初一数学公式大全
初中数学公式大全(初一)
初中数学公式大全(初一)乘法与因式分解a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2 )三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|一元二次方程的解根与系数的关系-b+√(b2-4ac)/2a-b-√(b2-4ac)/2aX1+X2=-b/aX1*X2=c/a注:韦达定理判别式b2-4ac=0注:方程有两个相等的实根b2-4ac>0注:方程有两个不等的实根b2-4ac<0注:方程没有实根,有共轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1 +tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/( ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1 +cosA))ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1 -cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2 )sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB 某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n -1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7 +…+n(n+1)=n(n+1)(n+2)/3其他常用数学公式正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0抛物线标准方程y2=2pxy2=-2pxx2=2pyx2=-2py直棱柱侧面积S=c*h斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h'正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*ra是圆心角的弧度数r>0扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h 斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h圆柱体V=pi*r2h。
初一初所有数学公式
初一初所有数学公式数学公式1、正弦定理:三角形的两条相邻的边的长度都满足正弦定理,即:a/sin A = b/sin B = c/sin C2、余弦定理:三角形的两条相邻边的长度都满足余弦定理,即:a^2=b^2+c^2-2bc*cosA3、勾股定理:三角形的三条边都满足勾股定理,即:a^2+b^2=c^24、角平分线定理:所围四边形中,对角线的两条边的中点都满足角平分线定理,即:AB+BC=AC5、三角形统计定理:在三角形内任意点,B、C、D满足三角形统计定理,即:a AB+b BC+c CD=360°6、三角形四边形性质定理:在任意图形中,其内任意一个四边形,满足三角形四边形性质定理,即:四边形的对角相等。
7、正方形性质定理:长方形内所有边长都相等,满足正方形性质定理,即:对角长相等,且两个对角的中点就是中心。
8、平面空间三条边的定理:三角形的三条边都满足平面空间三条边的定理,即:a*b=c^29、梯形定理:对于任意三点构成的梯形,其内任意一点满足梯形定理,即:同侧两边的大边等于另一侧的差边之和。
10、勾股边长定理:对于一个等腰三角形,其内任意一点满足勾股边长定理,即:二边之和等于斜边的平方。
11、自然斜率定理:对于一条直线,其内任意一点满足自然斜率定理,即:该直线上所有点都具有相同的斜率。
12、极点定理:对于一个抛物线,其内任意一点满足极点定理,即:抛物线的形状取决与它的极点的值(x及y坐标的大小)。
13、椭圆定理:对于一个椭圆,其内任意一点满足椭圆定理,即:椭圆的长轴rao= 椭圆的短轴2a和对角线2c 的差值之和。
14、正比定理:对于两个线段,其内任意一点满足正比定理,即:两个獭段的长度比例相同。
初中数学全套公式大全
初中数学全套公式大全1.代数公式- 分配律:a(b+c) = ab + ac-结合律:(a+b)+c=a+(b+c)- 因式分解:ab+ac = a(b+c)-二次方差:(a+b)(a-b)=a^2-b^2- 三次方差:a^3 + b^3 = (a+b)(a^2-ab+b^2)- 一次方程求解:ax + b = 0 => x = -b/a- 二次方程求解:ax^2 + bx + c = 0 => x = (-b±√(b^2-4ac))/(2a)- 三次方程求解:ax^3 + bx^2 + cx + d = 0 => 需用牛顿法等等2.