平衡二叉树
平衡二叉树和二叉排序树(二叉搜索树)区别
平衡⼆叉树和⼆叉排序树(⼆叉搜索树)区别
平衡⼆叉树是⼀种⼆叉搜索树。
其可以保证在log2(n)的时间内找到节点,⽽普通的⼆叉搜索树在最坏情况下性能近似与链
表,所⽤时间为log(n)。
常⽤的平衡⼆叉树有AVL树和红⿊树其算法的难点在于插⼊删除节点后树的旋转
平衡⼆叉树 ----> O(log2(n))
普通⼆叉搜索树 ----> O(n)
在⼆叉搜索树的插⼊和删除运算中,采⽤平衡树的优点是:使树的结构较好,从⽽提⾼查找运算的速度。
缺点是:是插⼊和删除运算变得复杂化,从⽽降低了他们的运算速度。
对⼆叉搜索树删除节点⽽引起的不平衡性进⾏的操作⽐插⼊节点的情况要复杂,在此就不再论述了。
操作系统的设计也有⽤到哦
很多数据库的实现是基于更复杂的平衡⼆叉树
可以⾃⼰实现⼀个集合或者map,统计单词出现的次数
stl的map/set都在⽤
普通⼆叉搜索树最坏情况是只有左边⼀个分⽀,如1-2-3-4-5(5在最上⾯,1在左下⾓),但是平衡⼆叉树可以调整。
为1-2-3-4-5(3在最上⾯,1在左下⾓,5在右下⾓)。
平衡⼆叉树 ----> O(log2(n))
普通⼆叉搜索树 ----> O(n)
所以平衡⼆叉树的搜索性能⽐⼆叉搜索树(⼆叉排序树)好。
平衡二叉树构造过程
平衡二叉树构造过程
平衡二叉树的构造过程主要分为以下几个步骤:
1.定义平衡二叉树的结构:平衡二叉树的结构类似于普通二叉树,每
个节点的左子树和右子树的深度差不超过1。
2.插入节点:当往平衡二叉树中插入一个节点时,需要先通过二叉搜
索树的方式找到新节点的插入位置。
然后,通过旋转操作将树重新平衡。
旋转分为左旋和右旋两种操作。
3.左旋:当一个节点的右子树深度大于左子树深度时,需要进行左旋
操作。
左旋操作是将该节点的右子树进行旋转,使其成为该节点的父节点,该节点成为该节点的右子树的左子树。
4.右旋:当一个节点的左子树深度大于右子树深度时,需要进行右旋
操作。
右旋操作是将该节点的左子树进行旋转,使其成为该节点的父节点,该节点成为该节点的左子树的右子树。
5.删除节点:当从平衡二叉树中删除一个节点时,需要通过旋转操作
将树重新平衡,避免树退化成非平衡二叉树,导致性能下降。
6.重新计算节点深度:平衡二叉树的关键是保证每个节点的左子树和
右子树深度差不超过1,因此在进行节点插入和删除操作后,需要重新计
算每个节点的深度,并检查是否满足平衡二叉树的结构。
通过以上步骤,可以构造一个平衡二叉树。
在应用中,平衡二叉树常
用于高效的查找和排序操作。
平衡二叉树10.3.2
11
28
96 98
25
(1) LL型调整 型调整 p A 1 2
调整方法: 调整方法: 单向右旋平衡,即将 的左孩子 单向右旋平衡,即将A的左孩子 B 向右上旋转代替 成为根结点, 向右上旋转代替A成为根结点 成为根结点, 结点向右下旋转成为B的右 将A结点向右下旋转成为 的右 结点向右下旋转成为 子树的根结点, 子树的根结点,而B的原右子树 的原右子树 则作为A结点的左子树 结点的左子树. 则作为 结点的左子树. h d e B
1 38 -1 24 88
0 -1 -2
0
11
28 1
96
0
-1 0
25
0
98
1,平衡二叉树插入结点的调整方法
若向平衡二叉树中插入一个新结点后破坏了平衡二叉树的平衡性, 若向平衡二叉树中插入一个新结点后破坏了平衡二叉树的平衡性, 首先从根结点到该新插入结点的路径之逆向根结点方向找第一个失去平 衡的结点, 衡的结点,然后以该失衡结点和它相邻的刚查找过的两个结点构成调整 子树(最小不平衡子树 即调整子树是指以离插入结点最近,且平衡因子 最小不平衡子树), 子树 最小不平衡子树 ,即调整子树是指以离插入结点最近 且平衡因子 绝对值大于1的结点为根结点的子树 使之成为新的平衡子树. 的结点为根结点的子树,使之成为新的平衡子树 绝对值大于 的结点为根结点的子树 使之成为新的平衡子树. 38 24 88 -2
(2)RR型调整 型调整 p A -1 -2
调整方法: 调整方法: 单向左旋平衡:即将 的右孩子 的右孩子B向 单向左旋平衡:即将A的右孩子 向 左上旋转代替A成为根结点 成为根结点, 左上旋转代替 成为根结点,将A结 结 点向左下旋转成为B的左子树的根 点向左下旋转成为 的左子树的根 结点, 的原左子树则作为A结点 结点,而B的原左子树则作为 结点 的原左子树则作为 的右子树. 的右子树. B
详解平衡二叉树
一、平衡二叉树的概念平衡二叉树(Balanced binary tree)是由阿德尔森-维尔斯和兰迪斯(Adelson-Velskii and Landis)于1962年首先提出的,所以又称为AVL树。
定义:平衡二叉树或为空树,或为如下性质的二叉排序树:(1)左右子树深度之差的绝对值不超过1;(2)左右子树仍然为平衡二叉树.平衡因子BF=左子树深度-右子树深度.平衡二叉树每个结点的平衡因子只能是1,0,-1。
若其绝对值超过1,则该二叉排序树就是不平衡的。
如图所示为平衡树和非平衡树示意图:二、平衡二叉树算法思想若向平衡二叉树中插入一个新结点后破坏了平衡二叉树的平衡性。
首先要找出插入新结点后失去平衡的最小子树根结点的指针。
然后再调整这个子树中有关结点之间的链接关系,使之成为新的平衡子树。
当失去平衡的最小子树被调整为平衡子树后,原有其他所有不平衡子树无需调整,整个二叉排序树就又成为一棵平衡二叉树。
失去平衡的最小子树是指以离插入结点最近,且平衡因子绝对值大于1的结点作为根的子树。
假设用A表示失去平衡的最小子树的根结点,则调整该子树的操作可归纳为下列四种情况。
1)LL型平衡旋转法由于在A的左孩子B的左子树上插入结点F,使A的平衡因子由1增至2而失去平衡。
故需进行一次顺时针旋转操作。
即将A的左孩子B向右上旋转代替A作为根结点,A向右下旋转成为B的右子树的根结点。
而原来B的右子树则变成A的左子树。
(2)RR型平衡旋转法由于在A的右孩子C 的右子树上插入结点F,使A的平衡因子由-1减至-2而失去平衡。
故需进行一次逆时针旋转操作。
即将A的右孩子C向左上旋转代替A作为根结点,A向左下旋转成为C的左子树的根结点。
而原来C的左子树则变成A的右子树。
(3)LR型平衡旋转法由于在A的左孩子B的右子数上插入结点F,使A的平衡因子由1增至2而失去平衡。
故需进行两次旋转操作(先逆时针,后顺时针)。
即先将A结点的左孩子B的右子树的根结点D向左上旋转提升到B结点的位置,然后再把该D结点向右上旋转提升到A结点的位置。
平衡二叉树高度计算公式
平衡二叉树高度计算公式
平衡二叉树的高度可以使用以下公式计算:
H = log2(N+1) - 1
其中,N为平衡二叉树中节点的个数,H为平衡二叉树的高度。
公式的基本思想是,对于一棵高度为H的平衡二叉树,它的节点数N最小值是2^H - 1,最大值是2^(H+1) - 1。
因此,根据节点数N 可以推导得到平衡二叉树的高度H。
需要注意的是,此公式适用于普通的平衡二叉树,例如AVL树、红黑树等,但对于某些特殊的平衡二叉树,可能无法直接使用此公式计算高度。
例如,B树、B+树等平衡树的高度计算方法是不同的。
此外,需要注意在实际编写代码时,为了避免精度问题,可以将公式转化为H = ceil(log(N+1)/log(2)) - 1,其中ceil函数表示向上取整。
平衡二叉树
编辑
红黑树
红黑树是一种自平衡二叉查找树,是在计算机科学中用到的一种数据结构,典型的用途是实现关联数组。它是在1972年由Rudolf Bayer发明的,他称之为"对称二叉B树",它现代的名字是在 Leo J. Guibas 和 Robert Sedgewick 于1978年写的一篇论文中获得的。它是复杂的,但它的操作有着良好的最坏情况运行时间,并且在实践中是高效的: 它可以在O(log n)时间内做查找,插入和删除,这里的n是树中元素的数目。
