膜分离实验报告模板及数据处理方法

合集下载

反渗透膜分离制高纯水实验报告

反渗透膜分离制高纯水实验报告

反渗透膜分离制高纯水实验预习报告一、实验目的1.熟悉反渗透法制备超纯水的工艺流程;2.掌握反渗透膜分离的操作技能;3.了解测定反渗透膜分离的主要工艺参数。

二、实验原理工业化应用的膜分离包括微滤(MF)、超滤(UF)、纳滤(NF)、反渗透(RO)、渗透汽化(PV)和气体分离(GS)等。

根据不同的分离对象和要求,选用不同的膜过程。

反渗透(RO)技术是20世纪60年代发展起来的以压力为驱动力的膜分离技术,它借助外加压力的作用使溶液中的溶剂透过半透膜而阻留某些溶质,是一种分离、浓缩、提纯的有效手段。

由于反渗透技术具有无相变、组件化、流程简单、操作方便、耗费低等特点,在诸多水处理技术中,反渗透被认为是最先进的方法之一,发展十分迅速,已广泛应用于海水、苦咸水淡化、工业污水处理、纯水和超纯水制备领域。

高纯水主要在电子工业、医药工业以及实验室分析使用,按国标GB/T11446.1-1997规定,电子级水分为四级,既EW-I、EW-II、EW-III和EW-IV,其电阻率指标分别为≧18MΩ*cm、≧15MΩ*cm、≧12MΩ*cm、≧0.5MΩ*cm。

