高中物理力学竞赛辅导专题牛顿力学中的传送带问题

合集下载

牛顿运动定律:专题九:传送带问题

牛顿运动定律:专题九:传送带问题

专题九:传送带问题一、分析物体在传送带上如何运动的方法1、分析物体在传送带上如何运动和其它情况下分析物体如何运动方法完全一样,但是传送带上的物体受力情况和运动情况也有它自己的特点。

具体方法是:(1)分析物体的受力情况在传送带上的物体主要是分析它是否受到摩擦力、它受到的摩擦力的大小和方向如何、是静摩擦力还是滑动摩擦力。

在受力分析时,正确的理解物体相对于传送带的运动方向,也就是弄清楚站在传送带上看物体向哪个方向运动是至关重要的!因为是否存在物体与传送带的相对运动、相对运动的方向决定着物体是否受到摩擦力和摩擦力的方向。

(2)明确物体运动的初速度分析传送带上物体的初速度时,不但要分析物体对地的初速度的大小和方向,同时要重视分析物体相对于传送带的初速度的大小和方向,这样才能明确物体受到摩擦力的方向和它对地的运动情况。

(3)弄清速度方向和物体所受合力方向之间的关系物体对地的初速度和合外力的方向相同时,做加速运动,相反时做减速运动;同理,物体相对于传送带的初速度与合外力方向相同时,相对做加速运动,方向相反时做减速运动。

2、常见的几种初始情况和运动情况分析(1)物体对地初速度为零,传送带匀速运动,(也就是将物体由静止放在运动的传送带上)物体的受力情况和运动情况如图1所示:其中V是传送带的速度,V10是物体相对于传送带的初速度,f是物体受到的滑动摩擦力,V20是物体对地运动初速度。

(以下的说明中个字母的意义与此相同)物体必定在滑动摩擦力的作用下相对于地做初速度为零的匀加速直线运动。

其加速度由牛顿第二定律,求得;在一段时间内物体的速度小于传送带的速度,物体则相对于传送带向后做减速运动,如果传送带的长度足够长的话,最终物体与传送带相对静止,以传送带的速度V共同匀速运动。

(2)物体对地初速度不为零其大小是V20,且与V的方向相同,传送带以速度V匀速运动,(也就是物体冲到运动的传送带上)①若V20的方向与V 的方向相同且V20小于V,则物体的受力情况如图1所示完全相同,物体相对于地做初速度是V20的匀加速运动,直至与传送带达到共同速度匀速运动。

【物理】物理牛顿运动定律的应用练习题及答案含解析

【物理】物理牛顿运动定律的应用练习题及答案含解析

【物理】物理牛顿运动定律的应用练习题及答案含解析一、高中物理精讲专题测试牛顿运动定律的应用1.皮带传输装置示意图的一部分如下图所示,传送带与水平地面的夹角37θ=︒,A 、B 两端相距12m,质量为M=1kg 的物体以0v =14.0m/s 的速度沿AB 方向从A 端滑上传送带,物体与传送带间的动摩擦因数为0.5,传送带顺时针运转动的速度v =4.0m/s(g 取210/m s ),试求:(1)物体从A 点到达B 点所需的时间;(2)若物体能在传送带上留下痕迹,物体从A 点到达B 点的过程中在传送带上留下的划痕长度.【答案】(1)2s (2)5m 【解析】 【分析】(1)开始时物体的初速度大于传送带的速度,根据受力及牛顿第二定律求出物体的加速度,当物体与传送带共速时,求解时间和物体以及传送带的位移;物体与传送带共速后,物体向上做减速运动,根据牛顿第二定律求解加速度,几何运动公式求解到达B 点的时间以及传送带的位移;(2)开始时物体相对传送带上滑,后来物体相对传送带下滑,结合位移关系求解划痕长度. 【详解】(1)物体刚滑上传送带时因速度v 0=14.0m/s 大于传送带的速度v=4m/s ,则物体相对斜面向上运动,物体的加速度沿斜面向下,根据牛顿第二定律有:Mgsin θ+μMgcos θ=Ma 1 解得:a 1=gsin θ+μgcos θ=10m/s 2 当物体与传送带共速时:v 0-at 1=v 解得t 1=1s此过程中物体的位移01192v vx t m +== 传送带的位移:214x vt m ==当物体与传送带共速后,由于μ=0.5<tan370=0.75,则物体向上做减速运动,加速度为:Mgsin θ-μMgcos θ=Ma 2 解得a 2=2m/s 2物体向上减速运动s 1=L-x 1=3m根据位移公式:s 1=vt 2-12a 2t 22 解得:t 2=1 s (t 2=3 s 舍去)则物体从A 点到达B 点所需的时间:t=t 1+t 2=2s(2)物体减速上滑时,传送带的位移:224s vt m == 则物体相对传送带向下的位移211s s s m ∆=-=因物体加速上滑时相对传送带向上的位移为:125x x x m ∆=-= 则物体从A 点到达B 点的过程中在传送带上留下的划痕长度为5m . 【点睛】此题是牛顿第二定律在传送带问题中的应用问题;关键是分析物体的受力情况,根据牛顿第二定律求解加速度,根据运动公式求解时间和位移等;其中的关键点是共速后物体如何运动.2.如图甲所示,m 1 =5 kg 的滑块自光滑圆弧形槽的顶端A 点无初速度地滑下,槽的底端与水平传送带相切于左端导轮顶端的B 点,传送带沿顺时针方向匀速运转.m 1下滑前将m 2 = 3 kg 的滑块停放在槽的底端.m 1下滑后与m 2发生碰撞,碰撞时间极短,碰后两滑块均向右运动,传感器分别描绘出了两滑块碰后在传送带上从B 点运动到C 点的v -t 图象,如图乙、丙所示.两滑块均视为质点,重力加速度g = 10 m/s 2.(1)求A 、B 的高度差h ;(2)求滑块m 1与传送带间的动摩擦因数μ和传送带的长度L BC ; (3)滑块m 2到达C 点时速度恰好减到3 m/s ,求滑块m 2的传送时间; (4)求系统因摩擦产生的热量.【答案】(1)0.8m (2)26m (3)6.5s (4)16J 【解析】(1)由图乙可知,碰撞后瞬间,m 1 的速度v 1=1 m/s ,m 2的速度v 2 =5 m/s ,设碰撞前瞬间m 1的速度为v 0,取向右的方向为正方向,根据动量守恒:m 1v 0= m 1v 1+ m 2v 2 解得:v 0 = 4 m/sm 1下滑的过程机械能守恒:211012m gh m v = 解得:h =0.8 m(2)由图乙可知,滑块m 1在传送带上加速运动时的加速度大小0.5va t∆==∆m/s 2 滑块的加速度就是由滑动摩擦力提供,故μ1m 1g = m 1a 可求出滑块m 1与传送带间的动摩擦因数μ1 = 0.05由图乙可知,滑块m 1在传送带上先加速4 s ,后匀速运动6 s 到达C 点 图线与坐标轴围成的图形的面积在数值上等于传送带的长度L BC ,即L BC = 26 m (3)滑块m 2一直做匀减速直线运动,达C 点时速度恰好减到3 m/s ,全程的平均速度为24/2v vv m s +== 设滑块m 2的传送时间为t ,则有 6.5BCL t s v== (4)由图乙可知,滑块m 1在传送带上加速阶段的位移21011182x v t at m =+= 滑块m 1在传送带上加速阶段产生的热量Q 1=μ1m 1g (vt 1-x 1)=10 J 滑块m 2在传送带上减速的加速大小413v a t '∆'=='∆m/s 2 滑块m 2受到的滑动摩擦力大小f = m 2a ′滑块m 2在传送带上减速阶段产生的热量Q 2 = f (L BC -vt ) = 6 J 系统因摩擦产生的热量Q = Q 1 + Q 2 =16 J .3.如图甲所示,有一倾角为37°的光滑固定斜面,斜面底端的水平面上放一质量为M 的木板。

运动与力的关系专题之传送带问题(典型例题分析+专项训练)附详细解析

运动与力的关系专题之传送带问题(典型例题分析+专项训练)附详细解析

牛顿第二定律的运用之传送带问题一、传送带水平放,传送带以一定的速度匀速转动,物体轻放在传送带一端,此时物体可能经历两个过程——匀加速运动和匀速运动。

【例题1】在民航和火车站可以看到用于对行李进行安全检查的水平传送带,当旅客把行李放到传送带上时,传送带对行李的摩擦力使行李开始运动,最后行李随传送带一起前进,设传送带匀速前进的速度为0.6m/s,质量为4.0kg的皮箱在传送带上相对滑动时,所受摩擦力为24N,那么,这个皮箱无初速地放在传送带上后,求:(1)经过多长时间才与皮带保持相对静止?(2)传送带上留下一条多长的摩擦痕迹?【答案】分析:(1)行李在传送带上先做匀加速直线运动,当速度达到传送带的速度,和传送带一起做匀速直线运动(2)传送带上对应于行李最初放置的一点通过的位移与行李做匀加速运动直至与传送带共同运动时间内通过的位移之差即是擦痕的长度解答:解:(1)设皮箱在传送带上相对运动时间为t,皮箱放上传送带后做初速度为零的匀加速直线运动,由牛顿运动定律:皮箱加速度:a==m/s2=6m/s2由v=at 得t==s=0.1s(2)到相对静止时,传送带带的位移为s1=vt=0.06m皮箱的位移s2==0.03m摩擦痕迹长L=s1--s2=0.03m(10分)所以,(1)经0.1s行李与传送带相对静止(2)摩擦痕迹长0.0.03m二、传送带斜放,与水平方向的夹角为θ,将物体轻放在传送带的最低端,只要物体与传送带之间的滑动摩擦系数μ≥tanθ,那么物体就能被向上传送。

此时物体可能经历两个过程——匀加速运动和匀速运动。

【例题2】如图2—4所示,传送带与地面成夹角θ=37°,以10m/s的速度顺时针转动,在传送带下端轻轻地放一个质量m=0.5㎏的物体,它与传送带间的动摩擦因数μ=0.9,已知传送带从A→B的长度L=50m,则物体从A到B需要的时间为多少?解:物体放上传送带后,开始一段时间t1内做初速度为0的匀加速直线运动,对小物体受力分析如下图所示:可知,物体所受合力F合=f-Gsinθ又因为f=μN=μmgcosθ所以根据牛顿第二定律可得:此时物体的加速度a===m/s2=1.2m/s2当物体速度增加到10m/s时产生的位移x===41.67m因为x<50m所以=8.33s所以物体速度增加到10m/s后,由于mgsinθ<μmgcosθ,所以物体将以速度v做匀速直线运动故匀速运动的位移为50m-x,所用时间所以物体运动的总时间t=t1+t2=8.33+0.83s=9.16s答:物体从A到B所需要的时间为9.16s.三、传送带斜放,与水平方向的夹角为θ,将物体轻放在传送带的顶端,物体被向下传送。

高中物理牛顿运动定律解题技巧(超强)及练习题(含答案)及解析

高中物理牛顿运动定律解题技巧(超强)及练习题(含答案)及解析

高中物理牛顿运动定律解题技巧(超强)及练习题(含答案)及解析一、高中物理精讲专题测试牛顿运动定律1. 在机场可以看到用于传送行李的传送带,行李随传送带一起前进运动。

