【苏科版】2014届中考数学第一轮夯实基础《第13讲 反比例函数》
2014年中考数学一轮复习讲义:反比例函数

2014年中考数学一轮复习讲义:反比例函数【考纲要求】1.理解反比例函数的概念,能根据已知条件确定反比例函数的解析式. 2.会画反比例函数图象,根据图象和解析式探索并理解其基本性质. 3.能用反比例函数解决简单实际问题. 【命题趋势】反比例函数是中考命题热点之一,主要考查反比例函数的图象、性质及解析式的确定,也经常与一次函数、二次函数及几何图形等知识综合考查.考查形式以选择题、填空题为主.【知识梳理】 一、反比例函数的概念 一般地,函数xky =(k 是常数,k ≠0)叫做反比例函数。
反比例函数的解析式也可以写成1-=kx y 的形式。
自变量x 的取值范围是x ≠0的一切实数,函数的取值范围也是一切非零实数。
二、反比例函数的图像反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。
由于反比例函数中自变量x ≠0,函数y ≠0,所以,它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
三、反比例函数的性质 反比例函数 )0(≠=k xky k 的符号k>0k<0图像性质①x 的取值范围是x ≠0, y 的取值范围是y ≠0;②当k>0时,函数图像的两个分支分别 在第一、三象限。
在每个象限内,y 随x 的增大而减小。
①x 的取值范围是x ≠0, y 的取值范围是y ≠0;②当k<0时,函数图像的两个分支分别 在第二、四象限。
在每个象限内,y 随x 的增大而增大。
四、反比例函数解析式的确定确定反比例函数解析式的方法仍是待定系数法。
由于在反比例函数xky =中,只有一个待定系数k ,因此只需要一对对应值或图像上的一个点的坐标,即可求出k 的值,从而确定其解析式。
五、反比例函数中反比例系数的几何意义 过反比例函数)0(≠=k xky 图像上任一点P 作x 轴、y 轴的垂线PM ,PN ,则所得的矩形PMON 的面积S=PM ∙PN=xy x y =∙。
中考数学第一轮夯实基础《第13讲 反比例函数》(课本回归+考点聚焦+典例题解析)课件 苏科版

第十九页,共21页。
第13讲┃ 回归(huíguī)教材
方法二(特殊值法):
∵k<0,不妨设 k=-2, ∵图象过 A(-2,y1)、B(1,y2)和 C(2,y3), ∴有 y1=- -22=1,y2=-12=-2, y3=-22=-1,所以 y1>y3>y2.
×230=430.
第十八页,共21页。
第13讲┃ 回归(huíguī)教材
回归教材
比较反比例函数值的大小方法多 教材母题(mǔ tí) 江苏科技版八下P70T2 已知k 点A(-2,y1)、B(1,y2)和C(2,y3)都在反比例函数 y=x (k<0)的图象上,那么y1、y2和y3的大小关系如何?
又 ∴∵ y1<点y(2- ,1∴,yy1-1)y和2<-0,14,即y2y1均-位y2 于的第值二是象负限数, ,-故1选<A-. 14,
第十页,共21页。
比较反比例函数值的大小,在同一个象限内根据反 比例函数的性质比较,在不同象限内,不能按其性质比 较,函数值的大小只能(zhī nénɡ)根据特征确定.
<0,所以 y2>y1>y3,故选 C.
第二十一页,共21页。
k 的 反比例函数图象上的点(x,y)具有两数之积(xy=k)为常数
几何 这一特点,即过双曲线上任意一点,向两坐标轴作垂线,两
意义
条垂线与坐标轴所围成的矩形的面积为常数|k|
推导 如图,过双曲线上任一点 P 作 x 轴,y 轴的垂线段 PM、PN, 所得的矩形 PMON 的面积 S=PM·PN=|y|·|x|=|xy|. ∵y=kx,∴xy=k,∴S=|k|
中考数学专题复习讲座第十三讲反比例函数

中考数学专题复习第十三讲反比例函数【基础知识回顾】一、反比例函数的概念:一般地:互数y (k是常数,k≠0)叫做反比例函数【名师提醒:1、在反比例函数关系式中:k≠0、x≠0、y≠02、反比例函数的另一种表达式为y= (k是常数,k≠0)3、反比例函数解析式可写成xy= k(k≠0)它表明反比例函数中自变量x 与其对应函数值y之积,总等于】二、反比例函数的同象和性质:1、反比例函数y=kx(k≠0)的同象是它有两个分支,关于对称2、反比例函数y=kx(k≠0)当k>0时它的同象位于象限,在每一个象限内y随x的增大而当k<0时,它的同象位于象限,在每一个象限内,y随x的增大而【名师提醒:1、在反比例函数y=kx中,因为x≠0,y≠0所以双曲线与坐标轴无限接近,但永不与x轴y轴2、在反比例函数y随x的变化情况中一定注明在每一个象限内】3、反比例函数中比例系数k的几何意义:反曲线y=kx(k≠0)上任意一点向两坐标轴作垂线→两线与坐标轴围成的形面积,即如图: AOBP=S△AOP=【名师提醒:k的几何意义往常与前边提示中所谈到的xy=k联系起来理解和应用】三、反比例函数解析式的确定因为反比例函数y=kx(k≠0)中只有一个被定系数所以求反比例函数关系式只需知道一组对应的x、y值或一个点的坐标即可,步骤同一次函数解析式的求法一、反比例函数的应用二、解反比例函数的实际问题时,先确定函数解析式,再利用同象找出解决问题的方案,这里要特别注意自变量的【重点考点例析】考点一:反比例函数的同象和性质例1 (2012•张家界)当a≠0时,函数y=ax+1与函数ayx在同一坐标系中的图象可能是()A. B.C. D.思路分析:分a>0和a<0两种情况讨论,分析出两函数图象所在象限,再在四个选项中找到正确图象.解:当a>0时,y=ax+1过一、二、三象限,y=ayx=过一、三象限;当a<0时,y=ax+1过一、二、四象限,y=ayx=过二、四象限;故选C.点评:本题考查了一次函数与二次函数的图象和性质,解题的关键是明确在同一a值的前提下图象能共存.例2 (2012•佳木斯)在平面直角坐标系中,反比例函数22a ayx-+ =图象的两个分支分别在()A.第一、三象限 B.第二、四象限C.第一、二象限 D.第三、四象限思路分析:把a2-a+2配方并根据非负数的性质判断出是恒大于0的代数式,再根据反比例函数的性质解答.解:a2-a+2,=a2-a+14-14+2,=(a-12)2+7 4 ,∵(a-12)2≥0,∴(a-12)2+7 4 >0,∴反比例函数图象的两个分支分别位于第一、三象限.故选A.点评:本题考查了反比例函数图象的性质,先判断出a2-a+2的正负情况是解题的关键,对于反比例函数kyx=(k≠0):(1)k>0,反比例函数图象在一、三象限;(2)k<0,反比例函数图象在第二、四象限内.例3 (2012•台州)点(-1,y1),(2,y2),(3,y3)均在函数6yx=的图象上,则y1,y2,y3的大小关系是()A.y3<y2<y1 B.y2<y3<y1 C.y1<y2<y3 D.y1<y3<y2思路分析:先根据反比例函数的解析式判断出此函数图象所在的象限,再根据各点的坐标判断出各点所在的象限,根据函数图象在各象限内点的坐标特点解答.解:∵函数6yx=中k=6>0,∴此函数的图象在一、三象限,且在每一象限内y随x的增大而减小,∵-1<0,∴点(-1,y1)在第三象限,∴y1<0,∵0<2<3,∴(2,y2),(3,y3)在第一象限,∴y2>y3>0,∴y2>y3>y1.故选D.点评:本题考查的是反比例函数图象上点的坐标特点,根据题意判断出函数图象所在象限是解答此题的关键.对应训练1.