反渗透是借助外加压力的作用使溶液中的溶剂透过半透膜而阻留某些溶质,反渗透技术具有无相变、组件化、流程简单等特点。

反渗透净水是以压力为推动力,利用反渗透膜只能透过水而不能透过溶质的选择透过性,从含有多种无机物、有机物和微生物的水体中,提取纯净水的物质分离过程。

其原理图如下:如图(a )所示,半透膜将纯水与咸水分开,水分子将从纯水一侧通过膜向咸水一侧透过,结果使咸水一侧的液位上升,直到某一高度,即渗透过程。

图(b )所示,当渗透达到动态平衡状态时,半透膜两侧存在一定的水位差或压力差,此为制定温度下溶液的渗透压N 。

图(c )所示,当咸水一侧施加的压力P 大于该溶液的渗透压N ,可迫使渗透反响,实现反渗透过程。

在高于渗透压的压力作用下,咸水中的化学位升高,超过纯水的化学位,水分子从咸水一侧反向地通过膜透过到纯水一侧,使咸水得到淡化,这就是反渗透脱盐的基本原理。

光催化膜分离技术

光催化膜分离技术

光催化膜分离技术总结报告一、技术背景介绍随着工业化的快速发展和能源危机的日益严重,新型高效的能源和环保技术成为了全球科研工作者关注的焦点。

光催化膜分离技术是一种结合光催化和膜分离技术的先进技术,具有高效节能、绿色环保等优点,在能源、环保、化工等领域具有广泛的应用前景。

本报告旨在总结光催化膜分离技术的原理、应用、实验数据及结果,以及市场前景等方面,以期为该技术的进一步研究和发展提供参考。

二、膜分离技术原理及应用膜分离技术是一种高效节能的分离技术,其原理主要是利用高分子膜对不同物质的渗透性差异,实现对混合物进行分离、纯化、浓缩等操作。

膜分离技术已在能源、环保、化工等领域得到广泛应用,如燃料电池、污水处理、气体分离等。

三、光催化膜分离技术原理及优势光催化膜分离技术是一种将光催化技术与膜分离技术相结合的新型技术。

该技术利用光催化材料在光照条件下产生的光化学反应,促进物质在膜表面的吸附和反应,进而实现物质的分离和转化。

相较于传统的膜分离技术,光催化膜分离技术具有更高的分离效率和更大的应用潜力,尤其是在处理难降解的有机物和有毒有害物质方面具有显著优势。

四、光催化膜分离技术实验及数据分析本实验采用新型光催化材料制备了光催化膜,并对其分离性能进行了研究。

实验结果表明,该光催化膜具有较高的透光性和稳定性,能够有效去除溶液中的有机物和有毒有害物质。

同时,实验数据还显示,光催化膜的分离性能受到光照条件、溶液浓度、膜厚度等因素的影响。

五、实验结果及讨论根据实验数据,我们发现光催化膜分离技术在处理难降解的有机物和有毒有害物质方面具有显著优势。

相较于传统的膜分离技术,光催化膜分离技术具有更高的分离效率和更大的应用潜力。

此外,实验结果还表明,光催化膜的分离性能受到光照条件、溶液浓度、膜厚度等因素的影响。

为了提高光催化膜的分离性能,可以进一步研究不同因素对光催化膜分离性能的影响机制和优化方法。

六、技术应用及市场前景光催化膜分离技术在能源、环保、化工等领域具有广泛的应用前景。

膜实验报告

膜实验报告

一、实验名称膜分离技术实验二、实验目的1. 了解膜分离技术的原理和应用;2. 掌握膜分离实验的操作方法;3. 分析膜分离过程中各种因素的影响。

三、实验原理膜分离技术是一种利用膜材料的选择透过性,将混合物中的组分按分子大小、形状、电荷等进行分离的技术。

膜分离技术具有操作简便、能耗低、分离效果好等优点,广泛应用于水处理、食品加工、医药、化工等领域。

四、实验内容1. 实验材料与仪器(1)实验材料:NaCl溶液、葡萄糖溶液、明胶溶液;(2)实验仪器:膜分离装置、蠕动泵、电子天平、玻璃仪器等。

2. 实验步骤(1)将NaCl溶液、葡萄糖溶液、明胶溶液分别配制,浓度均为0.1mol/L;(2)将膜分离装置连接好,膜材料选用聚偏氟乙烯(PVDF)膜;(3)将NaCl溶液、葡萄糖溶液、明胶溶液分别加入膜分离装置中,设定操作压力为0.1MPa;(4)开启蠕动泵,使溶液在膜分离装置中循环流动,记录循环时间;(5)在循环过程中,每隔一定时间取样,用电子天平称量溶液的质量,计算透过液的浓度;(6)重复步骤(4)和(5),直至透过液浓度基本稳定;(7)分析膜分离过程中各种因素的影响。

3. 数据处理与分析(1)计算透过液的浓度变化,绘制透过液浓度随时间变化的曲线;(2)分析操作压力、膜材料、溶液浓度等因素对透过液浓度的影响。

五、实验结果与分析1. 实验结果(1)透过液浓度随时间变化的曲线如图1所示;(2)在相同操作压力下,不同溶液的透过液浓度如表1所示。

表1 不同溶液的透过液浓度溶液名称透过液浓度(mol/L)NaCl溶液 0.08葡萄糖溶液 0.07明胶溶液 0.022. 结果分析(1)透过液浓度随时间的变化:透过液浓度随时间的推移逐渐稳定,说明膜分离过程已达到平衡;(2)操作压力对透过液浓度的影响:在相同操作压力下,不同溶液的透过液浓度不同,说明操作压力对膜分离效果有影响;(3)膜材料对透过液浓度的影响:不同膜材料的透过液浓度不同,说明膜材料的选择对膜分离效果有影响;(4)溶液浓度对透过液浓度的影响:溶液浓度越高,透过液浓度越低,说明溶液浓度对膜分离效果有影响。

超滤膜分离试验

超滤膜分离试验

R = c0 - c p ×100% c0
( ) J = V p L / m 2 • h S •tN = CR C0来自化学工程与工艺专业基础实验
超滤膜分离实验
实验装置与流程
超滤膜分离实验流程示意图 1-料液灌;2-磁力泵;3-泵进口阀;4-泵回流阀;5-预过滤器;6-滤前压力表;7-超 滤进口阀;8-微滤进口阀; 9-超滤膜; 10-微滤膜; 11-滤后压力表; 12-超滤清液出口 阀;13-微滤滤液出口阀;14-浓液流量计;15-清液流量计;16-清液灌;17-浓液灌;18-
化学工程与工艺专业基础实验
超滤膜分离实验
一、实验目的
实验内容
二、超滤膜分离原理 三、实验装置与流程 四、实验步骤及数据处理
化学工程与工艺专业基础实验
超滤膜分离实验
实验目的
1、了解膜的结构和影响膜分离效果的因 素,包括膜材质、压力和流量等
2、了解膜分离的主要工艺参数,掌握膜 组件性能的表征方法
化学工程与工艺专业基础实验
排水阀
化学工程与工艺专业基础实验
超滤膜分离实验
1、安装膜组件,配置好料液。
实验步骤与 数据处理
2、开启实验装置,稳定运行。 3、用紫外分光光度计分析所取样品。
4、结束实验,清洗膜组件,计算相关 的膜表征参数。
化学工程与工艺专业基础实验
超滤膜分离实验
超滤(UF)是以压力为推动力,利用机械筛
分的原理选择性的从溶液中分离出大粒子溶质的
分离过程。
在压力作用下,料液中直径远小于超滤膜孔
超滤膜分离原径侧的,物 得质 到分 透子 过由 液高 ;压 而料 直液 径侧 大透 于过 超超 滤滤膜膜孔到径达的低物压质

分子将被膜表面截留或返回至料液主体成为浓缩 液。

无机膜分离实验报告(3篇)

无机膜分离实验报告(3篇)

第1篇一、实验目的本次实验旨在探究无机膜在分离技术中的应用效果,通过对特定溶液进行分离实验,验证无机膜在分离过程中的稳定性、选择性和效率。

实验主要针对无机陶瓷膜进行操作,研究其在实际应用中的可行性。

二、实验材料与设备1. 实验材料:- 赖氨酸发酵液(含赖氨酸、短杆菌、菌体蛋白质、颗粒杂质等)- CO2混合气体(含N2、CF4、C3F6等)- 工业废气(含SO2、NOx、颗粒物等)- 无机陶瓷膜(孔径约0.4~0.6μm)- 聚四氟乙烯(Teflon AF 2400)- 有机-无机复合膜材料2. 实验设备:- 膜过滤装置- 气体分离装置- 工业废气净化装置- 分光光度计- 精密天平- 恒温水浴锅- 高压气体钢瓶三、实验方法1. 赖氨酸分离实验:- 将赖氨酸发酵液通过无机陶瓷膜进行过滤,收集滤液和滤渣。

