平衡二叉树算法及代码

平衡二叉树算法及代码
平衡二叉树算法及代码

Size Balanced Tree

Size Balanced Tree(SBT)是一种平衡二叉查找树。它的论文由中国广东中山纪念中学的陈启峰于2006年底完成,并在Winter Camp 2007中发表。由于SBT的拼写很容易找到中文谐音,它常被中国的OIer们戏称为“傻X树”、“Super BT”等。但它的性能并不SB,编写起来也并不BT。恰恰相反,SBT易于实现,且据陈启峰论文中所言,“这是目前为止速度最快的高级二叉搜索树”。它能在O(logn)的时间内完成所有BST的相关操作。而且由于SBT赖以保持平衡的是Size域而不是其他“无用”的域,它可以很方便地实现动态顺序统计中的select和rank。

性质

Size Balanced Tree(SBT)是一种通过大小(Size)域来保持平衡的二叉搜索树,它也因此得名。它总是满足:

对于SBT的每一个结点t:

1. 性质(a) s[right[t] ]≥s[left[left[t]]],s[right[left[t]]]

2. 性质(b) s[left[t] ]≥s[right[right[t]]],s[left[right[t]]]

即每棵子树的大小不小于其兄弟的子树大小。

图1

如图(圈代表结点,三角代表SBT,下同):

1. s[R] ≥s[A],s[B]

2. s[L] ≥s[C],s[D]

旋转

SBT的旋转(Rotations)与其他许多高级BST相同。它是下面提到的Maintain操作的基础。

图2

[编辑]左旋转

右旋转

保持性质(Maintain)

当我们插入或删除一个结点后,SBT的大小就发生了改变。这种改变有可能导致性质(a)或(b)被破坏。这时,我们需要用Maintain操作来修复这棵树。Maintain操作是SBT中最具活力的一个独特过程;Maintain(T)用于修复以T为根的SBT。调用Maintain(T)的前提条件是T的子树都已经是SBT了。

我们需要讨论的有4种情况。由于性质a和性质b是对称的,所以我们仅仅详细的讨论性质a。

1. 第一种情况:s[left[left[t]]>s[right[t]]

图3(同图1)

如图3,执行完Insert(left[t],v)后发生S[A]>S[R],我们可以执行以下的指令来修复SBT:

1. 首先执行Right-Ratote(t),这个操作让图3变成图4;

图4

2. 在这之后,有时候这棵树还仍然不是一棵SBT,因为s[C]>s[B] 或者s[D]>s[B]

也是可能发生的。所以就有必要继续调用Maintain(T)。

3. 结点L的右子树有可能被连续调整,因为有可能由于性质的破坏需要再一次运

行Maintain(L)。

2. 第二种情况:s[right[left[t]]>s[right[t]]

图5

在执行完Insert(left[t],v)后发生s[B]>s[R],如图5,这种调整要比情况1复杂一些。我们可以执行下面的操作来修复:

1. 在执行完Left-Ratote(L)后,图5就会变成下面图6那样了。

图6

2. 然后执行Right-Ratote(T),最后的结果就会由图6转变成为下面的图7。

图7

3. 在第1步和第2步过后,整棵树就变得非常不可预料了。万幸的是,在图7中,

子树A、E、F和R仍就是SBT,所以我们可以调用Maintain(L)和Maintain(T)

来修复结点B的子树。

4. 在第3步之后,子树都已经是SBT了,但是在结点B上还可能不满足性质a或

性质b,因此我们需要再一次调用Maintain(B)。

3. 第三种情况:s[right[right[t]]>s[left[t]]

与情况1对称。

4. 第四种情况:s[left[right[t]]>s[left[t]]

与情况2对称。

通过前面的分析,很容易写出一个普通的Maintain。

前面的标准过程的伪代码有一点复杂和缓慢。通常我们可以保证性质a和性质b的满足,因此我们只需要检查情况1和情况2或者情况3和情况4,这样可以提高速度。所以在那种情况下,我们需要增加一个布尔(boolean)型变量:flag,来避免毫无意义的判断。如果flag是false,那么检查情况1和情况2;否则检查情况3和情况4。

为什么Maintain(left[t],true)和Maintain(right[t],false)被省略了呢?您可以在陈启峰论文第六部分的分析中找到答案。

其他可以从论文中获得的信息:每次SBT后树的总深度递减的证明;Maintain的平摊运行时间是O(1)的证明(也就是说你不必担心Maintain这个递归过程是否会永不停止)等。

[编辑]基本操作

[编辑]查找

SBT的查找操作与普通BST完全相同。下面的过程将返回指向目标节点的指针。

[编辑]取大/取小

由于SBT本身已经维护了size,因此这两项可用Select操作完成。

[编辑]后继

SBT的后继操作与普通BST完全相同。

[编辑]前趋

SBT的前趋操作与普通BST完全相同。它与上面的后继操作对称。

[编辑]插入

SBT的插入操作很简单。它仅仅比普通BST的多出了一个Maintain操作和对s的简单维护。下面这个过程将一个节点v插入SBT中。

]删除

与普通维护size域的BST删除相同。

关于无需Maintain的说明by sqybi:

在删除之前,可以保证整棵树是一棵SBT。当删除之后,虽然不能保证这棵树还是SBT,但是这时整棵树的最大深度并没有改变,所以时间复杂度也不会增加。这时,Maintain就显得是多余的了。

]动态顺序统计操作

由于SBT本来就是靠着size域来维持平衡的,当我们进行动态顺序统计操作时,我们就无需去“额外”维护一个size域来进行数据结构的扩张。这样,以下操作就与其他高级BST扩张后的动态顺序统计操作完全一样了。

