檩条墙梁设计指南

合集下载

轻型房屋屋面檩条设计

轻型房屋屋面檩条设计

轻型房屋屋面檩条设计摘要:轻型房盖系统,檩条设计是最基本也是最重要的环节,本文对檩条设计涉及的各方面进行了全面、细致阐述,旨对设计人员在檩条设计方面有所帮助。

关键词:门式刚架;檩条;拉条;荷载引言门式刚架轻型房屋,因其自重轻、跨度大、造价低、施工快捷等优点被广泛运用于工业厂房、仓库等大跨度大空间建筑,与之配套的屋面系统一般为彩钢板轻型钢屋面,屋面承重构件为檩条。

檩条主要承受屋面荷载并同时传导荷载至刚架梁。

檩条设计应合理,应正确选用截面尺寸、壁厚、材质、受力模型、荷载等。

一、檩条设计依据轻型房盖房屋的相关现行规范、规程主要有《门式刚架轻型房屋钢结构技术规范》(GB 51022-2015)(以下简称《门规》)、《建筑结构荷载规范》(GB 50009-2012)(以下简称《荷规》)、《钢结构设计标准》(GB 50017-2017)、《冷弯薄壁型钢结构技术规范》(GB 50018-2002)、《建筑设计防火规范》(GB 50016-2014)(2018版)等,设计人员应对这些主要规范的涉及檩条相关各项条款进行解读并掌握。

二、檩条设计原则及计算限值檩条作为门式刚架轻型房屋的次要构件,其设计使用年限与主体结构一致。

一般常规建筑物设计使用年限为50年,也可根据使用需要按规范要求另行确定。

檩条的受拉强度应按净截面计算,受压强度应按有效净截面计算,稳定性应按有效截面计算,变形和各种稳定系数均可按毛截面计算。

檩条竖向挠度与跨度(L)比限值:对仅支承压型钢板屋面的为L/150,对有吊顶的为L/240。

三、檩条截面选取门式刚架轻型房屋纵向经济柱网间距一般为6m~9m,檩条的跨度即柱的纵向柱距,檩条的经济跨度一般为5m~8m。

常规彩钢板屋面的檩条可设计成单跨简支构件,多选用实腹式直卷边C形冷弯薄壁型钢、斜卷边Z形冷弯薄壁型钢;当荷载重、跨度大、挠度变形限制严格等时,可采用高频焊接H型钢或桁架形式,也可设计成多跨连续构件。

钢结构设计(3)-檩条设计共32页文档

钢结构设计(3)-檩条设计共32页文档

谢谢你的阅读
❖ 知识就是财富 ❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非
1、不要轻言放弃,否则对不起自己。
2、要冒一次险!整个生命就是一场冒险。走得最远的人,常是愿意 去做,并愿意去冒险的人。“稳妥”之船,从未能从岸边走远。-戴尔.卡耐基。
梦 境
3、人生就像一杯没有加糖的咖啡,喝起来是苦涩的,回味起来却有 久久不会退去的余香。
钢结构设计(3)-檩条设计 4、守业的最好办法就是不断的发展。 5、当爱不能完美,我宁愿选择无悔,不管来生多么美丽,我不愿失 去今生对你的记忆,我不求天长地久的美景,我只要生生世世的轮 回里有你。

钢结构设计檩条设计

钢结构设计檩条设计

当采用扣合式屋面板时,拉条的设置根据檩条 的稳定计算确定。 刚性撑杆可采用钢管、方钢或角钢做 通常按压杆的刚度要求选择截面: 成,
[λ]≤200
拉条的计算
拉条 斜拉条
拉条 斜拉条
qx
θ
θ
qx
θ
θ
跨中设一道拉条 L≤6米
跨中设二道拉条 L>6米
拉条为檩条的平面外支承点,因此拉条所受拉
力即为檩条承受的水平荷载。拉条支承处支座
强度计算
—按双向受弯构件计算 当屋面能阻止檩条的失稳和扭转时,可按下列强 度公式验算截面:
Mx My f Wenx Weny
ห้องสมุดไป่ตู้Mx 、 My
——对截面x轴和y轴的弯距;
Wenx、Weny ——对两个形心主轴的有效净截面模量
整体稳定计算 当屋面不能阻止檩条的侧向失稳和扭转时(如 采用扣合式屋面板时),应按稳定公式验算截面:
1.5 — 檩条设计
1.5.1 檁条的截面形式
1.5.2 檁条的荷载和荷载组合
1.5.3 檁条的内力分析
1.5.4 檁条的截面选择
1.5.5 檁条的构造要求
返回
1.5.1
檁条的截面形式
热轧型钢
实腹式
截面 形式 格构式
H型钢
冷弯薄壁型钢
下撑式
平面桁架式
空腹式
实腹式檁条的截面形式
热轧型钢
i>1/3 α≈θ
θ
X
檁条近似为沿x 主轴方向单向受 弯。

X X1
α
θ为Z 型檁条两个主轴的夹角;α为屋面坡度。
当跨中设置一道拉条时檁条的计算简图及内力
qy
简支梁的跨中弯矩对X轴:

檩条、墙梁设计与构造分析

檩条、墙梁设计与构造分析

檩条、墙梁设计与构造分析摘要:在应用广泛的门式刚架轻型房屋钢结构设计中, 最为困难的是对檩条的设计计算。

困难来自于两方面:首先,在设计规范或规程中无简单实用的计算公式供设计人员采用; 其次,为节省钢材,轻钢结构中的檩条除用于承担梁的功能外往往兼作支撑体系中的压杆,同时还通过隅撑对门式刚架的梁和柱提供侧向支承。

如果考虑门式刚架轻钢房屋中的蒙皮效应,则檩条的构造和受力计算更为复杂。

檩条通常由薄钢板冷弯成型,计算中还需考虑屈曲后的有效截面等问题,因此,精确计算檩条的承载能力非常困难。

关键词:檩条墙梁设计构造分析1檩条计算1.1檩条计算公式对于实腹式檩条计算,《门式刚架轻型房屋钢结构技术规范》GB51022-2015[1](简称门刚规范)第9.1.5条规定应符合下列要求(由于檩条计算不由抗剪强度控制,因此,以下均不涉及檩条抗剪强度问题):(1)门刚规范第9.1.5条第1款规定:当屋面能阻止檩条侧向位移和扭转时,实腹式檩条可仅做强度计算,不做整体稳定计算。