伸展树
伸展树(Splay Tree)是一种二叉排序树,它能在O(log n)内完成插入、查找和删除操作。它由Daniel Sleator和Robert Tarjan创造。它的优势在于不需要记录用于平衡树的冗余信息。在伸展树上的一般操作都基于伸展操作。
SBT
Size Balanced Tree(简称SBT)是一自平衡二叉查找树,是在计算机科学中用到的一种数据结构。它是由中国广东中山纪念中学的陈启峰发明的。陈启峰于2006年底完成论文《Size Balanced Tree》,并在2007年的全国青少年信息学奥林匹克竞赛冬令营中发表。由于SBT的拼写很容易找到中文谐音,它常被中国的信息学竞赛选手和ACM/ICPC选手们戏称为“傻B树”、“Super BT”等。相比红黑树、AVL树等自平衡二叉查找树,SBT更易于实现。据陈启峰在论文中称,SBT是“目前为止速度最快的高级二叉搜索树”。SBT能在O(log n)的时间内完成所有二叉搜索树(BST)的相关操作,而与普通二叉搜索树相比,SBT仅仅加入了简洁的核心操作Maintain。由于SBT赖以保持平衡的是size域而不是其他“无用”的域,它可以很方便地实现动态顺序统计中的select和rank操作。
平衡二叉树
构造二叉平衡(查找)树的方法是:
在插入过程中,采用平衡旋转技术。
例如:依次插入的关键字为5, 4, 2, 8, 6, 9
5 4 2
向右旋转 一次
4 2 5 8 2
4 6 5
先向右旋转 再向左旋转
8
6
向左旋转一次
4 2 5 6 8 9 4 6 8 5 9
继续插入关键字 9
2
④平衡调整 假设由于在二叉排序树上插入结点而失去平衡的最小子树 根结点的指针为a(即a是离插入结点最近,且平衡因子绝对值 超过1的祖先结点),则失去平衡后进行调整的规律可归纳为下 列4种情况: 1.单向右旋平衡处理: 由于在*a的左子树根结点的左子树上插入结点,*a的平衡 因子由1增至2,致使以*a为根的子树失去平衡,则需进行一次 向右的顺时针旋转操作。如图9.6(a)所示。
0 C
RL
0 A AL CL CR
-1 B BR
插入结点
⑤插入算法 算法思想: 在平衡二叉排序树BBST上插入一个新的数据元素e的递归算法 可描述如下: 1.若BBST为空树,则插入一个数据元素为e的新结点作为 BBST的根结 点,树的深度增1; 2.若e的关键字和BBST的根结点的关键字相等,则不进行插入; 3.若e的关键字小于BBST的根结点的关键字,而且在BBST的 左子树中不存在和e有相同关键字的结点,则将e插入在BBST的 左子树上,并且当插入之后的左子树深度增加(+1)时,分别 就下列不同情况处理之:
p
lc
算法9.10如下:
#define #define #define
LH EH RH
+1 0 -1
//左高 //等高 //右高
Status InsertAVL (BSTree &T, ElemType e, Boolean &taller) { //若在平衡的二叉排序树T中不存在和e有相同关键字的结点,则插入 //一个数据元素为e的新结点,并返回1,否则返回0。若因插入而使二 //叉排序树失去平衡,则作平衡旋转处理,布尔变量taller反映T长高 //与否。
平衡二叉树详解
平衡⼆叉树详解平衡⼆叉树详解简介平衡⼆叉树(Balanced Binary Tree)具有以下性质:它是⼀棵空树或它的左右两个⼦树的⾼度差的绝对值不超过1,并且左右两个⼦树都是⼀棵平衡⼆叉树。
平衡⼆叉树的常⽤实现⽅法有红⿊树、AVL、替罪⽺树、Treap、伸展树等。
其中最为经典当属AVL树,我们总计⽽⾔就是:平衡⼆叉树是⼀种⼆叉排序树,其中每⼀个结点的左⼦树和右⼦树的⾼度差⾄多等于1。
性值AVL树具有下列性质的⼆叉树(注意,空树也属于⼀种平衡⼆叉树):l 它必须是⼀颗⼆叉查找树l 它的左⼦树和右⼦树都是平衡⼆叉树,且左⼦树和右⼦树的深度之差的绝对值不超过1。
l 若将⼆叉树节点的平衡因⼦BF定义为该节点的左⼦树的深度减去它的右⼦树的深度,则平衡⼆叉树上所有节点的平衡因⼦只可能为-1,0,1.l 只要⼆叉树上有⼀个节点的平衡因⼦的绝对值⼤于1,那么这颗平衡⼆叉树就失去了平衡。
实现平衡⼆叉树不平衡的情形:把需要重新平衡的结点叫做α,由于任意两个结点最多只有两个⼉⼦,因此⾼度不平衡时,α结点的两颗⼦树的⾼度相差2.容易看出,这种不平衡可能出现在下⾯4中情况中:1.对α的左⼉⼦的左⼦树进⾏⼀次插⼊2.对α的左⼉⼦的右⼦树进⾏⼀次插⼊3.对α的右⼉⼦的左⼦树进⾏⼀次插⼊4.对α的右⼉⼦的右⼦树进⾏⼀次插⼊(1)LR型(2)LL型(3)RR型(4)RL型完整代码#include<stdio.h>#include<stdlib.h>//结点设计typedef struct Node {int key;struct Node *left;struct Node *right;int height;} BTNode;int height(struct Node *N) {if (N == NULL)return0;return N->height;}int max(int a, int b) {return (a > b) ? a : b;}BTNode* newNode(int key) {struct Node* node = (BTNode*)malloc(sizeof(struct Node));node->key = key;node->left = NULL;node->right = NULL;node->height = 1;return(node);}//ll型调整BTNode* ll_rotate(BTNode* y) {BTNode *x = y->left;y->left = x->right;x->right = y;y->height = max(height(y->left), height(y->right)) + 1;x->height = max(height(x->left), height(x->right)) + 1;return x;}//rr型调整BTNode* rr_rotate(BTNode* y) {BTNode *x = y->right;y->right = x->left;x->left = y;y->height = max(height(y->left), height(y->right)) + 1;x->height = max(height(x->left), height(x->right)) + 1;return x;}//判断平衡int getBalance(BTNode* N) {if (N == NULL)return0;return height(N->left) - height(N->right);}//插⼊结点&数据BTNode* insert(BTNode* node, int key) {if (node == NULL)return newNode(key);if (key < node->key)node->left = insert(node->left, key);else if (key > node->key)node->right = insert(node->right, key);elsereturn node;node->height = 1 + max(height(node->left), height(node->right)); int balance = getBalance(node);if (balance > 1 && key < node->left->key) //LL型return ll_rotate(node);if (balance < -1 && key > node->right->key) //RR型return rr_rotate(node);if (balance > 1 && key > node->left->key) { //LR型node->left = rr_rotate(node->left);return ll_rotate(node);}if (balance < -1 && key < node->right->key) { //RL型node->right = ll_rotate(node->right);return rr_rotate(node);return node;}//遍历void preOrder(struct Node *root) { if (root != NULL) {printf("%d ", root->key);preOrder(root->left);preOrder(root->right);}}int main() {BTNode *root = NULL;root = insert(root, 2);root = insert(root, 1);root = insert(root, 0);root = insert(root, 3);root = insert(root, 4);root = insert(root, 4);root = insert(root, 5);root = insert(root, 6);root = insert(root, 9);root = insert(root, 8);root = insert(root, 7);printf("前序遍历:");preOrder(root);return0;}。
名词解释平衡二叉树
平衡二叉树介绍平衡二叉树(Balanced Binary Tree),简称AVL树,是一种特殊的二叉搜索树。
在平衡二叉树中,任意节点的左子树和右子树的高度之差不超过1。
这种平衡性的特点使得平衡二叉树的查找、插入和删除操作的时间复杂度保持在O(log n)级别,极大地提高了数据结构的效率。
定义和性质平衡二叉树是一种特殊的二叉搜索树,满足以下性质: 1. 空树或者任意节点的左右子树高度之差的绝对值不超过1。
2. 左子树和右子树都是平衡二叉树。
对于平衡二叉树,我们还可以得出一些重要的结论: 1. 平衡二叉树的任意节点的左子树和右子树的高度差不超过1。
也就是说,平衡二叉树的高度是一个较小的常数倍数。
2. 平衡二叉树的最小高度是log n,最大高度是2log n。
实现方法为了保持二叉树的平衡,我们需要对插入和删除操作进行适当的调整。
下面介绍两种常见的平衡二叉树实现方法。
AVL树AVL树是最早提出的平衡二叉树之一。
在AVL树中,每个节点都会存储一个额外的信息,即平衡因子(balance factor)。
平衡因子的定义是左子树的高度减去右子树的高度。
如果平衡因子的绝对值大于1,就需要进行平衡调整。
AVL树的平衡调整分为四种情况:左-左旋转(LL),右-右旋转(RR),左-右旋转(LR),和右-左旋转(RL)。
通过这四种旋转操作,可以使得树重新达到平衡状态。
红黑树红黑树是另一种常见的平衡二叉树。
红黑树的平衡调整是通过变换节点的颜色和旋转节点来完成的。
红黑树的规则如下: 1. 每个节点要么是红色,要么是黑色。
2. 根节点是黑色。
3. 所有叶子节点(NIL节点)都是黑色。
4. 如果一个节点是红色的,则它的两个子节点都是黑色的。
5. 任意节点到其每个叶子节点的路径上包含相同数目的黑色节点。
通过对节点进行颜色变换和旋转操作,红黑树可以在插入和删除节点的过程中保持平衡。
平衡二叉树的应用平衡二叉树在计算机科学中有广泛的应用。
简述二叉树的五种形态
简述二叉树的五种形态
二叉树是一种树形结构,每个节点最多只有两个子节点,分别称为左子节点和右子节点。
在实际应用中,二叉树的形态有五种基本类型,分别为满二叉树、完全二叉树、平衡二叉树、线索二叉树和二叉排序树。
1. 满二叉树:所有非叶子节点都有左右两个子节点,且所有叶子节点都在同一层,是一种高度平衡的二叉树。
2. 完全二叉树:除最后一层外,每一层都是满的,最后一层的节点从左到右连续地填满,是一种高效的数据结构,可以用数组来存储。
3. 平衡二叉树:左右子树的高度差不超过1,能够保证二叉树的查找效率,常见的平衡二叉树有AVL树和红黑树等。
4. 线索二叉树:在二叉树的节点上增加指向前驱和后继节点的指针,可以提高二叉树的遍历效率。
5. 二叉排序树:也称为二叉搜索树,左子树上的节点都比根节点小,右子树上的节点都比根节点大,可以用于快速查找和排序。
以上是二叉树的五种基本形态,每种形态都有其特定的应用场景和优缺点,在实际应用中需要根据具体情况选择合适的形态。
- 1 -。
平衡二叉树平衡因子
平衡二叉树平衡因子
平衡二叉树平衡因子是指该节点的左子树高度减去右子树高度
的绝对值。
平衡因子的取值范围为-1、0、1,若平衡因子的绝对值大于1,则该节点所在的子树不平衡,需要进行旋转操作使其重新平衡。
平衡二叉树的平衡因子是实现平衡的关键,通过平衡因子的计算和调整,可以保证平衡二叉树的高度始终保持在O(log n)的范围内,从而保证了树的查找、插入和删除操作的时间复杂度都能够达到
O(log n)的级别。
平衡因子的计算方法是通过递归遍历左右子树来计算节点的左
右子树高度之差,然后求绝对值。
当平衡因子的绝对值大于1时,需要根据不同情况进行旋转操作,如左旋、右旋、左右旋或右左旋等,以达到平衡二叉树的目的。
总之,平衡二叉树平衡因子是实现平衡的关键,对于平衡二叉树的构建和维护都至关重要。
- 1 -。
算法(平衡二叉树)
算法(平衡⼆叉树)科普⼆叉树⼆叉树⼆叉数是每个节点最多有两个⼦树,或者是空树(n=0),或者是由⼀个根节点及两个互不相交的,分别称为左⼦树和右⼦树的⼆叉树组成满⼆叉树有两个⾮空⼦树(⼆叉树中的每个结点恰好有两个孩⼦结点切所有叶⼦结点都在同⼀层)也就是⼀个结点要么是叶结点,要么是有两个⼦结点的中间结点。
深度为k且含有2^k-1个结点的⼆叉树完全⼆叉树从左到右依次填充从根结点开始,依次从左到右填充树结点。
除最后⼀层外,每⼀层上的所有节点都有两个⼦节点,最后⼀层都是叶⼦节点。
平衡⼆叉树AVL树[3,1,2,5,9,7]⾸先科普下⼆叉排序树⼜称⼆叉查找树,议程⼆叉搜索树⼆叉排序树的规则⽐本⾝⼤放右边,⽐本⾝⼩放左边平衡⼆叉数⾸先是⼀个⼆叉排序树左右两个⼦树的⾼度差不⼤于1下⾯图中是平衡的情况下⾯是不平衡的情况引⼊公式(LL)右旋function toateRight(AvlNode){let node=AvlNode.left;//保存左节点 AvlNode.left=node.right;node.right=AvlNode;}(RR)左旋function roateLeft(AvlNode){let node=AvlNode.right;//保存右⼦节点AvlNode.right=node.left;node.left=AvlNode;return node;}左右旋⼤图判断⼆叉树是不是平衡树⼆叉树任意结点的左右⼦树的深度不超过1深度计算定义⼀个初始化的⼆叉树var nodes = {node: 6,left: {node: 5,left: {node: 4},right: {node: 3}},right: {node: 2,right: {node: 1}}}//计算⾼度const