]检索具有给定排序的元素

下面这个过程将返回一个指向以x为根的子树中包含第i小关键字的节点的指针。

求元素的秩

SBT的rank操作与普通BST完全相同。

性能分析

SBT的高度是O(logn),Maintain是O(1),所有主要操作都是O(logn)。

源码

例题:NOI2004郁闷的出纳员

【问题描述】

OIER公司是一家大型专业化软件公司,有着数以万计的员工。作为一名出纳员,我的任务之一便是统计每位员工的工资。这本来是一份不错的工作,但是令人郁闷的是,我们的老板反复无常,经常调整员工的工资。如果他心情好,就可能把每位员工的工资加上一个相同的量。反之,如果心情不好,就可能把他们的工资扣除一个相同的量。我真不知道除了调工资他还做什么其它事情。工资的频繁调整很让员工反感,尤其是集体扣除工资的时候,一旦某位员工发现自己的工资已经低于了合同规定的工资下界,他就会立刻气愤地离开公司,并且再也不会回来了。每位员工的工资下界都是统一规定的。每当一个人离开公司,我就要从电脑中把他的工资档案删去,同样,每当公司招聘了一位新员工,我就得为他新建一个工资档案。

老板经常到我这边来询问工资情况,他并不问具体某位员工的工资情况,而是问现在工资第k

多的员工拿多少工资。每当这时,我就不得不对数万个员工进行一次漫长的排序,然后告诉他答案。

好了,现在你已经对我的工作了解不少了。正如你猜的那样,我想请你编一个工资统计程序。怎么样,不是很困难吧?

【输入文件】

cashier.in第一行有两个非负整数n和min。n表示下面有多少条命令,min表示工资下界。

接下来的n行,每行表示一条命令。命令可以是以下四种之一:

_(下划线)表示一个空格,I命令、A命令、S命令中的k是一个非负整数,F命令中的k是一个正整数。

在初始时,可以认为公司里一个员工也没有。

【输出文件】

输出文件cashier.out的行数为F命令的条数加一。

对于每条F命令,你的程序要输出一行,仅包含一个整数,为当前工资第k多的员工所拿的工资数,如果k大于目前员工的数目,则输出-1。

输出文件的最后一行包含一个整数,为离开公司的员工的总数。

【样例输入】

【样例输出】

【约定】

I命令的条数不超过100000

A命令和S命令的总条数不超过100

F命令的条数不超过100000

每次工资调整的调整量不超过1000

新员工的工资不超过100000

数组实现的Size Balanced Tree

二叉树的各种算法

二叉树的各种算法.txt男人的承诺就像80岁老太太的牙齿,很少有真的。你嗜烟成性的时候,只有三种人会高兴,医生你的仇人和卖香烟的。 /*用函数实现如下二叉排序树算法: (1)插入新结点 (2)前序、中序、后序遍历二叉树 (3)中序遍历的非递归算法 (4)层次遍历二叉树 (5)在二叉树中查找给定关键字(函数返回值为成功1,失败0) (6)交换各结点的左右子树 (7)求二叉树的深度 (8)叶子结点数 Input 第一行:准备建树的结点个数n 第二行:输入n个整数,用空格分隔 第三行:输入待查找的关键字 第四行:输入待查找的关键字 第五行:输入待插入的关键字 Output 第一行:二叉树的先序遍历序列 第二行:二叉树的中序遍历序列 第三行:二叉树的后序遍历序列 第四行:查找结果 第五行:查找结果 第六行~第八行:插入新结点后的二叉树的先、中、序遍历序列 第九行:插入新结点后的二叉树的中序遍历序列(非递归算法) 第十行:插入新结点后的二叉树的层次遍历序列 第十一行~第十三行:第一次交换各结点的左右子树后的先、中、后序遍历序列 第十四行~第十六行:第二次交换各结点的左右子树后的先、中、后序遍历序列 第十七行:二叉树的深度 第十八行:叶子结点数 */ #include "stdio.h" #include "malloc.h" #define TRUE 1 #define FALSE 0 #define OK 1 #define ERROR 0

#define INFEASIBLE -1 #define OVERFLOW -2 typedef int Status; typedef int KeyType; #define STACK_INIT_SIZE 100 // 存储空间初始分配量 #define STACKINCREMENT 10 // 存储空间分配增量 #define MAXQSIZE 100 typedef int ElemType; typedef struct BiTNode{ ElemType data; struct BiTNode *lchild,*rchild;//左右孩子指针 } BiTNode,*BiTree; Status SearchBST(BiTree T,KeyType key,BiTree f,BiTree &p) { if(!T){p=f;return FALSE;} else if(key==T->data){p=T;return TRUE;} else if(keydata)return SearchBST(T->lchild,key,T,p); else return(SearchBST(T->rchild,key,T,p)); } Status InsertBST(BiTree &T,ElemType e) { BiTree s,p; if(!SearchBST(T,e,NULL,p)) { s=(BiTree)malloc(sizeof(BiTNode)); s->data=e;s->lchild=s->rchild=NULL; if(!p)T=s; else if(edata)p->lchild=s; else p->rchild=s; return TRUE; } else return FALSE; } Status PrintElement( ElemType e ) { // 输出元素e的值 printf("%d ", e ); return OK; }// PrintElement