(2012•毕节地区)一次函数y=x+m(m≠0)与反比例函数myx=的图象在同一平面直角坐标系中是()A. B. C. D.1.C2.(2012•内江)函数1y xx=的图象在()A.第一象限 B.第一、三象限 C.第二象限 D.第二、四象限2.A2x中x≥0,1x中x≠0,故x>0,此时y>0,则函数在第一象限.故选A.3.(2012•佛山)若A(x1,y1)和B(x2,y2)在反比例函数2yx=的图象上,且0<x1<x2,则y1与y2的大小关系是y1 y2.3.>考点二:反比例函数解析式的确定例4 (2012•哈尔滨)如果反比例函数1kyx-=的图象经过点(-1,-2),则k的值是()A.2 B.-2 C.-3 D.3思路分析:根据反比例函数图象上点的坐标特征,将(-1,-2)代入已知反比例函数的解析式,列出关于系数k的方程,通过解方程即可求得k的值.解答:解:根据题意,得-2=11k--,即2=k-1,解得k=3.故选D.点评:此题考查的是用待定系数法求反比例函数的解析式,是中学阶段的重点.解答此题时,借用了“反比例函数图象上点的坐标特征”这一知识点.对应训练4.(2012•广元)已知关于x的方程(x+1)2+(x-b)2=2有唯一的实数解,且反比例函数1b yx+ =的图象在每个象限内y随x的增大而增大,那么反比例函数的关系式为()A.3yx=- B.1yx= C.2yx= D.2yx=-4.D4.分析:关于x的方程(x+1)2+(x-b)2=2有唯一的实数解,则判别式等于0,据此即可求得b的值,然后根据反比例函数1byx+=的图象在每个象限内y随x的增大而增大,则比例系数1+b<0,则b的值可以确定,从而确定函数的解析式.解:关于x的方程(x+1)2+(x-b)2=2化成一般形式是:2x2+(2-2b)x+(b2-1)=0,△=(2-2b)2-8(b2-1)=-4(b+3)(b-1)=0,解得:b=-3或1.∵反比例函数1byx+=的图象在每个象限内y随x的增大而增大,∴1+b<0 ∴b<-1,∴b=-3.则反比例函数的解析式是:y=13yx-=,即2yx=-.故选D.考点三:反比例函数k的几何意义例5 (2012•铁岭)如图,点A在双曲线4yx=上,点B在双曲线kyx=(k≠0)上,AB∥x轴,分别过点A、B向x轴作垂线,垂足分别为D、C,若矩形ABCD的面积是8,则k的值为()A.12 B.10 C.8 D.6思路分析:先根据反比例函数的图象在第一象限判断出k的符号,再延长线段BA,交y轴于点E,由于AB∥x轴,所以AE⊥y轴,故四边形AEOD是矩形,由于点A在双曲线4yx=上,所以S矩形AEOD=4,同理可得S矩形OCBE=k,由S矩形ABCD=S矩形OCBE-S矩形AEOD即可得出k的值.解:∵双曲线kyx=(k≠0)上在第一象限,∴k>0,延长线段BA,交y轴于点E,∵AB∥x轴,∴AE⊥y轴,∴四边形AEOD是矩形,∵点A在双曲线4yx=上,∴S矩形AEOD=4,同理S矩形OCBE=k,∵S矩形ABCD=S矩形OCBE-S矩形AEOD=k-4=8,∴k=12.故选A.点评:本题考查的是反比例函数系数k的几何意义,即反比例函数kyx=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.对应训练5.(2012•株洲)如图,直线x=t(t>0)与反比例函数21,y yx x-==的图象分别交于B、C两点,A为y轴上的任意一点,则△ABC的面积为()A.3 B.3 2 tC.32D.不能确定5.C5.解:把x=t分别代入21,y yx x-==,得21,y yt t==-,所以B(t,2t)、C(t,1t-),所以BC=2t-(1t-)=3t.∵A为y轴上的任意一点,∴点A到直线BC的距离为t,∴△ABC的面积=133 22tt⨯⨯=.故选C.考点四:反比例函数与一次函数的综合运用例6 (2012•岳阳)如图,一次函数y1=x+1的图象与反比例函数22yx=的图象交于A、B 两点,过点作AC⊥x轴于点C,过点B作BD⊥x轴于点D,连接AO、BO,下列说法正确的是()A.点A和点B关于原点对称B.当x<1时,y1>y2C.S△AOC=S△BODD.当x>0时,y1、y2都随x的增大而增大思路分析:求出两函数式组成的方程组的解,即可得出A、B的坐标,即可判断A;根据图象的特点即可判断B;根据A、B的坐标和三角形的面积公式求出另三角形的面积,即可判断C;根据图形的特点即可判断D.解:A、12y xyx=+⎧⎪⎨=⎪⎩①②,∵把①代入②得:x+1=2x,解得:x1=-2,x2=1,代入①得:y1=-1,y2=2,∴B(-2,-1),A(1,2),∴A、B不关于原点对称,故本选项错误;B、当-2<x<0或x>1时,y1>y2,故本选项错误;C、∵S△AOC=12×1×2=1,S△BOD=12×|-2|×|-1|=1,∴S△BOD=S△AOC,故本选项正确;D、当x>0时,y1随x的增大而增大,y2随x的增大而减小,故本选项错误;故选C.点评:本题考查了一次函数与反比例函数的交点问题的应用,主要考查学生观察图象的能力,能把图象的特点和语言有机结合起来是解此题的关键,题目比较典型,是一道具有一定代表性的题目.对应训练6.(2012•达州)一次函数y1=kx+b(k≠0)与反比例函数y2=mx(m≠0),在同一直角坐标系中的图象如图所示,若y1>y2,则x的取值范围是()A.-2<x<0或x>1 B.x<-2或0<x<1 C.x>1 D.-2<x<16.A6.解:由函数图象可知一次函数y1=kx+b与反比例函数y2=mx(m≠0)的交点坐标为(1,4),(-2,-2),由函数图象可知,当-2<x<0或x>1时,y1在y2的上方,∴当y1>y2时x的取值范围是-2<x<0或x>1.故选A.【聚焦山东中考】1.(2012•青岛)点A(x1,y1),B(x2,y2),C(x3,y3)都是反比例函数3yx-=的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y3<y1<y2 B.y1<y2<y3 C.y3<y2<y1 D.y2<y1<y31.A1.解:∵反比例函数y=-3 x 中,k=-3<0,∴此函数图象在二四象限,且在每一象限内y随x的增大而增大,∵x1<x2<0<x3,∴y3<0,y3<0<y1<y2,∴y3<y1<y2.故选A.2.(2012•菏泽)反比例函数2yx=的两个点(x1,y1)、(x2,y2),且x1>x2,则下式关系成立的是()A.y1>y2 B.y1<y2 C.y1=y2 D.不能确定2.D3.(2012•滨州)下列函数:①y=2x-1;②y=5x-;③y=x2+8x-2;④y=22x;⑤y=12x;⑥y=ax中,y是x的反比例函数的有(填序号)。
2014年中考数学专题(考点知识梳理+典例精析+巩固训练+考点训练)复习:第13讲 反比例函数

以点 B 的坐标为(2,-1).
考点知识梳理 中考典例精析 基础巩固训练 考点训练
首页 上一页 下一页
例 2 (2012·河南)如图,点 A,B 在反
比例函数 y=kx(k>0,x>0)的图象上,过点 A,B 作 x 轴的垂线,垂足分别为 M,N, 延长线段 AB 交 x 轴于点 C,若 OM=MN =NC,△AOC 的面积为 6,则 k 的值为 ____________.
第13讲 反比例函数
首页 上一页 下一页
zxxkw
考点知识梳理 中考典例精析 基础巩固训练 考点训练
首页 上一页 下一页
考点一反比例函数的定义
一般地,函数 y=
k x
(或写成 y=kx-1)(k 是常数,k≠0)
叫做反比例函数.