如图所示,水平传送带匀速运行速度为v=2m/s,传送带两端AB间距离为S o=lOm,传送带与行李箱间的动摩擦因数卩=0.2当质量为m=5kg的行李箱无初速度地放上传送带A端后,传送到B端,重力加速度g取10m/2;求:(1) 行李箱开始运动时的加速度大小a;(2) 行李箱从A端传送到B端所用时间t;(3) 整个过程行李对传送带的摩擦力做功W。

【答案】⑴,(2)薜耳⑶="-纠【解析】【分析】行李在传送带上先做匀加速直线运动,当速度达到传送带的速度,和传送带一起做匀速直线运动,根据牛顿第二定律及运动学基本公式即可解题行李箱开始运动时的加速度大小和行李箱从A端传送到B 端所用时间;根据做功公式求解整个过程行李对传送带的摩擦力做功;【详解】解:(1)行李在传送带上加速,设加速度大小为aI__7(2)行李在传送带上做匀加速直线运动,加速的时间为t1V 2灯== Is1所以匀加速运动的位移为:s\=尹甘=lrnSo-Si 10-1行李随传送带匀速前进的时间:(2 = ---------- = —-一=4.5$v 2行李箱从A传送到B所需时间::3 --气出⑶t1传送带的的位移为:怜一叽“ -根据牛顿第三定律可得传送带受到行李摩擦力为:『◎『整个过程行李对传送带的摩擦力做功:w =7比=-吓阿=-20/2. 如图甲所示,质量为m的A放在足够高的平台上,平台表面光滑•质量也为m的物块B放在水平地面上,物块B与劲度系数为k的轻质弹簧相连,弹簧与物块A用绕过定滑轮的轻绳相连,轻绳刚好绷紧•现给物块A施加水平向右的拉力F (未知),使物块A做初速度为零的匀加速直线运动,加速度为a,重力加速度为g,A、B均可视为质点.根据v 2 2ax 解得:v . 2ax 对物体A:F T ma ; 对物体B:T=mg , 解得 F=ma+mg ; (2)设某时刻弹簧的伸长量为x .对物体C ,水平方向:F cosT | m C a ,其中T | kx mg ;竖直方向:F sin m C g ;联立解得m e3mg4g 3a3.如图所示,水平面上AB 间有一长度x=4m 的凹槽,长度为L=2m 、质量M=1kg 的木板静止 于凹槽右侧,木板厚度与凹槽深度相同,水平面左侧有一半径R=0.4m 的竖直半圆轨道,右侧有一个足够长的圆弧轨道,A 点右侧静止一质量 m1=0.98kg 的小木块.射钉枪以速度v °=ioom/s 射出一颗质量m0=0.02kg 的铁钉,铁钉嵌在木块中并滑上木板,木板与木块间动摩擦因数 卩=0.05其它摩擦不计.若木板每次与 A 、B 相碰后速度立即减为 0,且与A 、B 不粘连,重力加 速度 g=10m/s 2.求:(1) 当物块B 刚好要离开地面时,拉力 F 的大小及物块 A 的速度大小分别为多少;(2)若将物块 A 换成物块C ,拉力F 的方向与水平方向成 37°角,如图乙所示,开始时轻绳也刚好要绷紧,要使物块B 离开地面前,物块C 一直以大小为a 的加速度做匀加速度运动,则物块 C 的质量应满足什么条件? ( sin37°0.6,cos37° 0.8)【答案】(1) F ma mg;v 【解析】 【分析】 【详解】(1)当物块B 刚好要离开地面时, B 受力分析有mg kx ,得:x2嘗(2) m C设弹簧的伸长量为mg k3mg 4g 3ax ,物块A 的速度大小为v ,对物块2amg k(3)木块最终停止时离 A 点的距离s.【答案】(1) v 2m/s (2) F N 12.5N (3) L 1.25m 【解析】(1) 设铁钉与木块的共同速度为 v ,取向左为正方向,根据动量守恒定律得:m °V 0 (m ° mjv解得:v 2叹;⑵木块滑上薄板后,木块的加速度 印 g 0.5,且方向向右设经过时间t ,木块与木板共同速度 v 运动 则:va 2t此时木块与木板一起运动的距离等于木板的长度.1 .2 1 2x vt a 1ta 2t L2 2故共速时,恰好在最左侧 B 点,此时木块的速度 v v a 1t 1^S 木块过C 点时对其产生的支持力与重力的合力提供向心力,则:'2vF N mg m R代入相关数据解得:F N =12.5N. 由牛顿第三定律知,木块过圆弧C 点时对C 点压力为12.5N ;1 2⑶木块还能上升的高度为 h ,由机械能守恒有:(m ° mjv (m 0 m^gh2h 0.05m 0.4m木块不脱离圆弧轨道,返回时以 1m/s 的速度再由B 处滑上木板,设经过 t 1共速,此时木 板的加速度方向向右,大小仍为a 2,木块的加速度仍为 a 1,板产生的加速度a 2 mg M, 且方向向左则:v2 a1t1 a2t1,解得:t1 1s1 2 1 2此时x v t1a-i t-i a2t| 0.5m2 2v3v2 at10.5叹碰撞后,v薄板=0,木块以速度V3=0.5m/s的速度向右做减速运动v3设经过t2时间速度为0,则t2a;1s| 2x v3t2a2t2 0.25m2故△L=b △x' - x=1.25m即木块停止运动时离A点1.25m远.4. 如图,光滑固定斜面上有一楔形物体A。

牛顿运动定律专题;传送带问题(6-3)

牛顿运动定律专题;传送带问题(6-3)

牛顿运动定律——传送带问题知识特点传送带上随行物受力复杂,运动情况复杂,功能转换关系复杂。

基本方法解决传送带问题要特别注重物理过程的分析和理解,关键是分析传送带上随行物时一般以地面为参照系。

1、对物体受力情况进行正确的分析,分清摩擦力的方向、摩擦力的突变。

当传送带和随行物相对静止时,两者之间的摩擦力为恒定的静摩擦力或零;当两者由相对运动变为速度相等时,摩擦力往往会发生突变,即由滑动摩擦力变为静摩擦力或变为零,或者滑动摩擦力的方向发生改变。

2、对运动情况进行分析分清物体的运动过程,明确传送带的运转方向。

3、对功能转换关系进行分析,弄清能量的转换关系,明白摩擦力的做功情况,特别是物体与传送带间的相对位移。

一.例题分析(1)水平传送带问题:轻轻放在水平传送带上的物体在传送带上只有两种运动情况:(轻轻放意味着物体的初速度为0)1.传送带足够长。

物体先做初速度为0的匀加速直线运动,加速度g a μ=,当物体与传送带共速之后,以传送带的速度做匀速直线运动。

2.传送带不够长。

物体一直做匀加速直线运动,加速度g a μ=,物体的速度还咩有达到与传送带共速,便送传送带滑落出去。

例一、水平传送带被广泛地应用于机场和火车站,用于对旅客的行李进行安全检查.如图1所示为一水平传送带装置示意图,绷紧的传送带AB 始终保持v=1m/s 的恒定速率运行,一质量为m=4kg 的行李无初速地放在A 处,设行李与传送带间的动摩擦因数μ=0.1,AB 间的距离l=2m ,g 取10m/s2.(1)从A 运动到B 的时间以及物体在皮带上留下的滑痕长度;(2)如果提高传送带的运行速率,行李就能被较快地传送到B 处,求行李从A 处传送到B 处的最短时间和传送带对应的最小运行速率.例二、一水平传送带以2.0m/s 的速度顺时针传动,水平部分长为2.0m ,其右端与一倾角为θ=37°的光滑斜面平滑相连,斜面长为0.4m ,一个可视为质点的物块无初速度地放在传送带最左端,已知物块与传送带间动摩擦因数μ=0.2,试问:(1)物块到达传送带右端的速度。

牛顿运动定律的应用皮带传送问题

牛顿运动定律的应用皮带传送问题

t2=1.5 s t=2.5 s.
答案 2.5 s
第22页/共33页
即学即练.2011·西城一模如图所示,倾角为θ的传送带沿 逆时针方向以加速度a加速转动时,小物体A与传送带相对静止,
重力加速度为g.下列说法正确的是( ) B
A.只有a>gsinθ,A才受沿传送带向上的静摩擦力作用 B.只有a<gsinθ,A才受沿传送带向上的静摩擦力作用 C.只有a=gsinθ,A才受沿传送带向上的静摩擦力作用 D.无论a为多大,A都受沿传送带向上的静摩擦力作用
小到传送带速度v时,工件与传送带一起作匀速运动速度相同,工件
到达B端的速度vB=v.
第7页/共33页
双选
变式题:如图所示,一水平方向足够长的传送带以恒
定的速度v1沿顺时针方向运动,一物体以水平速度v2 从右端滑上传送带后,经过一段时间又返回光滑水平
面,此时速率为v2' ,则下列说法正确的是: (A B )
第6页/共33页
(3)传送带顺时针转动时,根据传送带速度v的大小,由下列五种情况:
①若v=vA,工件滑上传送带时,工件与传送带速度相同,均做匀速 运动,工件到达B端的速度vB=vA.
②若v≥ vA2 2as,工件由A到B,全程做匀加速运动,到达B端的 速度vB= vA2 2as=4.7 m/s.
得 t1=1 s
当小物块的速度加速到 12 m/s 时,因 mgsin θ=μmgcos θ,小物
块受到的摩擦力由原来的滑动摩擦力突变为静摩擦力,而且此
时刚好为最大静摩擦力,小物块此后随皮带一起做匀速运动.
设 AB 间的距离为 L,则 L-x1=vt2 从 A 到 B 的时间 t=t1+t2
解得 解得
的主动轮O1和从动轮O2及传送带等构成。两轮轴心相 距L=8.0m,轮与传送带不打滑。现用此装置运送一袋

高中物理传送带问题(有答案)

高中物理传送带问题(有答案)

高中物理传送带问题(有答案)传送带问题一水平传送带长度为20m,以2m/s的速度做匀速运动,已知某物体与传送带间动摩擦因数为0.1.求从把该物体由静止放到传送带的一端开始,到达另一端所需时间。

解:物体加速度a=μg=1m/s²。

经过t1=v/a=2s与传送带相对静止,所发生的位移S1=1/2 at1²=2m。

然后和传送带一起匀速运动经过t2=l-S1/v=9s。

所以共需时间t=t1+t2=11s。

练:在物体和传送带达到共同速度时,物体的位移、传送带的位移、物体和传送带的相对位移分别是多少?(S1=1/2vt1=2m,S2=vt1=4m,Δs=s2-s1=2m)如图2-1所示,传送带与地面成夹角θ=37°,以10m/s的速度逆时针转动,在传送带上端轻轻地放一个质量m=0.5kg的物体,它与传送带间的动摩擦因数μ=0.5,已知传送带从A 到B的长度L=16m,则物体从A到B需要的时间为多少?解析:物体放上传送带以后,开始一段时间,其运动加速度a=(mgsinθ+μmgcosθ)/m=10m/s²。

这样的加速度只能维持到物体的速度达到10m/s为止,其对应的时间和位移分别为:t1=1s,S1=5mμmgcosθ)a2=(mgsinθ-μmgcosθ)/m=2m/s²。

设物体完成剩余的位移s2所用的时间为t2,则s2=vt2+1/2a2t2²,11m=10t2+t2²,解得:t2=1s或t2=-11s(舍去),所以总时间t总=t1+t2=2s。