数据结构平衡二叉树的操作演示

平衡二叉树操作的演示 1.需求分析 本程序是利用平衡二叉树,实现动态查找表的基本功能:创建表,查找、插入、删除。具体功能: (1)初始,平衡二叉树为空树,操作界面给出创建、查找、插入、删除、合并、分裂六种操作供选择。每种操作均提示输入关键字。每次插入或删除一个结点后,更 新平衡二叉树的显示。 (2)平衡二叉树的显示采用凹入表现形式。 (3)合并两棵平衡二叉树。 (4)把一棵二叉树分裂为两棵平衡二叉树,使得在一棵树中的所有关键字都小于或等于x,另一棵树中的任一关键字都大于x。 如下图: 2.概要设计 平衡二叉树是在构造二叉排序树的过程中,每当插入一个新结点时,首先检查是否因插入新结点而破坏了二叉排序树的平衡性,若是则找出其中的最小不平衡子树,在保持二叉排序树特性的前提下,调整最小不平衡子树中各结点之间的链接关系,进行相应的旋转,使之成为新的平衡子树。

具体步骤: (1)每当插入一个新结点,从该结点开始向上计算各结点的平衡因子,即计算该结点的祖先结点的平衡因子,若该结点的祖先结点的平衡因子的绝对值不超过1,则平衡二叉树没有失去平衡,继续插入结点; (2)若插入结点的某祖先结点的平衡因子的绝对值大于1,则找出其中最小不平衡子树的根结点; (3)判断新插入的结点与最小不平衡子树的根结点个关系,确定是那种类型的调整;(4)如果是LL型或RR型,只需应用扁担原理旋转一次,在旋转过程中,如果出现冲突,应用旋转优先原则调整冲突;如果是LR型或RL型,则需应用扁担原理旋转两次,第一次最小不平衡子树的根结点先不动,调整插入结点所在子树,第二次再调整最小不平衡子树,在旋转过程中,如果出现冲突,应用旋转优先原则调整冲突;(5)计算调整后的平衡二叉树中各结点的平衡因子,检验是否因为旋转而破坏其他结点的平衡因子,以及调整后平衡二叉树中是否存在平衡因子大于1的结点。 流程图 3.详细设计 二叉树类型定义: typedef int Status; typedef int ElemType; typedef struct BSTNode{

实验三 二叉树的基本操作实现及其应用

二叉树的基本操作实现及其应用 一、实验目的 1.熟悉二叉树结点的结构和对二叉树的基本操作。 2.掌握对二叉树每一种操作的具体实现。 3.学会利用递归方法编写对二叉树这种递归数据结构进行处理的算法。 4.会用二叉树解决简单的实际问题。 二、实验内容 设计程序实现二叉树结点的类型定义和对二叉树的基本操作。该程序包括二叉树结构类型以及每一种操作的具体的函数定义和主函数。 1 按先序次序建立一个二叉树, 2按(A:先序 B:中序 C:后序)遍历输出二叉树的所有结点 以上比做,以下选做 3求二叉树中所有结点数 4求二叉树的深度 三、实验步骤 ㈠、数据结构与核心算法的设计描述 /* 定义DataType为char类型 */ typedef char DataType; /* 二叉树的结点类型 */ typedef struct BitNode { DataType data; struct BitNode *lchild,*rchild; }*BitTree; 相关函数声明: 1、/* 初始化二叉树,即把树根指针置空 */ void BinTreeInit(BitTree *BT) { BT=(BitTree)malloc(sizeof(BitNode)); BT->data=NULL; cout<<"二叉树初始化成功!"<>ch; if(ch=='#') BT=NULL; else { if(!(BT=(BitTree)malloc(sizeof(BitNode)))) exit(0);

二叉树遍历算法的实现

二叉树遍历算法的实现 题目:编制二叉树遍历算法的实现的程序 一.需求分析 1.本演示程序中,二叉树的数据元素定义为非负的整型(unsigned int)数据,输 入-1表示该处没有节点 2.本演示程序输入二叉树数据均是按先序顺序依次输入 3.演示程序以用户和计算机对话方式执行,即在计算机终端上显示“提示信息” 之后,由用户在键盘上输入演示程序中规定的运算命令;相应的输入数据和运 算结果显示在其后 4.本实验一共包括三个主要程序,分别是:1)二叉树前序,中序,后序遍历递归 算法实现2)二叉树前序中序遍历非递归算法实现3)二叉树层次遍历算法实现 5.本程序执行命令包括:1)构建二叉树2)二叉树前序递归遍历3)二叉树中序 递归遍历4)二叉树后序递归遍历5)二叉树前序非递归遍历6)二叉树中序非 递归遍历7)二叉树层次遍历 6.测试数据 (1)7 8 -1 9 10 -1 -1 -1 6 11 -1 -1 12 13 -1 -1 14 -1 -1 (2)1 -1 -1 (3)7 8 -1 -1 9 -1 -1 二.概要设计 1.为实现二叉树的遍历算法,我们首先给出如下抽象数据类型 1)二叉树的抽象数据类型 ADT BiTree{ 数据对象D:D是具有相同特性的数据元素的集合 数据关系R: 若D=Φ,则R=Φ,称BiTree是空二叉树; 若D≠Φ,则R={H},H是如下二元关系: (1)在D中存在唯一的成为根的数据元素root,它在关系H下无前驱; (2)若D-{H}≠Φ,则存在D-{root}={D1,D r},且D1∩D r=Φ (3)若D1≠Φ,则D1中存在唯一的元素x1,∈H,且存在D1上的 关系H1?H;若Dτ≠Φ,则D r中存在唯一的元素x r,∈ H,且存在D r上的关系H r?H;H={,,H1,H r}; (4)(D1,{H1})是符合本定义的二叉树,成为根的左子树,(D r,{H r})是 一颗符合本定义的二叉树,成为根的右字树。 基本操作P: InitBiTree(&T); 操作结果:构造空二叉树 DestroyBiTree(&T) 初始条件;二叉树存在 操作结果:销毁二叉树 CreateBiTree(&T,definition);