treeDepth = (root) => {if (root == null) {return 0;}let left = treeDepth(root.left)let right = treeDepth(root.right)return 1+(left>right?left:right)}//判断深度const isTree=(root)=>{if (root == null) {return true;}let left=treeDepth(root.left)let right=treeDepth(root.right)let diff=left-right;if (diff > 1 || diff < -1) {return false}return isTree(root.left)&&isTree(root.right) }console.log(isTree(nodes))判断⼆叉数是不是搜索⼆叉树//第⼀种 //中序遍历let last=-Infinity;const isValidBST=(root)=>{if (root == null) {return true;}//先从左节点开始if (isValidBST(root.left)) {if (last < root.node) {last=root.node;return isValidBST(root.right)}}return false}console.log(isValidBST(nodes))//第⼆种const isValidBST = root => {if (root == null) {return true}return dfs(root, -Infinity, Infinity)}const dfs = (root, min, max) => {if (root == null) {return true}if (root.node <= min || root.node >= max) {return false}return dfs(root.left, min, root.node) && dfs(root.right, root.node, max)}console.log(isValidBST(nodes))实现⼀个⼆叉树实现了⼆叉树的添加,删除,查找,排序//⼆叉树结点class TreeNode {constructor(n, left, right){this.n = n;this.left = left;this.right = right;}}//⼆叉树class BinaryTree {constructor(){this.length = 0;this.root = null;this.arr = [];}//添加对外⼊⼝,⾸个参数是数组,要求数组⾥都是数字,如果有不是数字则试图转成数字,如果有任何⼀个⽆法强制转成数字,则本操作⽆效 addNode(){let arr = arguments[0];if(arr.length == 0) return false;return this.judgeData('_addNode', arr)}//删除结点deleteNode(){let arr = arguments[0];if(arr.length == 0) return false;return this.judgeData('_deleteNode', arr)}//传值判断,如果全部正确,则全部加⼊叉树judgeData(func, arr){let flag = false;//任何⼀个⽆法转成数字,都会失败if(arr.every(n => !Number.isNaN(n))){let _this = this;arr.map(n => _this[func](n));flag = true;}return flag;}//添加的真实实现_addNode(n){n = Number(n);let current = this.root;let treeNode = new TreeNode(n, null, null);if(this.root === null){this.root = treeNode;}else {current = this.root;while(current){let parent = current;if(n < current.n){current = current.left;if(current === null){parent.left = treeNode;}}else {current = current.right;if(current === null){parent.right = treeNode;}}}}this.length++;return treeNode;}//删除节点的真实实现_deleteNode(n){n = Number(n);if(this.root === null){return;}//查找该节点,删除节点操作⽐较复杂,为排除找不到被删除的节点的情况,简化代码,先保证该节点是存在的,虽然这样做其实重复了⼀次查询了,但⼆叉树的查找效率很⾼,这是可接受的let deleteNode = this.findNode(n);if(!deleteNode){return;}//如果删除的是根节点if(deleteNode === this.root){if(this.root.left === null && this.root.right === null){this.root = null;}else if(this.root.left === null){this.root = this.root.right;}else if(this.root.right === null){this.root = this.root.left;}else {let [replaceNode, replacePNode, rp] = this.findLeftTreeMax(deleteNode);replacePNode[rp] = null;replaceNode.left = this.root.left;replaceNode.right = this.root.right;this.root = replaceNode;}}else {//被删除的⽗节点,⼦节点在⽗节点的位置p,有left,right两种可能let [deleteParent, p] = this.findParentNode(deleteNode);if(deleteNode.left === null && deleteNode.right === null){deleteParent[p] = null;}else if(deleteNode.left === null){deleteParent[p] = deleteNode.right;}else if(deleteNode.right === null){deleteParent[p] = deleteNode.left;}else {//⽤来替换被删除的节点,⽗节点,节点在⽗节点的位置let [replaceNode, replacePNode, rp] = this.findLeftTreeMax(deleteNode);if(replacePNode === deleteNode){deleteParent[p] = replaceNode;}else {deleteParent[p] = replaceNode;replacePNode.right = null;}replacePNode[rp] = null;replaceNode.left = deleteNode.left;replaceNode.right = deleteNode.right;}}this.length--;}//查找findNode(n){let result = null;let current = this.root;while(current){if(n === current.n){result = current;break;}else if(n < current.n){current = current.left;}else {current = current.right;}}return result;}//查找⽗节点findParentNode(node){let [parent, child, p] = [null, null, null];if(this.root !