抗弯强度可按下列公式计算:Mx’/Wenx’≤f (1)式中:Mx’为腹板平面内的弯矩设计值,N.mm;Wenx’为按腹板平面内计算的有效净截面模量(对冷弯薄壁型钢)或净截面模量(对热轧型钢),mm3;f为钢材抗弯强度设计值,N/mm2。

(2)门刚规范第9.1.5条第2款规定:当屋面不能阻止檩条侧向位移和扭转时,应按下式计算檩条的稳定性:Mx/(ψbyWenx)+My/Weny≤f (2)式中:Mx、My分别为对截面主轴x、y轴的弯矩设计值,N.mm;Wenx、Weny分别为对截面主轴x、y轴的有效净截面模量(对冷弯薄壁型钢)或净截面模量(对热轧型钢),mm3;ψby为梁的整体稳定性系数,冷弯薄壁型钢构件按现行国家标准《冷弯薄壁型钢结构技术规范》GB50018,热轧型钢构件按现行国家标准《钢结构设计标准》GB50017的规定计算。

(3)门刚规范第9.1.5条第3款规定:在风吸力作用下,受压下翼缘的稳定性应按现行国家标准《冷弯薄壁型钢结构技术规范》GB50018的规定计算;当受压下翼缘有内衬板约束且能防止檩条截面扭转时,整体稳定性可不做计算。

门式刚架檩条和墙梁的正确计算选择方式

门式刚架檩条和墙梁的正确计算选择方式

门式刚架檩条和墙梁的正确计算选择方式摘要:门式刚架轻型房屋钢结构是指承重结构采用变截面实腹刚架,围护系统采用轻型钢屋面和轻型外墙的单层房屋。

门式刚架檩条和墙梁的设计较复杂,涉及到屋面板和墙板的约束问题。

本人工作中发现绝大多数人对檩条和墙梁的计算不重视,细节理解存在偏差。

因此,对这些常见问题进行分析和总结。

关键词:门式刚架、檩条、墙梁、屋面板和墙板约束0 引言门式刚架轻型房屋钢结构属轻型钢结构的一个分枝,具体指房屋高度不大于18m,房屋高宽比小于1,承重结构为单跨或多跨实腹门式钢架、具有轻型屋盖、无桥式吊车或有起重量不大于20t的A1~A5工作级别桥式吊车或3t悬挂式起重机的单层钢结构房屋。

这种结构型式的主要特点是:体现轻钢结构轻型、快速、高效的特点,应用节能环保型新型建材,实现工厂化加工制作、现场施工组装、方便快捷、节约建设周期;结构坚固耐用、建筑外型新颖美观、质优价宜、经济效益明显;柱网尺寸布置自由灵活、能满足不同气候环境条件下的施工和使用要求。

因此,时至今日,该结构型式依旧在大量应用,服务于人们的日常生活和生产需要。

1 门式刚架设计中檩条常见问题1.1 檩条设计荷载组合一般情况下檩条设计采用下面两种(最不利)荷载组合:第1种荷载组合(向下):p1=1.3恒载+1.5(活载+0.9积灰+0.6风载(压力))第2种荷载组合(向上):p2=1.0恒载+1.5风载(吸力)1.2 “屋面板能阻止檩条上翼缘侧向失稳”的选项问题檩条设计的第1种荷载组合是檩条上翼缘受压,计算书中“屋面板能阻止檩条上翼缘侧向失稳”选项非常重要,勾选时,仅需按门刚规范第9.1.5条第1点做强度计算;不勾选时,需按门刚规范第9.1.5条第2点进行檩条整体稳定性计算,为满足抗弯承载力,需要的檩条截面比勾选时大。

屋面板与檩条的连接方式有三种,分别为直立缝锁边连接、扣合式连接和螺钉连接。

门刚规范第11.1.6条规定:“当采用直立缝锁边连接或扣合式连接时,屋面板不能作为檩条的侧向支撑;当屋面板采用螺钉连接时,屋面板可作为檩条的侧向支撑。

檩条墙梁计算

檩条墙梁计算

檩条墙梁计算概述在建筑工程中,墙梁是起承重作用的结构构件,而檩条则是在墙体内部起支撑和连接作用的木制构件。

在进行建筑设计时,需要对檩条和墙梁的尺寸进行计算,以确保其承重能力符合建筑安全标准。

计算檩条尺寸对于一般住宅建筑,常用的檩条尺寸为2寸 x 4寸 (约50mm x 100mm) 、2寸 x 6寸 (约50mm x 150mm) 或 2寸 x 8寸 (约50mm x 200mm)。

在选择檩条尺寸时,需要考虑其跨度和承重能力。

跨度檩条的跨度是指两个固定点之间的距离,一般情况下,檩条的跨度应根据其尺寸和木材强度来决定。

以下是一些常用跨度和木材强度条件下的檩条尺寸:跨度木材强度条件檩条尺寸1.2m-1.5m No.2或更高2寸 x 4寸1.5m-2.1m No.2或更高2寸 x 6寸2.1m-2.4m No.2或更高2寸 x 8寸承重能力檩条的承重能力是指其能够承受的负载。

雪载是造成建筑物木结构构件弯曲或破断的最常见原因之一,因此在计算檩条的承重能力时需要考虑雪载的影响。

标准雪载在不同地区和建筑高度下有所不同,在美国,一般标准雪载为负载的地面48英寸下400磅/平方英尺。

根据木材尺寸和雪载计算檩条的承重能力应使用相关的木结构国家标准或其他指南。

计算墙梁尺寸墙梁通常由混凝土、砖块、木材或钢材制成。

在计算墙梁尺寸时需要考虑跨度、负载和材料的强度。

材料墙梁的材料应根据其所处环境和承重能力来选择。

例如,对于一个具有大门的砖墙,墙梁需要同时支撑门和砖墙。

在设计中,应使用符合国家标准的材料。

如果未使用此类材料,应考虑为所选材料建立新的梁设计规范。

承重能力根据建筑物的使用情况和负荷条件来决定需要的墙梁强度。

对于建筑物设计,应遵循建筑规范或其他国家或地方标准。

跨度固定墙梁的跨度应根据墙的负荷和梁的承重能力来确定。

压缩力是墙梁的主要运载能力,也是基础荷载的基础。

回转在墙梁弯曲或变形的情况下,可能需要进行回转,在回转的过程中选择Binder在合适的位置加以支撑,以确保梁的平衡。

3D3S墙檩设计

3D3S墙檩设计

墙檩设计
一、轻型门式钢刚架(模块)
1、设计-围护/围护结构计算>墙檩计算
2、墙檩计算面板
1)基本信息:
钢材型号(Q235)每米紧固件数目(2)瓦钉数
墙面材料(压型钢板)1/100-厚度
面板截面惯性矩(默认值)
2)墙梁(墙檩)信息:
墙梁跨度(立柱间距离)设置拉条数目(道数)与屋架间距不大小3m
墙梁间距(按设计数值)墙梁形式(C形檩条)
墙梁截面(可修改参数)
3)计算类型
◎按照简支梁计算。