设计一个完整的程序,实现二叉树的各种算法

实验6 实验目的: 1、掌握二叉树的所有算法 2、熟悉计算机英语和术语 实验步骤: 1、二叉树算法的模拟 2、完型填空 3、翻译 具体要求: 一、设计一个完整的程序,实现二叉树的各种算法 要求:/*用函数实现如下二叉排序树算法: (1)插入新结点 (2)前序、中序、后序遍历二叉树 (3)中序遍历的非递归算法 (4)层次遍历二叉树 (5)在二叉树中查找给定关键字(函数返回值为成功1,失败0) (6)交换各结点的左右子树 (7)求二叉树的深度 (8)叶子结点数 输入: 第一行:准备建树的结点个数n 第二行:输入n个整数,用空格分隔 第三行:输入待查找的关键字 第四行:输入待查找的关键字 第五行:输入待插入的关键字 输出: 第一行:二叉树的先序遍历序列 第二行:二叉树的中序遍历序列 第三行:二叉树的后序遍历序列 第四行:查找结果 第五行:查找结果 第六行~第八行:插入新结点后的二叉树的先、中、序遍历序列第九行:插入新结点后的二叉树的中序遍历序列(非递归算法) 代码: #include "stdio.h" #include "malloc.h" #define TRUE 1 #define FALSE 0 #define OK 1 #define ERROR 0 #define INFEASIBLE -1 #define OVERFLOW -2 typedef int Status; typedef int KeyType;

#define STACK_INIT_SIZE 100 // 存储空间初始分配量 #define STACKINCREMENT 10 // 存储空间分配增量 #define MAXQSIZE 100 typedef int ElemType; typedef struct BiTNode{ ElemType data; struct BiTNode *lchild,*rchild;//左右孩子指针 } BiTNode,*BiTree; Status SearchBST(BiTree T,KeyType key,BiTree f,BiTree &p) { if(!T){p=f;return FALSE;} else if(key==T->data){p=T;return TRUE;} else if(keydata)return SearchBST(T->lchild,key,T,p); else return(SearchBST(T->rchild,key,T,p)); } Status InsertBST(BiTree &T,ElemType e) { BiTree s,p; if(!SearchBST(T,e,NULL,p)) { s=(BiTree)malloc(sizeof(BiTNode)); s->data=e;s->lchild=s->rchild=NULL; if(!p)T=s; else if(edata)p->lchild=s; else p->rchild=s; return TRUE; } else return FALSE; } Status PrintElement( ElemType e ) { // 输出元素e的值 printf("%d ", e ); return OK; }// PrintElement Status PreOrderTraverse( BiTree T, Status(*Visit)(ElemType) ) { // 前序遍历二叉树T的递归算法,对每个数据元素调用函数Visit。 //补全代码,可用多个语句

数据结构C语言实现二叉树三种遍历

实验课题一:将下图中得二叉树用二叉链表表示: 1用三种遍历算法遍历该二叉树,给出对应得输出结果; 2写一个函数对二叉树搜索,若给出一个结点,根据其就是否属于该树,输出true或者f alse。 3写函数完成习题4、31(C++版)或4、28(C版教科书)。 #include "stdio、h" #include”malloc、h" typedefstruct BiTNode { char data; structBiTNode *lchild,*rchild; }BiTNode,*BiTree; BiTree Create(BiTreeT) { char ch; ch=getchar(); if(ch=='#’) T=NULL; else { T=(BiTNode *)malloc(sizeof(BiTNode)); T-〉data=ch; T->lchild=Create(T—〉lchild); T—〉rchild=Create(T-〉rchild); } return T; } int node(BiTree T) { int sum1=0,a,b; ?if(T) { if(T!=NULL) ??sum1++;

?a=node(T->lchild); sum1+=a; b=node(T—>rchild); sum1+=b; ?} return sum1; } int mnode(BiTree T) { ?int sum2=0,e,f; if(T) { ?if((T->lchild!=NULL)&&(T-〉rchild!=NULL))?sum2++; ?e=mnode(T-〉lchild); sum2+=e; f=mnode(T-〉rchild); sum2+=f; ?} return sum2; } void Preorder(BiTree T) { if(T) { printf("%c”,T->data); Preorder(T—>lchild); Preorder(T-〉rchild); } } int Sumleaf(BiTree T) { int sum=0,m,n; if(T) { if((!T-〉lchild)&&(!T-〉rchild)) sum++; m=Sumleaf(T->lchild); sum+=m; n=Sumleaf(T—>rchild); sum+=n; } return sum; }

数据结构程序报告(平衡二叉树的操作)

计算机科学学院数据结构课程设计报告 平衡二叉树操作 学生姓名: 学号: 班级: 指导老师: 报告日期:

1.需求分析 1.建立平衡二叉树并进行创建、查找、插入、删除等功能。 2.设计一个实现平衡二叉树的程序,可进行创建、查找、插入、删除等操作,实现动态的输入数据,实时的输出该树结构。 3.测试数据:自选数据 2.概要设计 1.抽象数据类型定义: typedef struct BSTNode { int data; int bf; //节点的平衡因子 struct BSTNode *lchild,*rchild; //左右孩子指针 }BSTNode,*BSTree; void CreatBST(BSTree &T); //创建平衡二叉树 void R_Rotate(BSTree &p); //对以*p为根的二叉排序树作左旋处理 void L_Rotate(BSTree &p); //对以*p为根的二叉排序树作左旋处理 void LeftBalance(BSTree &T); //对以指针T所指结点为根的二叉树作左平衡旋转处理void RightBalance(BSTree &T); //对以指针T所指结点为根的二叉树作右平衡旋转处理bool InsertAVL(BSTree &T,int e,bool &taller); //插入结点e bool SearchBST(BSTree &T,int key); //查找元素key是否在树T中 void LeftBalance_div(BSTree &p,int &shorter); //删除结点时左平衡旋转处理 void RightBalance_div(BSTree &p,int &shorter); //删除结点时右平衡旋转处理 void Delete(BSTree q,BSTree &r,int &shorter); //删除结点 int DeleteA VL(BSTree &p,int x,int &shorter); //平衡二叉树的删除操作 void PrintBST(BSTree T,int m); //按树状打印输出二叉树的元素 2.主程序的流程 3.各模块之间的层次调用