- 分析滤液中赖氨酸的含量,计算提取率。

- 观察滤液悬浮物和浊度,评估过滤效果。

2. 气体分离实验:- 将CO2混合气体通过Teflon AF 2400制作用于分离氮气、四氟甲烷和六氟丙烯的气体分离无机膜。

- 分析分离后气体的成分,计算分离效果。

3. 工业废气净化实验:- 将工业废气通过有机-无机复合膜材料进行净化。

- 分析净化前后废气中污染物的含量,评估净化效果。

四、实验结果与分析1. 赖氨酸分离实验:- 经无机陶瓷膜处理后,赖氨酸提取率可达80%以上。

- 滤液悬浮物小于0.5%,浊度在10 NTU以内,过滤效果稳定。

2. 气体分离实验:- N2/CF4的理想选择性为88,N2/C3F6的理想选择性为71。

- 聚四氟乙烯层对沸石层的密封作用是获得较高选择性的原因。

3. 工业废气净化实验:- 有机-无机复合膜材料对工业废气中的SO2、NOx等污染物具有较好的净化效果。

- 净化后废气中污染物含量显著降低,净化效果明显。

五、实验结论1. 无机陶瓷膜在赖氨酸分离提取过程中具有稳定、高效、操作简便等优点,是赖氨酸分离提取的理想膜材料。

膜分离的实验报告

膜分离的实验报告

膜分离的实验报告1. 引言膜分离是一种将混合物中的组分通过膜进行分离的方法,广泛应用于化工、生物工程、环保等领域。

本实验旨在通过膜分离技术研究某种混合物中的组分分离效果,并探究影响膜分离效果的因素。

2. 实验材料与方法2.1 实验材料- 膜分离装置:包括膜分离膜、膜分离模块等。

- 混合物:包含A、B两种组分的溶液。

2.2 实验方法1. 将混合物注入膜分离装置中,并施加适当的压力。

2. 收集透过膜的溶液,并分别用适当的方法对溶液中的A、B两种组分进行定量分析。

3. 改变压力、膜材料等条件,多次进行实验,探究对膜分离效果的影响。

3. 实验结果与分析经过多次实验,得到了不同条件下的膜分离效果。

下表为部分实验结果:实验次数压力(MPa) A组分透过量(mg) B组分透过量(mg)1 1 10 202 1.5 15 183 2 18 154 1 8 255 2 16 17分析以上数据可知,压力对膜分离效果有影响,压力越大,组分透过量越大。

但压力过大也可能导致膜的破损或堵塞,影响膜的使用寿命。

另外,由于不同组分的性质不同,可能对膜具有不同的透过性,从而导致透过量的差异。

4. 结论通过实验我们得到了膜分离的实际效果,分析结果表明,在一定范围内,增加压力可以提高膜分离的效果。

但需要注意,过高的压力可能会损坏膜的结构,影响使用寿命。

此外,混合物中各组分的性质也会影响膜的透过性,因此选择合适的膜材料也是膜分离的关键因素。

5. 实验总结本次实验通过膜分离技术的应用,探究了膜分离效果和影响因素。

实验结果表明,在适当的压力下,膜分离可以有效地将混合物中的组分分离,达到预期的效果。

同时,由于膜分离涉及到膜的选择和应用条件的调整,需要综合考虑多个因素。

因此,在实际应用中,需要根据具体情况进行膜材料的选择和操作条件的优化,以达到最佳的分离效果。

通过这次实验,我们不仅对膜分离的原理和应用有了更深入的了解,也获得了一定的实验操作技能和数据分析能力。

薄膜分离实验报告

薄膜分离实验报告

一、实验目的1. 理解薄膜分离的基本原理和操作方法。

2. 掌握薄膜分离技术在分离混合物中的应用。

3. 分析薄膜分离实验的结果,并对实验现象进行解释。

二、实验原理薄膜分离是一种利用固体薄膜的选择透过性来分离混合物中不同组分的分离技术。

薄膜材料具有特定的孔径,使得混合物中的组分根据其分子大小、形状和性质等差异在薄膜表面发生选择性吸附、排斥或透过,从而实现分离。

三、实验材料与仪器1. 实验材料:醋酸纤维薄膜、混合溶液(如:盐水、糖水、染料溶液等)、缓冲液、染料等。

2. 实验仪器:薄膜分离装置、电泳仪、紫外-可见分光光度计、烧杯、移液器、滴管、剪刀等。

四、实验步骤1. 将醋酸纤维薄膜剪成适当大小的条状,放入盛有缓冲液的烧杯中浸泡,使薄膜充分湿润。

2. 将混合溶液滴加到薄膜表面,使溶液均匀分布在薄膜上。

3. 将薄膜放置在薄膜分离装置中,确保薄膜表面与电极接触良好。

4. 打开电泳仪,调节电压至适当值,使混合溶液中的组分在薄膜表面发生分离。

5. 观察薄膜分离过程,记录分离效果。

6. 实验结束后,关闭电泳仪,取出薄膜,用剪刀将薄膜上的色带剪下。

7. 将色带放入烧杯中,加入适量溶剂,用紫外-可见分光光度计测定溶液的吸光度,计算各组分浓度。

五、实验结果与分析1. 实验结果显示,混合溶液中的组分在薄膜表面发生分离,形成了不同颜色的色带。

2. 通过紫外-可见分光光度计测定,计算各组分浓度,得出以下结果:组分A:浓度C1组分B:浓度C2组分C:浓度C33. 分析实验现象:a. 组分A在薄膜上的迁移速度较快,说明其在薄膜中的吸附力较弱,分子大小适中,透过性较好。

b. 组分B在薄膜上的迁移速度较慢,说明其在薄膜中的吸附力较强,分子大小较大,透过性较差。

c. 组分C在薄膜上的迁移速度介于组分A和B之间,说明其在薄膜中的吸附力适中,分子大小适中,透过性适中。

六、实验讨论1. 实验过程中,薄膜分离效果受到多种因素的影响,如薄膜材料、溶液浓度、电压等。

膜分离实验报告

膜分离实验报告

北京化工大学学生实验报告院(部):化学与化学工程姓名: xx 学号: 200811218专业:化学工程与工艺班级:化工0808 同组人员:课程名称:专业实验实验名称:微滤分离实验实验日期: 2011.10.17 批阅日期:成绩:教师签名:一、实验目的1.了解分析微滤膜分离的主要工艺过程。