== node){parent = this.root;if(node.n < parent.n){child = parent.left;p = 'left';}else {child = parent.right;p = 'right';}while(child){if(node.n === child.n){break;}else if(node.n < child.n){parent = child;child = parent.left;p = 'left';}else {parent = child;child = parent.right;p = 'right';}}}return [parent, p];}//查找当前有左⼦树的节点的最⼤值的节点M,如有A个节点被删除,M是最接近A点之⼀(还有⼀个是右⼦树节点的最⼩值) findLeftTreeMax(topNode){let [node, parent, p] = [null, null, null];if(this.root === null || topNode.left === null){return [node, parent, p];}parent = topNode;node = topNode.left;p = 'left';while(node.right){parent = node;node = node.right;p = 'right';}return [node, parent, p];}//查找最⼤值maxValue(){if(this.root !== null){return this._findLimit('right');}}//查找最⼩值minValue(){if(this.root !== null){return this._findLimit('left');}}//实现查找特殊值_findLimit(pro){let n = this.root.n;let current = this.root;while(current[pro]){current = current[pro];n = current.n;}return n;}//中序排序,并⽤数组的形式显⽰sortMiddleToArr(){this._sortMiddleToArr(this.root);return this.arr;}//中序⽅法_sortMiddleToArr(node){if(node !== null){this._sortMiddleToArr(node.left);this.arr.push(node.n);this._sortMiddleToArr(node.right);}}//打印⼆叉树对象printNode(){console.log(JSON.parse(JSON.stringify(this.root)));}}//测试var binaryTree = new BinaryTree();binaryTree.addNode([50, 24, 18, 65, 4, 80, 75, 20, 37, 40, 60]);binaryTree.printNode();//{n: 50, left: {…}, right: {…}}console.log(binaryTree.maxValue());//80console.log(binaryTree.minValue());//4console.log(binaryTree.sortMiddleToArr());// [4, 18, 20, 24, 37, 40, 50, 60, 65, 75, 80] binaryTree.deleteNode([50]);binaryTree.printNode();//{n: 40, left: {…}, right: {…}}排序复习function ArrayList() {this.array = [];}ArrayList.prototype = {constructor: ArrayList,insert: function(item) {this.array.push(item);},toString: function() {return this.array.join();},swap: function(index1, index2) {var aux = this.array[index2];this.array[index2] = this.array[index1];this.array[index1] = aux;},//冒泡排序bubbleSort: function() {var length = this.array.length;for (var i = 0; i < length; i++) {for (var j = 0; j < length - 1 - i; j++) {if (this.array[j] > this.array[j + 1]) {this.swap(j, j + 1);}}}},//选择排序selectionSort: function() {var length = this.array.length;var indexMin;for (var i = 0; i < length - 1; i++) {indexMin = i;for (var j = i; j < length; j++) {if (this.array[indexMin] > this.array[j]) {indexMin = j;}}if (indexMin !== i) {this.swap(indexMin, i);}}},//插⼊排序insertionSort: function() {var length = this.array.length;var j;var temp;for (var i = 1; i < length; i++) {temp = this.array[i];j = i;while (j > 0 && this.array[j - 1] > temp) {this.array[j] = this.array[j - 1];j--;}this.array[j] = temp;}},//归并排序mergeSort: function() {function mergeSortRec(array) {var length = array.length;if (length === 1) {return array;}var mid = Math.floor(length / 2);var left = array.slice(0, mid);var right = array.slice(mid, length);return