○按照连续梁计算
进行强度验算,考虑屋面阻止檩条失稳。

□进行稳定验算,不考虑屋面阻止檩条失稳。

(连续梁时此项也勾先)
风吸力下的稳定验算。

4)墙面荷载(标准值):
恒载均布值(KN/m2)(设计数值)
风荷载:
建筑形式(封闭式、部分封闭式)
分区(中间区、边缘带)
地面粗糙度(B)
基本风压(KN/m2)(设计数值)
高度变化系数(1),迎风体形系数(1),背风面体形系数(-1.1),这三项可不用改动。

5)荷载组合;形成计算模型;可不用操作。

二、计算
1、优选
2、修改截面-校核,反复修改-校核至合理经济为止。

钢结构设计(3)-檩条设计

钢结构设计(3)-檩条设计
Y1 当屋面坡度: 当屋面坡度: i>1/3 α≈θ 檁条近似为沿x 檁条近似为沿x 主轴方向单向受 弯。 Y qy θ X X1 α qx θ X1 X q
q y = q cos(α − θ )
q x = q sin (α − θ )
当α= θ时
q = qy qx = 0
α
Y
Y1
型檁条两个主轴的夹角; 为屋面坡度。 θ为Z 型檁条两个主轴的夹角;α为屋面坡度。
整体稳定计算 当屋面不能阻止檩条的侧向失稳和扭转时( 当屋面不能阻止檩条的侧向失稳和扭转时(如 采用扣合式屋面板时) 应按稳定公式验算截面: 采用扣合式屋面板时),应按稳定公式验算截面:
对两个形心主轴的有效截面模量; 对两个形心主轴的有效截面模量 Wex、Wey—对两个形心主轴的有效截面模量; 梁的整体稳定系数, 计算。 梁的整体稳定系数 ϕ —梁的整体稳定系数,按规范规定 计算。
适用于屋面坡度>1/3 适用于屋面坡度>1/3
适用于屋面坡度≤ 适用于屋面坡度≤1/3
用于屋面的C 用于屋面的C型檁条
1.5.2 檩条的荷载和荷载组合
1.2×永久荷载+1.4×max{屋面均布活荷 永久荷载+1. +1 max{屋面均布活荷 雪荷载} 载,雪荷载}; 1.2×永久荷载+1. 1.2×永久荷载+1.4×施工检修集中荷载换算 +1 值。 当需考虑风吸力对屋面压型钢板的受力影响 时, 还应进行下式的荷载组合: 还应进行下式的荷载组合: 1.0×永久荷载+1. 1.0×永久荷载+1.4×风吸力荷载。 +1 风吸力荷载。
bx
变形计算 实腹式檩条应验算垂直于屋面方向的挠度。 实腹式檩条应验算垂直于屋面方向的挠度。 对卷边槽形截面的两端简支檩条: 对卷边槽形截面的两端简支檩条:

5.2 20米跨门式刚架 檩条及系杆的设计

5.2 20米跨门式刚架 檩条及系杆的设计

5.1. 檩条和系杆的设计一、檩条的选择和布置实腹式檩条的截面高度h,一般为跨度的1/35~1/50,故初步选用檩条为卷边槽形冷弯薄壁型钢C180×70×20×2.5。

实腹式檩条的截面均垂直于屋面坡面,且卷边C型槽钢的上翼缘肢尖(即卷边)朝向屋脊方向(以减小屋面荷载偏心而引起的扭矩)。

屋脊檩条的布置采取双檩方案,双脊檩之间的间距为0.2m,双脊檩与跨中线等距(0.1m),且此双檩条由圆钢相连,其余檩条水平间距为1.5m,跨度6m,于1/2跨度处设一道拉条,在檐口处还设有撑杆和斜拉条。

屋面为压型钢板,屋面坡度i=1/10(α=5.71°),为限制檐缺口处边檩向上或向下两个方向的侧向弯曲所设的撑杆的要求为长细比λ≤200,选用外径Φ20㎜,壁厚3㎜的钢管。

二、荷载计算(1)荷载标准值(对水平投影面)①永久荷载压型钢板(二层含80㎜厚的保温层)0.15KN/㎡檩条(包括拉条)0.05KN/㎡0.20KN/㎡②可变荷载KN/㎡。

(k P =(1.2P =x P P =⨯y P P =⨯x y 22yx 320.0986320.11kN /mM P l MP l===⨯=② 永久荷载与风荷载吸力组合风荷载高度变化系数取µZ=1.0(高度小于10m ,B 类地面粗糙度),按《门式刚架轻型房屋钢结构技术规程》(CECS102:2002)表A-2,风荷载体型系数取边缘带 1.4s μ=-(吸),则垂直屋面的风荷载标准值:()21.40 1.0 1.050.30.44kN/mk s z o W μμω=⨯⨯=-⨯⨯⨯=-檩条线荷载()1.20.2 1.40.44 1.50.564kN/m P =⨯-⨯⨯=-(向上)x y sin 5.710.056kN /m ()cos 5.710.561kN /m ()P P P P =⨯==⨯=向上向上弯矩设计值222xy 222yx 80.56168 2.53kN /m ()320.0566320.063kN /m ()M P l MP l==⨯===⨯=向上向上由以上计算可知内力设计值由永久荷载与屋面活荷载组合控制,因屋面对上翼缘的约束为有利因素,故可将公式中屋面自重在y 方向的分量忽略,即认为在y 方向产生的弯矩全部由受拉翼缘承受。