2.了解膜分离技术的特点。

3.通过微滤膜分离的实验的操作,学会微滤膜过滤设备的使用方法和操作过程,提高实验技能。

二、实验原理膜分离是近数十年发展起来的一种新型分离技术。

常规的膜分离是采用天然或人工合成的选择性透过膜作为分离介质,在浓度差、压力差或电位差等推动力的作用下,使原料中的溶质或溶剂选择性地透过膜而进行分离、分级、提纯或富集。

通常原料一侧称为膜上游,透过一侧称为膜下游。

膜分离法可以用于液-固(液体中的超细微粒)分离、液-液分离、气-气分离以及膜反应分离耦合和集成分离技术等方面。

其中液-液分离包括水溶液体系、非水溶液体系、水溶胶体系以及含有微粒的液相体系的分离。

不同的膜分离过程所使用的膜不同,而相应的推动力也不同。

目前已经工业化的膜分离过程包括微滤(MF)、反渗透(RO)、纳滤(NF)、超滤(UF)、渗析(D)、电渗析(ED)、气体分离(GS)和渗透汽化(PV)等,而膜蒸馏(MD)、膜基萃取、膜基吸收、液膜、膜反应器和无机膜的应用等则是目前膜分离技术研究的热点。

膜分离技术具有操作方便、设备紧凑、工作环境安全、节约能量和化学试剂等优点,因此在20世纪60年代,膜分离方法自出现后不久就很快在海水淡化工程中得到大规模的商业应用。

目前除海水、苦咸水的大规模淡化以及纯水、超纯水的生产外,膜分离技术还在食品工业、医药工业、生物工程、石油、化学工业、环保工程等领域得到推广应用。

表 1 各种膜分离方法的分离范围膜分离技术的原理是依靠膜的这种多孔过滤材料的拦截性能。

用压力做推动力。

微滤膜分离的的分离范围为0.1——10,主要用于颗粒物的去处、除菌、澄清、除浊、有用物质的回收等。

膜分离实验报告

膜分离实验报告

膜分离实验一.实验目的1.了解膜的结构和影响膜分离效果的因素,包括膜材质、压力和流量等。

2.了解膜分离的主要工艺参数,掌握膜组件性能的表征方法。

3. 了解和熟悉超滤膜分离的工艺过程。

二.基本原理膜分离技术是最近几十年迅速发展起来的一类新型分离技术。

膜分离是以对组分具有选择性透过功能的人工合成的或天然的高分子薄膜(或无机膜)为分离介质,通过在膜两侧施加(或存在)一种或多种推动力,使原料中的某组分选择性地优先透过膜,从而达到混合物的分离,并实现产物的提取、浓缩、纯化等目的的一种新型分离过程。

其推动力可以为压力差(也称跨膜压差)、浓度差、电位差、温度差等。

膜分离过程有多种,不同的过程所采用的膜及施加的推动力不同,通常称进料液流侧为膜上游、透过液流侧为膜下游。

微滤(mf)、超滤(uf)、纳滤(nf)与反渗透(ro)都是以压力差为推动力的膜分离过程,当膜两侧施加一定的压差时,可使一部分溶剂及小于膜孔径的组分透过膜,而微粒、大分子、盐等被膜截留下来,从而达到分离的目的。

四个过程的主要区别在于被分离物粒子或分子的大小和所采用膜的结构与性能。

微滤膜的孔径范围为0.05~10μm,所施加的压力差为0.015~0.2mpa;超滤分离的组分是大分子或直径不大于0.1μm的微粒,其压差范围约为0.1~0.5mpa;反渗透常被用于截留溶液中的盐或其他小分子物质,所施加的压差与溶液中溶质的相对分子质量及浓度有关,通常的压差在2mpa左右,也有高达10mpa的;介于反渗透与超滤之间的为纳滤过程,膜的脱盐率及操作压力通常比反渗透低,一般用于分离溶液中相对分子质量为几百至几千的物质。

2.1微滤与超滤微滤过程中,被膜所截留的通常是颗粒性杂质,可将沉积在膜表明上的颗粒层视为滤饼层,则其实质与常规过滤过程近似。

本实验中,以含颗粒的混浊液或悬浮液,经压差推动通过微滤膜组件,改变不同的料液流量,观察透过液测清液情况。

对于超滤,筛分理论被广泛用来分析其分离机理。

集成膜分离实验报告(3篇)

集成膜分离实验报告(3篇)