merge(mergeSortRec(left), mergeSortRec(right)); }function merge(left, right) {var result = [];var il = 0;var ir = 0;while (il < left.length && ir < right.length) {if (left[il] < right[ir]) {result.push(left[il++]);} else {result.push(right[ir++]);}}while (il < left.length) {result.push(left[il++]);}while (ir < right.length) {result.push(right[ir++]);}return result;}this.array = mergeSortRec(this.array);},//快速排序quickSort:function(){function sort(array){if (array.length <= 1) {return array;}var pivotIndex = Math.floor(array.length/2);var pivot = array.splice(pivotIndex,1)[0];var left = [];var right = [];for(var i = 0; i < array.length; i++){if (array[i] < pivot) {left.push(array[i]);}else{right.push(array[i]);}}return sort(left).concat([pivot],sort(right));}this.array = sort(this.array);}};...................................................................................................................############################################################################ ###################################################################################。
平衡二叉树的平衡因子
平衡二叉树的平衡因子
平衡二叉树是一种特殊的二叉搜索树,它的左右子树的高度差不超过1,以保证树的平衡性和高效性。
平衡二叉树的平衡因子指的是左子树高度和右子树高度的差值,即:
平衡因子 = 左子树高度 - 右子树高度
当平衡因子为0、1或-1时,树是平衡的;当平衡因子大于1或小于-1时,树就不再平衡,需要通过旋转等操作来重新平衡。
平衡因子的计算可以通过递归的方式来实现:对于每个节点,先递归计算左子树的高度和右子树的高度,再计算平衡因子。
如果平衡因子不满足平衡条件,就需要进行旋转操作。
平衡因子是平衡二叉树中非常重要的概念,它影响着树的平衡性和插入、删除等操作的效率。
因此,在进行平衡二叉树相关的算法设计和实现时,平衡因子的计算和维护是一个必须要考虑的问题。
- 1 -。
平衡二叉树构造过程
平衡二叉树构造过程1.插入操作:插入新节点是平衡二叉树构造过程中的基本操作之一、首先,将新节点插入到二叉树中的合适位置,然后检查树的平衡性。
在插入过程中,需要更新每个节点的高度,并验证是否需要进行旋转操作,以保持树的平衡。
具体插入操作的步骤如下:1.1在树中查找合适的位置插入新节点,按照二叉树的规则:-如果新节点值小于当前节点值,则继续在当前节点的左子树中查找合适位置插入新节点;-如果新节点值大于当前节点值,则继续在当前节点的右子树中查找合适位置插入新节点;-如果当前节点为空,则将新节点插入到此位置。
1.2更新每个节点的高度,从插入的节点开始,向上遍历到根节点。
计算每个节点的左子树高度和右子树高度,然后取其中较大值加1作为节点的新高度。
1.3验证平衡性。
对于每个节点,计算其左右子树高度差的绝对值,如果超过1,则需要进行旋转操作。
2.旋转操作:旋转是平衡二叉树构造过程中的关键步骤,用来调整树的结构,使其保持平衡。
2.1左旋:将当前节点的右子树变为新的根节点,当前节点成为新的根节点的左子树,新的根节点的左子树成为当前节点的右子树。
2.2右旋:将当前节点的左子树变为新的根节点,当前节点成为新的根节点的右子树,新的根节点的右子树成为当前节点的左子树。
2.3左右旋:先对当前节点的左子树进行左旋操作,然后再对当前节点进行右旋操作。
2.4右左旋:先对当前节点的右子树进行右旋操作,然后再对当前节点进行左旋操作。
旋转操作的目的是调整树的结构,使得左右子树的高度差不超过1,并保持二叉树的性质。
3.删除操作:删除节点是平衡二叉树构造过程中的另一个重要操作。
删除操作也需要更新树的高度和进行旋转操作。
删除操作的步骤如下:3.1在树中查找要删除的节点。
如果要删除的节点是叶子节点,则直接删除即可。
3.2如果要删除的节点只有一个子节点,则将子节点替换成当前节点的位置。
3.3如果要删除的节点有两个子节点,则找到当前节点的后继节点(即比当前节点大的最小节点)或前驱节点(即比当前节点小的最大节点),将后继节点或前驱节点的值复制到当前节点,并删除后继节点或前驱节点。
平衡二叉树平衡因子
平衡二叉树平衡因子平衡二叉树平衡因子指的是左子树高度和右子树高度之差,它是保持平衡二叉树平衡的重要因素。
在平衡二叉树中,每个节点的平衡因子为-1、0或1。
平衡二叉树(AVL树)是一种高效的数据结构,它的时间复杂度为O(logn),可以在非常快的时间内完成数据的查找、插入和删除操作。
但是,如果平衡二叉树的平衡因子不合适,就会导致树的高度增加,使得查找、插入和删除操作的效率变低。
因此,平衡二叉树的平衡因子非常重要。
下面,我们来分步骤阐述平衡二叉树的平衡因子:第一步:计算节点的高度平衡二叉树的高度是指从根节点到叶子节点的最长路径的长度。
因此,计算节点的高度需要从底部开始向上递归计算。
节点的高度等于其子节点中高度最大的节点的高度加一,如果节点没有子节点,那么它的高度为零。
第二步:计算节点的平衡因子计算节点的平衡因子需要知道其左子树和右子树的高度。
节点的平衡因子等于左子树的高度减去右子树的高度。
如果平衡因子为-1、0或1,则节点是平衡的,否则节点需要被调整。
第三步:调整平衡如果平衡因子不为-1、0或1,那么需要对节点进行调整,使其重新保持平衡。
调整平衡的方法有四种:左旋、右旋、左右旋、右左旋。
左旋和右旋是最基本的调整方法,左右旋和右左旋是组合方法。
左旋:如果节点的平衡因子为2,那么需要进行左旋操作。
左旋是指将节点向左旋转,使其右子树的高度减一,左子树的高度加一。
右旋:如果节点的平衡因子为-2,那么需要进行右旋操作。
右旋是指将节点向右旋转,使其左子树的高度减一,右子树的高度加一。
左右旋:如果节点的平衡因子为2且其右子树的平衡因子为-1,那么需要进行左右旋操作。
左右旋是指将节点先进行右旋,再进行左旋。
右左旋:如果节点的平衡因子为-2且其左子树的平衡因子为1,那么需要进行右左旋操作。
右左旋是指将节点先进行左旋,再进行右旋。
总结:平衡二叉树的平衡因子是保持树平衡的重要因素。
计算节点高度和平衡因子,及时进行平衡调整,是平衡二叉树实现高效的关键。
平衡二叉树的最大深度公式
平衡二叉树的最大深度公式
平衡二叉树的最大深度公式是指确定平衡二叉树的最大深度所使用的公式。
一棵平衡二叉树是一棵二叉搜索树,其中每个节点的左右子树深度差不超过1。