钢结构檩条参数设计

钢结构檩条参数设计

1 钢结构檩条、墙梁工具箱中“屋面板能阻止檩条上翼缘侧向失稳”、“墙板能阻止墙梁外翼缘侧向失稳”的选项何时可以勾选?图1 参数首先勾选了“屋面板能阻止檩条上翼缘侧向失稳”、“墙板能阻止墙梁外翼缘侧向失稳”这个选项之后,程序不会进行檩条、墙梁在上翼缘、外翼缘受压时的整体稳定验算。

根据《冷弯薄壁型钢结构技术规范》GB50018-2002(以下简称薄钢规)中的要求:只有屋面板材与檩条有牢固的连接,即用自攻螺钉、螺栓、拉铆钉和射钉等与檩条牢固连接,且屋面板材有足够的刚度(例如压型钢板),才可认为能阻止檩条侧向失稳和扭转,可不验算其稳定性。

此时可以勾选“屋面板能阻止檩条上翼缘侧向失稳” “墙板能阻止墙梁外翼缘侧向失稳”选项,不验算该稳定应力。

对塑料瓦材料等刚度较弱的瓦材或屋面板材与模条未牢固连接的情况,例如卡固在檩条支架上的压型钢板(扣板),板材在使用状态下可自由滑动,即屋面板材与檩条未牢固连接,如下图[2]所示的连接片连接时,连接片是可滑移的,扭转刚度没有保证,不能阻止檩条侧向失稳和扭转,应按公式8.1.1-2验算檩条的稳定性,此时不能勾选该选项。

墙板能约束墙梁外翼缘与屋面板的要求类似。

图22 钢结构檩条工具箱中的“构造保证下翼缘风吸力作用稳定性”何时勾选?檩条在风吸力作用下处于下翼缘受压的状态,此时需要进行风吸力组合下的稳定。

应按照薄钢规进行验算,而在勾选了“构造保证下翼缘风吸力作用稳定性”后,程序将不再验算风吸力作用下的稳定应力。

根据门式刚架规范中的9.1.5-3条“当受压下翼缘有内衬板约束且能防止檩条扭转时,整体稳定性可不计算”,也就是说在檩条下翼缘位置布置有内衬板,且内衬板与檩条之间是可靠连接时,可以考虑此项。

同时有人提出当设置下层拉条,且拉力位于距离下翼缘1/3腹板高度范围内时,也可以认为构造保证下翼缘稳定,事实是不是这样的呢?笔者认为设置下层拉条后不能保证下翼缘的稳定就不用计算了,此时下翼缘稳定仍然需要进行验算,门式刚架规范中对于内衬板对于檩条下翼缘的约束已经做出了解释,在9.1.5条条文说明中提到“当有内衬板固定在檩条下翼缘时,相当于有密集的小拉条在侧向约束下翼缘,故无需考虑整体稳定性”。

(整理)檩条设计

(整理)檩条设计

6.1檩条设计屋面材料为压型钢板,屋面坡度1/20( 2.86o α=),檩条跨度7.5m,于l/3处各设一道拉条;檩条间距1.50m 。

钢材Q235。

. 6.1.1荷载和内力计算(对水平投影面)(1)永久荷载压型钢板(二层含保温) 0.30 kN/2m 檩条(包括拉条) 0.05 kN/2m(2)可变荷载标准值:屋面均布活荷载0.5 kN/2m ,雪荷载20.25N /k m ,计算时取两者的较大值0.5 kN/2m 。

基本风压=0ω0.55kN/2m 。

(3)永久荷载与屋面活荷载组合:1.2×永久荷载+1.4×活荷载 1)檩条线荷载:标准值:(0.350.50) 1.5 1.275N /k p k m =+⨯= 设计值:(1.20.35 1.40.5) 1.5 1.68N /p k m =⨯+⨯⨯= 则:sin 2.860.084N /o x p p k m == cos2.86 1.678N /o y p p k m ==在刚架最大主平面内(对x 轴)由y p 引起的弯矩设计值(檩条简支):22/81 1.6787.511.862KN ==⨯⨯=⋅x y M p l m在刚架最小主平面内(对y 轴)由x p 引起的弯矩设计值( 3.5<x y p p 采用1/3跨处的负弯矩):22/901900.0847.50.053KN =-=⨯⨯=⋅y x M p l m图6.1 第一种荷载组合下檩条弯矩图2)永久荷载与风荷载组合:1.0×永久荷载+1.4×风荷载 由于房屋总高度为8.4m 可查得其风荷载高度变化系数z μ=1.0。

根据《门式钢架轻型房屋钢结构技术规程》CECS102-2002第58页风荷载体形系数计算方法,取端跨进行计算知s μ=-1.4,垂直屋面的风荷载标准值:20 1.4 1.00.55 1.050.809KN /ωμμω==-⨯⨯⨯=-k s z m 檩条线荷载设计值:1.00.35 1.5sin2.860.0262KN /=⨯⨯⨯=x p m1.40.809 1.50.35 1.5cos2.86 1.175KN /y p m =⨯⨯-⨯⨯= 弯矩设计值(3.5<x y p p 采用1/3跨处的负弯矩):22/818 1.1757.58.262KN ==⨯⨯=⋅x y M p l m 22/9010.02627.50.016KN ==⨯⨯=⋅y x M p l m 按第一种组合为最不利组合计算 6.1.3截面选择与截面特性 (1)选用毛截面的截面尺寸初步选用2507520 2.5C ⨯⨯⨯,查《门式刚架轻型房屋钢结构技术规程》 CECS102-2002附表C 可知其截面特性为:210.48A cm = 8.23/m kg m = 0 1.934=x cm4952.33x I cm = 9.53x i cm = 376.19x W cm =471.31y I cm = 2.69y i cm = 3max 36.86y W cm =3min 12.81y W cm = 0 4.84e cm = 40.2184t I cm = 68415.77w I cm =305.2/75/==t b ,/250/2.5100h t ==, 先按毛截面计算截面的应力(拉为负、压为正)图6.2 檩条在荷载作用下角点编号图662133max 11.862100.05310157.128/76.191036.8610σ⨯-⨯=-=-=⨯⨯y X x y M M N mm W W (压) 662233min 11.862100.05310151.552/76.191012.8110σ⨯⨯=+=-=⨯⨯y X x y M M N mm W W (压) 662333max 11.862100.05310154.252/76.191036.8610σ⨯⨯=+=-=⨯⨯y X x y M M N mm W W (拉) 662433min 11.862100.05310159.817/76.191012.8110σ⨯⨯=-=+=⨯⨯y X x y M M N mm W W (拉) (2)受压杆件稳定系数1)腹板腹板为加劲板件,压力分布不均匀系数: min max 154.252157.1280.9821ψσ==-=->-由《冷弯薄壁型钢结构技术规范》GB50018-2002公式5.6.2查得受压板件的稳定系数:227.8 6.299.787.8 6.29(0.982)9.78(0.982)23.408ψψ=-+=-⨯-+⨯-=k2)上翼缘板上翼缘板为最大压应力作用于部分加劲肋板件的支承力,压力不均匀系数:min max 151.552157.1280.9651ψσ===>-由《冷弯薄壁型钢结构技术规范》GB50018-2002公式5.6.2-3查得受压板件的稳定系数:225.8911.59 6.68 5.8911.590.965 6.680.9650.926ψψ=-+=-⨯+⨯=k(3)受压板件有效宽度1)腹板0.926=c k23.408=k250=b mm75c mm = 2.5t mm =21157.128σ=Nmm1.478 1.1ε===> 其中c k 为邻接板件的受压稳定系数。