反比例函数解析式可以写成 xy=k(k≠0),它表明在反 比例函数中自变量 x 与其对应函数值 y 之积,总等于已知常
【点拨】本题考查确定反比例函数的系数 k.
【解答】因为 OM=MN=NC,所以 OM=13OC.因为 △AOC 的面积为 6,所以△AOM 的面积为 2,根据反比例函 数中系数 k 的几何意义可知 k=2S△AOM=4.
考点知识梳理 中考典例精析 基础巩固训练 考点训练
首页 上一页 下一页
例 3 (2012·天津)已知反比例函数 y=k-x 1(k 为常数, k≠1).
首页 上一页 下一页
【解答】(1)C 由近视眼镜的度数 y(度)与镜片焦距 x(m) 成反比例,可设近视眼镜的度数 y(度)与镜片焦距 x(m)之间 的函数关系式为 y=kx(k≠0),把(0.25,400)代入 y=kx即可求得 k=0.25×400=100,所以 y 与 x 的函数关系式为 y=10x0, 故选 C.
【大师特稿】中考数学一轮复习第13讲:反比例函数教案

第13讲:反比例函数一、复习目标1、理解反比例函数的意义,能根据已知条件确定反比例函数的解析式,能画出反比例函数的图象2、能够将反比例函数有关的实际应用题转化为函数问题二、课时安排1课时三、复习重难点1、反比例函数图象与性质2、反比例函数图象、性质的应用四、教学过程(一)知识梳理反比例函数的图象与性质·PN=|y|·|x|=(二)题型、技巧归纳考点1:反比例函数的概念技巧归纳:判断点是否在反比例函数图象上的方法有两种:一是口算选项中点的横坐标与纵坐标乘积是否都等于比例系数,二是将选项中点的坐标诸个代入反比例函数关系式,看能否使等式成立.考点2:反比例函数的图象与性质技巧归纳:1、比较反比例函数值的大小,在同一个象限内根据反比例函数的性质比较,在不同象限内,不能按其性质比较,函数值的大小只能根据特征确定.2、过反比例函数y =kx的图象上的某点向两坐标轴作垂线,两垂线与坐标轴围成的矩形的面积就等于|k |,故而常过图象上某点向坐标轴作一条或两条垂线,引出三角形或矩形的面积来解决问题.考点3反比例函数的应用技巧归纳:先根据双曲线上点C 的坐标求出m 的值,从而确定点C 的坐标,再将点C 的坐标代入一次函数关系式中确定n 的值,在求出两个函数关系式后结合条件可求出三角形的面积.过反比例函数y =k x的图象上的某点向两坐标轴作垂线,两垂线与坐标轴围成的矩形的面积就等于|k |,故而常过图象上某点向坐标轴作一条或两条垂线,引出三角形或矩形的面积来解决问题.(三)典例精讲例1 某反比例函数的图象经过(-1,6),则下列各点中,此函数图象也经过的点是( ) A .(-3,2) B .(3,2) C .(2,3) D .(6,1)[解析] 设反比例函数的关系式为y =kx,把点(-1,6)代入可求出k =-6,所以反比例函数的关系式为y =-6x,故此函数也经过点(-3,2),答案选A.例2在反比例函数y =k x (k <0)的图象上有两点()-1,y 1,⎝ ⎛⎭⎪⎫-14,y 2,则y 1-y 2的值是( ) A .负数 B .非正数C .正数D .不能确定 [解析] 反比例函数y =kx :当k <0时,该函数图象位于第二、四象限,且在每一象限内,y 随x 的增大而增大.又∵点(-1,y 1)和⎝ ⎛⎭⎪⎫-14,y 2均位于第二象限,-1<-14, ∴y 1<y 2,∴y 1-y 2<0,即y 1-y 2的值是负数,故选A.例3 如图点A ,B 在反比例函数y = (k>0,x>0)的图象上,过点A ,B 作x 轴的垂线,垂足分别为M ,N ,延长线段AB 交x 轴于点C ,若OM =MN =NC ,△AOC 的面积为6,则k 的值为________.[解析] ∵S △AOC =6,OM =MN =NC =13OC ,∴S △OAC =12×OC×AM,S △AOM =12×OM×AM=13 S △OAC =2=12|k|.又∵反比例函数的图象在第一象限,k >0,则k =4.例4 如图13-2,在平面直角坐标系xOy 中,直线y =2x +n 与x 轴、y 轴分别交于点A 、B ,与双曲线y =4y x=在第一象限内交于点C (1,m ). (1)求m 和n 的值;(2)过x 轴上的点D (3,0)作平行于y 轴的直线l ,分别与直线AB 和双曲线y = 交于点P 、Q ,求△APQ 的面积.解:(1) ∵点C(1,m)在双曲线y =4x上,∴m =4,将点C(1,4)代入y =2x +n 中,得n =2;(2)在y =2x +2中,令y =0,得x =-1,即A(-1,0).将x =3代入y =2x +2和y =4x,得点P(3,8),Q ⎝ ⎛⎭⎪⎫3,43,∴PQ =8-43=203.又∵AD =3-(-1)=4,∴△APQ 的面积=12×4×203=403. (四)归纳小结本部分内容要求熟练掌握反比例函数的求法,能画出反比例函数的图象,能够将反比例函数有关的实际应用题转化为函数问题(五)随堂检测1、已知点A(-2,y 1)、B(1,y 2)和C(2,y 3)都在反比例函数ky x= (k<0)的图象上,那么y 1、y 2和y 3的大小关系如何?2、已知反比例函数7y x=-图象上三个点的坐标分别是A(-2,y 1)、B(-1,y 2)、C(2,y 3),能正确反映y 1、y 2、y 3的大小关系的是( )A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 2>y 1>y 3D .y 2>y 3>y 13、已知反比例函数y=(k 为常数,k≠0)的图象经过点A (2,3). (Ⅰ)求这个函数的解析式;(Ⅱ)判断点B (﹣1,6),C (3,2)是否在这个函数的图象上,并说明理由; (Ⅲ)当﹣3<x <﹣1时,求y 的取值范围.4、如图,在平面直角坐标系xOy 中,正比例函数y=kx 的图象与反比例函数y=的图象有一个交点A (m ,2).(1)求m 的值;(2)求正比例函数y=kx 的解析式;(3)试判断点B(2,3)是否在正比例函数图象上,并说明理由.五、板书设计反比例函数六、作业布置反比例函数课时作业七、教学反思借助多媒体形式,使同学们能直观感受本模块内容,以促进学生对所学知识的充分理解与掌握。
中考总复习数学13-第一部分 第13讲 反比例函数及其应用

返回思维导图
第13讲 反比例函数及其应用— 考点梳理
返回栏目导航
续表
在每个象限内,y随x的增大
增减性
而⑤ 减小
对称性
是轴对称图形,对称轴为直线y=⑦
⑧ 原点O
在每个象限内,y随x的增大
而⑥增大
±x
; 是中心对称图形,对称中心是
图象由分别位于两个象限的双曲线组成,图象无限接近坐标轴,但不与
图象特征
坐标轴相交.
第13讲 反比例函数及其应用— 考点梳理
返回思维导图
返回栏目导航
考点 4 反比例函数的应用
1.判断同一坐标系中反比例函数图象和一次函数图象的方法
(假设法)假设反比例函数正确,即可确定 k的取值范围,再根据 k 的取值范围
确定一次函数图象,无矛盾,则正确.
2.已知两个函数图象,求交点坐标
(1)求一次函数图象与反比例函数图象的交点,将两个函数解析式联立方程组
位置关系,依据图象在上方的函数值总比图象在下方的函数值大 ,在各区域
内找对应的x的取值范围.