如图2-2所示,传送带与地面成夹角θ=30°,以10m/s的速度逆时针转动,在传送带上端轻轻地放一个质量m=0.5kg的物体,它与传送带间的动摩擦因数μ=0.6,已知传送带从A 到B的长度L=16m,则物体从A到B需要的时间为多少?解析:物体放上传送带以后,开始一段时间,其运动加速度a=(mgsinθ+μmgcosθ)/m=8.46m/s²。

牛顿定律难点--传送带问题 (1)

牛顿定律难点--传送带问题 (1)

牛顿运动定律(三)姓名__________------传送带专题一、传送带的分类1.按放置方向分水平、倾斜两种;2.按转向分顺时针、逆时针转两种;二、水平传送带.当传送带水平运动时,应特别注意摩擦力的突变和物体运动状态的变化.摩擦力的突变,常常导致物体的受力情况和运动性质的突变.静摩擦力达到最大值,是物体恰好保持相对静止的临界状态;滑动摩擦力存在于发生相对运动的物体之间,因此两物体的速度达到相同时,滑动摩擦力要发生突变(摩擦力为零或为静摩擦力).Ⅰ、V0=0,传送带顺时针以V旋转例1、:如图所示为水平传送带装置,绷紧的皮带始终保持以υ=1m/s的速度移动,一质量m=0.5kg的物体(视为质点)。

从离皮带很近处轻轻落到一端A处。

若物体与皮带间的动摩擦因素µ=0.1。

AB两端间的距离为L=2.5m。

试求:物体从A运动到B的过程所需的时间为多少?2、物体的初速度v0≠0,且v与v同向例2:如图所示为水平传送带装置,绷紧的皮带始终保持以υ=4m/s的速度匀速运动,一质量m=1kg的物体(视为质点)以v0=2m/s的初速度从A点滑上传送带,物体和皮带之间的动摩擦因数为μ=0.2,传送带AB之间的距离为L=5m,物体从A运动到B的过程所需的时间为多少?例3:如图所示为水平传送带装置,绷紧的皮带始终保持以υ=4m/s的速度匀速运动,一质量m=1kg的物体(视为质点)以v0=6m/s的初速度从A点滑上传送带,物体和皮带之间的动摩擦因数为μ=0.2,传送带AB之间的距离为L=5m,物体从A运动到B的过程所需的时间为多少?AB 3、物体的初速度v 0≠0,且v 0与v 反向例4. 如图所示,一水平方向足够长的传送带以恒定的速度V=2m/s 沿顺时针方向匀速转动,传送带传送带右端有一与传送带等高的光滑水平面,一物体以恒定的速率V ’=4m/s 沿直线向左滑上传送带,求物体的最终速度多大?方法总结;课后作业1、传送带A 、B 两轮L=6m ,皮带匀速v=3m/s 向右传动,m=1kg 物体无初速放在皮带一端A 点,μ=0.2.求物体从A 运动至B 所需时间?2. 如图所示,一水平传送带以v=2 m /s 的速度做匀速运动,将一物体轻放在传送带一端,已知物体与传送带间的动摩擦因数为0.1,物体由传送带一端运动到另一端所需时间为11 s ,求传送带两端的距离.(g=lO m /s 2)3、 如图所示,一平直的传送带以速度V=2m/s 匀速运动,传送带把A处的工件运送到B处,A、B相距L=10m.从A处把工件无初速地放到传送带上,经时间t=6s 能传送到B处,欲用最短时间把工件从A处传到B处,求传送带的运行速度至少多大.4、如图所示,水平传送带AB 长12m ,以v 0=5m/s 的速度匀速运动,运动方向向右,另有一物体以v=10m/s 的速度滑上传送带的右端,它与传送带之间的动摩擦因数为0.5. (g = 10m/s 2)(1) 通过计算说明物体能否到达左端A 点?(2) 求物体在传送带上运动的时间.374、如图所示,一平直的传送带以速度V=2m/s 匀速运动,传送带把A处的工件运送到B处,A、B相距L=10m.从A处把工件无初速地放到传送带上,经时间t=6s 能传送到B处,欲用最短时间把工件从A处传到B处,求传送带的运行速度至少多大.二、倾斜传送带.当传送带倾斜运动时,除了要注意摩擦力的突变和物体运动状态的变化外,还要注意物体与传送带之间的动摩擦因数μ和传送带倾斜角度θ的关系,从而正确判断物体的速度和传送带速度相等时物体运动的性质.Ⅰ、物休初速为V 0=0,,传送带向上运动例4.一传送带装置示意如图,传送带与地面倾角为37 ° ,以4m/s 的速度匀速运行,在传送带的低端A 处无初速地放一个质量为0.5kg 的物体,它与传送带间动摩擦因素μ=0.8,A 、B 间长度为25m,试回答下列问题:(1)说明物体的运动性质(相对地球)(2)物体从A 到B 的时间为多少?2、物休初速为V 0=0,传送带向下运动例5、如图所示,传送带与地面倾角θ=37°,从A 到B 长度为16 m,传送带以v0=10 m/s 的速率逆时针转动.在传送带上端A 无初速地放一个质量为m=0.5 kg 的物体,它与传送带间的动摩擦因数μ=0.5.求物体从A 运动到B 需要的时间.(sin37°=0.6,cos37°=0.8,取g=10 m/s2)5课后作业1、如图所示,传送带与地面成夹角θ=37°,以14m/s 的速度逆时针转动,在传送带上端轻轻地放一个质量m=0.5㎏的物体,它与传送带间的动摩擦因数μ=1,已知传送带从A →B 的长度L=21m ,则物体从A 到B 需要的时间为多少?2.如图所示,绷紧的传送带,始终以2m/s 的速度匀速斜向上运行,传送带与水平方向间的夹角θ=30°。

2024届高考物理一轮总复习第三章牛顿运动定律专题二传送带与滑块问题课件

2024届高考物理一轮总复习第三章牛顿运动定律专题二传送带与滑块问题课件
答案:A
【考点突破 1】某工厂检查立方体工件表面光滑程度的装置如
图 Z2-2 所示,用弹簧将工件弹射到反向转动的水平皮带传送带上,
恰好能传送到另一端是合格的最低标准.假设传送带两个转轮之间
的长度为 18 m、运行速度是 6 m/s,工件刚被弹
射到传送带左端时的速度是 12 m/s,重力加速度
g 取 10 m/s2.则( )
①v0>v,可能一直减速,也可能先减 速再匀速
②v0=v,一直匀速 ③v0<v时,可能一直加速,也可能先 加速再匀速
(续表) 三种情景
图示
滑块可能的运动情况
①传送带较短时,滑块一直减速到达
左端
情景 3
②传送带较长时,滑块还要被传送带
传回右端.其中v0>v返回时速度为v, 当v0<v返回时速度为v0
度变大,木板静止
变大,滑块静止
(续表)
动摩擦因数
物体运动情况分析
μ2=0, μ1≠0
μ1=μ2≠0
若M+F m<μ1Mmg,共同加速;

F M+mLeabharlann <μ1g,







F-μ1mg m

μ1mg M




F-Mμ1mg>μ1g,相对滑动,木板
动,滑块加速度大
加速度大
若 F<μ2(M+m)g,静止;若
μ1=μ2≠0
滑块减速,木板静止
滑块加速,木板减速,
达到共同速度后以μ2g共 同减速
(续表) 动摩擦因数
μ1m≤ μ2(M+m)
物体运动情况分析
滑块减速,木板静止
滑块加速,木板减速,

高三物理总复习 牛顿运动定律 传送带模型课件

高三物理总复习 牛顿运动定律 传送带模型课件

3.5
时速度仍为v0,在和挡板碰撞中无 机械能损失)
0.5 04
ω/rads-1
28
2005年江苏理综35. 35. (9分)如图所示为车站使用的水平传送带装置的
示意图.绷紧的传送带始终保持3.0m/s的恒定速率
运行,传送带的水平部分AB距水平地面的高度为
h=0.45m.现有一行李包(可视为质点)由A端被传送到
系统所产生的热能是多少?
2、 传送带水平匀加速运动 传送带与物体的初速度均为零,传送带的加速度为 a0,则把
物体轻轻的放在传送带上时,物体将在摩擦力的作用下做匀加速 直线运动,而此时物体与传送带之间是静摩擦力还是滑动摩擦力 (即物体与传送带之间是否存在相对滑动)取决于传送带的加速 度与物体在最大静摩擦力作用下产生的加速度为 a 之间的大小关 系,这种情况下则存在着两种情况:
• 如下图所示,传送带的水平部分ab=2 m, 斜面部分bc=4 m,bc与水平面的夹角α= 37°.一个小物体A与传送带的动摩擦因数μ= 0.25,传送带沿图示的方向运动,速率v=2 m/s.若把物体A轻放到a处,它将被传送带送 到c点,且物体A不会脱离传送带.求物体A从 a点被传送到c点所用的时间.(已知:sin 37°=0.6,cos 37°=0.8,g=10 m/s2)
方向的长度可忽略,子弹射穿木块的时间极短,且每次射
入点各不相同,
v0
取g 在被第二颗子弹击中前,木块
向右运动离A点的最大距离是多少?
v1 B L
(2)木块在传送带上最多能被多少颗子弹击中?
(3)木块在传送带上的最终速度多大?
(4)在被第二颗子弹击中前,木块、子弹和传送带这一
L
A
B
度L应满足的条件.

高中物理牛顿第二定律一传送带问题

高中物理牛顿第二定律一传送带问题

情况 2、若 x物 L ,则物块匀减速到速度为零,未从右端掉落。
v
物块匀减速时间为:
t1
v0 a
0
物块匀减速阶段与传送带间的相对位移为:
v0
x1 x物 v传t1
当物块向左减速到零后,由于受力状况并没有发生变化, 根据受力分析物块仍具有向右的加速度:
a g
tt
t1 t
4
此时如图所示:
FN f动
9
物块到达另一端是速度不能减到零,
即: v传 v物 0
第二段匀减速时间:
L
x物
v传t2
1 2
at22
物块从一端到达另一端总时间:
t t1 t2
注:在此情况下物块与传送带间产生的相对位移
v
v0
v传 v物
0
t1 t
t
第一段匀减速过程: x1 x物 v传t1
(物块相对于传送带向上运动)
第二段匀减速过程: x2 v传t2 L x物 (物块相对于传送带向下运动)
第一段匀减速阶段摩擦力为滑动摩擦力且方向沿斜面向下, 第二段匀减速阶段摩擦力为滑动摩擦力且方向沿斜面向上,
摩擦力突变时刻为 v物 v传 。
三、质量为 m 的物块以速度 v0 冲上传送带一端,已知传送带长度 L ,与地面成角为 ,传
送带速度 v传 ,物块与传送带间滑动摩擦因数 。
v0
FN f动
v
v传 v物
0t
t
二、质量为 m 的物块以 v0 冲上传送带一端,已知传送带长度 L ,传送带速度 v传 ,物块与传
v 送带间滑动摩擦因数 。( v0 v传 )
FN 0 f动
mg
FN f动
mg ma

牛顿运动定律之滑块与传送带问题(含解析)

牛顿运动定律之滑块与传送带问题(含解析)

