有理数乘法的教学设计(人教版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“有理数乘法”教学设计
内容:人教版《数学》七年级上册1.4.1《有理数乘法》的第一课时,课型:新授。授课人:朱美香教学目标:
1.理解有理数乘法法则,会用有理数乘法法则进行计算,初步体会有理数乘法分类及法则的合理性。
2.在经历探究有理数乘法法则的过程中,通过观察、分析、归纳、概括,得出有理数乘法的规律,建立数感和符号感;体验数形结合思想、分类讨论思想、归纳法在数学中的应用。
3.在探究过程中,体验学习有理数乘法的乐趣,激发学习数学的求知欲,并在运用数学知识解答问题的活动中获得成功的体验,获得学习的自信心。
教学重点:有理数乘法法则的推导过程,理解有理数乘法法则。
教学难点:对正数与负数相乘及法则、负数与负数相乘及法则的理解。
教学方法:直观教学发现法和启发诱导教学法
教学过程
一.复习旧知,做好铺垫
问题1:同学们,我们已经知道可以用正负数表示具有相反意义的量,你能举几个例子吗?(预设学生可能举例:在某点的东边50米,西边80米,或上升50米,下降80米等,但以某时刻为基础,与时间有关的具有相反意义的量学生可能想不到,需要教师引导。例某时刻5分钟前,5分钟后。)设计意图:通过复习,使学生回顾用正负数表示具有相反意义的量的方法,及正负数可理解成现实生活中具有相反意义的量,为推导有理数乘法法则打下基础。
问题2:小学已经学过正数与正数的乘法、正数与零的乘法,哪引入负数之后,怎样进行有理数的乘法运算?有理数的乘法运算有几种情况?
(学生先独立思考,然后展示交流。)
教师的引导学生从数分为正数、零、负数的角度去考虑,点拨学生的展示情况,最后得出结论。(1)正数乘以正数;(2)正数乘以负数;(3)负数乘以正数;(4)负数乘以负数;(5)零乘以一个数;(6)一个数乘以零。
设计意图:数按正数、零、负数进行分类,体现分类的合理性,并向学生渗透分类讨论思想,有利于学生探究有理数乘法法则,培养学生分析问题的能力。
二.创设情景,探究新知
(如图1)一只蜗牛沿直线l爬行,它现在的位置恰好在l上的点O。规定:区分方向与时间,向左为负,向右为正.现在前为负,现在后为正。
1.正数乘以正数
问题3:(如图2)如果蜗牛一直以每分2cm的速度向右爬行,3分钟后它在什么位置?
如图1
2
0 2 6
4
l
如图2
l
O
思考:(1)请你结合数轴,用数学式子表示上面的关系吗?
(2)你能结合上面的情景设置:赋予正数乘以负数;负数乘以正数;负数乘以负数;零乘以一个数;一个数乘以零的的具体情形吗?
(3)你能将(2)中的各情形用数学式子表示吗?
学生先自主探究,然后合作探究,最后展示交流。教师根据学生的展示情况适当的引导、点拨,从而
赋予以下实际问题,并且结合数轴引导学生写出数学式子。
设计意图:教师先赋予正数乘以正数的实际情形,并借助于数轴去描述,然后让学生去模仿着描述其
他两个有理数相乘的情形,目的是从学生的最近发展区设计问题,学生采用类比的方法去赋予实际情形,
然后结合数轴得出数学式子。这样降低难度,有利于学生对问题的思考,避免设计的问题很突然,学生感
到一头雾水。
2. 负数乘以正数
(如图3)如果蜗牛一直以每分2cm的速度向左爬行,3分后它在什么位置?
3. 正数乘以负数
如果蜗牛一直以每分2cm的速度向右爬行,3分前它在什么位置?
4.负数乘以负数
如果蜗牛一直以每分2cm的速度向左爬行,3分前它在什么位置?
5.零乘以一个数
如果蜗牛一直以每分0cm的速度向左爬行,3分前它在什么位置?
6. 一个数乘以零。
如果蜗牛一直以每分2cm的速度向左爬行,0分前它在什么位置?
0 2 6
4
-2
l
如图6
2
-6 -4 0
-2 2
l
如图4
2
-2
l
如图5
-6
-6 -4 0
-2
2
l
如图3
(零与正数的乘法及零与零乘法小学以学过,不再讨论)
设计意图:现将数学问题通过赋予实际情形转化为实际问题,然后借助于数轴将实际问题转化为数学问题,渗透化归思想、数形结合思想,同时数学问题情景化有利于学生更好地理解有理数乘法的合理性和初步建立符号感。
问题4:你能用上面的方法表示出4分钟后, 4分钟前,蜗牛位置变化的式子吗?
设计意图:举例太少,没有说服力,往往产生以偏概全的现象,多举几个例子,有利于学生分析、归纳、概括有理数乘法法则。
问题5:从以上六种分类角度进行观察、分析、总结积的符号与积的绝对值规律。并完成以下填空。(学生独立思考,然后合作探究,最后展示交流。)
教师引导学生观察、分析、猜测、然后验证,归纳、概括,最后得出结论。 (1)正数乘正数积为___数;乘积的绝对值等于各乘数绝对值的___. (2)负数乘正数积为___数;乘积的绝对值等于各乘数绝对值的___. (3)正数乘负数积为___数;乘积的绝对值等于各乘数绝对值的___. (4)负数乘负数积为___数;乘积的绝对值等于各乘数绝对值的___. (5)零乘以一个数等于___。 (6)一个数乘以零等于___。
设计意图:学生经历观察、分析、猜测、验证、归纳、概括等数学活动,培养学生的合情推理能力,体验数学问题的探索性。
问题6:观察下列各式,你能从符号上继续探究规律吗?哪如果有一个因数为零,结果怎样呢?
())()()()
()()(:1+=-⨯-+=+⨯+
)()()()()()(:)2(-=-⨯+-=+⨯-,
0000:)3(=⨯=⨯a a
学生自主探究,然后交流展示,归纳得出结论。有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同零相乘都得零。
设计意图:继续探究,抓住事物的本质,用更简洁的语言描述数学规律,培养学生的概括、归纳能力,语言表达能力和符号感。在这个法则的形成过程中,学生体验了数本身的继承与发展,体验了运算率在有理数范围仍然使用,体验了运算中数的范围的扩大。
举例
符号类型 积的符号 积的绝对值 结果 )
3()5(-⨯-
l
2
-2
如图7