4.求图形面积
(1)当图形有一边在坐标轴上时,通常将坐标
轴上的边作为底边,再利用点的坐标求出底边上的高,最后用面积公式求解.
(2)当图形三边都不在坐标轴上时,一般用“割补法”.
第13讲 反比例函数及其应用— 考点梳理
返回思维导图
2.与反比例函数中k的几何意义有关的面积计算
S△AOP=⑩
S△APP‘=
|k|
2|k|
S△OBP= |k|
S△ABC=
|k|
S矩形OAPB=|k|
S▱ABCD=
|k|
返回栏目导航
中考数学复习 《反比例函数》课件 苏教版

k = xy = x ⋅ y = PN ⋅ PM = S矩形PMON
M
O
x
k 设P (m, n)是双曲线y = (k ≠ 0)上任意一点, x 过P分别作x轴, y轴的垂线, 垂足分别为A, B,
面积性质( 求矩形OAPB的面积。 面积性质(一) 解: OA =| m | ,AP =| n | (如图所示); Q ∴ S矩形OAPB = OA ⋅ AP =| m | • | n |=| k | .
21.2.近视眼镜的度数 度与镜片焦距 米成 近视眼镜的度数y度与镜片焦距 近视眼镜的度数 度与镜片焦距x米成 反比例,已知500度近视眼镜片的焦距为 反比例,已知500度近视眼镜片的焦距为 500 0.2米 则眼镜度数 度与镜片焦距 度与镜片焦距x之间 0.2米,则眼镜度数y度与镜片焦距 之间 . 的函数关系式是 21.3.已知 与x+2成反比例,且当 =2时,y=3, .已知y与 + 成反比例,且当x= = 当x=-1时y= = = 。 12 待定系数法
2 2 3 3
4
x
类型四
2 y 2= 如图一次函数y 21.9. 如图一次函数 1=x-1与反比例函数 - 的图像交于点A( 的图像交于点 (2,1),B(-1,-2), ), ( 则使y 则使 1 >y2的x的取值范围是 ( B ) 的取值范围是 • x> 2 x> B. x>2 或-1<x<0 > < C. -1<x<2 < <-1 D. x>2 或x<-1 > <-
y 解:作 AE ⊥ y 轴于E ∵ S△ AOD = 4,OD = 2 1 E A OD • AE = 4 ∴ 2 C B O x ∴AE=4 D ∵ AB ⊥ OB,C为的OB中点, ∴ ∠DOC = ∠ABC = 90°,OC = BC,∠OCD = ∠BCA ∴ Rt△DOC ≌ Rt△ ABC ∴ AB = OD = 2 k ∴ A(4,2) 8 将A(4,2)代入 y1 = x 中,得k=8 ∴ y1 = x 将A(4,2)和D(0,-2)代入 y2 = ax + b, 解得:a=1,b=-2 ∴ y2 = x − 2
【初数】中考一轮复习课程(共15讲)_第05讲_反比例函数

一、反比例函数的概念一、 反比例函数的定义函数ky x=(k 为常数,0k ≠)叫做反比例函数,其中k 叫做比例系数,x 是自变量,y 是函数,自变量x 的取值范围是不等于0的一切实数.二、反比例函数的图象和性质 二、 反比例函数的图象反比例函数ky x=(k 为常数,0k ≠)的图象由两条曲线组成,每条曲线随着x 的不断增大(或减小)越来越接近坐标轴,反比例函数的图象属于双曲线.反比例函数k y x =与ky x=-(0k ≠)的图象关于x 轴对称,也关于y 轴对称.三、 反比例函数图象的性质反比例函数ky x=(k 为常数,0k ≠)的图象是双曲线; 当0k >时,函数图象的两个分支分别位于第一、三象限内,它们关于原点对称,在每一个象限内,y 随x 的增大而减小;当0k <时,函数图象的两个分支分别位于第二、四象限内,它们关于原点对称,在每一个象限内,y 随x 的增大而增大. 三、反比例函数综合应用 反比例函数与方程、不等式综合 如图双曲线与直线相交,则方程12k k x b x =+的解为交点的横坐标12x x 、;不等式12kk x b x+>的解为120x x x x ><<或.反比例函数知识点四、反比例函数实际应用把实际问题抽象成反比例函数的问题来解决.一、 反比例函数的图像和性质1、下面的函数是反比例函数的是() A .31y x =+ B .22y x x =+ C .2xy = D .2y x=【答案】 D【解析】该题考查的是反比例函数定义. 反比例函数形如()0ky k x=≠, 本题中,A 为一次函数;B 为二次函数;C 为一次函数;D 为反比例函数,故本题选D .2、下列四个点中,在反比例函数2y x=-上的点是()A .()1,1k 1x例题B .()1,2-C .()1,2--D .()1,2【答案】 B 【解析】该题考查的是反比例函数的性质. 将选项中各个点坐标代入函数中, 若等式成立,则点在反比例函数上, 经验证,只有()1,2-点满足, 故该题答案为B .3、(2014初三上期末大兴区)若反比例函数1k y x-=的图象在各自象限内,y 随x 的增大而减小,则k 的值可能是() A .4- B .5 C .0 D .2-【答案】 B【解析】该题考察的是反比例函数的性质. 因为反比例函数1k y x-=的图象在各自象限内,y 随x 的增大而减小, 所以10k ->,解得1k >,只有B 选项符合,故答案是B .4、(2012初二下期末西城区北区)如图,矩形ABCD 的边分别与两坐标轴平行,对角线AC 经过坐标原点,点D 在反比例函数2510k k y x-+=(0x >)的图象上.若点B 的坐标D .1-或6【答案】 D【解析】该题考查的是反比例函数的性质. ∵点B 的坐标为()4,4--, ∴点D 坐标为()4,4,将点D 坐标代入反比例函数中, 251016k k -+=,解得16k =,21k =-, 故该题答案为D .5、(2010初二下期中101中学)已知()111,P x y ,()222,P x y ,()333,P x y 是反比例函数2y x=的图象上的三点,且1230x x x <<<,则1y 、2y 、3y 的大小关系是() A .321y y y << B .123y y y << C .213y y y << D .231y y y <<【答案】 C【解析】该题考察的是反比例的单调性.∵反比例函数2y x=中,20>, ∴此函数的图象在一、三象限,在每一象限内y 随x 的增大而减小,∵()111,P x y ,()222,P x y ,()333,P x y 是反比例函数2y x=的图象上的三点,且120x x <<, ∴1P ,2P 在第三象限且120y y <<, 又∵30x <, ∴213y y y <<, 故答案是C .6、(2014北京中考)如图,在平面直角坐标系xOy 中,正方形OABC 的边长为2.写出一个函数()0ky k x=≠,使它的图象与正方形OABC 有公共点,这个函数的表达式为________【答案】 4y x=【解析】该题考查的是反比例函数解析式求法.由题可知()22B ,∵反比例函数的图象与正方形OABC 有公共点∴将()22B ,代入ky x=,解得4k =.7、(2014中考怀柔二模)如图,四边形ABCD 为菱形,已知()0,4A ,()3,0B -. (1)求点D 的坐标;(2)求经过点C 的反比例函数表达式.【答案】(1)()1,0- (2) 15y x=【解析】该题考查的是反比例函数综合.(1)根据题意得4AO =,3BO =,90AOB ∠=︒,∴5AB =. …………………1分 ∵四边形ABCD 为菱形, ∴5AD AB ==,∴1OD AD AO =-=, ∵点D 在y 轴负半轴,∴点D 的坐标为()1,0-. ………………………………3分 (2)设反比例函数表达式为()0ky k x=≠. ∵5BC AC ==,3OB =,∴点C 的坐标为()3,5-.………………………………4分 ∵反比例函数表达式ky x=经过点C , ∴反比例函数表达式为15y x=.