二叉树的遍历算法实验报告

二叉树实验报告 09信管石旭琳 20091004418 一、实验目的: 1、理解二叉树的遍历算法及应用 2、理解哈夫曼树及其应用。 3、掌握哈夫曼编码思想。 二、实验内容: 1、建立二叉树二叉链表 2、实现二叉树递归遍历算法(中序、前序、后序) 3、求二叉树高度 4、求二叉树结点个数 5、求二叉树叶子个数 6、将序号为偶数的值赋给左子树 三、主要程序: #include #include typedef int ElemType; struct BiTNode { ElemType data; struct BiTNode *lch,*rch; }BiTNode,*BiTree; struct BiTNode *creat_bt1(); struct BiTNode *creat_bt2(); void preorder (struct BiTNode *t); void inorder (struct BiTNode *t); void postorder (struct BiTNode *t); void numbt (struct BiTNode *t); int n,n0,n1,n2; void main() { int k; printf("\n\n\n"); printf("\n\n 1.建立二叉树方法1(借助一维数组建立)"); printf("\n\n 2.建立二叉树方法2(先序递归遍历建立)"); printf("\n\n 3.先序递归遍历二叉树"); printf("\n\n 4.中序递归遍历二叉树"); printf("\n\n 5.后序递归遍历二叉树"); printf("\n\n 6.计算二叉树结点个数"); printf("\n\n 7.结束程序运行");

二叉树遍历C语言(递归,非递归)六种算法

数据结构(双语) ——项目文档报告用两种方式实现表达式自动计算 专业: 班级: 指导教师: 姓名: 学号:

目录 一、设计思想 (01) 二、算法流程图 (02) 三、源代码 (04) 四、运行结果 (11) 五、遇到的问题及解决 (11) 六、心得体会 (12)

一、设计思想 二叉树的遍历分为三种方式,分别是先序遍历,中序遍历和后序遍历。先序遍历实现的顺序是:根左右,中序遍历实现的是:左根右,后续遍历实现的是:左右根。根据不同的算法分,又分为递归遍历和非递归遍历。 递归算法: 1.先序遍历:先序遍历就是首先判断根结点是否为空,为空则停止遍历,不为空则将左子作为新的根结点重新进行上述判断,左子遍历结束后,再将右子作为根结点判断,直至结束。到达每一个结点时,打印该结点数据,即得先序遍历结果。 2.中序遍历:中序遍历是首先判断该结点是否为空,为空则结束,不为空则将左子作为根结点再进行判断,打印左子,然后打印二叉树的根结点,最后再将右子作为参数进行判断,打印右子,直至结束。 3.后续遍历:指针到达一个结点时,判断该结点是否为空,为空则停止遍历,不为空则将左子作为新的结点参数进行判断,打印左子。左子判断完成后,将右子作为结点参数传入判断,打印右子。左右子判断完成后打印根结点。 非递归算法: 1.先序遍历:首先建立一个栈,当指针到达根结点时,打印根结点,判断根结点是否有左子和右子。有左子和右子的话就打印左子同时将右子入栈,将左子作为新的根结点进行判断,方法同上。若当前结点没有左子,则直接将右子打印,同时将右子作为新的根结点判断。若当前结点没有右子,则打印左子,同时将左子作为新的根结点判断。若当前结点既没有左子也没有右子,则当前结点为叶子结点,此时将从栈中出栈一个元素,作为当前的根结点,打印结点元素,同时将当前结点同样按上述方法判断,依次进行。直至当前结点的左右子都为空,且栈为空时,遍历结束。 2.中序遍历:首先建立一个栈,定义一个常量flag(flag为0或者1),用flag记录结点的左子是否去过,没有去过为0,去过为1,默认为0.首先将指针指向根结点,将根结点入栈,然后将指针指向左子,左子作为新的结点,将新结点入栈,然后再将指针指向当前结点的左子,直至左子为空,则指针返回,flag置1,出栈一个元素,作为当前结点,打印该结点,然后判断flag,flag为1则将指针指向当前结点右子,将右子作为新的结点,结点入栈,再次进行上面的判断,直至当前结点右子也为空,则再出栈一个元素作为当前结点,一直到结束,使得当前结点右子为空,且栈空,遍历结束。 3.后续遍历:首先建立两个栈,然后定义两个常量。第一个为status,取值为0,1,2.0代表左右子都没有去过,1代表去过左子,2,代表左右子都去过,默认为0。第二个常量为flag,取值为0或者1,0代表进左栈,1代表进右栈。初始时指针指向根结点,判断根结点是否有左子,有左子则,将根结点入左栈,status置0,flag置0,若没有左子则判断结点有没有右子,有右子就把结点入右栈,status置0,flag置1,若左右子都没有,则打印该结点,并将指针指向空,此时判断flag,若flag为0,则从左栈出栈一个元素作为当前结点,重新判断;若flag为1则从右栈出栈一个元素作为当前结点,重新判断左右子是否去过,若status 为1,则判断该结点有没有右子,若有右子,则将该结点入右栈,status置1,flag置1,若没有右子,则打印当前结点,并将指针置空,然后再次判断flag。若当前结点status为2,且栈为空,则遍历结束。若指针指向了左子,则将左子作为当前结点,判断其左右子情况,按上述方法处理,直至遍历结束。