§8.7 墙架和檩条.

§8.7  墙架和檩条.

一、檩条设计1.实腹式檩条的截面有哪些型式?2.如何判断冷弯薄壁型钢檩条全截面有效?3.檩条和墙梁设置拉条的目的是什么?如何设置?4.哪些情况下,需要计算檩条的整体稳定性?5.檩条与屋架、屋面梁如何连接?一、檩条设计1. 檩条的截面形式、特点及适用范围檩条一般用于轻型屋面工程中,截面形式有实腹式、空腹式和格构式。

⏹实腹式:高度一般为1/35~1/50跨度槽钢、工字钢、H 型钢。

厚度较厚,强度不能充分发挥,主要用于重型工业厂房。

高频焊接H 型钢。

冷弯薄壁型钢,壁厚不宜小于1.5mm 。

常用截面形式有Z 形和C 形两种。

7-14槽钢、H 型钢檩条薄壁型钢檩条✓卷边Z形檩条适用于屋面坡度i>1/3的情况,这时屋面荷载作用线接近于其截面的弯心(扭心),并可通过叠合形成连续构件。

Z形檩条的主平面x轴的刚度大,挠度小,用钢量省,制造和安装方便,在现场可叠层堆放,占地少,是目前较合理和普遍采用的一种檩条形式。

✓卷边C形檩条适用于屋面坡度i≤1/3的情况,其截面在使用中互换性大,用钢量省。

⏹空腹式:由上、下弦角钢和缀板焊接组成,能合理地利用小角钢和薄钢板,用钢量较少,因缀板间距较密.拼装和焊接的工作员较大.故应用较少。

⏹格构式:高度一般取跨度的1/12~1/20平面桁架式✓由角钢和圆钢制成:侧向刚度较差,但取材方便,受力明确,适用于屋面荷载或根距较小的屋面。

✓冷弯薄壁制成:全部杆件为冷弯薄壁型钢,用钢量省,受力明确,平面内外刚度均较大,适用于大檩距的屋面。

或主要部分上弦杆和端竖压杆采用冷弯薄壁型钢(图a),其余杆件采用圆钢,多用于1.5m檩距。

空间桁架式:结构合理,受力明确,整体刚度大,不需设置拉条,安装方便,但制造较费工,用钢量较大,适用于跨度、荷载和檩距均较大的情况。

下撑式:立放时平面内刚度大,但侧向刚度差;平放时侧向刚度大,安装方便,但用钢量稍多格构式檩条的构造和制作相对复杂,侧向刚度较低,但用钢量较少。

简述轻钢门式刚架结构屋面檩条和侧墙墙梁的布置原则

简述轻钢门式刚架结构屋面檩条和侧墙墙梁的布置原则

轻钢门式刚架结构屋面檩条和侧墙墙梁的布置原则1. 引言轻钢门式刚架结构是一种在房屋建筑中广泛应用的结构形式,它具有轻便、稳定、耐久的特点。

在这种结构中,屋面檩条和侧墙墙梁的布置是至关重要的一环。

本文将探讨轻钢门式刚架结构屋面檩条和侧墙墙梁的布置原则。

2. 轻钢门式刚架结构屋面檩条布置原则2.1 布置原则一:檩条的数量和间距在轻钢门式刚架结构中,屋面檩条起着承重和支撑屋面材料的作用。

合理的檩条数量和间距可以确保结构的稳定性和屋面材料的承重能力。

一般来说,布置原则如下:- 檩条数量应根据屋面的面积和设计荷载来确定,以保证屋面的承重能力。

- 檩条的间距应根据材料的强度和屋面的设计要求来确定。

一般情况下,间距范围为300mm到600mm之间。

2.2 布置原则二:檩条的连接方式檩条的连接方式直接影响到结构的稳定性和承载能力。

常见的檩条连接方式有焊接和螺栓连接。

在选择连接方式时,需要考虑以下原则: - 焊接连接适用于檩条连接点较少的情况,具有较高的连接强度和稳定性。

- 螺栓连接适用于檩条连接点较多的情况,可以灵活调整和更换连接点。

2.3 布置原则三:檩条的材料选择檩条的材料选择直接影响到结构的强度和耐久性。

常见的檩条材料有冷弯薄壁型钢和热轧型钢。

选择合适的材料需要考虑以下原则: - 冷弯薄壁型钢具有轻、薄、高强等特点,适用于小型房屋建筑。

- 热轧型钢具有较高的承载能力和耐腐蚀性,适用于大型房屋建筑。

3. 轻钢门式刚架结构侧墙墙梁布置原则3.1 布置原则一:墙梁的位置和间距侧墙墙梁在轻钢门式刚架结构中起到支撑和稳定墙体的作用。

合理的墙梁位置和间距可以确保墙体的垂直度和整体稳定性。

布置原则如下: - 墙梁位置通常在墙的上部,可以在每层楼的层高变化处设置。

- 墙梁的间距应根据墙体的高度和设计荷载来确定,以保证墙体的稳定性。

3.2 布置原则二:墙梁的高度和宽度墙梁的高度和宽度直接影响到墙体的承载能力和稳定性。

毕业设计墙梁檩条设计

毕业设计墙梁檩条设计

2.2墙梁的设计墙梁跨度m l 0.6=,最大间距1.8m ,如图2-3所示。

跨中设置一道拉条,外侧挂有厚度为100mm 墙板。

墙梁初选截面为卷边C 型钢C160×70×20×3.0,墙梁采用Q345-B 钢,拉条采用Q235钢,单侧墙板自重2113.0m KN ;墙梁自重m KN 075.0。