第1篇一、实验目的1. 理解和掌握集成膜分离技术的原理和应用。

2. 通过实验操作,学习不同膜分离技术的集成方法。

3. 分析实验数据,评估集成膜分离技术的性能和效果。

二、实验原理集成膜分离技术是指将两种或多种膜分离技术相结合,以实现更高效的分离、提纯或浓缩过程。

常见的膜分离技术包括反渗透(RO)、纳滤(NF)、超滤(UF)、微滤(MF)等。

通过集成不同膜分离技术,可以优化分离效果,提高经济效益。

三、实验材料与仪器1. 实验材料:- 水溶液:含有目标物质(如蛋白质、糖类等)的混合溶液。

- 水质标准样品:用于对比实验结果。

2. 实验仪器:- 膜分离装置:包括不同孔径的膜组件。

- 恒温水浴:用于控制实验温度。

- 离心泵:用于驱动溶液通过膜组件。

- pH计:用于测定溶液的pH值。

- 气相色谱仪:用于分析目标物质的含量。

四、实验步骤1. 准备实验材料:配制含有目标物质的混合溶液,并调节pH值至适宜范围。

2. 膜组件准备:根据实验需求选择合适的膜组件,并清洗干净。

3. 实验操作:- 第一步:进行单膜分离实验,记录不同膜组件的通量和截留率。

- 第二步:进行集成膜分离实验,将多个膜组件串联或并联,观察集成效果。

- 第三步:调整操作条件(如压力、温度、pH值等),优化集成膜分离效果。

4. 数据收集与处理:- 收集实验数据,包括通量、截留率、目标物质含量等。

- 利用气相色谱仪分析目标物质含量,并与水质标准样品进行对比。

五、实验结果与分析1. 单膜分离实验结果:- RO膜截留率:95%- NF膜截留率:90%- UF膜截留率:80%2. 集成膜分离实验结果:- RO-NF集成膜分离:截留率98%,目标物质含量降低至0.1mg/L以下。

- RO-UF集成膜分离:截留率97%,目标物质含量降低至0.2mg/L以下。

3. 操作条件优化:- 通过调整压力、温度、pH值等操作条件,发现RO-NF集成膜分离效果最佳,目标物质含量可降至0.1mg/L以下。

实验五-膜分离实验

实验五-膜分离实验

五、实验结果整理
1. 预处理系统实验结果
原水浊度: NTU,原水电导率: μS/cm。 μS/cm。 预处理出水浊度: NTU,预处理出水电导率:
2. 反渗透单元实验结果
序号 一 二 三 四 五
进水流量(L/h)
RO进水压力(MPa) RO出水(浓水)压力(MPa) 浓水流量(L/h) 淡水流量(L/h) 淡水电导率(μS/cm) 浓水电导率(μS/cm) 除盐率(%) 回收率(%)
反渗透系统进水水质要求
污染指数(SDI)值是反渗透系统进水的重要指标之
一。是检验处理系统出水是否达到反渗透进水要求的主要 手段。它的大小对反渗透运行寿命至关重要。在纯水系统, 特别是反渗透(RO)系统中,SDI被广泛用于预测水中胶 体以及颗粒物质对RO膜的堵塞速度。 由于水源的水质经常变化,所以常常需要每周或每月 进行SDI值的检测。
1. 一体化反渗透实验装置; 2. 浊度仪; 3. 电导率仪。
四、实验内容及参考步骤
1. 测定原水水质指标:浊度,电导率。 2. 开启预处理装置进水阀并运行一段时间(流量 30L/h ),
测预处理出水水质指标:浊度,电导率。
3. 开启反渗透装置进水泵,缓慢调节反渗透膜元件进水阀 和 浓 水阀使 其 流量达到指定值 QRO 进 水 =QRO 出 水 ( 浓 水 ) =30L/h,并运行 15min。观察 RO进水压力表和 RO浓水 压力表读数。
成不同的形式,称为膜组件( module)。膜组件有四种形
式:板框式、管式、卷式和中空纤维。
板 框 式 反 渗 透 装 置 结 构 图
管 式 反 渗 透 装 置 组 件 结 构 图
卷 式 反 渗 透 装 置 组 件 结 构 图
中 空 纤 维 式 组 件 结 构 图

练习_膜分离实验报告

练习_膜分离实验报告

1. 了解膜分离技术的原理和应用;2. 掌握膜分离实验的操作步骤;3. 分析实验结果,探讨膜分离技术在实际应用中的可行性。

二、实验原理膜分离技术是一种利用半透膜的选择透过性,对溶液中的组分进行分离、浓缩或提纯的方法。

根据膜孔径的大小,膜分离技术可分为微滤、超滤、纳滤和反渗透等。

本实验采用超滤膜进行实验,其孔径大小约为0.1-0.5微米。

实验过程中,溶液中的大分子物质被截留,而小分子物质则透过膜,从而达到分离的目的。

三、实验材料与仪器1. 实验材料:- 模拟废水- 超滤膜- 滤瓶- 离心泵- 采样瓶- 实验试剂2. 实验仪器:- 超滤装置- 电子天平- pH计- 酒精灯- 恒温水浴锅- 移液管1. 准备实验材料:将模拟废水、超滤膜、滤瓶、离心泵、采样瓶等实验材料准备好。

2. 超滤膜预处理:将超滤膜浸泡在水中,用刷子轻轻刷洗,去除膜表面的杂质。

然后用蒸馏水冲洗干净,晾干备用。

3. 装配超滤装置:将滤瓶、离心泵、超滤膜等依次连接,确保连接处密封良好。

4. 实验操作:a. 将模拟废水通过离心泵泵入超滤装置,使废水在超滤膜表面形成压力差;b. 打开超滤装置,让废水通过超滤膜进行分离;c. 收集透过超滤膜的滤液,记录滤液体积。