东北大学计算机初试历年二叉树算法题目及解答

[1996] 设t 为一棵二叉树的根结点地址指针,试设计一个非递归算法完成把二叉树中每个结点的左右孩子位置交换。 int swithLRChild(BiTree *t) { BiTree *stack[100] = {0}; int stack_length = 0; if (NULL == t){ return 0; } stack[stack_length++] = t; while (stack_length > 0){ //pop stack BiTree *node = stack[stack_length - 1]; stack_length -= 1; BiTree *temp = node ->lchild; node->lchild = node ->rchild; node->rchild = temp; if (NULL != node ->rchild){ stack[stack_length++] = node ->rchild;} if (NULL != node ->lchild){ stack[stack_length++] = node ->lchild; } } return 1; } [1998]一棵高度为K 且有n个结点的二叉排序树,同时又是一棵完全二叉树存于向量t 中,试设计删除树中序号为i 且具有左右孩子的一个结点,而不使存储量增加保证仍为二叉排序树(不一定是完全二叉树)的算法。 //存数据的位置是从 1 的索引开始的,避免需要访问索引为0 的空间,避免需要频繁的索引 转换 void delNodeInSortedBiTree(int *sorted_bitree, int *last_index,int i) { //因为题目中描述具有左右孩子,所以直接从左孩子的最右边叶子节点开始//分两种情况,左孩子没有右孩子,那么左孩子之后的节点都移动一个位子//左孩子存在右孩子,则从右孩子的左孩子一直走,到叶子节点停止,因为是叶子节点//就不需要移动元素了 int del_node_index = 2*i; if (2*del_node_index + 1 >= *last_index)

二叉树排序算法

实验报告 课程名称:数据结构实验课程 实验四、串的基本操作练习 一、实验目的 1. 掌握二叉树的存储实现 2. 掌握二叉树的遍历思想 3. 掌握二叉树的常见算法的程序实现 二、实验环境 VC++6.0 三、实验内容 1.输入字符序列,建立二叉树的二叉链表结构。(可以采用先序序列) 2.实现二叉树的先序、中序、后序的递归遍历算法。 3.实现二叉树的先序、中序、后序的非递归遍历算法。 4.求二叉树的高度。 5.求二叉树的结点个数。 6.求二叉树的叶子结点的个数。 四、实验要求: 分别编写实现上述算法的子函数,并编写一个主函数,在主函数中设计一个简单的菜单,分别调用上述子函数。 五、实验步骤和结果 1.打开vc,新建文本,命名二叉树算法,编写代码。 2.编写代码: #include #include #define STACK_INIT_SIZE 100 #define STACKINCREMENT 10 int i=0; /*--------------------------------------建立堆栈------------------------------------------*/ typedef struct BiTNode { char data; struct BiTNode *lchild,*rchild; } BiTNode,*BiTree;//树类型 typedef struct SqStack {

BiTNode *base; BiTNode *top; int stacksize; } SqStack;//栈类型 void InitStack(SqStack *S)//创建二叉树 { S->base=(BiTNode*)malloc(STACK_INIT_SIZE*sizeof(BiTNode)); S->top=S->base; S->stacksize=STACK_INIT_SIZE; } void Push(SqStack *S,BiTNode e)//进栈 { if(S->top - S->base >= S->stacksize)//如果栈空间不足 { S->base=(BiTNode*)realloc(S->base,(S->stacksize+STACKINCREMENT)*sizeof(B iTNode)); S->top=S->base+S->stacksize; S->stacksize+=STACKINCREMENT; } *(S->top)=e; S->top++; } BiTNode Pop(SqStack *S)//出栈 { S->top --; return *S->top; } int StackEmpty(SqStack *S)//判断栈是否非空 { if(S->top == S->base ) return 1; else return 0; } /*---------------------------------------------递归部分-------------------------------------------*/

二叉树的各种遍历算法及其深度算法

二叉树的算法: 用扩展先序遍历序列创建二叉树; 递归遍历算法 中序非递归遍历层次遍历 二叉树深度的算法 实现代码如下: #include #include #include typedef struct Node { char data; struct Node *LChild; struct Node *RChild; }BitNode,*BitTree; typedef struct CSNode { char data; struct CSNode *fch, *nextSib; }CSNode, *CSTree; void CreatBiTree(BitTree *bt)//用扩展先序遍历序列创建二叉树,如果是#当前树根置为空,否则申请一个新节点// { char ch; ch=getchar(); if(ch=='#')*bt=NULL; else { *bt=(BitTree)malloc(sizeof(BitNode)); (*bt)->data=ch; CreatBiTree(&((*bt)->LChild)); CreatBiTree(&((*bt)->RChild)); } } void Visit(char ch)//访问根节点 { printf("%c ",ch); }

//以下为递归遍历算法 void PreOrder(BitTree root) /*先序遍历二叉树, root为指向二叉树(或某一子树)根结点的指针*/ { if (root!=NULL) { Visit(root ->data); /*访问根结点*/ PreOrder(root ->LChild); /*先序遍历左子树*/ PreOrder(root ->RChild); /*先序遍历右子树*/ } } void InOrder(BitTree root) /*中序遍历二叉树, root为指向二叉树(或某一子树)根结点的指针*/ { if (root!=NULL) { InOrder(root ->LChild); /*中序遍历左子树*/ Visit(root ->data); /*访问根结点*/ InOrder(root ->RChild); /*中序遍历右子树*/ } } void PostOrder(BitTree root) /* 后序遍历二叉树,root为指向二叉树(或某一子树)根结点的指针*/ { if(root!=NULL) { PostOrder(root ->LChild); /*后序遍历左子树*/ PostOrder(root ->RChild); /*后序遍历右子树*/ Visit(root ->data); /*访问根结点*/ } } //中序非递归遍历 void InOrder1(struct Node *head) { struct Node *p; struct Node *stack[20]; int top=0; p=head; while(p||top!=0) { while (p)