牛顿运动定律滑块与传送带专题一“滑块—滑板”模型1.模型特点上、下叠放两个物体,在摩擦力的相互作用下两物体发生相对滑动.2.两种位移关系滑块由滑板的一端运动到另一端的过程中,若滑块和滑板同向运动,位移之差等于板长;反向运动时,位移之和等于板长.3.解题思路处理此类问题,必须弄清滑块和滑板的加速度、速度、位移等关系.(1) 加速度关系如果滑块和滑板之间没有发生相对运动,可以用“整体法”求出它们一起运动的加速度;如果滑块和滑板之间发生相对运动,应采用“隔离法”分别求出滑块和滑板的加速度.应注意找出滑块和滑板之间是否发生相对运动等隐含的条件.(2) 速度关系滑块和滑板之间发生相对运动时,分析速度关系,从而确定滑块受到的摩擦力的方向.应注意当滑块和滑板的速度相同时,摩擦力会发生突变的情况.(3) 位移关系滑块和滑板叠放在一起运动时,应仔细分析滑块和滑板的运动过程,认清对地位移和相对位移之间的关系.这些关系就是解题过程中列方程所必需的关系,各种关系找到了,自然也就容易列出所需要的方程了.例一、如图,两个滑块A和B的质量分别为m A=1 kg和m B=5 kg,放在静止于水平地面上的木板的两端,两者与木板间的动摩擦因数均为μ1=0.5;木板的质量为m=4 kg,与地面间的动摩擦因数为μ2=0.1.某时刻A、B两滑块开始相向滑动,初速度大小均为v0=3 m/s.A、B相遇时,A与木板恰好相对静止.设最大静摩擦力等于滑动摩擦力,取重力加速度大小g=10 m/s2.求:(1)B与木板相对静止时,木板的速度;(2)A、B开始运动时,两者之间的距离.解析:(1)滑块A和B在木板上滑动时,木板也在地面上滑动.设A、B和木板所受的摩擦力大小分别为F f1、F f2和F f3,A和B相对于地面的加速度大小分别为a A和a B,木板相对于地面的加速度大小为a1,在物块B与木板达到共同速度前有F f1=μ1m A g ①F f2=μ1m B g ②F f3=μ2(m+m A+m B)g ③由牛顿第二定律得F f1=m A a A ④F f2=m B a B ⑤F f2-F f1-F f3=ma1 ⑥设在t1时刻,B与木板达到共同速度,其大小为v1,由运动学公式有v1=v0-a B t1 ⑦v1=a1t1 ⑧联立①②③④⑤⑥⑦⑧式,代入已知数据得v1=1 m/s,方向与B的初速度方向相同⑨(2)在t1时间间隔内,B相对于地面移动的距离为s B=v0t1-12a B t21⑩设在B与木板达到共同速度v1后,木板的加速度大小为a2,对于B与木板组成的体系,由牛顿第二定律有F f1+F f3=(m B+m)a2 ⑪由①②④⑤式知,a A=a B;再由⑦⑧式知,B与木板达到共同速度时,A的速度大小也为v1,但运动方向与木板相反.由题意知,A和B相遇时,A与木板的速度相同,设其大小为v2,设A的速度大小从v1变到v2所用的时间为t2,则由运动学公式,对木板有v2=v1-a2t2 ⑫对A有v2=-v1+a A t2 ⑬在t2时间间隔内,B(以及木板)相对地面移动的距离为s1=v1t2-12a2t22⑭在(t1+t2)时间间隔内,A相对地面移动的距离为s A=v0(t1+t2)-12a A(t1+t2)2 ⑮A和B相遇时,A与木板的速度也恰好相同,因此A和B开始运动时,两者之间的距离为s0=s A+s1+s B ⑯联立以上各式,并代入数据得s0=1.9 m.(也可用如图所示的速度-时间图线求解)答案:(1)1 m/s方向与B的初速度方向相同(2)1.9 m【题后反思】求解“滑块—滑板”模型问题的方法技巧(1)弄清各物体初态对地的运动和相对运动(或相对运动趋势),根据相对运动(或相对运动趋势)情况,确定物体间的摩擦力方向.(2)正确地对各物体进行受力分析,并根据牛顿第二定律确定各物体的加速度,结合加速度和速度的方向关系确定物体的运动情况.(3)速度相等是这类问题的临界点,此时往往意味着物体间的相对位移最大,物体的受力和运动情况可能发生突变.跟踪练习1. (水平面光滑的“滑块—滑板”模型)如图所示,质量M=8 kg的小车静止在光滑水平面上,在小车右端施加一水平拉力F=8 N.当小车速度达到1.5 m/s 时,在小车的右端由静止轻放一大小不计、质量m=2 kg的物体,物体与小车间的动摩擦因数μ=0.2,小车足够长.从物体放上小车开始经t=1.5 s 的时间,物体相对地面的位移为(g取10 m/s2)()A.1 m B.2.1 mC.2.25 m D.3.1 m解析:选B.放上物体后,物体的加速度a1=μg=2 m/s2,小车的加速度:a2=F-μmgM=0.5 m/s2,物体的速度达到与小车共速的时间为t1,则a1t1=v0+a2t1,解得t1=1 s;此过程中物体的位移:s1=12a1t21=1 m;共同速度为v=a1t1=2 m/s;当物体与小车相对静止时,共同加速度为a=FM+m=0.8 m/s2,再运动0.5 s的位移s2=vt′+12at′2=1.1 m,故从物体放上小车开始的1.5 s时间内,物体相对地面的位移为1 m+1.1 m=2.1 m,选项B正确.2. (水平面粗糙的“滑块—滑板”模型)如图所示,一长木板在水平地面上运动,在某时刻(t=0)将一相对于地面静止的物块轻放到木板上.已知物块与木板的质量相等,物块与木板间及木板与地面间均有摩擦,物块与木板间的最大静摩擦力等于滑动摩擦力,且物块始终在木板上.在物块放到木板上之后,木板运动的速度—时间图象可能是图中的()解析:选A.放上小物块后,长木板受到小物块施加的向左的滑动摩擦力和地面向左的滑动摩擦力,在两力的共同作用下减速,小物块受到向右的滑动摩擦力作用,做匀加速运动,当两者速度相等后,可能以共同的加速度一起减速,直至速度为零,共同减速时的加速度小于两者相对运动时木板的加速度,故A 正确,B、C错误;由于水平面有摩擦,故两者不可能一起匀速运动,D错误.3.(多个板块的组合模型)如图所示,两木板A、B并排放在地面上,A左端放一小滑块,滑块在F=6 N的水平力作用下由静止开始向右运动.已知木板A、B长度均为l=1 m,木板A的质量m A=3 kg,小滑块及木板B的质量均为m=1 kg,小滑块与木板A、B间的动摩擦因数均为μ1=0.4,木板A、B与地面间的动摩擦因数均为μ2=0.1,重力加速度g=10 m/s2.求:(1)小滑块在木板A上运动的时间;(2)木板B获得的最大速度.解析:(1)小滑块对木板A的摩擦力F f1=μ1mg=4 N,木板A与B整体受到地面的最大静摩擦力F f2=μ2(2m+m A)g=5 N.F f1<F f2,小滑块滑上木板A后,木板A保持静止设小滑块滑动的加速度为a1,则:F-μ1mg=ma1,l=12a1t21,解得:t1=1 s.(2)设小滑块滑上B时,小滑块速度为v1,B的加速度为a2,经过时间t2滑块与B脱离,滑块的位移为x块,B的位移为x B,B的最大速度为v B,则:μ1mg-2μ2mg=ma2,v B=a2t2,x B=12a2t22,v1=a1t1,x块=v1t2+12a1t22,x块-x B=l,联立以上各式可得:v B=1 m/s.答案:(1)1 s(2)1 m/s4.(斜面上的“滑块—滑板”问题)如图所示,在足够长的光滑固定斜面底端放置一个长度L=2 m、质量M=4 kg 的木板,木板的最上端放置一质量m=1 kg 的小物块(可视为质点).现沿斜面向上对木板施加一个外力F使其由静止开始向上做匀加速直线运动.已知斜面倾角θ=30°,物块和木板间的动摩擦因数μ=3 2,g取10 m/s2.(1)当外力F=30 N时,物块和木板保持相对静止,求二者共同运动的加速度大小;(2)当外力F=53.5 N时,物块和木板之间将会相对滑动,则二者完全分离时的速度各为多大?解析:(1)物块和木板共同运动时,分析整体的受力情况,由牛顿第二定律得F-(M+m)g sin θ=(M+m)a解得a=1 m/s2.(2)设木板和物块的加速度分别为a1、a2,二者完全分离的时间为t,分离时速度分别为v1、v2,分析木板和物块的受力情况,由牛顿第二定律可得F-Mg sin θ-μmg cos θ=Ma1μmg cos θ-mg sin θ=ma2又L=12(a1-a2)t2v1=a1tv2=a2t联立解得v1=6.5 m/s,v2=2.5 m/s. 答案:(1)1 m/s2(2)6.5 m/s 2.5 m/s二、传送带模型(一)、水平传送带问题1.情景特点分析项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)v0>v时,可能一直减速,也可能先减速再匀速(2)v0<v时,可能一直加速,也可能先加速再匀速情景3(1)传送带较短时,滑块一直减速达到左端(2)传送带较长时,滑块还要被传送带传回右端.其中v0>v返回时速度为v,当v0<v返回时速度为v0水平传送带问题:求解关键在于对物体所受摩擦力进行正确的分析判断.物体的速度与传送带速度相等的时刻摩擦力发生突变.例1、水平传送带被广泛地应用于机场和火车站,如图所示为一水平传送带装置示意图.紧绷的传送带AB始终保持恒定的速率v=1 m/s运行,一质量为m=4 kg的行李无初速度地放在A处,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动.设行李与传送带之间的动摩擦因数μ=0.1,A、B间的距离L=2 m,g取10 m/s2.(1)求行李刚开始运动时所受滑动摩擦力的大小与加速度的大小;(2)求行李做匀加速直线运动的时间;(3)如果提高传送带的运行速率,行李就能被较快地传送到B处,求行李从A处传送到B处的最短时间和传送带对应的最小运行速率.解析:(1)行李所受滑动摩擦力大小F f=μmg=0.1×4×10 N=4 N,根据牛顿第二定律得F f=ma,加速度大小a=μg=0.1×10 m/s2=1 m/s2.(2)行李达到与传送带相同速率后不再加速,则v=at1,得t1=va=11s=1 s.(3)行李始终匀加速运行时,所需时间最短,加速度大小仍为a=1 m/s2,当行李到达右端时,有v2min=2aL,得v min=2aL=2×1×2 m/s=2 m/s,所以传送带对应的最小运行速率为2 m/s.由v min=at min得行李最短运行时间t min=v mina=21s=2 s.答案:(1)4 N 1 m/s2(2)1 s(3)2 s 2 m/s(二)倾斜传送带问题1.情景特点分析项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)可能一直加速(2)可能先加速后匀速(3)可能先以a1加速后以a2加速2.解题的关键在于分析清楚物体与传送带的相对运动情况,从而确定物体所受摩擦力的大小和方向.当物体速度与传送带速度相等时,物体所受摩擦力可能发生突变.例2、如图所示为货场使用的传送带的模型,传送带倾斜放置,与水平面夹角为θ=37°,传送带AB足够长,传送皮带轮以大小为v=2 m/s的恒定速率顺时针转动.一包货物以v0=12 m/s的初速度从A端滑上倾斜传送带,若货物与皮带之间的动摩擦因数μ=0.5,且可将货物视为质点.(1)求货物刚滑上传送带时加速度为多大?(2)经过多长时间货物的速度和传送带的速度相同?这时货物相对于地面运动了多远?(3)从货物滑上传送带开始计时,货物再次滑回A端共用了多少时间?(g=10 m/s2,已知sin 37°=0.6,cos 37°=0.8)解析:(1)设货物刚滑上传送带时加速度大小为a1,货物受力如图所示:根据牛顿第二定律得沿传送带方向:mg sin θ+F f=ma1,垂直传送带方向:mg cos θ=F N,又F f=μF N由以上三式得:a1=g(sin θ+μcos θ)=10×(0.6+0.5×0.8) m/s2=10 m/s2,方向沿传送带向下.(2)货物速度从v0减至传送带速度v所用时间设为t1,位移设为x1,则有:t1=v-v0-a1=1 s,x1=v0+v2t1=7 m.(3)当货物速度与传送带速度相等时,由于mg sin θ>μmg cos θ,此后货物所受摩擦力沿传送带向上,设货物加速度大小为a2,则有mg sin θ-μmg cos θ=ma2,得:a2=g(sin θ-μcos θ)=2 m/s2,方向沿传送带向下.设货物再经时间t2,速度减为零,则t2=0-v-a2=1 s.沿传送带向上滑的位移x2=v+02t2=1 m,则货物上滑的总距离为x=x1+x2=8 m.货物到达最高点后将沿传送带匀加速下滑,下滑加速度大小等于a2.设下滑时间为t3,则x=12a2t23,代入解得t3=2 2 s.所以货物从A端滑上传送带到再次滑回A端的总时间为t=t1+t2+t3=(2+22) s.答案:(1)10 m/s2,方向沿传送带向下(2)1 s7 m(3)(2+22) s【总结提升】解答传送带问题应注意的事项(1)比较物块和传送带的初速度情况,分析物块所受摩擦力的大小和方向,其主要目的是得到物块的加速度.(2)关注速度相等这个特殊时刻,水平传送带中两者一块匀速运动,而倾斜传送带需判断μ与tan θ的关系才能决定物块以后的运动.(3)得出运动过程中两者相对位移情况,以后在求解摩擦力做功时有很大作用.跟踪练习1.(物块初速度不为零的倾斜传送带模型)(多选)如图所示,倾斜的传送带顺时针匀速转动,一物块从传送带上端A滑上传送带,滑上时速率为v1,传送带的速率为v2,且v2>v1.不计空气阻力,动摩擦因数一定.关于物块离开传送带的速率v和位置,下面哪个是可能的()A.从下端B离开,v>v1B.从下端B离开,v<v1C.从上端A离开,v=v1D.从上端A离开,v<v1解析:选ABC.