的结构单元。

3.晶体有14种基本的对称性类型,每一种晶体结构类型都有其特定的晶体结构参数,如胞型参数、晶胞参数、原子坐标等。

三、成分1.组分:指材料中所包含的元素或化合物,这些元素或化合物的种类和数量给出材料的化学组成。

2.相:相是指材料中具有相同组成和结构的部分,单一组分材料只有一个相,而多组分材料则存在多个相。

四、热力学1.热力学是研究热、功、能量之间的关系的分支学科,它涉及相变、绿木况、热力学函数等基本概念。

2.相图:相图是不同条件下研究物质的物理状态的视觉表示,它涵盖了各种透平、不透明和化学变化等。

五、化学1.化学反应:工程材料在加工和使用过程中经常会发生化学反应,例如腐蚀、印刷、加工等。

2.酸碱中和反应:材料的腐蚀往往与酸碱中和反应有关,例如酸性大气污染、海洋水腐蚀等。

六、力学1.力的概念:力是物体作用于另一个物体时给它的物理量,通常由力的大小、方向和作用点三部分组成。

2.应力和应变:在力下,物体内部会受到应力的作用,使其发生应变变化。

这两种力学量在多种工程材料的力学设计和分析过程中很重要。

以上就是关于工程材料学知识要点的简单介绍,工程材料学是一个非常广泛、复杂和深奥的领域,需要我们不断地学习、实践和探索。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

PPT填空题和简答题1一、填空题1、金属结晶包括形核与长大两个过程。

3、晶粒和晶粒之间的界面称为晶界。

4、在结晶过程中,细化晶粒的措施有提高冷却速度、变质处理、振动。

5、由于溶质原子的溶入,固溶体发生晶格畸变,变形抗力增大,使金属的强度、硬度升高的现象称为固溶强化。

6、常见的金属晶格类型体心立方、面心立方和密排立方。

7、在晶体缺陷中,点缺陷主要有空位、间隙原子、置换原子,线缺陷主要有刃型位错、螺型位错,面缺陷主要有晶界、亚晶界8、金属结晶时,实际结晶温度必须低于理论结晶温度,结晶过冷度主要受冷却速度影响。

9、当金属化合物呈细小颗粒均匀分布在固溶体基体上时,将使合金的强度、硬度及耐磨性明显提高,这一现象称为固溶强化。

10.再结晶退火的前提是冷变形+足够高的温度,它与重结晶的区别在于无晶体结构转变。

1.奥氏体的晶格类型是面心立方。

2.铁素体的晶格类型是体心立方。

11.亚共析钢的室温组织是 F+P 。

1.钢的淬透性是指钢淬火时所能达到的最高硬度值。

23.渗碳钢渗碳后的热处理包括淬火和低温回火,以保证足够的硬度。

24.在光学显微镜下观察,上贝氏体显微组织特征是羽毛状,下贝氏体显微组织特征呈针状。

5.零件失效的基本类型为_表面损伤、过量变形、断裂。

2.线型无定型高聚物的三种力学状态为玻璃态、高弹态、粘流态。

1、一个钢制零件,带有复杂形状的腔,该零件毛坯常用铸造方法生产。

2、金属的流动性主要决定于合金的成分3、流动性不好的铸件可能产生冷隔和浇不足缺陷。

4、铸造合金充型能力不良易造成冷隔和浇不足等缺陷,12.过共析钢的室温组织是 P+Fe3C 。

13.共晶反应的产物是 Ld1. 20钢齿轮、45钢小轴、T12钢锉的正火的目的分别是:提高硬度,满足切削加工的要求、作为最终热处理,满足小轴的使用要求、消除网状渗碳体。