平衡二叉树(AVL)的查找、插入和删除

平衡二叉树(AVL)查找、插入和删除 小组成员: 陈静101070009 陈丹璐101070006 陈娇101070008

目录 平衡二叉树(AVL) (1) 查找、插入和删除 (1) 问题描述 (2) 设计说明 (3) (一)ADT (3) (二)算法思想 (5) (三)数据结构 (12) (四)程序结构与流程 (13) 运行平台及开发工具 (15) I/O格式 (15) 算法复杂度分析 (18) 源代码 (18) 小结 (37) 问题描述 利用平衡二叉树实现一个动态查找表。

(1)实现动态查找表的三种基本功能:查找、插入和删除。 (2)初始时,平衡二叉树为空树,操作界面给出创建、查找、插入和删除和退出五种操作供选择。每种操作均要提示输入关键字。创建时,根据提示输入数据,以-1为输入数据的结束标志,若输入数据重复,则给出已存在相同关键字的提示,并不将其插入到二叉树中。在查找时,如果查找的关键字不存在,则显示不存在查找的关键字,若存在则显示存在要查找的关键字。插入时首先检验原二叉树中是否已存在相同第3 页共38 页- 3 -的关键字,若没有则进行插入并输出二叉树,若有则给出已有相同关键字的提醒。删除时首先检验原二叉树中是否存在要删除的关键字,若有则进行删除后并输出二叉树,若没有则给出不存在要删除的关键字的提醒。 (3)平衡二叉树的显示采用中序遍历的方法输出,还可以根据输出数据是否有序验证对平衡二叉树的操作是否正确。 设计说明 (一)ADT ADT BalancedBinaryTree{ 数据对象D:D是具有相同特性的数据元素的集合。各个数据元素均含有类型相同,可唯一标志的数据元素的关键字。 数据关系R:数据元素同属一个集合。 基本操作P: void R_Rotate(BSTree &p); 初始条件:二叉树存在,且关键字插入到以*p为根的二叉树的左子树的左孩子上; 操作结果:对以*p为根的二叉排序树作右旋处理

数据结构第6章二叉树作业与答案教材

第六章树及二叉树 一、下面是有关二叉树的叙述,请判断正误 (√)1. 若二叉树用二叉链表作存贮结构,则在n个结点的二叉树链表中只有n—1个非空指针域。 (×)2.二叉树中每个结点的两棵子树的高度差等于1。 (√)3.二叉树中每个结点的两棵子树是有序的。 (×)4.二叉树中每个结点有两棵非空子树或有两棵空子树。 (×)5.二叉树中每个结点的关键字值大于其左非空子树(若存在的话)所有结点的关键字值,且小于其右非空子树(若存在的话)所有结点的关键字值。(应当是二叉排序树的特点)(×)6.二叉树中所有结点个数是2k-1-1,其中k是树的深度。(应2i-1) (×)7.二叉树中所有结点,如果不存在非空左子树,则不存在非空右子树。 (×)8.对于一棵非空二叉树,它的根结点作为第一层,则它的第i层上最多能有2i—1个结点。(应2i-1) (√)9.用二叉链表法(link-rlink)存储包含n个结点的二叉树,结点的2n个指针区域中有n+1个为空指针。 (正确。用二叉链表存储包含n个结点的二叉树,结点共有2n个链域。由于二叉树中,除根结点外,每一个结点有且仅有一个双亲,所以只有n-1个结点的链域存放指向非空子女结点的指针,还有n+1个空指针。)即有后继的指针仅n-1个。 (√)10.具有12个结点的完全二叉树有5个度为2的结点。 最快方法:用叶子数=[n/2]=6,再求n 2=n -1=5 (r ) 11、哈夫曼树中没有度为1的结点,所以必为满二叉树。 (r )12、在哈夫曼树中,权值最小的结点离根结点最近。 (r )13、线索二叉树是一种逻辑结构。 (√)14、深度为K的完全二叉树至少有2K-1个结点。 (√ )15、具有n个结点的满二叉树,其叶结点的个数为(n+1)/2。 (√ )16、前序和中序遍历用线索树方式存储的二叉树,不必使用栈。 (╳ )17、哈夫曼树是带权路径长度最短的树,路径上权值较大的点离根较远。 二、填空 1.由3个结点所构成的二叉树有5种形态。 2. 一棵深度为6的满二叉树有n 1+n 2 =0+ n 2 = n -1=31 个分支结点和26-1 =32个叶子。 注:满二叉树没有度为1的结点,所以分支结点数就是二度结点数。 3.一棵具有257个结点的完全二叉树,它的深度为9。 (注:用 log 2 (n) +1= 8.xx +1=9 4.设一棵完全二叉树有700个结点,则共有 350个叶子结点。 答:最快方法:用叶子数=[n/2]=350 5. 设一棵完全二叉树具有1000个结点,则此完全二叉树有500个叶子结点,有499个度为2的结点,有1个结点只有非空左子树,有0个结点只有非空右子树。