几何公式-周长:正方形周长=4×边长矩形周长=2×(长+宽)圆周长=π×直径-面积:正方形面积=边长×边长矩形面积=长×宽三角形面积=底×高/2圆面积=π×半径^2-体积:长方体体积=长×宽×高圆柱体积=圆面积×高圆锥体积=圆面积×高/3-相似三角形面积比:AB/CD=BC/EF=AC/DE-圆的性质:正切与切线垂直相等弧所对的圆心角是相等的相等弧的扇形所对的弧长和扇形的面积也相等3.概率公式-事件的概率:P(A)=事件A发生的次数/总的样本空间次数-对立事件:P(A')=1-P(A)-全概率公式:事件B在事件A发生的条件下发生的概率为P(A)×P(B,A),而总概率为P(A)-乘法公式:两个同时发生的独立事件A和B的概率为P(A∩B)=P(A)×P(B)-加法公式:两个互不相容(即不能同时发生)的事件A和B的概率为P(A∪B)=P(A)+P(B)4.超越函数的公式- e^x、e^(-x)、ln(x)、log(x)等函数的展开公式-三角函数的和差化积公式和倍角公式-反三角函数的公式-指数函数、对数函数的性质及展开公式5.统计学公式-平均值:平均值=总和/总数-中位数:将数据从小到大排列,如果总数是奇数,则中位数为中间的那个数;如果总数是偶数,则中位数为中间两个数的平均值-众数:出现次数最多的数-极差:最大值-最小值-方差:各数据与平均数的差的平方和的均值-标准差:方差的平方根-相关系数:相关系数范围为-1到1,接近1表示正相关,接近-1表示负相关,接近0表示无关。
数学所有的公式大全
数学所有的公式大全
以下是一些数学公式:
1. 加法公式:加数+加数=和,和-一个加数=另一个加数。
2. 减法公式:被减数-减数=差,被减数-差=减数,差+减数=被减数。
3. 乘法公式:每份数×份数=总数,总数÷每份数=份数,总数÷份数=每份数。
4. 除法公式:被除数÷除数=商,被除数÷商=除数,商×除数=被除数。
5. 正方体体积和表面积公式:体积V=棱长^3,表面积S=6×棱长^2。
6. 三角形面积公式:面积S=底×高÷2。
7. 圆柱体体积公式:体积V=底面积S×高h。
8. 圆柱体表面积公式:表面积S=2πr^2+2πrh(其中r是底面半径,h是高)。
9. 圆周长公式:周长C=2πr(其中r是半径)。
10. 圆面积公式:面积S=πr^2(其中r是半径)。
11. 指数公式:a^n=b(其中a是底数,n是指数,b是结果)。
12. 对数公式:log_a(b)=n(其中a是底数,b是对数,n是指数)。
13. 三角函数公式:sin(A+B)=sinAcosB+cosAsinB,
cos(A+B)=cosAcosB-sinAsinB等。
14. 代数公式:x^2-bx+c=0(其中x是未知数,b和c是常数)。
15. 几何公式:平行四边形面积S=底×高,梯形面积S=(上底+下底)×高÷2等。
以上是一些常见的数学公式,它们在数学和科学领域中有着广泛的应用。
初一初中数学常用公式与定理
初一初中数学常用公式与定理数学作为一门基础学科,在初一和初中阶段,对于学生的发展至关重要。
掌握数学常用公式与定理,不仅可以提高数学分析和解决问题的能力,还有助于培养逻辑思维和数学思维能力。
下面是一些初一和初中数学常用的公式与定理以及它们的应用。
1. 代数运算公式代数运算是数学的基础,掌握一些常用的代数运算公式对于解决复杂的代数问题非常有帮助。
下面是一些常用的代数运算公式:1.1 加法和减法公式加法公式:(a+b)^2 = a^2 + 2ab + b^2减法公式:(a-b)^2 = a^2 - 2ab + b^21.2 乘法公式(a+b)(a-b) = a^2 - b^21.3 平方差公式(a+b)^2 - (a-b)^2 = 4ab2. 几何定理几何是数学的重要分支之一,许多几何定理可以帮助我们理解图形的性质和解决几何问题。
下面是一些初一和初中常用的几何定理以及它们的应用:2.1 皮亚诺定理皮亚诺定理表明,在一个平面上的n个点中,任意两点之间的连线的条数等于C(n, 2),即C(n, 2) = n(n-1)/2。
这个定理可以应用于计算几何图形中的线段数量。
2.2 正弦定理正弦定理表明,在一个三角形ABC中,三个内角A、B、C的正弦值与对边a、b、c之间的关系为:sinA/a = sinB/b = sinC/c。
这个定理可以帮助我们计算三角形的边长或角度。
2.3 余弦定理余弦定理表明,在一个三角形ABC中,三个内角A、B、C的余弦值与对边a、b、c之间的关系为:cosA = (b^2 + c^2 - a^2)/(2bc)。
这个定理可以帮助我们计算三角形的边长或角度。
3. 概率与统计概率与统计是数学中的实用工具,在解决排列组合、概率等问题时起着重要作用。
下面是一些初一和初中常用的概率与统计公式:3.1 排列公式排列公式表示从n个不同元素中选取r个元素进行排列的总数,表示为P(n, r) = n!/(n-r)!。
初中数学所有公式大全
初中数学所有公式大全一、代数部分。
1. 有理数。
- 加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数。
- 减法法则:减去一个数,等于加上这个数的相反数,即a - b=a+(-b)。
- 乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘都得0。
- 除法法则:除以一个不等于0的数,等于乘这个数的倒数,即a÷ b =a×(1)/(b)(b≠0)。