物块从A端滑上传送带,在传送带上必先相对传送带向下运动,由于不确定物块与传送带间的摩擦力和物块的重力沿传送带下滑分力的大小关系和传送带的长度,若能从A端离开,由运动的对称性可知,必有v=v1,即选项C正确,D错误;若从B端离开,当摩擦力大于重力的分力时,则v<v1,选项B正确;当摩擦力小于重力的分力时,则v>v1,选项A正确;当摩擦力和重力的分力相等时,物块一直做匀速直线运动,v=v1,故本题应选A、B、C.2. (物块初速度为零的倾斜传送带模型)如图所示,传送带AB的长度为L=16 m,与水平面的夹角θ=37°,传送带以速度v0=10 m/s匀速运动,方向如图中箭头所示.在传送带最上端A处无初速度地放一个质量m=0.5 kg的小物体(可视为质点),它与传送带之间的动摩擦因数μ=0.5.g取10 m/s2,sin 37°=0.6,cos 37°=0.8.求:(1)物体从A运动到底端B所用的时间;(2)物体与传送带的相对位移大小.解析:(1)开始阶段,设物体的加速度为a1,由牛顿第二定律有mg sin θ+μmg cos θ=ma1,解得a1=10 m/s2.物体加速到与传送带的速度相等时的位移为:x1=v202a=5 m<16 m,即物体加速到10 m/s时,未达到B点,其时间t1=v0a1=1 s.由于mg sin θ=3 N>μmg cos θ=2 N,所以物体将继续做加速运动.设物体的加速度为a2,经历的时间为t2,由牛顿第二定律有mg sin θ-μmg cos θ=ma2,解得a2=2 m/s2.由位移公式L-x1=v0t2+12a2t22,解得时间t2=1 s,所以总时间t=t1+t2=2 s.(2)在传送带上取一点M.M点做匀速运动,物体一直做加速运动.法一:整体法整个过程物体的位移大小为x物=L=16 m,传送带位移大小为x传=v0t=20 m,故物体相对于传送带(M 点)的位移大小为: x =x 传-x 物=4 m.由于M 点的位移大于物体的位移,故全过程物体向后远离M 点4 m. 法二:v -t 图象法相对位移的大小为两个阴影三角形面积之差,即: x =10×12-1×(12-10)2=4(m).法三:分段法第一个过程:M 点的位移为v 0t 1=10 m , 所以物体与传送带间的相对位移大小 x 相对1=v 0t 1-x 1=5 m.由于M 点的速度大于物体的速度,故此过程物体在M 点后面5 m 处. 第二个过程:M 点的位移为v 0t 2=10 m , 物体的位移为L -x 1=11 m , 故相对位移大小为x 相对2=1 m. 此过程物体追M 点,并靠近M 点1 m.故相对位移大小x =x 相对1-x 相对2=4 m .即全过程物体向后远离M 点4 m. 答案:(1)2 s (2)4 m精选练习1.(多选)如图所示,表面粗糙、质量M =2 kg 的木板,t =0时在水平恒力F 的作用下从静止开始沿水平面向右做匀加速直线运动,加速度a =2.5 m/s 2,t =0.5 s 时,将一个质量m =1 kg 的小铁块(可视为质点)无初速度地放在木板最右端,铁块从木板上掉下时速度是木板速度的一半.已知铁块和木板之间的动摩擦因数μ1=0.1,木板和地面之间的动摩擦因数μ2=0.25,g =10 m/s 2,则( )A .水平恒力F 的大小为10 NB .铁块放上木板后,木板的加速度为2 m/s 2C .铁块在木板上运动的时间为1 sD .木板的长度为1.625 m解析:选AC .未放铁块时,对木板由牛顿第二定律:F -μ2Mg =Ma ,解得F =10 N ,选项A 正确;铁块放上木板后,对木板:F -μ1mg -μ2(M +m )g =Ma ′,解得:a ′=0.75 m/s 2,选项B 错误;0.5 s 时木板的速度v 0=at 1=2.5×0.5 m/s =1.25 m/s ,铁块滑离木板时,木板的速度:v 1=v 0+a ′t 2=1.25+0.75t 2,铁块的速度v ′=a 铁t 2=μ1gt 2=t 2,由题意:v ′=12v 1,解得t 2=1 s ,选项C 正确;铁块滑离木板时,木板的速度v 1=2 m/s ,铁块的速度v ′=1 m/s ,则木板的长度为:L =v 0+v 12t 2-v ′2t 2=1.25+22×1 m -12×1 m =1.125 m ,选项D 错误;故选A 、C .2.(多选)如图甲为应用于机场和火车站的安全检查仪,用于对旅客的行李进行安全检查.其传送装置可简化为如图乙的模型,紧绷的传送带始终保持v =1 m/s 的恒定速率运行.旅客把行李无初速度地放在A 处,设行李与传送带之间的动摩擦因数μ=0.1,A 、B 间的距离L =2 m ,g 取10 m/s 2.若乘客把行李放到传送带的同时也以v =1 m/s 的恒定速率平行于传送带运动到B 处取行李,则( )A .乘客与行李同时到达B 处B .乘客提前0.5 s 到达B 处C .行李提前0.5 s 到达B 处D .若传送带速度足够大,行李最快也要2 s 才能到达B 处解析:选BD .行李放在传送带上,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动.加速度为a =μg =1 m/s 2,历时t 1=v a =1 s 达到共同速度,位移x 1=v2t 1=0.5 m ,此后行李匀速运动t 2=L -x 1v =1.5 s 到达B ,共用2.5 s ;乘客到达B ,历时t =Lv =2 s ,B 正确;若传送带速度足够大,行李一直加速运动,最短运动时间t min =2La =2×21s =2 s ,D 正确. 3.如图甲所示,倾角为37°足够长的传送带以4 m/s 的速度顺时针转动,现将小物块以2 m/s 的初速度沿斜面向下冲上传送带,小物块的速度随时间变化的关系如图乙所示,g =10 m/s 2,sin 37°=0.6,cos 37°=0.8,试求:(1)小物块与传送带间的动摩擦因数为多大; (2)0~8 s 内小物块与传送带之间的划痕为多长. 解析:(1)根据v -t 图象的斜率表示加速度, a =Δv Δt =22m/s 2=1 m/s 2,由牛顿第二定律得μmg cos 37°-mg sin 37°=ma , 解得μ=78.(2)0~8 s 内只有前6 s 内物块与传送带发生相对滑动0~6 s 内传送带匀速运动距离为:x 带=4×6 m =24 m .速度图象的“面积”大小等于位移,则0~2 s 内物块位移为:x 1=12×2×2 m =2 m ,方向沿斜面向下,2~6 s 内物块位移为:x 2=12×4×4 m =8 m ,方向沿斜面向上.所以划痕的长度为:Δx =x 带+x 1-x 2=(24+2-8) m =18 m. 答案:(1)78(2)18 m4.如图所示,在光滑水平地面上停放着一质量为M =2 kg 的木板,木板足够长,某时刻一质量为m =1 kg 的小木块以某一速度v 0(未知)冲上木板,木板上表面粗糙,经过t =2 s 后二者共速,且木块相对地面的位移x =5 m ,g =10 m/s 2.求:(1)木块与木板间的动摩擦因数μ;(2)从木块开始运动到共速的过程中产生的热量Q .(结果可用分数表示) 解析:(1)设冲上木板后小木块的加速度大小为a 1, 对小木块,有μmg =ma 1,设木板开始运动的加速度大小为a 2,对木板, 有μmg =Ma 2,二者共速时,有v 共=a 2t =v 0-a 1t , 对小木块,有x =v 0t -12a 1t 2,联立得μ=18.(2)由(1)得a 2=58 m/s 2,得v 共=54m/s.木板发生的位移x ′=v 共2t =54m ,二者相对位移为Δx =x -x ′=154m , 产生的热量为Q =μmg ·Δx , 联立得Q =7516J. 答案:(1)18 (2)7516J5. (多选)滑沙运动是小孩比较喜欢的一项运动,其运动过程可类比为如图所示的模型,倾角为37°的斜坡上有长为1 m 的滑板,滑板与沙间的动摩擦因数为916.小孩(可视为质点)坐在滑板上端,与滑板一起由静止开始下滑.小孩与滑板之间的动摩擦因数取决于小孩的衣料,假设图中小孩与滑板间的动摩擦因数为0.5,小孩的质量与滑板的质量相等,斜坡足够长,sin 37°=0.6,cos 37°=0.8,g 取10 m/s 2,则下列判断正确的是( )A .小孩在滑板上下滑的加速度大小为2 m/s 2B .小孩和滑板脱离前滑板的加速度大小为0.5 m/s 2C .经过 2 s 的时间,小孩离开滑板D .小孩离开滑板时的速度大小为433m/s 解析:选AC .对小孩,由牛顿第二定律,加速度大小为a 1=mg sin 37°-μ1mg cos 37°m =2 m/s 2,同理对滑板,加速度大小为a 2=mg sin 37°+μ1mg cos 37°-2μ2mg cos 37°m =1 m/s2,选项A 正确,B 错误;要使小孩与滑板分离,12a 1t 2-12a 2t 2=L ,解得t = 2 s(另一解不符合,舍去),离开滑板时小孩的速度大小为v =a 1t =2 2 m/s ,选项C 正确,D 错误.6.如图甲所示,倾斜的传送带正以恒定速率v 1沿顺时针方向转动,传送带的倾角为37°.一物块以初速度v 0从传送带的底部冲上传送带并沿传送带向上运动,其运动的v -t 图象如图乙所示,物块到传送带顶端时速度恰好为零,sin 37°=0.6,cos 37°=0.8,g=10 m/s2,则()A.传送带的速度为4 m/sB.传送带底端到顶端的距离为14 mC.物块与传送带间的动摩擦因数为1 8D.摩擦力方向一直与物块运动的方向相反解析:选A.如果v0小于v1,则物块向上做减速运动时加速度不变,与题图乙不符,因此物块的初速度v0一定大于v1.结合题图乙可知物块减速运动到与传送带速度相同时,继续向上做减速运动,由此可以判断传送带的速度为4 m/s,选项A正确.传送带底端到顶端的距离等于v -t图线与横轴所围的面积,即12×(4+12)×1 m+12×1×4 m=10 m,选项B错误.0~1 s内,g sin θ+μg cos θ=8 m/s2,1~2 s内,g sin θ-μg cos θ=4 m/s2,解得μ=14,选项C错误;在1~2 s内,摩擦力方向与物块的运动方向相同,选项D错误.7.如图所示,倾角α=30°的足够长的光滑斜面固定在水平面上,斜面上放一长L=1.8 m,质量M=3 kg的薄木板,木板的最上端叠放一质量m=1 kg的小物块,物块与木板间的动摩擦因数μ=32.对木板施加沿斜面向上的恒力F,使木板沿斜面由静止开始向上做匀加速直线运动,假设物块与木板间的最大静摩擦力等于滑动摩擦力,取重力加速度g=10 m/s2.(1)为使物块不滑离木板,求力F应满足的条件;(2)若F=37.5 N,物块能否滑离木板?若不能,请说明理由;若能,求出物块滑离木板所用的时间及滑离木板后沿斜面上升的最大距离.解析:(1)若整体恰好静止,则F =(M +m )g sin α=(3+1)×10×sin 30° N =20 N. 因要拉动木板,则F >20 N ,若整体一起向上做匀加速直线运动,对物块和木板,由牛顿第二定律得 F -(M +m )g sin α=(M +m )a , 对物块有f -mg sin α=ma , 其中f ≤μmg cos α 代入数据解得F ≤30 N.向上加速的过程中为使物体不滑离木板,力F 应满足的条件为20 N<F ≤30 N.(2)当F =37.5 N>30 N 时,物块能滑离木板,由牛顿第二定律,对木板有F -μmg cos α-Mg sin α=Ma 1,对物块有μmg cos α-mg sin α=ma 2,设物块滑离木板所用的时间为t ,由运动学公式得 12a 1t 2-12a 2t 2=L , 代入数据解得t =1.2 s.物块滑离木板时的速度v =a 2t , 由-2g sin α·s =0-v 2, 代入数据解得s =0.9 m. 答案:见解析8.如图所示为车站使用的水平传送带模型,其A 、B 两端的距离L =8 m ,它与水平台面平滑连接.现有一物块以v 0=10 m/s 的初速度从A 端水平地滑上传送带.已知物块与传送带间的动摩擦因数为μ=0.6.求:(1)若传送带保持静止,物块滑到B 端时的速度大小;(2)若传送带顺时针匀速转动的速率恒为12 m/s ,物块到达B 端时的速度大小;(3)若传送带逆时针匀速转动的速率恒为4 m/s ,且物块初速度变为v 0′=6 m/s ,仍从A 端滑上传送带,物块从滑上传送带到离开传送带的总时间.解析:(1)设物块的加速度大小为a,由受力分析可知F N=mg,F f=ma,F f=μF N,得a=6 m/s2.传送带静止,物块从A到B做匀减速直线运动,又x=v202a=253m>L=8 m,则由v2B-v20=-2aL.得v B=2 m/s.(2)由题意知,传送带顺时针匀速转动的速率12 m/s>v0,物块所受的摩擦力沿传送带方向,即物块先加速到v1=12 m/s,由v21-v20=2ax1,得x1=113m<L=8 m.故物块先加速运动后匀速运动即物块到达B时的速度为v B′=v1=12 m/s.(3)当物块初速度v0′=6 m/s时,物块速度减为零时的位移x2=v0′22a=3 m<L,所以物块先向右减速后向左加速由v2=v0′-at1,得t1=1 s;当物块向左加速到v3=4 m/s时由v23-v22=2ax3得x3=43m<x2=3 m,故物块向左先加速运动后匀速运动由v3=v2+at2,得t2=23s;当物块向左匀速运动v4=v3=4 m/s,x4=x2-x3=53m.由x4=v4t3,得t3=512s,故t=t1+t2+t3=25 12s.答案:(1)2 m/s(2)12 m/s(3)25 12s。