5. 数据处理:a. 计算滤液浓度,分析超滤效果;b. 对比模拟废水和滤液,分析膜分离技术在废水处理中的应用前景。

五、实验结果与分析1. 实验结果:a. 滤液体积:根据实验记录,滤液体积为1000毫升;b. 滤液浓度:通过测定滤液中的污染物浓度,计算得出滤液浓度为50mg/L。

2. 结果分析:a. 超滤膜对模拟废水的处理效果较好,滤液体积较大,说明膜分离技术在废水处理中具有较高的可行性;b. 滤液浓度相对较低,说明膜分离技术可以有效去除废水中的污染物,具有良好的应用前景。

六、实验结论本实验通过膜分离技术对模拟废水进行处理,结果表明,膜分离技术在废水处理中具有较高的可行性。

在今后的实际应用中,可根据具体需求选择合适的膜分离技术,以实现废水的有效处理和资源化利用。

膜分离实验报告

膜分离实验报告

膜分离实验报告膜分离技术是一种将不同大小的物质分离的方法,通过膜的孔径大小和膜的特性来实现精确的分离。

本次实验使用两种不同类型的膜及两种不同物质进行分离,旨在探究膜分离技术的原理及应用。

实验材料与方法实验用的材料有:纳米膜(聚酰胺)和超滤膜(纳滤膜)、葡萄糖和葡萄糖酸钠。

实验的步骤如下:1. 将两种膜分别置于滤器中,并将两个滤器连接起来,形成一个膜分离系统;2. 将膜分离系统加入葡萄糖酸钠溶液,将膜分离系统浸泡5分钟,使膜饱和;3. 用注射器将葡萄糖溶液注入滤器中,并进行过滤;4. 收集滤液,称重并记录。

实验结果与分析|试验条件|膜类型|物质|滤液重量(g)||--------|------|----|--------------||试验1|纳米膜|葡萄糖|5.5||试验2|纳米膜|葡萄糖酸钠|5.5||试验3|超滤膜|葡萄糖|3.2||试验4|超滤膜|葡萄糖酸钠|6.8|由实验结果可知,纳米膜对葡萄糖酸钠和葡萄糖的分离效果相同,滤液重量相等;而超滤膜的分离效果则不尽相同。

在试验3中,超滤膜可以将葡萄糖分离出来,得到的滤液重量较小;在试验4中,超滤膜无法很好地分离出葡萄糖酸钠,留下更多的溶液。

这是因为超滤膜的孔径比纳米膜大一些,可以过滤掉纳米膜不能过滤掉的较大分子物质,例如葡萄糖酸钠;而纳米膜能够过滤掉大部分分子量较大的物质,但较小的葡萄糖分子则能够通过膜孔进入滤液中。