实验10 二叉树的基本操作

浙江大学城市学院实验报告 课程名称数据结构基础 实验项目名称实验十二叉树的基本操作 学生姓名专业班级学号 实验成绩指导老师(签名)日期2014-12-18 一.实验目的和要求 1、掌握二叉树的链式存储结构。 2、掌握在二叉链表上的二叉树操作的实现原理与方法。 3、进一步掌握递归算法的设计方法。 二.实验内容 1、按照下面二叉树二叉链表的存储表示,编写头文件binary_tree.h,实现二叉链表的定义与基本操作实现函数;编写主函数文件test4_1.cpp,验证头文件中各个操作。 二叉树二叉链表存储表示如下: struct BTreeNode { ElemType data; // 结点值域 BTreeNode *lchild , *rchild ; // 定义左右孩子指针 } ; 基本操作如下: ①void InitBTree( BTreeNode *&BT ); //初始化二叉树BT ②void CreateBTree( BTreeNode *&BT, char *a ); //根据字符串a所给出的广义表表示的二叉树建立二叉链表存储结构 ③int EmptyBTree( BTreeNode *BT); //检查二叉树BT是否为空,空返回1,否则返回0 ④int DepthBTree( BTreeNode *BT); //求二叉树BT的深度并返回该值 ⑤int FindBTree( BTreeNode *BT, ElemType x); //查找二叉树BT中值为x的结点,若查找成功返回1,否则返回0 ⑥void PreOrder( BTreeNode *BT); //先序遍历二叉树BT ⑦void InOrder( BTreeNode *BT); //中序遍历二叉树BT ⑧void PostOrder( BTreeNode *BT); //后序遍历二叉树BT

二叉树三种遍历算法代码_

二叉树三种遍历算法的源码 二叉树三种遍历算法的源码背诵版 本文给出二叉树先序、中序、后序三种遍历的非递归算法,此三个算法可视为标准算法,直接用于考研答题。 1.先序遍历非递归算法 #define maxsize 100 typedef struct { Bitree Elem[maxsize]; int top; }SqStack; void PreOrderUnrec(Bitree t) { SqStack s; StackInit(s); p=t; while (p!=null || !StackEmpty(s)) { while (p!=null) //遍历左子树 { visite(p->data); push(s,p); p=p->lchild; }//endwhile if (!StackEmpty(s)) //通过下一次循环中的内嵌while实现右子树遍历 { p=pop(s); p=p->rchild; }//endif }//endwhile }//PreOrderUnrec 2.中序遍历非递归算法 #define maxsize 100 typedef struct { Bitree Elem[maxsize];

int top; }SqStack; void InOrderUnrec(Bitree t) { SqStack s; StackInit(s); p=t; while (p!=null || !StackEmpty(s)) { while (p!=null) //遍历左子树 { push(s,p); p=p->lchild; }//endwhile if (!StackEmpty(s)) { p=pop(s); visite(p->data); //访问根结点 p=p->rchild; //通过下一次循环实现右子树遍历}//endif }//endwhile }//InOrderUnrec 3.后序遍历非递归算法 #define maxsize 100 typedef enum{L,R} tagtype; typedef struct { Bitree ptr; tagtype tag; }stacknode; typedef struct { stacknode Elem[maxsize]; int top; }SqStack; void PostOrderUnrec(Bitree t)

实现平衡二叉排序树的各种算法代码 一

实现平衡二叉排序树的各种算法代码一 /* 《实现平衡二叉排序树的各种算法》 一、分析题目要求 用函数实现如下平衡二叉排序树算法,: (1)插入新结点 (2)前序、中序、后序遍历二叉树(递归) (3)前序、中序、后序遍历的非递归算法 (4)层次遍历二叉树 (5)在二叉树中查找给定关键字(函数返回值为成功1,失败0) (6)交换各结点的左右子树 (7)求二叉树的深度 (8)叶子结点数 (9)删除某结点 为了完成以上的各项操作,首先应该用函数建一棵平衡二叉排序树,输入形式是首先输入要建的二叉树的结点数,然后依次输入各个结点的值。在实现插入新结点的函数时,需要一个向一棵二叉树插入新结点的函数。可用递归算法写出平衡二叉树的前序,中序,后序遍历的函数。在写平衡二叉树的前,中,后序遍历的非递归算法时要用到栈结构的知识,运用栈结构来存储平衡二叉树结点的指针。在层次遍历二叉树时需要用到队列结构,运用队列结构的先进先出来存储二叉树的结点指针。在遍历二叉树的结点时需要一个访问结点数据的函数。二叉树是一棵排序树,所以二叉树的查找可以运用其有序的性质,查找的方式和建树的方式相似。交换二叉树各结点的左右子树时,可以用先序遍历递归的方式从根结点向下递归,每次访问结点时就需将各结点的左右孩子的指针调换,并对该结点的平衡因子作相应的处理。示二叉树的深度时,可用递归的方式访问结点的左右子树,并记录下左右子树的深度,最后返回左右子树中较深的深度的值即可。可以用一次遍历的方式遍历二叉树,记录每一个经过的结点,若结点存在且左右孩子都为空,则该结点为叶子结点。删除二叉树的某个结点时,首先要写一个函数,用递归查找的方式找到相应的结点,该函数还要有调整二叉树平衡的作用,因为若删除结点使得二叉树深度减少而不平衡,需要调整二叉树的平衡,若该结点不存在则返回ERROR,,若存在该结点,则应该再写一个函数来删除该结点,在删除之前还要判断该结点是只有左子树还是只有右子树还是左右子树都有的情况:若只有左或是只有右子树,则只需删除该结点,并回溯调整二叉树的平衡;若该结点的左右子树都有,则应该用另一个函数递归找到该结点的直接“后继”,并从该“后继”开始回溯调整二叉树的平衡。 */ #include<stdio.h> #include<stdlib.h> #include<malloc.h> #define OK 1 #define ERROR 0

相关文档
最新文档