图 2-3 墙梁布置2.2.1荷载计算恒载标准值(墙板+墙梁) m KN q kx 278.0075.08.1113.0=+⨯= 活载标准值(风荷载) 01w W z s z kμμβ=查《建筑结构荷载规范》知0.1,0.1==z z μβ,局部风压体型系数如图2-4所示,图 2-4 局部风压体型系数则迎风:m KN q ky 44.0)55.005.1(0.18.00.1=⨯⨯⨯⨯=背风:m KN q ky 28.0)55.005.1(0.15.00.1'=⨯⨯⨯⨯= 线荷载设计值:恒载:m KN q x 334.0278.02.1=⨯=活载:迎风:m KN q y 924.05.144.04.1=⨯⨯= 背风:m KN q y 588.05.128.04.1'=⨯⨯=荷载组合按以下两种情况计算:(1)y x q q + (2) 'y x q q +图2-5荷载作用简图2.2.2内力计算1) 竖向荷载x q 产生的弯矩y M由于墙梁跨中竖向设有一道拉条,可视为墙梁支撑点,受力图及弯矩图如图2-6所示,则可得:mKN l q M M m KN l q M M x x B y ⋅=⨯⨯===⋅=⨯⨯===188.06334.0641641376.06334.0321321222122max图 2-6 竖向荷载作用下的内力图2) 水平风荷载'y y q q 、产生的弯矩'x x M M 、墙梁在水平风荷载作用下,受力图及弯矩图如图2-7所示,则:迎风:m KN l q M M y B x ⋅=⨯⨯===158.46924.0818122max背风:m KN l q M M y B x ⋅=⨯⨯===646.26588.081'81'22max图 2-7 水平荷载作用下的内力图3) 在竖向荷载x q 作用下,两跨连续梁的剪力图如图2-6所示,则可得最大剪力为:KN l q V x x 168.26578.0625.0625.0max =⨯⨯==由图2-7所示:迎风:KN l q V V y A y 772.26924.05.05.0max =⨯⨯===背风:KN l q V V y A y 764.16588.05.0'5.0'max =⨯⨯===2.2.3截面验算初选墙梁截面为冷弯薄壁卷边C 型钢,截面尺寸为160×70×20×3.0,截面特性如下:cm i cm I cm i cm W cm I cm A y y x x x 53.2;42.60;29.6;71.46;64.373;45.94342====== 32313min 3max 92.109;49.135;65.12;17.27cm W cm W cm W cm W y y ====ωω由弯矩y x x M M M 、、'引起的截面各角点应力符号如图2-8所示,以压应力为正,拉应力为负。

檩条墙梁设计指南

檩条墙梁设计指南

墙梁檩条设计指南(Version 1.0 2010-5-5)第一部分计算参数的选取一、檩条部分1、屋面一般采用斜卷边Z形连续檩条。

当柱距≥12米,且屋面荷载较大时,可采用格构式檩条或高频焊接H型钢。

2、注意不是所有的屋面檩条都是5连跨,下列情况就需要考虑檩条的实际跨度:(1)屋顶通气器和屋顶天窗在端跨一般不设置(有时候第二跨也不设置),此时檩条为单跨简支(或两跨连续);(2)屋面有横向采光通风天窗或顺坡通气器时,檩条可能会被打断,檩条应根据实际情况确定跨数;(3)檩条本身的跨数就少于5跨。

3、屋面材料选择时,若有吊顶,须选取“有吊顶”选项。

檩条仅支承压型钢板屋面时,挠度控制为l/200;有吊顶时,挠度控制为l/240。

4、屋面倾角:建筑图所标的是坡度,需要换算成角度。

有弧形屋面梁时,须考虑檩条倾角的不断变化。

5、拉条道数的设置:当檩条跨度≤4米时,一般不设置拉条;当檩条跨度>4米、≤6米时,一般在檩条跨中设置一道拉条;当檩条跨度>6米、≤9米时,一般设置两道拉条(三分点处);当檩条跨度为12米时,一般设置三道拉条。

拉条均为双层拉条,同时约束檩条上、下翼缘。

6、檩条间距:檩条的间距一般控制在1.0~1.5米之间,常用的间距有1.2、1.4、1.5米。

檩条间距不得超过1.5米;对于屋面荷载较大的部位(例如高低垮处),局部檩条间距可以小于1米。

7、檩条搭接长度的取值:檩条搭接长度取跨长的10%(两边各5%)。

9米跨度一般取500mm,12米跨度一般取600mm。

8、截面选择:设计时尽量选择标准截面,常用的标准截面高度有:200、220、250mm,常用的标准截面厚度有2.0、2.2、2.5mm,若需选择非标准截面,可通过“檩条库”选项增加截面参数。

(标准截面详见《钢结构设计手册》和《冷弯薄壁型钢结构技术规范》)注意:(1)非标准截面的截面厚度不得大于3.0mm;(2)非标准截面的截面高度不宜大于280mm,若高度大于280mm,须采用加强措施,避免檩条侧向失稳。

钢结构 檩条设计

钢结构 檩条设计

钢结构檩条设计在钢结构建筑中,檩条是一种重要的构件,承担着将屋面或墙面荷载传递到钢梁或钢柱的关键作用。

合理的檩条设计对于保证钢结构的整体稳定性、安全性和经济性具有至关重要的意义。

檩条的类型多种多样,常见的有实腹式檩条、空腹式檩条和桁架式檩条等。

实腹式檩条通常由热轧槽钢、高频焊接 H 型钢或冷弯薄壁型钢制成,具有构造简单、施工方便等优点;空腹式檩条则是由角钢或槽钢等型钢组成的格构式构件,其特点是自重轻、节省钢材;桁架式檩条由上弦杆、下弦杆和腹杆组成,一般用于跨度较大的钢结构建筑。