牛顿定律难点--传送带问题

牛顿定律难点--传送带问题

美思文化培训学校姓名__________------传送带专题1、难点形成的原因:(1)、对于物体与传送带之间是否存在摩擦力、是滑动摩擦力还是静摩擦力、摩擦力的方向如何,等等,这些关于摩擦力的产生条件、方向的判断等基础知识模糊不清;(2)、对于物体相对地面、相对传送带分别做什么样的运动,判断错误;(3)、对于物体在传送带上运动过程中的能量转化情况考虑不全面,出现能量转化不守恒的错误过程。

2、难点突破策略:若物体是轻轻地放在了匀速运动的传送带上,那么物体一定要和传送带之间产生相对滑动,物体和传送带一定同时受到方向相反的滑动摩擦力。

若物体是静置在传送带上,与传送带一起由静止开始加速,若物体与传送带之间的动摩擦因数较大,加速度相对较小,物体和传送带保持相对静止,它们之间存在着静摩擦力,物体的加速就是静摩擦力作用的结果,因此物体一定受沿传送带前进方向的摩擦力;若物体与传送带之间的动摩擦因数较小,加速度相对较大,物体和传送带不能保持相对静止,物体将跟不上传送带的运动,但它相对地面仍然是向前加速运动的,它们之间存在着滑动摩擦力,同样物体的加速就是该摩擦力的结果,因此物体一定受沿传送带前进方向的摩擦力。

若物体与传送带保持相对静止一起匀速运动,则它们之间无摩擦力,否则物体不可能匀速运动。

若物体以大于传送带的速度沿传送带运动方向滑上传送带,则物体将受到传送带提供的使它减速的摩擦力作用,直到减速到和传送带有相同的速度、相对传送带静止为止。

因此该摩擦力方向一定与物体运动方向相反。

若物体与传送带保持相对静止一起匀速运动一段时间后,开始减速,因物体速度越来越小,故受到传送带提供的使它减速的摩擦力作用,方向与物体的运动方向相反,传送带则受到与传送带运动方向相同的摩擦力作用。

3、水平放置(1)、牛顿运动定律与运动规律相结合的情况Ⅰ、V0=0,传送带顺时针旋转错误!未找到引用源。

如图所示,水平放置的传送带以速度v=2m/s向右运行,现将一小物体轻轻地放在传送带A端,物体与传送带间的动摩擦因数μ=0.2,若A端与B端相距4m,求物体由A到B的时间和物体到B端时的速度。

5、高三复习专题五 牛顿运动定律应用(2)动力学之传送带问题

5、高三复习专题五        牛顿运动定律应用(2)动力学之传送带问题

高三复习专题五牛顿运动定律应用(2)动力学之传送带模型1.求解传送带问题应注意以下几点(1)在确定研究对象并进行受力分析后,首先判定摩擦力突变(含大小和方向)点,给运动分段,而突变点一定发生在物体速度与传送带速度相同的时刻.物体在传送带上运动时的极值点也都发生在物体速度与传送带速度相同的时刻.v物与v传相同的时刻是运动分段的关键点,也是解题的突破口.(2)在倾斜传送带上需根据mg sin θ与F f的大小和方向,来确定物体的运动情况.(3)考虑传送带长度,判断物体与传送带共速之前是否滑出,物体与传送带共速以后是否一定与传送带保持相对静止.(4) 判断摩擦力的有无、方向是以传送带为参考系;计算摩擦力的功时,应用物体对地的位移;计算系统产生的内能时,牛顿第二定律中a是物体对地加速度,运动学公式中S是物体对地的位移,应用物体对传送带的位移;应用运动学公式计算物体的相关物理量时,应以地面为参考系。

(5)注重用图像法解题2.两类情况(1)水平传送带模型:设传送带的速度为v带,物体与传送带之间的动摩擦因数为μ,两定滑轮之间的距离为L,物体置于传送带一端的初速度为v0。

一 水平传送带模型(一)对滑块可能的运动进行分析和计算:求解的关键在于对物体所受的摩擦力进行正确的分析判断。

物体的速度与传送带速度相等的时刻就是物体所受摩擦力发生突变的时刻。

情景一、(1) 物体在传送带上将一直加速。

(v 带 ≥gL μ2)(2) 物体在传送带上将先加速,后匀速。

(v 带<gL μ2)情景二、(1)v 0>v 时,v 带≤gL V μ220-时,物体在传送带上将一直减速。

V 0> v 带>gL V μ220- 时,物体在传送带上将先减速后匀速。

(2)v 0<v 时,V 0< v 带<gL V μ220+ 时,物体在传送带上将先加速后匀速。

v 带 ≥gL V μ220+ 时,物体在传送带上将一直加速。

情景三、(1)传送带较短时, 即V 0≥gL μ2时,物体将一直做减速运动从传送带的另一端离开传送带。

高中物理【传送带问题】(含经典习题)

高中物理【传送带问题】(含经典习题)

牛顿第二定律的应用---传送带问题一、传送带模型中要注意摩擦力的突变①滑动摩擦力消失②滑动摩擦力突变为静摩擦力③滑动摩擦力改变方向二、传送带模型的一般解法①确定研究对象;②分析其受力情况和运动情况,(画出受力分析图和运动情景图),注意摩擦力突变对物体运动的影响;③分清楚研究过程,利用牛顿运动定律和运动学规律求解未知量。

难点疑点:传送带与物体运动的牵制。

牛顿第二定律中a是物体对地加速度,运动学公式中S是物体对地的位移,这一点必须明确。

分析问题的思路:初始条件→相对运动→判断滑动摩擦力的大小和方向→分析出物体受的合外力和加速度大小和方向→由物体速度变化再分析相对运动来判断以后的受力及运动状态的改变。