2. 整式。
- 同底数幂相乘:a^m· a^n=a^m + n(m,n为正整数)。
- 同底数幂相除:a^m÷ a^n=a^m - n(a≠0,m,n为正整数且m>n)。
- 幂的乘方:(a^m)^n=a^mn(m,n为正整数)。
- 积的乘方:(ab)^n=a^nb^n(n为正整数)。
- 单项式乘以单项式:系数相乘,相同字母的幂分别相乘,只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
- 单项式乘以多项式:m(a + b)=ma+mb。
- 多项式乘以多项式:(a + b)(c + d)=ac+ad+bc+bd。
- 平方差公式:(a + b)(a - b)=a^2-b^2。
- 完全平方公式:(a± b)^2=a^2±2ab + b^2。
3. 一元一次方程。
- 一元一次方程的标准形式:ax + b = 0(a≠0),其解为x=-(b)/(a)。
4. 二元一次方程组。
- 代入消元法:将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解。
- 加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程。
5. 一元二次方程。
- 一元二次方程的一般形式:ax^2+bx + c = 0(a≠0)。
初中数学公式大全(从初一到初三)
一、初一数学公式1.1 二次根式的性质① 非负性:若a≥0,则√a≥0② 开平方的乘法性:√a×√b=√(a×b)③ 开平方的除法性:√(a/b)=√a/√b (b>0)1.2 整式化简公式①(a+b)²=a²+2ab+b²②(a-b)²=a²-2ab+b²③(a+b)×(a-b)=a²-b²1.3 分式的运算① 加法:a/b+c/d=(ad+bc)/bd② 减法:a/b-c/d=(ad-bc)/bd③ 乘法:a/b×c/d=ac/bd④ 除法:a/b÷c/d=ad/bc2.1 二次函数① 一般式:y=ax²+bx+c (a≠0)② 顶点坐标:( -b/2a , c-b²/4a )③ 判别式:Δ=b²-4ac若Δ>0,则二次函数有两个不同的实根若Δ=0,则二次函数有两个相等的实根若Δ<0,则二次函数无实根2.2 三角函数① 正弦函数:y=Asin(Bx-C)+D② 余弦函数:y=Acos(Bx-C)+D③ 正切函数:y=Atan(Bx-C)+D2.3 同底数幂的运算aⁿ×aᵐ=aⁿᵐaⁿ÷aᵐ=aⁿ⁻ᵐ(a≠0)三、初三数学公式3.1 等差数列① 通项公式:aₙ=a₁+(n-1)d② 前n项和公式:Sₙ=n/2(a₁+aₙ)3.2 三角恒等变换公式① 和差化积公式:sinα±sinβ=2sin(±(α±β)/2)cos(∓(α±β)/2)② 二倍角公式:sin2α=2sinαcosα, cos2α=cos²α-sin²α3.3 平面几何图形① 三角形面积公式:S=(1/2)×底×高② 圆周长公式:C=2πr, 圆面积公式:S=πr²初中数学公式包括初一到初三阶段的各类公式,涵盖了整式化简、二次函数、三角函数、等差数列、三角恒等变换、平面几何图形等内容。
初一公式大全数学
初一公式大全数学一、有理数相关公式。
1. 有理数加法法则。
- 同号两数相加,取相同的符号,并把绝对值相加。
例如:3 + 5=8,( - 3)+(-5)=-(3 + 5)=-8。
- 异号两数相加,绝对值相等时和为0(即互为相反数的两数相加得0);绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
例如:3+( - 5)=-(5 - 3)=-2,(-3)+5 = 5-3 = 2。
- 一个数同0相加,仍得这个数,如0+3 = 3。
2. 有理数减法法则。
- 减去一个数,等于加上这个数的相反数。
即a - b=a+( - b)。
例如:5-3 = 5+( - 3)=2,5-( - 3)=5+3 = 8。
3. 有理数乘法法则。
- 两数相乘,同号得正,异号得负,并把绝对值相乘。
例如:3×5 = 15,(-3)×(-5)=15,3×(-5)=-15。
- 任何数与0相乘都得0,如0×3 = 0。
4. 有理数除法法则。
- 除以一个不等于0的数,等于乘这个数的倒数。
即a÷b=a×(1)/(b)(b≠0)。
- 两数相除,同号得正,异号得负,并把绝对值相除。
例如:15÷3 = 5,(-15)÷(-3)=5,15÷(-3)=-5。
- 0除以任何一个不等于0的数都得0,0不能做除数。
5. 乘方的定义。
- 求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
在a^n中,a 叫做底数,n叫做指数。
例如:2^3=2×2×2 = 8。
6. 混合运算顺序。
- 先算乘方,再算乘除,最后算加减;如果有括号,先算括号里面的。
二、整式相关公式。
1. 单项式的系数和次数。
- 单项式中的数字因数叫做这个单项式的系数。
例如,在单项式-3x^2y中,系数是-3。
- 一个单项式中,所有字母的指数的和叫做这个单项式的次数。