………………………..5分8、(2014初二下期末北达资源中学)已知()4,A a ()2,4B --,是一次函数y kx b =+的图象与反比例函数my x=的图象的交点. (1)求反比例函数和一次函数的解析式; (2)求△AOB 的面积;(3)结合图象,直接写出不等式mkx b x+≥的解集.【答案】 (1)8y x=;2y x =-(2)6(3)20x -≤<或4x ≥【解析】该题考查的是一次函数与反比例函数综合. (1)将()2,4B --代入my x=中得8m = 反比例函数的解析式为8y x= 将()4,A a 代入8y x=中得2a = 一次函数y kx b =+过()2,4B --,()4,2A 得42k b -=-+,24k b =+ 得1k =,2b =-所以一次函数的解析式为2y x =-(2)直线2y x =-同x 轴的交点()2,0,y 轴的交点()0,2- 1112222226222S AOB =⨯⨯+⨯⨯+⨯⨯=(3)由图象可知,mkx b x+≥的解集是20x -≤<或4x ≥9、(2013初二下期末东城区南区)下图是反比例函数1k y x =和2ky x=(12k k <)在第一象限的图象,直线AB x ∥轴,并分别交两条曲线于A 、B 两点,若2AOB S ∆=,则21k k -的值为___________【答案】4【解析】该题考查的是反比例函数. 设A ,B 的纵坐标为y ,∴1A kx y =,2B k x y =,∴21k k AB y y=-, ∴122△AOB S AB y =⋅=, ∴21122kk y y y ⎛⎫-= ⎪⎝⎭,解得214k k -=.10、(2012初三上期末门头沟)如图,已知反比例函数ky x=与一次函数2y x =-+的图象交于A 、B 两点,且点A 的横坐标是2-. (1)求出反比例函数的解析式; (2)求AOB ∆的面积.【答案】(1)8y x=-(2)6【解析】该题考查的是反比例函数 (1)由题意,得,()224--+=A 点坐标()2,4-…………………………………………..1分 42k=-,8k =-反比例函数解析式为8y x=- ………………………………..2分(2)由题意,得B 点坐标()4,2-………………………………3分一次函数2y x =-+与x 轴的交点坐标()2,0M ,与y 轴的交点()0,2N ………4分 6AOB OMB OMN AON S S S S =++== …………………5分11、点P 在反比例函数1y x=(0x >)的图象上,且横坐标为2.若将点P 先向右平移两个单位,再向上平移一个单位后得到点P '.则在第一象限内,经过点P '的反比例函数图象的解析式是()A .5(0)y x x =->B .5(0)y x x =>C .6(0)y x x=->D .6(0)y x x=>【答案】 D【解析】由题意得12,2P ⎛⎫ ⎪⎝⎭,平移后得到3'4,2P ⎛⎫⎪⎝⎭,设经过点P '的反比例函数的解析式为k y x =(0k >),则3462k =⨯=,所以6y x=(0x >),故答案为D 选项.12、如图,将一块直角三角板OAB 放在平面直角坐标系中,(2,0)B ,o 60AOB ∠=,点A 在第一象限,过点A 的双曲线为ky x=.在x 轴上取一点P ,过点P 作直线OA 的垂线l ,以直线l 为对称轴,线段OB 经轴对称变换后的像是O B ''.当点O '与点A 重合时,点P 的坐标是_______.【答案】()4,0【解析】点'O 与点A 重合时,直线l 垂直平分OA ,如图,连接PA ,则PA PO =,因为()2,0B ,60AOB ︒∠=,所以2OB =,AB =设(),0P x ,则P A P O x ==,2PB x =-,在Rt P A B ∆中,由勾股定理可得()(2222x x =-+,解得4x =,所以()4,0P .二、 反比例函数综合13、(2014中考大兴一模)在平面直角坐标系xOy 中,直线l 与直线2y x =-关于y 轴对称,直线l 与反比例函数xky =的图象的一个交点为()2,A m . (1) 试确定反比例函数的表达式;(2) 若过点A 的直线与x 轴交于点B ,且45ABO ∠=︒,直接写出点B 的坐标.【答案】 (1)8y x=(2)()6,0或()2,0-【解析】该题考查的是反比例函数与一次函数的交点问题. 由题意,直线l 与直线2y x =-关于y 轴对称,∴直线l 的解析式为2y x = …………………………………………………1分 ∵点()2,A m 在直线l 上, ∴224m =⨯=.∴点A 的坐标为()2,4………………………………………………………2分 又∵点()2,4A 在反比例函数ky x=的图象上, ∴42k =, ∴8k =∴反比例函数的解析式为8y x=……………………………………………3分 (2)∵45ABO ∠=︒∴A 的纵坐标值等于A 点、B 点横坐标差的绝对值, ∴B 点横坐标246x =+=或242x =-=- 又∵B 点在x 轴上,故B 点纵坐标为0∴B 点的坐标为()6,0或()2,0-…………………………………………5分14、(2013中考海淀一模)如图,在平面直角坐标系xOy 中,反比例函数2y x=-的图 象与一次函数y kx k =-的图象的一个交点为()1,A n -.(1)求这个一次函数的解析式;(2)若P 是x 轴上一点,且满足45APO ∠=︒,直接写出点P 的坐标.【答案】(1)1y x =-+(2)()3,0-或()1,0【解析】该题考查的是反比例函数和一次函数综合. (1)∵点()1,A n -在反比例函数2y x=-的图象上, ∴2n = ………………………1分 ∴点A 的坐标为()1,2-∵点A 在一次函数y kx k =-的图象上,∴2k k =--∴1k =-………………………2分∴一次函数的解析式为1y x =-+………………………3分 (2)点P 的坐标为()3,0-或()1,0………………………5分 (写对一个给1分)15、(2013中考海淀二模)如图,在平面直角坐标系xOy 中,反比例函数ky x=的图象与一次函数2y x =+的图象的一个交点为(),1A m -.(1)求反比例函数的解析式;(2)设一次函数2y x =+的图象与轴交于点B ,若P 是y 轴上一点,且满足PAB ∆ 的面积是3,直接写出点P 的坐标.【答案】 (1)3y x=(2)()0,0或()0,4【解析】该题考查的是一次函数和反比例函数的综合. (1)∵点(),1A m -在一次函数2y x =+的图象上,∴3m =- -------------------------1分 ∴A 点的坐标为()3,1-- ∵点()3,1A --在反比例函数ky x=的图象上, ∴3k =-------------------------2分 ∴反比例函数的解析式为3y x=.-------------------------3分 (2)点P 的坐标为()0,0或()0,4.-------------------------5分 (写对一个给1分)16、(2012中考东城二模)如图,在平面直角坐标系xOy 中,直线AB 与反比例函数k y x=的图像交于点()3,4A -,AC x ⊥轴于点C . (1)求此反比例函数的解析式;(2)当直线AB 绕着点A 转动时,与x 轴的交点为(),0B a , 并与反比例函数ky x=图象的另一支还有一个交点的情形下,求ABC ∆的面积S 与a 之间的y函数关系式,并写出自变量a 的取值范围.【答案】 (1)12y x=-(2)()263S a a =+>-【解析】该题考查的是一次函数和反比例函数的综合题. (1)∵43k=-∴12k =- ∴12y x=-……2分 (2)∵()33BC a a =--=+,4AC = ∴()1432ACB S a ∆=⨯⨯+……4分()2 6 3a a =+>-……5分17、(2012中考朝阳二模)如图,点()3,0P -是反比例函数my x=的图象上的一点. (1)求该反比例函数的解析式; (2)设直线y kx =与双曲线m y x =的两个交点分别为P 和P′,当mkx x<时,直接写出x 的取值范围.