一、水平放置运行的传送带1.如图所示,物体A从滑槽某一高度滑下后又滑上粗糙的水平传送带,传送带静止不动时,A滑至传送带最右端的速度为v1,需时间t1,若传送带逆时针转动,A滑至传送带最右端的速度为v2,需时间t2,则()A.1212,v v t t><B.1212,v v t t<<C.1212,v v t t>>D.1212,v v t t==2.如图7所示,一水平方向足够长的传送带以恒定的速度v1沿顺时针方向转动,传送带右端有一与传送带等高的光滑水平面,一物体以恒定速度v2沿直线向左滑向传送带后,经过一段时间又反回光滑水平面,速率为v2′,则下列说法正确的是:()A.只有v1= v2时,才有v2′= v1B.若v1 >v2时, 则v2′= v2C.若v1 <v2时, 则v2′= v2D.不管v2多大,v2′= v2.3.物块从光滑斜面上的P点自由滑下通过粗糙的静止水平传送带后落到地面上的Q点.若传送带的皮带轮沿逆时针方向匀速转动,使传送带随之运动,如图所示,物块仍从P点自由滑下,则()A.物块有可能落不到地面B.物块将仍落在Q点C.物块将会落在Q点的左边D.物块将会落在Q点的右边PQ4.水平传送带被广泛地应用于机场和火车站,用于对旅客的行李进行安全检查右图为一水平传送带装置示意图,绷紧的传送带A、B始终保持v=1m/s的恒定速率运行;一质量为m=4kg的行李无初速地放在A处,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动.设行李与传送带间的动摩擦因数μ=0.1,AB间的距离l=2m,g取10m/s2.(1)求行李刚开始运动时所受的滑动摩擦力大小与加速度大小;(2)求行李做匀加速直线运动的时间;(3)如果提高传送带的运行速率,行李就能被较快地传送到B处.求行李从A处传送到B处的最短时间和传送带对应的最小运行速率.二、倾斜放置运行的传送带5.如图所示,传送带与地面倾角θ=37°,从AB长度为16m,传送带以10m/s的速率逆时针转动.在传送带上端A无初速度地放一个质量为0.5kg的物体,它与传送带之间的动摩擦因数为0.5.(sin37°=0.6,cos37°=0.8)求:物体从A运动到B需时间是多少?(思考:物体从A运动到B在传送带上滑过的痕迹长?)6.如图所示,传送带两轮A、B的距离L=11 m,皮带以恒定速度v=2 m/s运动,现将一质量为m的物块无初速度地放在A端,若物体与传送带间的动摩擦因数为μ=0.8,传送带的倾角为α=37°,那么物块m从A端运到B端所需的时间是多少?(g取10 m/s2,cos37°=0.8)三、组合类的传送带7.如图所示的传送皮带,其水平部分AB长s AB=2m,BC与水平面夹角θ=37°,长度s BC=4m,一小物体P与传送带的动摩擦因数 =0.25,皮带沿A至B方向运行,速率为v=2m/s,若把物体P放在A点处,它将被传送带送到C点,且物体P不脱离皮带,求物体从A点被传送到C点所用的时间.(sin37°=0.6,g=l0m/s2)牛顿第二定律的应用----传送带问题参考答案一、水平放置运行的传送带1.D 提示:物体从滑槽滑至末端时,速度是一定的.若传送带不动,物体受摩擦力方向水平向左,做匀减速直线运动.若传送带逆时针转动,物体受摩擦力方向水平向左,做匀减速直线运动.两次在传送带都做匀减速运动,对地位移相同,加速度相同,所以末速度相同,时间相同,故D .2.B3.B 提示:传送带静止时,物块能通过传送带落到地面上,说明滑块在传送带上一直做匀减速运动.当传送带逆时针转动,物块在传送带上运动的加速度不变,由2202t v v as =+可知,滑块滑离传送带时的速度v t 不变,而下落高度决定了平抛运动的时间t 不变,因此,平抛的水平位移不变,即落点仍在Q 点.4.【答案】(1)4N ,a =lm/s 2;(2)1s ;(3)2m/s解析:(1)滑动摩擦力F =μmg① 以题给数值代入,得F =4N② 由牛顿第二定律得F =ma ③代入数值,得a =lm/s 2 ④(2)设行李做匀加速运动的时间为t ,行李加速运动的末速度v=1m /s .则 v =at ⑤代入数值,得t =1s⑥(3)行李从A 匀加速运动到B 时,传送时间最短.则2min 12l at = ⑦代入数值,得min 2s t =⑧ 传送带对应的运行速率V min =at min ⑨代人数据解得V min =2m/s⑩ 二、倾斜放置运行的传送带5.【答案】2s解析:物体的运动分为两个过程,一个过程在物体速度等于传送带速度之前,物体做匀加速直线运动;第二个过程是物体速度等于传送带速度以后的运动情况,其中速度相同点是一个转折点,此后的运动情况要看mgsinθ与所受的最大静摩擦力,若μ<tanθ,则继续向下加速.若μ≥tanθ,则将随传送带一起匀速运动,分析清楚了受力情况与运动情况,再利用相应规律求解即可.本题中最大静摩擦力等于滑动摩擦力大小.物体放在传送带上后,开始的阶段,由于传送带的速度大于物体的速度,传送带给物体一沿传送带向下的滑动摩擦力F ,物体受力情况如图所示.物体由静止加速,由牛顿第二定律得a 1=10×(0.6+0.5×0.8)m/s 2=10m/s 2物体加速至与传送带速度相等需要的时间1110s=1s 10v t a ==, t 1时间内位移21115m 2s a t ==.由于μ<tanθ,物体在重力情况下将继续加速运动,当物体速度大于传送带速度时,传送带给物体一沿传送带向上的滑动摩擦力F .此时物体受力情况如图所示,由牛顿第二定律得:222sin cos ,2m/s mg mg ma a θμθ-==.设后一阶段物体滑至底端所用的时间为t 2,由 222212L s vt a t -=+,解得t 2=1s ,t 2=-11s (舍去).所以物体由A→B 的时间t=t 1+t 2=2s .6.解析:将物体放在传送带上的最初一段时间内物体沿传送带向上做匀加速运动 由牛顿第二定律得μmg cos37°-mg sin37°=ma则a =μg cos37°-g sin37°=0.4 m/s 2物体加速至2 m/s 所需位移s 0=v 22a =222×0.4m =5 m<L 经分析可知物体先加速5 m再匀速运动s =L -s 0=6 m.匀加速运动时间t 1=v a =20.4s =5 s. 匀速运动的时间t 2=s v =62s =3 s. 则总时间t =t 1+t 2=(5+3) s =8 s.答案:8 s三、组合类的传送带7.【答案】2.4s解析:物体P 随传送带做匀加速直线运动,当速度与传送带相等时若未到达B ,即做一段匀速运动;P 从B 至C 段进行受力分析后求加速度,再计算时间,各段运动相加为所求时间.P 在AB 段先做匀加速运动,由牛顿第二定律11111,,N F ma F F mg v a t μμ====, 得P 匀加速运动的时间110.8s v v t a gμ===. 22111112110.8m,22AB s a t gt s s vt μ===-=, 匀速运动时间120.6s AB s s t v-==. P 以速率v 开始沿BC 下滑,此过程重力的下滑分量mg sin37°=0.6mg ;滑动摩擦力沿斜面向上,其大小为μmg cos37°=0.2mg .可见其加速下滑.由牛顿第二定律233cos37cos37,0.44m/s mg mg ma a g μ︒-︒===,233312BC s vt a t =+,解得t 3=1s (另解32s t '=-,舍去). 从A 至C 经过时间t =t 1+t 2+t 3=2.4s .。

牛顿运动定律应用(2)传送带问题

牛顿运动定律应用(2)传送带问题

牛顿运动定律应用(2)传送带问题方法提示1. 涉及传送带的动力学问题分析时抓住两个时刻 (1)初始时刻,比较物块速度与传送带速度关系,判断物块所受的摩擦力性质与方向,进而判断物块开始阶段的运动性质。

(2)物块与传送带速度相同时刻,再次判断物块所受的摩擦力性质与方向,进而判断下阶段物块的运动性质。

2. 涉及传送带的动力学问题分析时注意一个问题:要判断物块速度与传送带速度相同时,物块有没有完成整个运动过程。

【经典例题】类型一:水平传送带匀速传动问题【例题1】如图所示,水平传送带以恒定速度v 向右运动。

将质量为m 的物体Q 轻轻放在水平传送带的左端A 处,经过t 秒后,Q 的速度也变为v ,再经t 秒物体Q 到达传送带的右端B 处,则( )A .前t 秒内物体做匀加速运动,后t 秒内物体做匀减速运动B .后t 秒内Q 与传送带之间无摩擦力C .前t 秒内Q 的位移与后t 秒内Q 的位移大小之比为1∶1D .Q 由传送带左端运动到右端的平均速度为34v【变式1】如图所示,水平传送带两个转动轴轴心相距L =20 m ,正在以v =4.0 m/s 的速度顺时针匀速运动,某物块(可视为质点)与传送带之间的动摩擦因数为0.1,将该物块从传送带左端无初速地轻放在传送带上,从左端运动到右端,求:(g 取10 m/s 2)(1)物块运动的时间;(2)物块与传送带间的相对位移大小;(3)若提高传送带的速度,可以使物块从传送带的一端传到另一端所用的时间缩短。

为使物块运动到另一端所用的时间最短,求传送带的最小速度及所用的最短时间是多少。

【例题2】 如图所示,水平传送带AB =10m ,向右匀速运动的速度v 0=4m/s ,一质量为1kg 的小物块(可视为质点)以v 1=6m/s 的初速度从传送带右端B 点冲上传送带,小物块与传送带间的动摩擦因数μ=0.4,g 取10m/s 2。

求:(1)小物块相对地面向左运动的最大距离;(2)小物块从B 点冲上传送带到再次回到B 点所用的时间。

(牛顿运动定律-一轮)传送带类问题

(牛顿运动定律-一轮)传送带类问题

求摩擦力对 物体旳功
设传送带足够长,则当
v物 v传 时由, :v2 2as
一直匀
> lAB 加速
s物 = lAB
一直匀 加速
先匀加速
< lAB 后匀速
求物体从A运动 到B旳时间
求摩擦力对 物体旳功
N
f
V
A G
设传送带足够长,则当
v物 v传 时由, :v2 2as
> lAB
一直匀 加速
s物 = lAB
滑块在传送带上
滑块运动 滑块运动
长度
旳运动情景
情况
旳v-t图像
传送带 不够长
v
v
v0
滑块一直 做匀加速
vv0
t
传送带 刚够长
v0
v
v0
滑块一直 v0
做匀加速
传送带 足够长
t
v0
v
v0
滑块先做匀 v0
加速后匀速
注意:滑块在传送带上加速取得旳最大速度不不小于传送t1带旳速t
度。
传送带问题
【模型1】如图所示,传送带从A到B长度为L,传送带以v0旳速率顺时 针转动.一种质量为m旳滑块从A端以速度v1滑上传送带,它与传送带 间旳动摩擦因数μ,试分析滑块在传送带上旳运动情况.
【情景二】与传送带具有同向速度旳滑块在水平传送带上旳运动分析
v1 v0
A
B
讨论:(1)若v1<v0 (2)若v1>v0
与传送带具有同向速度旳滑块在水平传送带上旳运动分析(v1>v0)
传送带
滑块在传送带上
滑块运动 滑块运动
长度
旳运动情景
情况
旳v-t图像
传送带 不够长
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题03 牛顿力学中的传送带问题一、内容解读1.传送带的基本类型(1)按放置可分为:水平(如图a)、倾斜(如图b,图c)、水平与倾斜组合;(2)按转向可分为:顺时针、逆时针。