因此,平衡二叉树的最大深度公式为
h=log_2(n+1),其中n表示平衡二叉树中节点的数量,h表示平衡二叉树的最大深度。
换句话说,平衡二叉树的最大深度与节点数量之间的关系是对数关系。
这个公式可以用来估算平衡二叉树的深度,从而帮助我们设计更高效的算法或优化数据结构。
- 1 -。
平衡二叉树的旋转操作
平衡二叉树的旋转操作平衡二叉树(AVL树)是一种自平衡的二叉搜索树,它的左子树和右子树的高度差(平衡因子)最多为1。
当插入或删除操作导致树的平衡被破坏时,需要进行旋转操作来恢复平衡。
本文将介绍平衡二叉树的旋转操作以及其实现原理。
1. 左旋操作左旋操作是一种将树向左偏移的操作,它可以用来处理右子树高度过高的情况。
具体步骤如下:(1). 将当前节点的右子节点作为新的根节点。
(2). 将新的根节点的左子节点作为当前节点的右子节点。
(3). 将当前节点作为新的根节点的左子节点。
左旋操作示意图如下:A B/ \ / \T1 B ---> A T3/ \ / \T2 T3 T1 T2在这个示例中,节点A的右子树过高,通过左旋操作将节点B作为新的根节点,节点A成为节点B的左子节点,节点T2成为节点A的右子节点。
2. 右旋操作右旋操作是一种将树向右偏移的操作,它可以用来处理左子树高度过高的情况。
具体步骤如下:(1). 将当前节点的左子节点作为新的根节点。
(2). 将新的根节点的右子节点作为当前节点的左子节点。
(3). 将当前节点作为新的根节点的右子节点。
右旋操作示意图如下:A C/ \ / \C T1 ---> T3 A/ \ / \T3 T2 T2 T1在这个示例中,节点A的左子树过高,通过右旋操作将节点C作为新的根节点,节点A成为节点C的右子节点,节点T2成为节点A的左子节点。
3. 左右旋和右左旋操作有时候仅通过单次旋转操作无法恢复平衡,需要进行左右旋或右左旋操作。
左右旋操作是先对当前节点的左子节点进行左旋,再对当前节点进行右旋。
右左旋操作是先对当前节点的右子节点进行右旋,再对当前节点进行左旋。
左右旋和右左旋操作的示意图如下:左右旋操作:A A C/ \ / \ / \B T4 --->C T4 ---> B A/ \ / \ / \ / \T1 C B T3 T1 T2 T3 T4/ \ / \T2 T3 T1 T2右左旋操作:A A B/ \ / \ / \T1 B ---> T1 C ---> A C/ \ / \ / \ / \C T4 T2 B T1 T2 T3 T4/ \ / \T2 T3 T3 T4通过左右旋和右左旋操作可以处理各种情况下的树平衡问题。
【数据结构与算法笔记03】详解平衡二叉树的失衡类型划分及调整策略设计
【数据结构与算法笔记03】详解平衡⼆叉树的失衡类型划分及调整策略设计1. 平衡⼆叉树平衡⼆叉树对于树中的每个节点要求:左⼦树和右⼦树的深度差不超过1左右⼦树都是平衡⼆叉树平衡因⼦ = 左⼦树深度 - 右⼦树深度==> 在⼀棵平衡⼆叉树中,所有节点的平衡因⼦只可能有三种取值:-1, 0, 12. 失衡原因分析及失衡情况分类平衡⼆叉树是⼀种特殊的⼆叉排序树,插⼊新节点的⽅法与在⼆叉排序树中插⼊节点相同:先查找,然后在查找失败的位置插⼊新节点。
但是在⼀棵平衡⼆叉树中新插⼊⼀个节点可能会导致树的失衡,因此每次插⼊新节点之后要对树进⾏调整。
书上和⽹上的资料很多,但⼤部分都只给出了最终的结论,没有给出为什么要这样做的原因,现在我试图⽤⾃⼰的⽅式来理解AVL树的调整⽅法:1. 在平衡⼆叉树中新插⼊节点会造成树中某些节点平衡因⼦的改变,从⽽有失衡的风险。
==> 只有插⼊路径上的节点的平衡因⼦可能会改变。
==> 在插⼊路径上的节点中,只有那些原本的平衡因⼦为1, -1的节点可能会失衡(平衡因⼦变为2)。
==> 原本平衡因⼦为1的节点失衡后平衡因⼦会变为2;原本平衡因⼦为-1的节点失衡后平衡因⼦会变为-2。
并且这两种情况是对称的。
2. 在插⼊路径上可能会有多个节点失衡,但是⾼层节点的失衡是由低层节点的失衡造成的,因此存在⼀个最低失衡节点,只要将这个最低失衡节点调整平衡,并且保证以该节点为根的⼦树的⾼度和原来⼀样,那么⾼层节点的失衡就会⾃动恢复。
3. 所谓对失衡节点的调整,其实就是在已知⼀些⼦树和节点相互之间的⼤⼩关系以及他们的⾼度等信息时⽤这些⼦树和节点重新组装成⼀棵满⾜平衡⼆叉树要求的树。
下⾯仅考虑最低失衡节点原本的平衡因⼦为1的情况:==> 该节点失衡后平衡因⼦变为2,说明新节点的插⼊导致该节点的左⼦树的⾼度增加了1,这也间接说明了新节点插在了该节点的左⼦树上。
==> 插在该节点的左⼦树上有两种可能的情况:①该节点原本就没有左孩⼦,②该节点原本是有左孩⼦的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
#define RH -1 //右高
//平衡二叉树的类型
struct AVLNode
{
int data;
int bf; //bf结点的平衡因子,只能够取0,-1,1,为左子树的深度减去右子树的深度
struct AVLNode *lchild,*rchild; //左、右孩子指针
{
AVLNode *rc,*rd;
rc=T->rchild;
switch(rc->bf)
{
case RH:
T->bf=rc->bf=EH;
L_Rotate(T);
break;
case LH:
rd=rc->lchild;
switch(rd->bf)
{
case RH:
T->bf=LH;
rc->bf=EH;
};
2.右旋操作:
void R_Rotate(AVLNode *&p)//LL型算法
{
AVLNode *lc=p->lchild; // lc指向p的左子树根结点
p->lchild=lc->rchild; // lc的右子树挂接为p(之前跟节点)的左子树
lc->rchild=p;
p=lc; // p指向新的根结点
插入和删除:
插入删除是互为镜像的操作。我们可以采用前面对二叉排序树的删除操作来进行。然后,在删除掉结点后,再对平衡树进行平衡化处理。删除之所以删除操作需要的平衡化可能比插入时次数多,就是因为平衡化不会增加子树的高度,但是可能会减少子树的高度,在有有可能使树增高的插入操作中,一次平衡化能抵消掉增高;在有可能使树减低的删除操作中,平衡化可能会带来祖先节点的不平衡。AVL树体现了一种平衡的美感,两种旋转是互为镜像的,插入删除是互为镜像的操作,没理由会有那么大的差别。实际上,平衡化可以统一的这样来操作:
5.查找比较关键字序列:设含有n个节点的平衡二叉树,1.求出其最大高度,和叶子节点最小层数,则比较次数最大为最大高度值其一定能找到该节点(存在),所以序列个数一定小于最大高度大于或等于叶子节点最小层数2.符合二叉排序树排序,用此排除一些选项
五、相关代码实现
1.基本结构体及变量
#define LH +1 //左高
{
if(!T) //此时为初始情况或已找到适当位置插入新数据
{
T=(AVLNode *)malloc(sizeof(AVLNode));
T->data=data;
T->lchild=T->rchild=NULL;
T->bf=EH;
*taller=1;
}
else {
if(data == T->data)
T->bf=lc->bf=EH;
R_Rotate(T);
break;
case RH: // -1新结点插入在*T的左孩子的右子树上,要作双旋处理
rd=lc->rchild; // rd指向*T的左孩子的右子树根
switch(rd->bf)
{ //根据旋转后的效果去修改T及其左孩子的平衡因子以下右旋转类似
(2)左右子树仍然为平衡二叉树.
