微位移技术

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微位移技术第一章概论

第二章微位移机构

第三章柔性铰链

第一章概论

作为精密机械与精密仪器的关键技术之一一微位移技术,近年来随着微电子技术、宇航、生物工程等学科的发展而迅速的发展起来。例如用金刚石车刀直接车削大型天文望远镜的抛物面反射镜时,要求加工出几何精度高于l/l0光波波长的表面,即几何形状误差小于0.5u m。计算机外围设备中大容量磁鼓和磁盘的制造,为保证磁头与磁盘在工作过程中维持1um内的浮动气隙,就必须严格控制磁盘或磁鼓在高速回转下的跳动。特别是到20世纪70年代后期,微电子技术向大规模集成电路和超大规模集成电路方向发展,随着集成度的提高,线条越来越微细化。256K动态RAM线宽已缩小到1.25um左右,目前己小于0.1um,对与之相应的工艺设备(如图形发生器、分步重复照相机、光刻机、电子束和X射线曝光机及其检测设备等)提出了更高的要求,要求这些设备的定位精度为线宽的1/3~1/5,即亚微米甚至纳米级的精度。

生物工程是当今一门崭新的学科,现代科学的发展要求,随意捕捉和释放单一游离细胞,或向细胞内注入和拾取某一成份,同时还能测定和记录细胞生物的电参数,因此研制满足这一要求的设备同样离不开微位移技术。随着机器人技术的发展,机器人精微操作已成为机器人研究领域中的重要课题之一,如用机器人完成精密伺服阀,压电陀螺等精密零部件的装配作业,其技术关键之一是微位移技术的研究.[1]因此,微位移技术是现代工业基础的重要组成部分,它几乎左右着上述各领域的发展,并引起国内外研究人员的极大关注,他们加紧了这方面的研究,并取得了很大进展。由于定位技术的水平几乎影响着整个设备的性能,因此直接影响到微电子、宇航、生物工程等高科技技术的发展。例如精密仪器,无论是大行程的精密定位,还是小范围内的光学对准,都离不开微位移技术。因此微位移技术,成为现代精密仪器工业的共同基础。

1.1国内外现状及发展趋势

美国LLN以美国知名核聚变实验室)研制的加工大口径光学元件的金刚石车床(LODTM)是目前世界上能进行最高精度切削加工的车床,其所用的快速刀具伺服机构采用了PZT(错钦酸铅压电陶瓷),能在士1.27um范围内分辨力达到2.5nm,频率响应可达到IOOHz;日本日立制作所采用柔性支承导轨、压电晶体驱动方式的微位移机构的位移精度为士0.05um,行程为士8um,该机构已成功应用于电子束曝光机;中国国防科技大学采用柔性支承导轨、电致伸缩驱动方式的微位移机构的分辨力为0.01um,行程为20um[4]。现将收集的具体资料列于下表1-1

1.2系统研制的意义

微位移技术是超精密加工及检测中的一项关键技术。特别是纳米技术的飞速发展,使微位移的精度要求由微米级而上升到纳米级。随着扫描隧道显微镜(STM)及原子力显微镜(AFM)的广泛应用,更加需要有高精度,高分辨率,能够灵活控制的微动系统,以实现纳米级的加工及检测精度。

微位移技术也推动了微电子技术、宇航、生物工程等学科的迅速发展。例如精密仪器,无论是大行程的精密定位,还是小范围内的光学对准,都离不开微位移技术。因此微位移技术,己经成为现代精密仪器工业的共同基础,是衡量一个国家科技水平的重要标志,代表了一个国家加工技术水平的高低。发展微位移技术,是非常重要的。

1.3微位移系统工作原理[2]

压电陶瓷PZT存在着迟滞、蠕变和非线性等缺点,在要求实现高分辨率微量位移的场合,必须建立闭环控制系统把与输出位移对应的电压值反馈回来,控制加在压电陶瓷上的电压,不断地修正各种干扰造成的机构位移偏差,以实现给定的位移.控制原理框图如图1所示。

机构的位移量由传感器测量,测量信号一路送给计算机,另一路与计算机发出的指令信号进行比较,经比较放大后再把信号加到PZT 上,实现精密定位和微量位移.

第二章微位移机构

微位移技术包括:微位移机构、检测装置和控制系统3大部分。微位移机构是指行程小(小于毫米级),精度高(亚微米、纳米级)及灵敏度高的机构,它是微位移技术中的关键部件之一,也是一种机、电、磁一体化的组合件。它既可作为微进给和微调节部件,也可作为工艺系统动、静误差补偿的关键部件。现在,微位移机构已能达到0.005-0.01um的分辨率。微位移机构由微位移驱动器和微动工作台组成。根据微位移驱动器和微动工作台导轨形式可分为5类:

a)柔性支承,压电晶体或电致伸缩微位移器驱动。

b)滚动导轨,压电晶体或电致伸缩微位移器驱动。

c)平行弹性导轨,电磁、压电或机械式驱动。

d)滑动导轨,机械式或压电式驱动。

e)气浮导轨,伺服电机和直线电机驱动。

本文将介绍一些典型的微位移机构的结构原理、特点及应用,并对它们作一些比较分析。

1直线电机式微位移机构

直线电机具有任意的调节行程,无限的位移分辨率的优点。在利用空气轴承微步进直线电机作为驱动件产生微位移时,由于简化了系统的结构,从而避免了由于中间环节的弹性变形、间隙、磨损和发热等因素带来的运动误差,故这种微位移机构最明显的优点是响应快、可达到瞬时高加速度和减速度。为此,它的快速进给速度达到以上,几乎在瞬间可加速到几个重力加速度。在高加速度时,通常可产生几个牛顿推力。在常载下可达到1um以内的重复定位精度。另使用直线电机的伺服系统具有较大的刚度和较小的外形尺寸,在计算机控制的精密车削和磨削加工中得到成功的应用。但是,直线电机目前还存在着成本较高、发热较严重、控制系统较复杂等问题,故应用还受到一定限制。但是,随着科学技术的发展,直线电机的上述问题将得到解决,直线电机式微位移机构将会得到广泛的应用。

2机械传动式微位移机构

机械传动式微位移机构是一种最早出现的机构,在精密机械和仪器中应用甚广,比较成熟,其结构形式较多,主要有螺旋机构、杠杆机构、楔块凸轮机构、弹性机构以及它们的组合机构。机械传动式微位移机构的特点:(i)具有较好的分辨率;(2)行程较大;(3)存在机械间隙、摩擦磨损以及爬行等缺点,所以运动灵敏度和运动精度都难以达到高精度,故仅适应于中等精度。

2.1螺旋式和差动螺旋式微位移机构

1.螺旋式微位移机构

螺旋式微位移机构具有较高的分辨率,可以获得大行程的位移,结构简单,制造维修方便,它是利用螺旋传动原理来获得微小直线位移。图1是螺旋式微位移机构的简图。转动手轮1经螺杆将螺旋运动转换为直线位移运动。位移S与手轮转角切之间的关系为:

其微动灵敏度为:

式中,t—螺距;

相关文档
最新文档