因此,超滤膜在分离物质时更有效。

结论本次实验的结果表明,膜分离技术可以有效地分离不同大小的物质,通过不同的膜类型可以实现不同的分离效果。

超滤膜可以分离掉大分子量的物质,而纳米膜则可以将分子较小的物质保留在滤液中。

膜分离技术在生物制药、污水处理、食品加工等领域有着广泛的应用和发展前景。

膜过滤分离实验报告

膜过滤分离实验报告

膜过滤分离实验报告简介膜过滤分离是一种常见的实验方法,通过使用薄膜材料进行分离,实现固体和液体之间的分离。

本实验旨在通过膜过滤分离的方法,并结合实际样品进行分析,探讨膜过滤分离的原理及应用。

实验目的1. 了解膜过滤分离的原理;2. 熟悉膜过滤分离的操作步骤;3. 掌握膜过滤分离在样品分析中的应用。

实验仪器与试剂- 膜过滤装置- 液体样品- 滤膜- 离心机实验步骤1. 准备滤膜。

根据样品性质选择合适的滤膜,并进行预处理,如清洗、消毒等。

2. 装配膜过滤装置。

将滤膜固定在膜过滤装置中,注意保持密封性,避免泄漏。

3. 准备样品。

将样品取出,并根据需要进行预处理,如去除杂质、稀释等。

4. 进行膜过滤分离。

将样品注入膜过滤装置中,打开真空泵,通过负压力使液体通过滤膜,留下固体或大分子物质。

5. 收集分离物。

根据实验需要,收集滤液和滤渣,进行后续分析或处理。

6. 清洗膜过滤装置。

使用适当的清洗液进行清洗,保持装置的清洁。

实验结果与分析在实验过程中,我们选取了一种含悬浮颗粒物的水样进行膜过滤分离实验。

经过对样品的预处理后,将样品注入膜过滤装置中,并进行真空泵抽取。

经过一段时间的过滤,我们观察到滤液中的颗粒物明显减少,而滤渣中则集中了较多的颗粒物。

通过对滤液的进一步分析,我们使用了显微镜对滤液中的颗粒物进行观察。

我们发现滤液中的颗粒物已基本被过滤掉,滤液呈现出较为清澈的状态。

根据颗粒物的大小和形态,我们猜测颗粒物属于较大的悬浮颗粒。

实验讨论膜过滤分离实验可根据实际样品的需要进行调整和优化。

在本实验中,我们选取了一种含悬浮颗粒物的水样进行分离实验,通过膜过滤的方式,成功将颗粒物从水样中分离出来。

然而,对于一些微小的颗粒物或分子物质,膜过滤不一定能够实现有效分离,此时可能需要选择其他分离方法。

此外,膜过滤过程中需要注意保持膜过滤装置的密封性,避免泄漏和污染。

同时,根据不同样品的特性,选择合适的滤膜材料和过滤条件也至关重要。

膜分离实验报告

膜分离实验报告

膜分离实验报告摘要:本实验通过膜分离技术,研究了溶液中目标物质的分离和浓缩过程。

实验中使用了超滤膜和纳滤膜进行溶液的分离,并通过测定溶液中溶质的浓度和膜通量来评估膜分离效果。

实验结果表明,膜分离技术具有高效、节能、环保等优点,可以广泛应用于化工、生物医药等领域。

引言:膜分离技术是一种通过膜的选择性渗透来实现溶质分离和浓缩的方法。

它基于膜的微孔、孔隙或分子筛效应,使溶质按照其分子大小、电荷、亲疏水性等特性在膜上发生渗透,从而实现溶质的分离和纯化。

与传统的分离方法相比,膜分离技术具有能耗低、操作简便、设备紧凑等优点,因此在化工、生物医药、环境工程等领域得到了广泛应用。

实验方法:1. 实验材料准备:超滤膜、纳滤膜、溶液样品、膜分离设备等。

2. 实验步骤:a. 将溶液样品注入膜分离设备中,设定操作参数。

b. 开始实验,观察溶液在膜上的渗透过程。

c. 测定溶液中目标物质的浓度,计算膜通量。

d. 分析实验结果,评估膜分离效果。

实验结果与讨论:本次实验使用了超滤膜和纳滤膜进行溶液的分离。

超滤膜是一种具有较大孔径的膜,适用于分离分子量较大的溶质,如蛋白质、胶体等。

纳滤膜则具有较小的孔径,可以分离分子量较小的溶质,如离子、小分子有机物等。

通过实验,我们研究了不同膜对溶液中目标物质的分离效果。

实验结果显示,超滤膜能够有效分离溶液中的大分子溶质。

在实验中,我们将含有蛋白质的溶液注入超滤膜中,通过控制操作参数,观察到蛋白质无法通过超滤膜,而溶液中的小分子溶质则能够通过膜的微孔渗透出来。

这表明超滤膜能够实现溶液中大分子溶质的有效分离。

而纳滤膜则可以分离溶液中的小分子溶质。

在实验中,我们将含有离子的溶液注入纳滤膜中,发现纳滤膜能够阻止离子的渗透,使溶液中的大分子溶质得以分离。

这说明纳滤膜能够实现溶液中小分子溶质的有效分离。

通过测定溶液中目标物质的浓度和膜通量,我们可以评估膜分离效果。

实验结果显示,膜分离技术能够实现高效的溶质分离和浓缩,且膜通量较大,具有较高的经济效益。

南大化工膜分离实验报告

南大化工膜分离实验报告

膜分离实验报告一、实验目的1.了解不同膜分离工艺的原理、设备及流程。

2.掌握RO、NF的适用范围和对象。

二、实验原理1.反渗透(RO)反渗透膜的孔径在0.1-1nm之间。

反渗透技术是利用高压液体的高压作用,克服渗透膜的渗透压,使溶液中水分子逆方向渗透过渗透膜到达离子浓度较低的一端,从而达到去除溶液中大部分离子的目的。

为了防止被截留下来的其他离子越积越多而堵塞RO膜,往往采用动态的方法来进行反渗透,即在进行反渗透的同时,利用一股液体流连续冲刷膜表面的截留物,以保持反渗透膜表面始终具有良好的通透性。

因此,反渗透设备的出水有两股,一股为透过液(淡水),一股为截留液(浓水)。

实验采用NaCl、MgSO4溶液进行实验,用在线电导仪测定进水、“淡水”和“浓水”的电导率变化,表示反渗透膜的处理效果。

图1 反渗透(RO)示意图2.纳滤(NF)纳滤膜的孔径范围介于反渗透膜和超滤膜之间。

纳滤技术是从反渗透中派生出来的一种膜分离技术,是超低压反渗透技术的延续和发展分支。

一般认为,纳滤膜存在纳米级的细孔,可以截留95%的最小分子约为1nm的物质。

纳滤膜的特点在于:较低的渗透压和较高的膜通透性,因此,可以节能;通过纳滤膜的渗透作用,可以去除多价的离子,保留部分低价的对人体有益的矿物离子。

为了防止被截留下来的其他离子越积越多而堵塞NF膜,同样采用动态的方法来进行纳滤,即在进行纳滤的同时,利用一股液体流连续冲刷膜表面的截留物,以保持纳滤膜表面始终具有良好的通透性。

因此,纳滤设备的出水也有两股,一股为透过液(淡水),一股为截留液(浓水)。

实验采用NaCl、MgSO4溶液进行实验,用在线电导仪测定进水、“淡水”和“浓水”的电导率变化,表示纳滤膜的处理效果。

同时将纳滤和反渗透对一价和二价离子的截留效果进行比较,可以知道纳滤膜出水中保留了比反渗透出水中更多的有益矿物离子。

三、实验流程与设备整套膜分离装置的四个单元共同安装在一个支架上,由微滤单元和反渗透单元组成设备的1/2,超滤单元和纳滤单元组成设备另外的1/2。

超过滤膜分离实验报告

超过滤膜分离实验报告

实验二 超过滤膜分离一、实验目的1.了解和熟悉超过滤膜分离的工艺过程;2.了解膜分离技术的特点;二、分离机理根据溶解-扩散模型,膜的选择透过性是由于不同组分在膜中的溶解度和扩散系数不同而造成的。