在单项式-3x^2y中,次数是2 + 1=3。
初一的数学公式大全
初一的数学公式大全1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。
初一数学公式大全
初一数学公式大全1. 数字与运算1.1 数的分类•自然数:0、1、2、3、4…•整数:…-3、-2、-1、0、1、2、3…•有理数:可以用两个整数的比表示,如-2/3、0.5•无理数:不能表示为两个整数的比,如π、√21.2 加法与减法公式加法公式•加法交换律:a + b = b + a•加法结合律:a + (b + c) = (a + b) + c•加法零元素:a + 0 = a•加法逆元素:a + (-a) = 0减法公式•减法定义:a - b = a + (-b)•减法规律:a - (-b) = a + b1.3 乘法与除法公式乘法公式•乘法交换律:a × b = b × a•乘法结合律:a × (b × c) = (a × b) × c•乘法分配律:a × (b + c) = a × b + a × c除法公式•除法定义:a ÷ b = a × (1/b)1.4 平方与立方公式•平方公式:(a + b)² = a² + 2ab + b²,(a - b)² = a² - 2ab + b²•立方公式:(a + b)³ = a³ + 3a²b + 3ab² + b³,(a - b)³ = a³ - 3a²b + 3ab²- b³1.5 百分数与比例•百分数定义:以百分之一为单位,百分数 = 实际数值 × 100%•百分数与小数的关系:百分数 = 小数 × 100%,小数 = 百分数 ÷ 100%•比例:两个量之间的比值关系2. 图形几何2.1 直线与角•直线定义:无限延伸,只有一个方向,没有长度•线段定义:有起点和终点,长度有限•射线定义:有一个起点,延伸的方向和射线上各点到起点的距离都相等•角度定义:两条射线公共起点的两个相邻区域之间的夹角2.2 三角形•三角形定义:由三条线段组成的图形•三角形分类:–按边长:等边三角形、等腰三角形、一般三角形–按角度:锐角三角形、直角三角形、钝角三角形2.3 平行四边形•平行四边形定义:具有两组平行的对边的四边形•矩形特征:平行四边形且所有角都是直角•正方形特征:矩形的特殊情况,所有边相等•菱形特征:平行四边形的特殊情况,所有边相等,相邻角相等2.4 圆与圆的计算•圆的定义:平面上到一个确定点的距离相等的点的轨迹•圆周长公式:周长= 2πr,其中r为半径•圆面积公式:面积= πr²3. 数据和统计3.1 数据的收集与整理•问卷调查•实地观察•文献查询3.2 统计图表的制作和分析•条形图•饼状图•折线图3.3 平均数与中位数•平均数:一组数据之和除以数据的个数•中位数:排列后位于中间位置的数值3.4 茎叶图与频数分布表•茎叶图:用来整理和表示数据的一种方法•频数分布表:用来表示数据的频数和频率的表格以上是关于初一数学公式的大致内容,如果需要更深入了解和学习,请阅读相关的数学教材或参考资料。
数学初一上册公式
数学初一上册公式
以下是初一数学上册的一些主要公式:
1. 加法交换律:a+b=b+a。
2. 加法结合律:(a+b)+c=a+(b+c)。
3. 减法法则:a-b=a+(-b)。
4. 乘法交换律:ab=ba。
5. 乘法结合律:(ab)c=a(bc)。
6. 乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2+4)×5=2×5+4×5。
7. 除法法则:a÷b=a(1÷b)(b≠0)。
8. 等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
9. 方程式:含有未知数的等式叫方程式。
10. 一元一次方程式:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。
以上公式仅供参考,如有需要,建议查阅数学教材或咨询数学教师。
初中数学公式大全(整理打印版)
初中数学公式大全初中数学定理、公式汇编一、数与代数1.数与式(1)实数实数的性质:①实数a 的相反数是—a ,实数a 的倒数是(a≠0);a1②实数a 的绝对值:⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a ③正数大于0,负数小于0,两个负实数,绝对值大的反而小。
二次根式:①积与商的方根的运算性质:(a≥0,b≥0);b a ab ⋅=(a≥0,b >0);ba ba =②二次根式的性质:⎩⎨⎧<-≥==)0()0(2a a a a a a (2)整式与分式①同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即(m 、n 为正整数);n m n m a a a +=⋅②同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即(a≠0,m 、n 为正整数,m>n );n m n m a a a -=÷③幂的乘方法则:幂的乘方,底数不变,指数相乘,即(n 为正nnnb a ab =)(整数);④零指数:(a≠0);10=a⑤负整数指数:(a≠0,n 