【答案】(1)3y x=-(2)3x <-或03x <<该题考查的是反比例函数和一次函数的综合.(1)∵点()3,1P -在反比例函数ky x=的图象上,由13k =-得3k =-.∴反比例函数的解析式为3y x=-. …………………………………………3分(2)3x <-或03x <<. …………………………………………………………5分18、(2014中考石景山一模)如图,一次函数12y kx =+的图象与x 轴交于点()2,0B -,与函数()20my x x=>的图象交于点()1,A a . (1)求k 和m 的值; (2)将函数()20my x x=>的图象沿y 轴向下平移3个单位后交x 轴于点C .若点D 是平移后函数图象上一点,且△BCD 的面积是3,直接写出点D 的坐标.【答案】(1)3m =(2)3,25⎛⎫⎪⎝⎭或()3,2-【解析】该题考查的是一次函数与反比例函数. (1)根据题意,将点代入12y kx =+, ∴022k =-+.∴1k = ∴()1,3A 将其代入2my x=,可得3m =. (2)函数()230y x x =>的图象沿y 轴向下平移3个单位后解析式为()330y x x=->, 与交x 轴于点C ,令0y =代入上解析式中得1x =.∴C 点坐标为()1,0.∵()2,0B -,∴3BC =.∵△BCD 的面积是3,∴D 到x 轴的距离为2.当点D 在x 轴上方时,2y =,则横坐标为35x =,故坐标为3,25⎛⎫⎪⎝⎭当点D 在x 轴下方时,2y =-,则横坐标为3x =,故坐标为()3,2-19、(2014中考西城二模)经过点()1,1的直线l :()2 0y kx k =+≠与反比例函数1G :()10my m x=≠的图象交于点()1,A a -,(),1B b -,与y 轴交于点D . (1)求直线l 对应的函数表达式及反比例函数G 1的表达式;(2)反比例函数G 2:()2 0ty t x=≠,①若点E 在第一象限内,且在反比例函数G 2的图象上,若EA EB =,且△AEB 的面积为8,求点E 的坐标及t 值;②反比例函数G 2的图象与直线l 有两个公共点M ,N (点M 在点N 的左侧),若DM DN +<t 的取值范围.【答案】(1)2y x =-+;3y x=-(2)()3,3E ;504t -<<或01t <<【解析】该题考查的是一次函数和反比例函数.(1)∵直线l : 2 (0)y kx k =+≠经过()1,1-,∴1k =-,∴直线l 对应的函数表达式2y x =-+. 1分 ∵直线l 与反比例函数G 1:1 (0)my m x=≠的图象交于点(1,)A a -,(),1B b -, ∴3a b ==.∴(1,3)A -,()3,1B - ∴3m =-.∴反比例函数G 1函数表达式为3y x=-. ······················································· 2分(2)∵EA EB =,(1,3)A -,()3,1B -, ∴点E 在直线y x =上.∵△AEB 的面积为8,AB =,∴EH =∴△AEB 是等腰直角三角形.∴()3,3E 5分 ②分两种情况:(ⅰ)当0t >时,则01t <<; 6分(ⅱ)当0t <时,则504t -<<.综上,当504t -<<或01t <<时,反比例函数2G 的图象与直线l 有两个公共点M ,N ,且DM DN +< 7分20、(2013初二下期末东城区南区)在直角坐标平面内,反比例函数my x=的图象经过点()1,4A 、()B a b ,过点A 作x 轴垂线,垂足为C ,过点B 作y 轴垂线,垂足为D(1)求反比例函数的解析式;为顶点的四边形是等腰梯形,点B 的坐标是______; (3)ABD ∆的面积为4,求点B 的坐标。
苏科版中考第一轮复习教学习型教学案《反比例函数》

苏科版中考第一轮复习教学案《反比例函数》本资料为woRD文档,请点击下载地址下载全文下载地址www.5y 新海实验中学九年级(教)学案课题课时16反比例函数备课时间课型复习主备人审核人考点要求:.理解反比例函数的概念,领会反比例函数的意义;2.能作出反比例函数的图像,并掌握反比例函数的性质;3.能从函数图像中获取相关信息、能利用反比例函数的性质将实际问题转化为数学问题(建立数学模型),探究问题中的数量关系,进而解决实际问题,提高运用数学知识解决实际问题的能力.一、基础知识:.下列函数中,y与x成反比例函数关系的是()A、B、c、D、2.若函数的图象过点(3,-7),则该反比例函数解析式是.3.已知反比例函数,当时,其图象的两个分支在第二、四象限内;当时,其图象在每个象限内随的增大而减小。
4.请写出一个图象在第一、三象限的反比例函数关系式.二、精讲点拨:5.如图是一个反比例函数图像的一部分,点A(1,10),B(10,1),是它的端点。
(1)求此函数的解析式,并写出自变量x的取值范围;(2)请你举出一个能用本题的函数关系描述的生活实例。
6.如图1,若边长为1正方形oABc的顶点B在函数()的图象上,则反比例函数关系式是.变式1:如图2,直线y=mx与双曲线y=交于A、B两点,过点A作Am⊥x轴,垂足为m,连结Bm,若=2,则k的值是变式2:如图3,若正方形oABc的顶点B和正方形ADEF 的顶点E都在函数()的图象上,则点E的坐标是(,).巩固与练习1.若点(2,-3)在反比例函数的图象上,则.2.反比例函数y=的图象在每个象限内的函数值y随自变量x的增大而增大,那么k的范围是.3.双曲线与直线相交于A、B两点,B点坐标为,则A 点坐标为.4.如图,点、是双曲线上的点,分别经过、两点向轴、轴作垂线段,若则.5.下列函数,,,中,随的增大而减小的有A.个B.个c.个D.个6.函数y=a与在同一坐标系中的大致图象是()7.如图,双曲线经过矩形QABc的边Bc的中点E,交AB于点D。
2014中考复习备战策略_数学PPT第13讲_反比例函数

(1)求上述反比例函数和一次函数的函数解析式; (2)设该直线与 x 轴、y 轴分别相交于 A,B 两点, 与反比例函数图象的另一个交点为 P,连接 OP,OQ, 求△OPQ 的面积.
1 k 解:(1)将点 ( , 8)代入 y= , 2 x k 1 得 8= , k= ×8= 4. 1 2 2 4 ∴反比例函数的解析式为 y= . x
∴四边形 AEOD 和 BEOC 都为矩形. 1 ∵点 A 在双曲线 y= 上, ∴ S 矩形 AEOD= 1. x 3 ∵点 B 在双曲线 y= 上, ∴ S 矩形 BEOC= 3. x ∴四边形 ABCD 的面积为 3- 1= 2.
6. 若反比例函数 y=(m-2)x 一、三象限内,则 m 的值是 3 .
k 1.反比例函数 y= (k 是常数, k≠ 0)的图象是双 x 曲线 . 因为 x≠ 0, k≠ 0,相应地 y 值也不能为 0,所以 反比例函数的图象无限接近 x 轴和 y 轴,但永不与 x 轴、 y 轴相交 .
2.反比例函数的图象和性质 k 反比例函数 y= (k 是常数, k≠ 0)的图象总是关于 x 原点对称的,它的位置和性质受 k 的符号的影响 .
考点五
反比例函数的应用
例 5 (2013· 益阳 )我市某蔬菜生产基地在气温较低 时, 用装有恒温系统的大棚栽培一种在自然光照且温度 为 18 ℃的条件下生长最快的新品种.下图是某天恒温 系统从开启到关闭及关闭后,大棚内温度 y(℃ )随时间 k x(时)变化的函数图象,其中 BC 段是双曲线 y= 的一 x 部分.请根据图中信息解答下列问题:
∴ S△ OPQ= S△ AOB- S△ AOQ- S△ BOP 1 1 1 = × 5× 5- × 5× 1- × 5× 1 2 2 2 15 = . 2
中考数学(苏科版全国通用)九级复习课件:第13课时反比例函数(共27张PPT)

规律:过双曲线上任意一点,向两坐标轴作垂线,一条垂线 与坐标轴,原点所围成的三角形的面积为常数12|k|.