若假设组分在膜中的扩散服从Fick 定律,则可推出透水速率F W 及溶质通过速率F S 方程。

1、 透水速率'()()w w M w D c V p F A p RT ππδ∆-∆==∆-∆式中22332/;;//;;;/w w w M w w MF g cm s D cm s c g cm V cm mol p atm atm R T K cm D c V A g cm s at RT πδδ-⋅-⋅--∆-∆-----⋅⋅’透水速率,水在膜中的扩散系数,水在膜中的浓度,;水的偏摩尔体积,膜两侧的压力差,膜两侧的渗透压差,气体常数;温度,;膜的有效厚度,;膜的水渗透系数(=),。

2、溶质透过速率2323()()s s s s s D K cD K c c F B c B c c δδ∆-===∆=-式中2/;s s D cm s K B c ---∆-溶质在膜中的扩散系数,溶质在溶液和膜两相中的分配系数;溶质渗透系数;膜两侧的浓度差。

有了上述方程,下面建立中空纤维在定态时的宏观方程。

料液在管中流动情况如图十三所示。

取假设条件:(1)径向混合均匀;(2)A BX π=A ,渗透压正比于摩尔分数; (3)AB N N ,31A X ,B 组分优先通过;(4)/AM D K δ⋅,1A X K 同或无关; (5)0U LPeB E==∞,忽略轴向混合扩散。

图十三 料液在管中流动示意图由假设看出,其实质是一维问题,只是侧壁有液体流出的情况,因为关心的是管中组分的浓度分布和平均速度分布,只需做出两个质量衡算方程即可求解。

由连续性方程:和总流率方程:可推出013[()]w V l r c c du dx h--= (1) 式中,h 为装填系数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

贵州理工学院化工原理实验报告
学院:化学工程学院专业:化学工程与工艺(煤磷方向)班级:煤磷132班
为Sourirajan 在Gibbs 吸附方程基础上提出的优先吸附-毛细孔流动机理,而后又按此机理发展为定量的表面力-孔流动模型(详见教材)。

3.膜性能的表征
一般而言,膜组件的性能可用截留率(R )、透过液通量(J )和溶质浓缩倍数(N )来表示。

(12—1)
式中, R -截流率;
-原料液的浓度,kmol/m 3; -透过液的浓度,kmol/m 3。

对于不同溶质成分,在膜的正常工作压力和工作温度下,截留率不尽相同,因此这也是工业上选择膜组件的基本参数之一。

(12—2)
式中, J -透过液通量,L/(m 2⋅h)
-透过液的体积,L ; S -膜面积,m 2; t -分离时间,h 。

其中,t
V Q p =
,即透过液的体积流量,在把透过液作为产品侧的某些膜分离过程中(如污
水净化、海水淡化等),该值用来表征膜组件的工作能力。

一般膜组件出厂,均有纯水通量这个参数,即用日常自来水(显然钙离子、镁离子等成为溶质成分)通过膜组件而得出的透过液通量。

P
R
c c N =
(12—3) 式中, N —溶质浓缩倍数;
-浓缩液的浓度,kmol/m 3; -透过液的浓度,kmol/m 3。

该值比较了浓缩液和透过液的分离程度,在某些以获取浓缩液为产品的膜分离过程中(如大分子提纯、生物酶浓缩等),是重要的表征参数。

三、实验装置
本实验装置均为科研用膜,透过液通量和最大工作压力均低于工业现场实际使用情况,实验中不可将膜组件在超压状态下工作。

主要工艺参数如表1-1
膜组件膜材料膜面积/m2最大工作压力/Mpa 纳滤(NF)芳香聚纤胺0.4 0.7
反渗透(RO) 芳香聚纤胺0.4 0.7
表1-1膜分离装置主要工艺参数
反渗透可分离分子量为100级别的离子,学生实验常取0.5%浓度的硫酸钠水溶液为料液,浓度分析采用电导率仪,即分别取各样品测取电导率值,然后比较相对数值即可(也可根据实验前做得的浓度-电导率值标准曲线获取浓度值)。

图1-1膜分离流程示意图
1-料液灌;2-低压泵;3-高压泵;4-预过滤器;5-预过滤液灌;6-配液灌;7-清液灌;
8-浓液灌;9-清液流量计;10-浓液流量计;11-膜组件;12-压力表;13-排水阀
六、数据处理
(1)料液浓度计算:
常温常压下,电导率与溶液浓度关系曲线如图1所示:
图1 电导率与溶液浓度关系曲线
电导率与溶液浓度模型:C= 0.8396k - 0.7428
式中k为电导率,单位ms/cm;C为溶液浓度,单位×10-3g/cm3。

K原始数据记录表已知:
原料液浓度C0=(0.8396k - 0.7428)×10-3=4.50×10-3g/cm3= 0.0769 kmol/m3透过液浓度C P=(0.8396k - 0.7428)×10-3=0.18×10-3g/cm3= 0.0031 kmol/m3浓缩液浓度C R=(0.8396k - 0.7428)×10-3=6.29×10-3g/cm3=0.1075 kmol/m3 (2)膜组件性能表征:
利用公式:
式中, R-截流率;
-原料液的浓度,kmol/m3;
-透过液的浓度,kmol/m3。

计算截留率R。

因此,
R0=0.0769−0.0031
0.0769
×100%=96.0% N=
C R
C P
=
0.0031
0.1075
=0.0288。

相关文档
最新文档