为正整数);n naa1=-⑥平方差公式:两个数的和与这两个数的差的积等于这两个数的平方,即;22))((b a b a b a -=-+⑦完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,即;2222)(b ab a b a +±=±分式①分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变,即;,其中m 是不等于零的代数式;m b m a b a ⨯⨯=m b m a b a ÷÷=②分式的乘法法则:;bdacd c b a =⋅③分式的除法法则:;)0(≠=⋅=÷c bcadc d b a d c b a ④分式的乘方法则:(n 为正整数);n nn ba b a =)(⑤同分母分式加减法则:;c ba cbc a ±=±⑥异分母分式加减法则:;bccdab b d c a ±=±2.方程与不等式①一元二次方程(a≠0)的求根公式:02=++c bx ax )04(2422≥--+-=ac b aac b b x ②一元二次方程根的判别式:叫做一元二次方程ac b 42-=∆(a≠0)的根的判别式:02=++c bx ax 方程有两个不相等的实数根;⇔>∆0方程有两个相等的实数根;⇔=∆0方程没有实数根;⇔<∆0③一元二次方程根与系数的关系:设、是方程1x 2x 02=++c bx ax(a≠0)的两个根,那么+=,=;1x 2x a b -1x 2x ac 不等式的基本性质:①不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;②不等式两边都乘以(或除以)同一个正数,不等号的方向不变;③不等式两边都乘以(或除以)同一个负数,不等号的方向改变;3.函数一次函数的图象:函数y=kx+b(k 、b 是常数,k≠0)的图象是过点(0,b )且与直线y=kx 平行的一条直线;一次函数的性质:设y=kx+b (k≠0),则当k>0时,y 随x 的增大而增大;当k<0, y 随x 的增大而减小;正比例函数的图象:函数的图象是过原点及点(1,k )的一条直线。
初一的数学公式大全
初一的数学公式大全以下是初一数学公式大全:1.两点确定一条直线,且只有一条直线能够过这两点。
2.两点之间的线段是最短的。
3.同角或等角的补角相等。
4.同角或等角的余角相等。
5.过一点有且只有一条直线与已知直线垂直。
6.直线外一点与直线上各点连接的所有线段中,垂线段最短。
7.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
8.如果两条直线都和第三条直线平行,这两条直线也互相平行。
9.同位角相等,则两直线平行。
10.内错角相等,则两直线平行。
11.同旁内角互补,则两直线平行。
12.两直线平行,则同位角相等。
13.两直线平行,则内错角相等。
14.两直线平行,则同旁内角互补。
15.定理:三角形两边的和大于第三边。
16.推论:三角形两边的差小于第三边。
17.三角形内角和定理:三角形三个内角的和等于180°。
18.推论1:直角三角形的两个锐角互余。
19.推论2:三角形的一个外角等于和它不相邻的两个内角的和。
20.推论3:三角形的一个外角大于任何一个和它不相邻的内角。
21.全等三角形的对应边、对应角相等。
22.边角边公理(SAS):有两边和它们的夹角对应相等的两个三角形全等。
23.角边角公理(ASA):有两角和它们的夹边对应相等的两个三角形全等。
24.推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等。
25.边边边公理(SSS):有三边对应相等的两个三角形全等。
26.斜边、直角边公理(HL):有斜边和一条直角边对应相等的两个直角三角形全等。
27.定理1:在角的平分线上的点到这个角的两边的距离相等。
28.定理2:到一个角的两边的距离相同的点,在这个角的平分线上。
29.角的平分线是到角的两边距离相等的所有点的集合。
30.等腰三角形的性质定理:等腰三角形的两个底角相等(即等边对等角)。
31.推论1:等腰三角形顶角的平分线平分底边并且垂直于底边。
32.等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合。
初中数学公式大全(初一)
初中数学公式大全(初一)乘法与因式分解a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|一元二次方程的解根与系数的关系-b+√(b2-4ac)/2a-b-√(b2-4ac)/2aX1+X2=-b/aX1*X2=c/a注:韦达定理判别式b2-4ac=0注:方程有两个相等的实根b2-4ac>0注:方程有两个不等的实根b2-4ac<0注:方程没有实根,有共轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtan B)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctg A)倍角公式tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1) =n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+ n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3其他常用数学公式正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标圆的一样方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0抛物线标准方程y2=2pxy2=-2pxx2=2pyx2=-2py直棱柱侧面积S=c*h斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h'正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*ra是圆心角的弧度数r>0扇形面积公式s=1/2*l*r单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。
初一数学公式大全整理
初一数学公式大全整理初一数学公式大全涵盖了多个方面,包括几何、代数、三角函数等。
以下是一些主要的初一数学公式:1、乘法与因式分解a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)2、三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|3、一元二次方程的解根与系数的关系-b+√(b2-4ac)/2a-b-√(b2-4ac)/2aX1+X2=-b/aX1*X2=c/a注:韦达定理4、判别式b2-4ac=0注:方程有两个相等的实根b2-4ac>0注:方程有两个不等的实根b2-4ac<0注:方程没有实根,有共轭复数根5、三角函数公式1)、两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)2)、倍角公式tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a3)、半角公式sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))4)、和差化积2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB6、某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/67、基础运算1)、加法运算加法交换律:a + b = b + a加法结合律:(a + b) + c = a + (b + c)2)、减法运算减法法则:a - b = a + (-b)3)、乘法运算乘法交换律:ab = ba乘法结合律:(ab)c = a(bc)4)、除法运算除法法则:a ÷ b = a × (1/b) (b ≠ 0)5)、绝对值|a|的定义:a = 0, |a| = 0;a > 0, |a| = a;a < 0, |a| = -a6)、平方与立方平方差公式:a2 = (a + b)(a - b)和差的平方:(a + b)2 + 2ab + b2 = a2和差的立方:a3 = (a + b)(a2), a3 = (a - b)(a2)8、几何图形1)、长方形周长:C = 2(a + b),其中a为长,b为宽面积:S = ab2)、正方形周长:C = 4a,其中a为边长面积:S = a^23)、三角形面积:S = 1/2 × ah,其中a为底,h为高4)、平行四边形面积:S = ah,其中a为底,h为高5)、梯形面积:S = 1/2 × (a + b) × h,其中a为上底,b为下底,h为高6)、圆周长(圆周):C = 2πr 或 C = πd,其中r为半径,d为直径面积:S = πr^2。
初一到初三的所有数学公式
初一到初三的所有数学公式初一到初三数学公式全攻略:轻松搞定!嘿,大家好!今天我们来聊聊初一到初三的数学公式。
这些公式就像是数学的“秘密武器”,掌握了它们,你会发现数学其实没那么难。
放心啦,我会把这些公式讲得简单易懂,咱们一块儿轻松搞定!1. 初一数学公式1.1 基本几何公式周长与面积:长方形:长方形的周长等于2倍的长加上2倍的宽,即 ( P = 2 times (l + w) )。
面积就更简单了,直接长乘宽就行,公式是 ( A = l times w )。
正方形:正方形的周长是4倍的边长,即 ( P = 4 times a )。
面积也很简单,边长的平方,公式是 ( A = a^2 )。
圆:圆的周长(或者叫做圆周)是2倍的π再乘以半径,即 ( C = 2 pi r )。
面积是π乘以半径的平方,公式是 ( A = pi r^2 )。
1.2 常见代数公式分配律:这个公式说的是 ( a times (b + c) = a times b + a times c )。
就是分配乘法到加法里。
合并同类项:就是把相同的项加在一起,比如 ( 2x + 3x = 5x )。