在进行檩条设计时,首先需要确定檩条的荷载。

屋面檩条所承受的荷载主要包括恒载(如屋面自重、保温层重量等)、活载(如雪载、风载等)以及可能存在的吊挂荷载;墙面檩条则主要承受风载和墙面板的自重。

荷载的取值应根据相关的建筑规范和标准进行确定,同时要考虑到建筑的使用功能、地理位置以及可能出现的极端天气情况。

接下来,要根据荷载情况和建筑跨度选择合适的檩条截面形式和尺寸。

对于跨度较小的钢结构,一般可以选用冷弯薄壁型钢檩条;而跨度较大时,则需要考虑采用热轧型钢或桁架式檩条。

檩条的截面尺寸需要通过计算来确定,以确保其具有足够的强度和刚度,能够承受所施加的荷载。

在计算檩条的强度时,需要分别考虑弯曲应力、剪应力和局部承压应力等。

弯曲应力是由于檩条在竖向荷载作用下产生弯曲变形而引起的;剪应力则是由于水平荷载作用产生的剪力导致;局部承压应力则是在檩条与钢梁或钢柱连接处由于集中力作用而产生的。

在进行强度计算时,要根据不同的荷载组合,采用相应的计算公式和参数,确保檩条在各种工况下都能满足强度要求。

除了强度,檩条的刚度也是设计中需要重点关注的问题。

如果檩条的刚度不足,会导致屋面或墙面出现过大的变形,影响建筑的使用功能和外观。

一般通过限制檩条的挠度来保证其刚度,挠度的限值通常根据建筑的使用要求和相关规范来确定。

在计算挠度时,需要考虑荷载的长期效应和短期效应,并采用合适的计算方法和参数。

墙面檩条安装

墙面檩条安装
十字型柱间支撑
八字型支撑
上柱柱间支撑
下柱柱间支撑
返回
柱间支撑的截面型式:采用两个角钢组成的T
型截面、圆钢管截面。
柱间支撑的布置:一般布置在厂房两端第一开
间或者是第二开间,若厂房长度超过60米时, 则需要在中部再加设一道支撑。
柱间支撑的型式:根据厂房使用要求可以布置
成十字型或者八字型。
x A qx y
qy
qx
y
A
x o y
o x (a)双侧挂墙板
y
qy
x (b)单侧挂墙板
跨中最大双弯扭力矩为:
Bmax 0.01 ml2
其中: — B的计算系数;
m — 计算截面双向荷载对弯曲中心的合扭
矩,以绕弯曲中心逆时针方向为正; l — 墙梁跨度。
在 M x 、 M x 、M y 、B作用下,截面各点应 力符号如下图所示。“-”表示拉应力, “+”表示压应力。
的风荷载。
墙梁的截面主要是C型和Z型两种冷弯薄壁型钢 截面形式。
墙梁
岩棉保温材料
墙梁
墙梁支架
墙梁
窗洞支架
墙梁支架
1.6.1
墙梁的构造要求
通常墙梁的最大刚度平面在水平方向(槽口方 向向下),墙梁主要承担水平风荷载。
双侧挂板 风荷载 单侧挂板
x A qx
qy
风荷载
qx
A
x o y
y
o x (a)双侧挂墙板
1.6 — 墙梁设计
1.6.1 墙梁的构造要求 1.6.2 墙梁的荷载 1.6.3 墙梁内力计算 1.6.4 墙梁截面验算 1.6.5 柱间支撑的布置与计算 返回
墙架系统主要由墙梁、拉条、斜拉条、撑杆、 以及墙面板等组成。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

墙梁檩条设计指南
(Version 1.0 2010-5-5)
第一部分计算参数的选取
一、檩条部分
1、屋面一般采用斜卷边Z形连续檩条。

当柱距≥12米,且屋面荷载较大时,可采用格构式檩条或高频焊接H型钢。

2、注意不是所有的屋面檩条都是5连跨,下列情况就需要考虑檩条的实际跨度:
(1)屋顶通气器和屋顶天窗在端跨一般不设置(有时候第二跨也不设置),此时檩条为单跨简支(或两跨连续);
(2)屋面有横向采光通风天窗或顺坡通气器时,檩条可能会被打断,檩条应根据实际情况确定跨数;
(3)檩条本身的跨数就少于5跨。

3、屋面材料选择时,若有吊顶,须选取“有吊顶”选项。

檩条仅支承压型钢板屋面时,挠度控制为l/200;有吊顶时,挠度控制为l/240。

4、屋面倾角:建筑图所标的是坡度,需要换算成角度。

有弧形屋面梁时,须考虑檩条倾角的不断变化。

5、拉条道数的设置:
当檩条跨度≤4米时,一般不设置拉条;
当檩条跨度>4米、≤6米时,一般在檩条跨中设置一道拉条;
当檩条跨度>6米、≤9米时,一般设置两道拉条(三分点处);
当檩条跨度为12米时,一般设置三道拉条。

拉条均为双层拉条,同时约束檩条上、下翼缘。

6、檩条间距:
檩条的间距一般控制在1.0~1.5米之间,常用的间距有1.2、1.4、1.5米。

檩条间距不得超过1.5米;对于屋面荷载较大的部位(例如高低垮处),局部檩条间距可以小于1米。

7、檩条搭接长度的取值:檩条搭接长度取跨长的10%(两边各5%)。

9米跨度一般取500mm,12米跨度一般取600mm。

8、截面选择:
设计时尽量选择标准截面,常用的标准截面高度有:200、220、250mm,常用的标准截面厚度有2.0、2.2、2.5mm,若需选择非标准截面,可通过“檩条库”选项增加截面参数。

(标准截面详见《钢结构设计手册》和《冷弯薄壁型钢结构技术规范》)
注意:(1)非标准截面的截面厚度不得大于3.0mm;(2)非标准截面的截面高度不宜大于280mm,若高度大于280mm,须采用加强措施,避免檩条侧向失稳。