2、在正火态的20钢、45钢、T8钢;、T13钢中, T8 钢的σb值最高。

3、在正火态的20钢、45钢、T8钢;、T13钢中, T13钢的HBS值最高。

4、为使钢得到理想的耐磨性,应进行淬火加低温回火。

5、为使钢获得理想的弹性,应进行淬火加中温回火。

6、为保证钢的综合性能,淬火后应进行高温回火。

7.为改善低碳钢的切削性能,常采用的热处理为正火或退火。

8.为改善高碳钢的切削性能,常采用的热处理为退火。

9.轴类等重要零件的最终热处理常为调质。

10.冷冲模等常用的最终热处理为淬火加低温回火。

11.汽车变速齿轮等常用的最终热处理为渗碳、淬火加低温回火。

12.机床变速齿轮等常用的最终热处理为调质加表面淬火。

13.钢的常规热处理(四把火)是指退火、正火、淬火、回火。

14.影响奥氏体晶粒长大的因素有加热温度和碳含量。

15.马氏体是碳在α-Fe中的过饱和固溶体,其力学性能的主要特点是具有高的硬度强度。

21.钢的淬硬性是指钢在淬火时获得淬硬层深度的能力,5、缩松主要出现在最后凝固部位。

6、一般灰铸铁的碳当量处在共晶点附近,究其原因是流动性好,收缩小。

7、影响合金充型性的因素是成分和浇注条件。

8、定向凝则主要适用于液态收缩大的合金,其目的是防止缩孔。

9、同时凝则主要适用于固态收缩大的合金,其目的是减少残余应力。

10、铸铁中缩孔和缩松是在液态收缩和凝固收缩两个阶段形成。

11、防止铸件变形的方法有:设计时应使壁厚均匀,工艺上采用同时凝则。

12、粗大厚实的铸件冷却到室温时,铸件的表层呈压应力,心部呈拉应力。

2、浇注位置的选择,主要保证铸件的质量;而分型面的选择主要考虑简化操作。

3、铸件上质量要求高的面,在浇铸时应该尽量使其处于铸型的下面或侧面4、制定铸造工艺时,一般从保证质量发,确定浇铸位置;从简化操作出发确定分型面。

1、钢锭经适当锻造后,力学性能大为改善,这是由于锻造后使晶粒细化,且使组织致密。

2、实际晶体的点缺陷表现为空位和间隙原子。

3、金属塑性变形后强度增加,塑性下降的现象称为冷变形强化。

4、锻造前金属加热的目的是提高塑性、降低变形抗力。

5、锻造流线的存在,使得材料的力学性能具有方向性,因此设计和制造零件时,应使零件工作时最大的正应力方向与流线方向一致,最大剪应力方向与流线方向垂直。

6、合金材料的锻造性常采用材料的变形抗力(σs ) 和塑性两个指标来衡量。

7.锻造流线的明显程度与变形量有关,锻造流线使锻件的力学性能出现各向异性。

1、锻造高度小、截面积大的工件一般采用镦粗工序,而锻造长而截面积小的工件如轴时常采用拔长工序。

2.模膛根据其功能不同可分为制坯模膛和模锻模膛。

3.在绘制工件锻件图时,除了考虑锻件的余量以外,还要考虑锻件的公差及余块。

1、拉深时,为防止起皱及拉穿应控制压边力及拉深系数2、拉深时通常用拉伸系数控制变形程度,此值越小,变形程度越大。

3.冲孔工序中,凸模刃口尺寸取决于孔的尺寸,落料模凹模刃口尺寸取决于落料件的尺寸。

4.弯曲变形程度受最小弯半径的限制,一般塑性好的材料最小弯半径可以小些;变形方向与流线方向平行时,最小弯半径可以小些。

5.拉深时通常用拉深系数来控制变形程度,此值越小,变形程度越大。

1、焊接接头中熔合区和过热区对焊接接头质量影响最大。

2、焊接电弧中阳极区产生的热量最多,而弧柱区温度最高。

3、消除焊接应力的有效方法是焊后进行去应力退火处理。

消除焊接热影响区粗晶的有效方法是焊后进行退火或正火。

4、在生产中减少焊接应力和变形的有效方法是焊前预热焊后缓冷(或去应力退火)5、评价钢焊接性常用碳当量公式估算,45钢、20钢及T8钢中以20钢焊接性最好。

6、估计碳钢焊接性的主要依据是碳当量。

另外,工件厚度也有一定的影响,厚度越大,焊接性越差。

7.按焊接过程特点,焊接方法可分为熔焊、压焊和钎焊三大类。

1、埋弧焊适于批量焊接、平直焊缝及大环形焊缝。

2.按焊条药皮性质可分为酸性焊条和碱性焊条。

3.CO2气体保护焊适用于碳钢和普通低合金钢焊接。

4.焊接碳钢和低合金结构钢时应选用结构钢焊条,焊接耐热钢和不锈钢等特殊性能钢时,为保证接头的特殊性能,应使焊缝和焊件具有相同或相近的成分。

二、简答题1.金属晶体的常见晶格有哪几种?体心立方、面心立方、密排立方2.固溶体有几种类型?铁素体属何种固溶体?固溶体:有间隙固溶体和置换固溶体两类,铁素体属于间隙固溶体。

3.什么是细晶强化?给出三种细化晶粒的措施。

通过细化晶粒来提高材料力学性能的方法称为细晶强化。

细化措施:1)变质处理;2)提高冷却速度3)振荡6.为什么过冷度越大,结晶后得到的金属晶粒越细小?过冷度越大,形核越迅速,晶粒越多,自然就越细小1.试用多晶体塑性变形的过程说明细晶强化的机理。