注意,只有“同类项”才能合并哦。
2. 初二数学公式2.1 线性方程一元一次方程:方程的标准形式是 ( ax + b = 0 )。
解这个方程的步骤是:先把b移到右边,变成( ax = b ),然后把a移到右边,得 ( x = frac{b}{a} )。
两元一次方程组:形如 ( begin{cases} a_1x + b_1y = c_1 a_2x + b_2y = c_2 end{cases} ) 的方程组。
解法可以用代入法或者加减法,方法有点复杂,不过只要掌握了,解方程就像玩游戏一样简单!2.2 平面几何直角三角形:勾股定理:在直角三角形里,直角边的平方和等于斜边的平方,公式是 ( a^2 + b^2 = c^2 )。
这个公式用处超级广泛,碰到直角三角形就能派上用场!三角形面积:面积计算公式是 ( A = frac{1}{2} times 底 times 高 )。
(完整版)初一数学公式汇总
初一数学公式汇总
作业是学习过程中一个重要环节。
通过作业不仅可以及时巩固当天所学知识,加深对知识的理解,更重要的是把学过的知识加以运用,以形成技能技巧,从而发展自己的智力,培养自己的能力。
编辑了初一数学公式精选,欢迎参考!
1每份数×份数=总数
总数÷每份数=份数
总数÷份数=每份数
21倍数×倍数=几倍数
几倍数÷1倍数=倍数
几倍数÷倍数=1倍数
3速度×时间=路程
路程÷速度=时间
路程÷时间=速度
4单价×数量=总价
总价÷单价=数量
总价÷数量=单价
5工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
6加数+加数=和
和-一个加数=另一个加数
7被减数-减数=差
被减数-差=减数
差+减数=被减数
8因数×因数=积
积÷一个因数=另一个因数
9被除数÷除数=商
被除数÷商=除数
商×除数=被除数
以上就是为大家提供的初一数学公式精选,XX真诚地希望大家可以轻轻松松的学习,度过一段幸福快乐的时光!
更多的精彩内容请查看:初中>初一>数学>数学公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学公式大全 The latest revision on November 22, 2020
初一数学公式大全
1 每份数×份数=总数
总数÷每份数=份数
总数÷份数=每份数
2 1倍数×倍数=几倍数
几倍数÷1倍数=倍数
几倍数÷倍数=1倍数
3 速度×时间=路程
路程÷速度=时间
路程÷时间=速度
4 单价×数量=总价
总价÷单价=数量
总价÷数量=单价
5 工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率
6 加数+加数=和
和-一个加数=另一个加数
7 被减数-减数=差
被减数-差=减数
差+减数=被减数
8 因数×因数=积
积÷一个因数=另一个因数
9 被除数÷除数=商
被除数÷商=除数
商×除数=被除数
小学数学图形计算公式
1 正方形
C周长 S面积 a边长
周长=边长×4
C=4a
面积=边长×边长
S=a×a
2 正方体
V:体积 a:棱长
表面积=棱长×棱长×6
S表=a×a×6
体积=棱长×棱长×棱长
V=a×a×a
3 长方形
C周长 S面积 a边长周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
4 长方体
V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)
(2)体积=长×宽×高
V=abh
5 三角形
s面积 a底 h高
面积=底×高÷2
s=ah÷2
三角形高=面积×2÷底
三角形底=面积×2÷高
6 平行四边形
s面积 a底 h高
面积=底×高
s=ah
7 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圆形
S面积 C周长∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径
C=∏d=2∏r
(2)面积=半径×半径×∏
9 圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10 圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
总数÷总份数=平均数
和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或小数+差=大数)
植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1) 利息=本金×利率×时间
长度单位换算
1千米=1000米 1米=10分米
1分米=10厘米 1米=100厘米
1厘米=10毫米
面积单位换算
1平方千米=100公顷
1公顷=10000平方米
1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米
体(容)积单位换算
1立方米=1000立方分米
1立方分米=1000立方厘米
1立方分米=1升
1立方厘米=1毫升
1立方米=1000升。