考点聚焦
归类探究
在每个象限内, y随x增
大而减小
第二、 四象限 (x,y异号)
在每个象限内, y随x增
大而增大
考点聚焦
归类探究
初中数学 回归教材
第13课时┃ 反比例函数 (3)反比例函数比例系数 k 的几何意义:
图 13-1
考点聚焦
归类探究
初中数学 回归教材
第13课时┃ 反比例函数
推导:如图 13-1,过双曲线上任一点 P 作 x 轴、y 轴的垂 线 PM,PN,所得的矩形 PMON 的面积 S=PM·PN=|y|·|x|= |xy|.∵y=kx,∴xy=k,∴S=|k|.
解析
根据题意,得k=-2×3=-6,y=-
6 x
,因此
图像上的点横坐标与纵坐标之积应为-6.故选择D.
考点聚焦
归类探究
初中数学 回归教材
第13课时┃ 反比例函数
方法点析
利用待定系数法求出表达式,再判断点是否在反比例 函数图像上的方法有两种:一是口算选项中点的横坐标与 纵坐标乘积是否都等于比例系数,二是将选项中点的坐标 逐个代入反比例函数表达式,看能否使等式成立.
解析
因为函数y=
m-1 x
的图像在同一象限内,y随x
的增大而增大,所以m-1<0,m<1,本题答案不唯一,
只要m的取值小于1即可,如0,-2等.
考点聚焦
完整版苏教版初二数学反比例函数讲义

初二数学反比例函数讲义___日2014年__月上课时间:一、本节课知识点梳理1、反比例函数的概念2、反比例函数的图像及其性质3、反比例系数k的意义及其实际应用二、重难点点拨:反比例函数图像及其性质教学重点:反比例函数k的几何意义教学难点三、典型例题与分析知识点一:反比例函数概念k,(k为常数,k≠0)的形式,那么称y是x一般地,如果两个变量x、y之间关系可以表示成y=的反x-1比例函数。
反比例函数形式还可以写成:xy=k,y=kx(k≠0的常数)1、在下列函数中,反比例函数是()1k1y??y??y A B xy=0 C D x?12xx2m?1y?xm的值是(为反比例函数,则)2、如果函数101?1 D、、A 、 C 、 B2知识点二:反比例函数的图象与性质:双曲线的两个分支是断开的,研究函数的增减性时,要将两个分支分别讨论,不能一概而论。
1注意k) ,,y)、B(x(1)已知yy=(k<0)的图象上有两点A(x2211x yy大小关系是yx ①若x<x <0,则y与y大小关系是y y;若0<x<,则y 与22 2122211 1 11 y 与yy大小关系是②若x<0<x,则y221211。
y大小关系是与③若x<x,则y 2121k) )、B(x,(2)已知yy=)的图象上有两点(k > 0A(x,y2211x y y 大小关系是与yy y;若0<x<x,则y与y大小关系是0①若x<x <,则y 21 2221 22 1111 y大小关系是y<②若x0<x,则y 与y221211。
大小关系是③若x<x,则y 与y2211x?为对称轴的轴对称图y=注意2:反比例函数图象是以原点为对称中心的中心对称图形,是以直线y=x和形。
1??????yx【】x?x?x?0yyxx??y则例1,在反比例函数,,的图像上有三点,,。
若333122121x下列各式正确的是()y?yy??yyy?y?y?y?y?yy.. CA.. D B223332111213练习:_______x增大而增大的是1.下列函数中,y随31? D y=2x-1C y=A y=-x+1 B y=x2x4k _____象限。
中考数学一轮复习《 反比例函数》课件 (2)

x
(2)若点D(3,m)在双曲线上,求直线AD的解析式;
(3)计算△OAB的面积.
【分析】 (1)代入A点坐标即可求出反比例函数的解析式; (2)先求出D点坐标,再利用待定系数法求出直线的解析式; (3)过点B,C分别作y轴的垂线,利用反比例系数k的几何意 义求解. 【自主解答】 (1)将点A(2,3)代入解析式y= ,得k=6. (2)将D(3,m)代入反比例函数解析式y= , 得m= =2,
函数
的图象上,那么y1,y2,y3的大小关系是( )
A.y1>y2>y3
B.y3>y2>y1
C.y2>y1>y3
D.y1>y3>y2
【分析】 根据反比例函数的性质解答,注意点C与点A,B
不在同一象限.
【自主解答】 ∵
,∴在每一象限内,y随x的增大
而增大.∵点A,B在同一象限,且-2<-1,∴0<y1<y2.又
限内y随x的增大而增大.在利用性质比较大小时,一定注
意条件“同一象限内”,这是比较容易出错的地方.
练:链接变式训练4
3.(2016·潍坊)已知反比例函数y= k(k≠0)的图象经过 (3,-1),则当1<y<3时,自变量x的x 取值范围是_______
______. 4.(2016·呼和浩特)已知函数y=- ,当自变量的-取3<值x
在每一象限内,y 在每一象限内,y随 随x的增大而减_小____ x的增大而增_大____
正确理解反比例函数的增减性,注意自变量的取值范围, 不能笼统地说y随x的增大而增大(或减小),应指明在某一 象限内或自变量的取值范围内说明函数的增减变化情况.
3.反比例函数y= k (k为常数,k≠0)中k的几何意义
【2014中考复习方案】(苏科版)中考数学复习权威课件 :10 平面直角坐标系与函数(26张ppt,含13年试题)

考点聚焦
归类探究
第10课时┃归类探究
解 析 在平面直角坐标系中,点的左右平移,横坐标发生 变化而其纵坐标不变,由A(-4,0)平移至原点O(0,0),可知 线段AB向右平移了4个单位,故点B平移后的坐标是(0+4,2), 即(4,2).
方法点析
求一个图形旋转、平移后的对应点的坐标,
一般要把握三点:一是图形变换的性质;二是图形的全等
考点聚焦
归类探究
第10课时┃归类探究
探究六、函数图象
命题角度:
1.画函数图象; 2.函数图象的实际应用. 例1.[2013•重庆] 2013年“中国好声音”全国巡演重庆站在奥 体中心举行.童童从家出发前往观看,先匀速步行至轻轨车站, 等了一会儿,童童搭乘轻轨至奥体中心观看演出,演出结束后, 童童搭乘邻居刘叔叔的车顺利到家.其中x表示童童从家出发 后所用时间,y表示童童离家的距离.下图能反映y与x的函数 关系式的大致图象是( )A
归类探究
第10课时┃归类探究
解
析
∵x-1≥0,解得x≥1,故选B.
方法点析
求函数自变量的范围一般从三个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;(2)当 函数表达式是分式时,分式的分母不能为0;(3)当函数表 达式是二次根式时,被开方数为非负数.此题就是第三种 情形,考虑被开方数必须大于等于0.
考点聚焦 归类探究
图10-1
第10课时┃归类探究
解 析
如图所示,
PE BE PE 2 由对称性可知P的横坐标为3, = ,即 = , DF BF 2 3 4 4 7 所以PE= , +1= . 3 3 3 7 故P的坐标为(3, ). 3
考点聚焦 归类探究
第10课时┃归类探究
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第13讲┃ 考点聚焦
考点2
反比例函数的图象与性质
(1) 反比例函数的图象
呈现形式 反比例函数y=
k (kx ≠0)的图象是________
双曲线
对称性
它既是关于________对称的中心对称图形,也是轴 对称图形,其对称轴为第一、三象限或第二、四象 限坐标轴夹角的平分线,即直线y=x或直线y=-x
k x
第13讲┃ 考点聚焦 考点3 反比例函数的应用
利用待定系数法确定反比例函数: ①根 求函数 关系式 方法 步骤
k 据两变量之间的反比例关系, y= ; 设 x
②代入图象上一个点的坐标,即 x、y 的一对对应值,求出 k 的值; ③写出关系式 求直线 y=k1x+b( k≠0)和双曲线 y=
反比例函数与一 k2 次函数的图象的 的交点坐标就是解这两个函数关系 x 交点的求法 式组成的方程组
第13讲┃ 归类示例
图13-2
第13讲┃ 归类示例
[解析] 先根据双曲线上点C的坐标求出m的值,从而确定 点C的坐标,再将点C的坐标代入一次函数关系式中确定n 的值,在求出两个函数关系式后结合条件可求出三角形 的面积.