多晶体滑移阻力大,故强度比单晶体高,且晶粒越细,强度越高,硬度越大。

另一方面,因晶粒越细,变形被分散到更多的晶粒进行,每个晶粒的变形也较均匀,所以塑性、韧性也较好。

2.在一定围,为什么冷变形度越大,再结晶后得到的金属晶粒越细小?过冷度对铸件晶粒大小影响是通过冷却速度实现的。

因为过冷度的大小与冷却速度密切相关,冷却速度越快,实际结晶温度就越低,过冷度就越大;反之冷却速度越慢,过冷度就越小,实际结晶温度就更接近理论结晶温度。

当冷却速度大时,铸件的晶粒较细;当冷却速度较慢时,铸件晶粒容易长大,表现为粗大的柱状晶。

由此可知,过冷度大,晶粒就细小;过冷度小,晶粒就粗大。

但是,过冷度过于大的话,有可能激冷来不及凝固成晶体,形成非晶体。

3.导线常用冷拔铜丝为材料,试分析冷拔的目的和冷拔后的处理。

冷拔的目的:冷变形强化;冷拔后的处理:去应力退火。

4.简述金属材料强化的基本机理?固溶强化:即形成固溶体而强化,也就是合金化。

细晶强化:晶粒细小,晶界增多,阻止位错滑移。

加工硬化:增加位错和亚结构细化。

弥散强化:第二相强化,成弥散分布。

沉淀硬化:析出第二相强化。

5.何谓冷变形强化?有何利弊?金属进行塑性变形时金属的强度和硬度升高而其塑性和韧性下降的现象称为冷变形强化。

利弊:材料的强度、硬度增加,但进一步变形困难。

1、纤维组织对材料的性能有何影响,举例说明在零件成形中如何利用这一特性。

纤维组织存在各向异性。

如齿轮毛坯的镦粗、轧制齿轮,重要轴类零件毛坯的拔长等。

2.室温下Fe-C合金中基本相有哪些?基本组织有哪些?基本相有:铁素体、渗碳体。

基本组织有:铁素体、渗碳体、珠光体、莱氏体。

3.根据铁碳合金相图分析说明制造汽车外壳多用低碳钢(C<0.2%),制造机器零件(如机床主轴)多用中碳钢,制造工具(如锉刀)多用高碳钢,而C>1.3%的铁碳合金工业上很少应用的原因低碳钢组织以F为主,塑性好。

中碳钢组织以P为主,终合性能好。

高碳钢组织为P+渗碳体,硬度高。

C>1.3%时,渗碳体成网严重,性能变变脆。

4. 为什么T12钢比T8钢硬度高,但强度低?T12组织中渗碳体含量比T8高,故硬度高;但渗碳体成网,强度低。

1. 现有形状相同的三块平衡态铁碳合金,分别为20,T12,HT200请设法将它们区分开。

首先敲击,声音低沉的是HT200,然后剩下两个对划,有划痕的是20。

1. 根据铁碳合金退火后室温下的显微组织,说明T8钢比40钢的强度、硬度高,但塑性、韧性差的原因。

T8钢组织为P,Fe3C比40钢多,且分布合理,σ、HB高,但δ、ak低2. 何谓调质处理?淬火后高温回火的热处理方法为调质处理3.简要说明钢为什么能通过热处理改变其性能?钢铁材料能够进行热处理的依据是纯铁具有同素异构现象4.试从工艺、组织形貌和性能等方面简述索氏体与回火索氏体有何不同?工艺:索氏体正火,回火索氏体调质。

组织形貌:索氏体中碳化物为片状,回火索氏体中碳化物为粒状。

性能:回火索氏体的塑性和韧性优于索氏体。

5.试从工艺、组织形貌和性能等方面简述托氏体与回火托氏体的区别。

工艺:托氏体风冷,回火托氏体调质淬火+中温回火。

组织形貌:托氏体中碳化物为片状,回火托氏体中碳化物为粒状。

性能:回火托氏体的塑性和韧性优于托氏体。

6.为什麽渗氮处理和表面淬火前应进行调质处理,而渗碳前不进行调质处理?渗氮处理和表面淬火后心部组织不变,而渗碳后心部组织发生了改变。

8.淬火的目的是什么?淬火方法有几种?淬火的目的是获得M或B下组织,从而获得较高的强度和硬度。

淬火方法有:单液淬火、双液淬火、分级淬火、等温淬火。

9.试述C%对钢C曲线的影响。

亚共析钢随C%增加,C曲线左移;过共析钢随C%增加,C曲线右移。

10.回火工艺的分类、目的、组织与应用。

回火工艺分为:低温回火、中温回火、高温回火。

目的:淬火+低温回火为获得高硬度和耐磨性,组织为M回+Cm+A残。

淬火+中温回火为获得高硬度弹性和韧性,组织为T回。

淬火+高温回火为获得良好的综合性能,组织为S回。

1、试述灰铸铁、可锻铸铁及球墨铸铁主要区别。

主要区别在石墨形貌,灰铸铁中石墨为片状、可锻铸铁中石墨为团絮状及球墨铸铁中石墨为球状。

相关文档
最新文档