9、分析参数中:
(1)“屋面板能阻止檩条上翼缘受压测向失稳”选项,不选择。

(2)“构造保证风吸力下翼缘受压稳定性”选项,不选择。

屋面下层彩钢板可以起到约束檩条下翼缘的作用,偏于安全,我们不选择此选项。

(3)“考虑活荷最不利布置”和“程序自动计算檩条截面自重”选项,选择。

(4)验算规范选择“薄钢规范GB50018”。

门规CECS102:2002中,檩条仅支承压型钢板屋面时,挠度控制为1/150;薄钢规范GB50018中,挠度控制为1/200。

(5)支座双檩条考虑连接刚度折减系数取0.5。

(6)支座双檩条考虑连接弯矩调幅系数取0.9。

10、屋面自重:柱距不超过9米时,取0.3KN/㎡;柱距12米时,取0.35KN/㎡。

注意:有吊顶的厂房,需要计算吊顶重量(及风管重量),然后叠加到屋面自重中。

11、雪荷载不均匀系数的取值:
(1)普通位置不均匀系数1.25(全部屋面均乘1.25);
(2)高低跨处不均匀系数2.0(影响范围:2倍的高差,但不小于4米,不大于8米);
(3)屋顶通风器和屋顶天窗两侧不均匀系数2.0(规范中取1.1,考虑到实际情况,我们规定取2.0;影响范围同高低跨处);
(4)注意一些地区的特殊规定:沈阳地区规定雪荷载的不均匀系数提高1.5倍,且按照百年一遇的基本雪压进行考虑。

12、风吸力的验算:对于屋面高度高于15米、基本风压大于0.4KN/㎡的厂房,需要验算屋面周边檩条的风吸力,此时屋面恒载取0.2 KN/㎡,风压体型取-2.2(屋面周边的范围详见《建筑结构荷载规范》第41页)。

二、墙梁部分
1、柱距不超过9米时,墙梁一般按照C形简支墙梁设计;柱距12米时,墙梁一般按照Z形连续墙梁进行设计。

2、注意C形墙梁的开口方向。

口朝上时,计算应力比小。

3、“墙板能阻止墙梁外翼缘侧向失稳”、“构造保证风吸力内翼缘侧向稳定性”选项,不选择。

墙板确实能约束墙梁的内外翼缘,偏于安全,我们不选择这两个选项。

4、拉条设置的原则同屋面檩条。

5、风荷载的取值:
(1)调整后的基本风压值:注意按照《建筑结构荷载规范》的规定值乘以1.05(见《门规》第56页);
(2)背风体型系数:当吊车吨位大于20t时,对于墙角处的负风压系数,应按照《建筑结构荷载规范》第41页的规定取值。

第二部分画图的注意事项
一、檩条部分
1、注意避开刚架拼接点。

跨度9米的檩条中心线离拼接点的距离不小于250mm;跨度12米的檩条中心线离拼接点的距离不小于350mm。

2、第一道檩条的位置需要根据檐口节点(天沟大样)进行调整。

3、檩条的安装方向:Z形檩条上翼缘的肢尖朝向屋脊方向,图纸中增加示意图。

4、确定屋面是否有预留洞。

若有,应根据留洞大小调整檩条间距。

5、当柱距≥12米(即檩条跨度≥12米)时,一般每隔一个檩条间距设置一排C 形钢,C形钢的截面高度可取檩条截面高度的一半,C形钢设置的位置同拉条。

6、屋面檩条设计时,当单坡超过50m或者两跨,需要在中间正方两个方向设置斜拉条。

7、若使用多段线(PL线)画图,应定义线宽。

8、檩条节点详图中,应仔细核对螺栓孔的位置、檩托板的大小及垫片的尺寸等相关细节。

注意:9米跨的檩条单个檩托处设置4个螺栓;12米跨的檩条单个檩托处设置6个螺栓。

二、墙梁部分
1、墙梁计算和画图前,应先确定墙面材料。

若为夹芯板(或称“横板”),则墙梁间距均采用1米;若为普通压型钢板(或称“竖板”),则墙梁间距不大于1.5米即可。

2、一般每隔5道拉条设置一对斜拉条,以分段传递墙体自重。

3、若使用多段线(PL线)画图,应定义线宽。

4、墙梁立面布置图中,最下面一根墙梁标高和砌体墙压顶圈梁标高的确定,常用的方法有两种:
(1)将墙梁的标高定为1.5(以1.2米高的砌体墙为例),压顶圈梁顶标高定为1.2;标高1.5的墙梁遇窗户处断开,压顶圈梁在窗框对应的位置增设预埋件。

(2)将墙梁的标高定为1.2米,压顶圈梁顶标高定为:1.2-墙梁翼缘宽。

注意:无论按照哪种方法确定标高,都需要核对建筑图纸中此处的节点大样,
以便与建筑图纸保持一致。

5、厂房内隔墙墙梁注意以下地方:
(1)有走道板的地方,纵向内隔墙的拉条无法通过;
(2)横向内隔墙的墙梁需要避开吊车梁与吊车轨道。

6、有竖向窗时应注意,窗框(包括竖向的窗框和窗顶、窗低墙梁)的构件尺寸应通过计算确定。

7、当厂房大门是提升门时,设计时注意下列内容:
(1)门柱需延伸至 门高×2+500 的高度;
(2)大门所承受的风荷载会通过导轨传给门柱,计算门柱时要考虑此荷载;
(3)核对大门上方是否有足够的空间:高度方向是否满足 门高×2+500;是否有走道板、系杆等构件,走道板和系杆离墙边应留一定的距离,以便让导轨和大门升上去。

8、当厂房大门是推拉门时,需在门梁上部设置一根H型钢(或双槽钢、双C形钢)用于固定悬挂推拉门的导轨,计算此H型钢时,应考虑通过导轨传过来的大门所承受的风荷载。

9、注意常用雨篷详图的适用范围和计算条件,雨篷梁并非双墙梁就够,须计算确定雨篷梁的构件大小。

雨篷悬挑长度一般取≤1米。

10、墙梁节点详图中,应(与墙梁立面布置图)核对是否缺少墙梁连接节点,并应仔细核对螺栓孔的位置、檩托板的大小及垫片的尺寸等相关细节。

注意:9米跨的墙梁单个檩托处设置4个螺栓;12米跨的墙梁单个檩托处设置6个螺栓。

11、核对墙面是否有预留洞(主要是暖通专业):
(1)核对洞口是否碰墙梁。

若碰墙梁,应与相关专业商量调整;
(2)若洞口需放置一些较轻的设备(例如轴流风机),应增加节点做法。

相关文档
最新文档