第13讲┃ 归类示例
4 解:(1) ∵点 C(1,m)在双曲线 y= 上,∴m=4,将点 x C(1,4)代入 y=2x+n 中,得 n=2; (2)在 y=2x+2 中, y=0, x=-1, A(-1, 将 令 得 即 0).
x
在草图上描出 A(-2, 1)、 (1, 2)和 C(2, 3), y B y y 很容易得出 y1>y3>y2.
第13讲┃ 回归教材
中考变式
[2013·临沂]已知反比例函数y=- 图象上三个点的坐 标分别是 A(-2, y1)、 B(-1, y2)、 C(2, y3),能正确反映 y1、y2、y3的大小关系的是( C ) A.y1>y2>y3 B.y1>y3>y2 C.y2>y1>y3 D.y2>y3>y1 7 [解析] 反比例函数 y=- 图象在第二、四象限,在每一个象 x
解:方法一: k ∵反比例函数 y= 中,k<0, x ∴图象在第二、四象限. 又∵A(-2,y1)、B(1,y2)、C(2,y3), ∴y1>y3>y2.
第13讲┃ 回归教材
方法二(特殊值法): ∵k<0,不妨设 k=-2, ∵图象过 A(-2,y1)、B(1,y2)和 C(2,y3), -2 -2 ∴有 y1= =1,y2= =-2, -2 1 -2 y3= =-1,所以 y1>y3>y2. 2 方法三(图象法): -2 ∵k<0,不妨设 k=-2.在坐标系中画出 y= ,的草图(略),
第13讲┃ 归类示例
k [解析] 设反比例函数的关系式为 y= ,把点(- x 1,6)代入可求出 k=-6,所以反比例函数的关系式 -6 为 y= ,故此函数也经过点(-3,2),答案选 A. x
第13讲┃ 归类示例
判断点是否在反比例函数图象上的方法有两种: 一是口算选项中点的横坐标与纵坐标乘积是否都等 于比例系数,二是将选项中点的坐标诸个代入反比 例函数关系式,看能否使等式成立.
第13讲┃ 归类示例 ► 类型之三 反比例函数的应用
命题角度: 1. 反比例函数在实际生活中的应用; 2. 反比例函数与一次函数的综合运用. 例4 [2013·镇江 ]如图13-2,在平面直角坐标系 4 xOy中,直线y=2x+n与x轴、y轴分别交于点A、B, x 4 与双曲线y= 在第一象限内交于点C(1,m). x (1)求m和n的值; (2)过x轴上的点D(3,0)作平行于y轴的直线l,分别与 直线AB和双曲线y= 4 交于点P、Q,求△APQ的面 x 积.
k 的 反比例函数图象上的点(x,y)具有两数之积(xy=k)为常数
几何 这一特点,即过双曲线上任意一点,向两坐标轴作垂线,两 意义 条垂线与坐标轴所围成的矩形的面积为常数|k|
推导 如图,过双曲线上任一点 P 作 x 轴,y 轴的垂线段 PM、PN, 所得的矩形 PMON 的面积 S=PM·PN=|y|·|x|=|xy|. ∵y= ,∴xy=k,∴S=|k| 过双曲线上任意一点,向两坐标轴作垂线,一条垂线与坐标 拓展 |k| 轴、原点所围成的三角形的面积为常数 2
4 4 x=3 代入 y=2x+2 和 y= ,得点 P(3,8),Q3, ,∴PQ x 3
4 20 1 =8- = .又∵AD=3-(-1)=4,∴△APQ 的面积= ×4 3 3 2 20 40 × = . 3 3
第13讲┃ 回归教材
回归教材
比较反比例函数值的大小方法多 教材母题 江苏科技版八下P70T2 已知点A(-2,y1)、B(1,y2)和C(2,y3)都在反比例函数y k = x (k<0)的图象上,那么y1、y2和y3的大小关系如何?
k
图13-1
第13讲┃ 归类示例
1 [解析] ∵S△AOC=6,OM=MN=NC= OC, 3 1 1 1 1 ∴S△OAC= ×OC×AM,S△AOM= ×OM×AM= S△OAC=2= |k|. 2 2 3 2 又∵反比例函数的图象在第一象限,k>0,则 k=4.
第13讲┃ 归类示例
k 过反比例函数 y= 的图象上的某点向两坐标轴作垂线,两垂线与坐标轴围成的矩形的面 x 积就等于|k|,故而常过图象上某点向坐标轴作一条或两条垂线,引出三角形或矩形的面积来 解决问题.
第13讲┃ 归类示例 ► 类型之二 反比例函数的图象与性质 命题角度: 1. 反比例函数的图象与性质; 2. 反比例函数中k的几何意义. k 例2 [2013·兰州] 在反比例函数 y= (k<0)的图象上有两 x
点 -1,y
1
1 ,- ,y2,则 4
A.负数 C.正数
B.非正数 D.不能确定
第13讲┃ 归类示例
比较反比例函数值的大小,在同一个象限内根据 反比例函数的性质比较,在不同象限内,不能按其 性质比较,函数值的大小只能根据特征确定.
第13讲┃ 归类示例
例3 [2012·河南] 如图13-1,点A,B在反比例函数y= x (k>0,x>0)的图象上,过点A,B作x轴的垂线,垂足分别为 M,N,延长线段AB交x轴于点C,若OM=MN=NC, 4 △AOC的面积为6,则k的值为________.
原点
第13讲┃ 考点聚焦 (2)反比例函数的性质函数图象k来自0 k y= x(k≠0)
k<0
所在象 限 一、 三 象限 (x,y 同 号) 二、 四 象限 (x,y 异 号)
性质 在每个象限内 y 随 x 增大而减小
在每个象限内,y 随 x 增大而增大
第13讲┃ 考点聚焦 (3)反比例函数比例系数k的几何意义
第13讲┃
反比例函数
第13讲┃ 考点聚焦
考点聚焦
考点1 反比例函数的概念
k y= 形如________(k≠0,k 为常数) x 的函数叫做反比例函数,其中 x 是________,y 是 x 的函数,k 是 自变量 ________ 比例系数
定义
关系式 防错提醒
k y= 或 y=kx-1 或 xy=k(k≠0) x
第13讲┃ 归类示例
归类示例
► 类型之一 反比例函数的概念 命题角度: 1. 反比例函数的概念; 2. 求反比例函数的解析式. [2013·扬州 ]某反比例函数的图象经过(-1,6),
例1
则下列各点中,此函数图象也经过的点是( A ) A.(-3,2) B.(3,2) C.(2,3) D.(6,1)
y1-y2 的值是( A )
k [解析] 反比例函数 y= :当 k<0 时,该函数图象位于第二、四象限,且在每一象限内,y x 随 x 的增大而增大. 1 1 又∵点(-1,y 1)和- ,y 2均位于第二象限,-1<- , 4 4 ∴y 1 <y 2,∴y1 -y 2 <0,即 y1 -y2 的值是负数,故选 A.
限内,y 随 x 的增大而增大.A(-2,y1)、B(-1,y2)在第二象限, 因为-2<-1,所以 0<y1<y2,又 C(2,y3)在第四象限,所以 y3 <0,所以 y2>y1>y3,故选 C.
7 x