2.传送带的基本问题分类(1)运动学问题:运动时间、痕迹问题、运动图象问题(运动学的角度分析);(2)动力学问题:物块速度和加速度、相对位移,运动时间(动力学角度分析);(3)功和能问题:做功,能量转化(第五章讲)。

二、传送带模型分类(一)水平传送带模型项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)v0>v时,可能一直减速,也可能先减速再匀速(2)v0<v时,可能一直加速,也可能先加速再匀速情景3(1)传送带较短时,滑块一直减速达到左端(2)传送带较长时,滑块还要被传送带传回右端。

其中v0>v返回时速度为v,当v0<v返回时速度为v01.(多选)如图所示,水平传送带A、B两端点相距x=4 m,以v0=2 m/s的速度(始终保持不变)顺时针运转。

今将一小煤块(可视为质点)无初速度地轻放至A点处,已知小煤块与传送带间的动摩擦因数为0.4,g 取10 m/s2。

由于小煤块与传送带之间有相对滑动,会在传送带上留下划痕。

则小煤块从A运动到B的过程中 ( )图1A.小煤块从A运动到B的时间时 2 sB .小煤块从A 运动到B 的时间是2.25 sC .划痕长度是4 mD .划痕长度是0.5 m【解析】选BD 小煤块刚放上传送带后,加速度a =μg =4 m/s 2,由v 0=at 1可知,小煤块加速到与传送带同速的时间为t 1=v 0a =0.5 s ,此时小煤块运动的位移x 1=v 02t 1=0.5 m ,而传送带的位移为x 2=v 0t 1=1 m ,故小煤块在带上的划痕长度为l =x 2-x 1=0.5 m ,D 正确,C 错误;之后的x -x 1=3.5 m ,小煤块匀速运动,故t 2=x -x 1v 0=1.75 s ,故小煤块从A 运动到B 的时间t =t 1+t 2=2.25 s ,A 错误,B 正确。

2、(多选)如图2所示,水平传送带A 、B 两端相距x =3.5m ,物体与传送带间的动摩擦因数μ=0.1,物体滑上传送带A 端的瞬时速度v A =4m/s ,到达B 端的瞬时速度设为v B .下列说法中正确的是( )图2A .若传送带逆时针匀速转动,vB 一定等于3m/s B .若传送带逆时针匀速转动越快,v B 越小C .若传送带顺时针匀速转动,v B 有可能等于3m/sD .若传送带顺时针匀速转动,物体刚开始滑上传送带A 端时一定做匀加速运动【解析】若传送带不动,物体的加速度:a =μg =1m/s 2,由v 2A -v 2B =2ax, 得:v B =3m/s.若传送带逆时针匀速转动,物体的受力情况不变,由牛顿第二定律得知,物体的加速度仍为a =μg ,物体的运动情况跟传送带不动时的一样,则v B =3 m/s.故A 正确,B 错误;若传送带以小于3m/s 的速度顺时针匀速转动,物体滑上传送带时所受的滑动摩擦力方向水平向左,做匀减速运动,物体的加速度仍为a =μg ,物体的运动情况跟传送带不动时的一样,则v B =3 m/s.若传送带以大于3m/s 且小于4 m/s 的速度顺时针匀速转动,则开始时物体受到的摩擦力向左,物体做减速运动,最后物体随传送带一起做匀速运动.若传送带以大于4m/s 的速度顺时针匀速转动,则开始时物体受到的摩擦力向右,物体做加速运动,v B 可能大于4 m/s.故C 正确,D 错误.3、如图3甲所示的水平传送带AB 逆时针匀速转动,一物块沿曲面从一定高度处由静止开始下滑,以某一初速度从传送带左端滑上,在传送带上由速度传感器记录下物块速度随时间的变化关系如图乙所示(图中取向左为正方向,以物块刚滑上传送带时为计时起点)。

已知传送带的速度保持不变,重力加速度g 取10 m/s 2。

关于物块与传送带间的动摩擦因数μ及物块在传送带上运动第一次回到传送带左端的时间t ,下列计算结果正确的是( )图3A .μ=0.4B .μ=0.2C .t =4.5 sD .t =3 s【解析】由题图乙可得,物块做匀变速运动的加速度大小为a =Δv Δt =2.0 m/s 2,由牛顿第二定律得F f =ma=μmg ,则可得物块与传送带间的动摩擦因数μ=0.2,A 错误,B 正确;在v -t 图象中,图线与t 轴所围面积表示物块的位移,则物块经减速、反向加速到与传送带相对静止,最后匀速运动回到传送带左端时,物块的位移为0,由题图乙可得物块在传送带上运动的总时间为4.5 s ,C 正确,D 错误。

答案 BC 4、如图所示,水平传送带以速度v 1匀速运动,小物体P 、Q 由通过定滑轮且不可伸长的轻绳相连,t =0时刻P 在传送带左端具有速度v 2,P 与定滑轮间的绳水平,t =t 0时刻P 离开传送带。

不计定滑轮质量和摩擦,绳足够长。

正确描述小物体P 速度随时间变化的图像可能是( )【解析】选BC 本题需考虑速度之间的关系及摩擦力与Q 重力之间的关系,分别讨论求解。

若v 1>v 2,且P 受到的滑动摩擦力大于Q 的重力,则可能先向右匀加速,加速至v 1后随传送带一起向右匀速,此过程如图B 所示,故B 正确。

若v 1>v 2,且P 受到的滑动摩擦力小于Q 的重力,此时P 一直向右减速,减速到零后反向加速。

若v 2>v 1,P 受到的滑动摩擦力向左,开始时加速度a 1=F T +μm gm,当减速至速度为v 1时,摩擦力反向,若有F T >μmg ,此后加速度a 2=F T -μmgm,故C 正确,A 、D 错误。

5、如图4所示,水平传送带两端相距x =8 m ,工件与传送带间的动摩擦因数μ=0.6,工件滑上A 端时速度v A =10 m/s ,设工件到达B 端时的速度为v B 。

(取g =10 m/s 2)图4(1)若传送带静止不动,求v B ;(2)若传送带顺时针转动,工件还能到达B 端吗?若不能,说明理由;若能,求到达B 点的速度v B ; (3)若传送带以v =13 m/s 逆时针匀速转动,求v B 及工件由A 到B 所用的时间。

【解析】(1)根据牛顿第二定律可知μmg =ma ,则a =μg =6 m/s 2, 又v 2A -v 2B =2ax ,代入数值得v B =2 m/s 。

(2)能。

当传送带顺时针转动时,工件受力不变,其加速度不发生变化,仍然始终减速,故工件到达B 端的速度v B =2 m/s 。

(3)工件速度达到13 m/s 时所用时间为t 1=v -v Aa=0.5 s , 运动的位移为x 1=v A t 1+12at 21=5.75 m <8 m ,则工件在到达B 端前速度就达到了13 m/s ,此后工件与传送带相对静止,因此工件先加速后匀速。

匀速运动的位移x 2=x -x 1=2.25 m ,t 2=x 2v≈0.17 s,t =t 1+t 2=0.67 s 。

6、如图所示,一足够长的水平传送带以速度v 0匀速运动,质量均为m 的小物块P 和小物块Q 由通过滑轮组的轻绳连接,轻绳足够长且不可伸长.某时刻物块P 从传送带左端以速度2v 0冲上传送带,P 与定滑轮间的绳子水平.已知物块P 与传送带间的动摩擦因数μ=0.25,重力加速度为g ,不计滑轮的质量与摩擦.求: (1)运动过程中小物块P 、Q 的加速度大小之比;(2)物块P 刚冲上传送带到右方最远处的过程中,PQ 系统机械能的改变量;若传送带以不同的速度v (0<v<2v 0)匀速运动,当v 取多大时物块P 向右冲到最远处时,P 与传送带间产生的摩擦热最小?最小值为多大?【解析】(1)设P 的位移、加速度大小分别为s 1、a 1,Q 的位移、加速度大小分别为s 2、a 2, 因s 1=2 s 2,故a 1=2a 22121 a a (2)对P 有:μmg+T=ma 1 对Q 有:mg ﹣2T=ma 2 得:a 1=0.6g P 先减速到与传送带速度相同,设位移为x 1,共速后,由于f=μmg<2 1mg,P不可能随传送带一起匀速运动,继续向右减速,设此时P加速度为a1′,Q的加速度为/1/221aa=对P有:T﹣μmg=ma1′,对Q有:mg﹣2T=ma2’解得:a1′=0.2g设减速到0位移为x2,PQ系统机械能的改变量等于摩擦力对P做的功,△E=﹣μmgx1+μmgx2=0(3)第一阶段P相对皮带向前,相对路程:第二阶段相对皮带向后,相对路程:/1222avS=摩擦产生的热Q=μmg(S1+S2)=当21vv=时,摩擦热最小--285mvQ=7、如图5甲所示,水平传送带沿顺时针方向匀速运转。

从传送带左端P先后由静止轻轻放上三个物体A、B、C,物体A经t A=9.5 s 到达传送带另一端Q,物体B经t B=10 s到达传送带另一端Q,若释放物体时刻作为t=0时刻,分别作出三物体的v-t图象如图乙、丙、丁所示,求:图5(1)传送带的速度大小v0;(2)传送带的长度L;(3)物体A、B、C与传送带间的动摩擦因数;(4)物体C 从传送带左端P 到右端Q 所用的时间t C 。

【解析】(1)物体A 与B 先做匀加速直线运动,然后做匀速直线运动,说明物体的速度与传送带的最终速度相等,所以由图乙、丙可知传送带的速度大小是4 m/s 。

(2)v -t 图线与t 轴围成图形的面积表示物体的位移,所以A 的位移x A =36 m , 传送带的长度L 与A 的位移相等,也是36 m 。

(3)(4)A 的加速度a A =Δv A t 1=4 m/s 2由牛顿第二定律得μA mg =ma A ,所以μA =a Ag=0.4 同理,B 的加速度a B =Δv B t 2=2 m/s 2,μB =a B g=0.2设物体C 从传送带左端P 到右端Q 所用的时间为t C ,则L =0+v C 2t C t C =2L v C =24 s C 的加速度a C =Δv C t C =18 m/s 2,μC =a C g=0.012 5。

8、一水平传送带以2.0 m/s 的速度顺时针传动,水平部分长为2.0 m 。

其右端与一倾角为θ=37°的光滑斜面平滑相连,斜面长为0.4 m ,一个可视为质点的物块无初速度地放在传送带最左端,已知物块与传送带间动摩擦因数μ=0.2, 试问:(1)物块能否到达斜面顶端?若能则说明理由,若不能则求出物块沿斜面上升的最大距离。

(2)物块从出发到4.5 s 末通过的路程。

(sin 37°=0.6,g 取10 m/s 2)【解析】(1)物块在传送带上先做匀加速直线运动μmg =m a 1① s 1=v 022a 1=1 m <L ②所以在到达传送带右端前物块已匀速 物块以v 0速度滑上斜面-mg sin θ=ma 2③ 物块速度为零时上升的距离s 2=-v 022a 2=13m④由于s 2<0.4 m ,所以物块未到达斜面的最高点。

相关文档
最新文档