平衡因子:平衡因子bf=左子树深度-右子树深度,
每个结点的平衡因子只能是1,0,-1。若其绝对值超过1,则该二叉排序树就是不平衡的。增加一个元素后,平衡二叉树有可能变成不平衡了,所以需要旋转平衡调整。
平衡二叉树算法思想:
若向平衡二叉树中插入一个新结点后破坏了平衡二叉树的平衡性。首先要找出插入新结点后失去平衡的最小子树根结点的指针。然后再调整这个子树中有关结点之间的链接关系,使之成为新的平衡子树。当失去平衡的最小子树被调整为平衡子树后,原有其他所有不平衡子树无需调整,整个二叉排序树就又成为一棵平衡二叉树。失去平衡的最小子树是指以离插入结点最近,且平衡因子绝对值大于1的结点作为根的子树。假设用A表示失去平衡的最小子树的根结点,则调整该子树的操作可归纳为下列四种情况:(可以断定插入一个->bf=rc->bf=EH;
break;
case LH:
T->bf=EH;
rc->bf=RH;
}
rd->bf=EH;
R_Rotate(T->rchild);
L_Rotate(T);
}
}
6.插入操作:
int InsertAVL(AVLNode *&T,int data,int *taller)
4.对树进行左平衡操作:
void LeftBalance(AVLNode *&T)
{
AVLNode *lc,*rd;
lc=T->lchild; // lc指向T的左子树根结点
switch(lc->bf)//1为左高、0等高、-1为右高
{
case LH: // 1新结点插入在*T的左孩子的左子树上,要作单右旋处理
(2)删除节点时if (current->bf) break;这时,以current为根的子树的高度和删除前的高度相同
4、当前节点移动到父节点,转1。
p = &(current->data); current = current->parent;
习题分析:
1.含有n个节点的平衡二叉树的最大高度为O(log2n)
(1)LL型平衡旋转法
由于在A的左孩子B的左子树上插入结点F,使A的平衡因子由1增至2而失去平衡。故需进行一次顺时针旋转操作。即将A的左孩子B向右上旋转代替A作为根结点,A向右下旋转成为B的右子树的根结点。而原来B的右子树则变成A的左子树。
(2)RR型平衡旋转法
由于在A的右孩子C的右子树上插入结点F,使A的平衡因子由-1减至-2而失去平衡。故需进行一次逆时针旋转操作。即将A的右孩子C向左上旋转代替A作为根结点,A向左下旋转成为C的左子树的根结点。而原来C的左子树则变成A的右子树。
case LH:
T->bf=RH;
lc->bf=EH;
break;
case EH:
T->bf=lc->bf=EH;
break;
case RH:
T->bf=EH;
lc->bf=LH;
}
rd->bf=EH;
L_Rotate(T->lchild);
R_Rotate(T);
}
}
5.对树进行右平衡操作:
void RightBalance(AVLNode *&T)
}
3.左旋操作:
void L_Rotate(AVLNode *&p)//RR型算法
{
AVLNode *rc=p->rchild; // rc指向p的右子树根结点
p->rchild=rc->lchild; // rc的左子树挂接为p的右子树
rc->lchild=p;
p=rc; // p指向新的根结点
}
(1)插入节点时current->bf += (current->data > *p)?1:-1;
(2)删除节点时current->bf -= (current->data > *p)?1:-1;
(3)current指向插入节点或者实际删除节点的父节点,这是普通二叉搜索树的插入和删除操作带来的结果。*p初始值是插入节点或者实际删除节点的data。因为删除操作可能实际删除的不是data。
T->bf=EH;
*taller=0; //标志没长高
}
}
else {
if(!InsertAVL(T->rchild,data,taller))
return 0;
if(*taller)
switch(T->bf)
{ //插入前左子树比右子树高,插入后左右子树深度相等
case LH:
T->bf=EH; //标志没长高
*taller=0;
}
}
}
return 1;
}
二叉树:
左子树都小于根节点,右子树都大于根节点。可以动态维护这棵树(因为是树结构,可以有限步完成插入),所以是动态查找算法。时间复杂度为O(logn)在46.5%的情况下,需要把二叉树平衡化成“平衡二叉树”。
平衡二叉树:定义:平衡二叉树或为空树,或为如下性质的二叉排序树:
(1)左右子树深度之差的绝对值不超过1;
(3)LR型平衡旋转法
由于在A的左孩子B的右子数上插入结点F,使A的平衡因子由1增至2而失去平衡。故需进行两次旋转操作(先逆时针,后顺时针)。即先将A结点的左孩子B的右子树的根结点D向左上旋转提升到B结点的位置,然后再把该D结点向右上旋转提升到A结点的位置。即先使之成为LL型,再按LL型处理。
如图中所示,即先将圆圈部分先调整为平衡树,然后将其以根结点接到A的左子树上,此时成为LL型,再按LL型处理成平衡型。
平衡化靠的是旋转。参与旋转的是3个节点(其中一个可能是外部节点NULL),旋转就是把这3个节点转个位置。
注意的:左旋的时候p->right一定不为空,右旋的时候p->left一定不为空,这是显而易见的。
如果从空树开始建立,并时刻保持平衡,那么不平衡只会发生在插入删除操作上,而不平衡的标志就是出现bf == 2或者bf == -2的节点。
*taller=0;
break;
case EH: //这里标识有所长高实际上此时父节点或者祖父节点的平衡因子的绝对值已经大于1
T->bf=RH;
*taller=1;
break;
case RH: //插插入前做右子树比左子树高,插入后,右子树已经长高,排序树失去平衡