2006年广西柳州市、北海市课改实验区

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2006年柳州市、北海市中考试卷(课改实验区用)
数 学
(考试时间共120分钟,全卷满分120分)
第Ⅰ卷(选择题,满分24分)
注意事项:
1.课改实验区和非课改实验区使用不同的试卷,请你核对所得试卷标题是否有误.
2.答题前,考生务必先将自己的姓名、准考证号,用蓝、黑色墨水笔或圆珠笔填写在试卷左边的装订线内.
3.第Ⅰ卷第1页至第2页,答题时请用2B铅笔把各小题正确答案序号填涂在答题卡上对应的题号内,如需要改动,须用橡皮擦擦干净后,再填涂其它答案,在试卷上答题无效. 一、选择题(本大题共8小题,每小题3分,满分24分;在每小题给出的四个选项中,只有一项是正确的,每小题选对得3分,选错、不选或多选均得零分.) 1.点112P ⎛⎫
- ⎪⎝⎭
,在( ) A.第一象限
B.第二象限 C.第三象限 D.第四象限
2.计算2
3-所得的正确结果是( )
A.9 B.6- C.9- D.6 3.如图1所示,图中阴影部分表示x 的取值范围,则下列表示 中正确的是( )
A.32x >-< B.32x -<≤ C.32x -≤≤ D.32x -<<
4.小红为了了解自己的学习效率,对每天在家完成课外作业所用的时间做了一周的记录,并用图表的形式表示了出来,如图2所示.那么,她用时最多的一天是( ) A.星期一 B.星期三 C.星期四 D.星期六
5.在下列的计算中,正确的是( ) A.235x y xy += B.()()2
224a a a +-=+
C.2
3
a a
b a b =
D.()2
2
369x x x -=++
图1
图2
星期一 星期二 星期三 星期四 星期五 星期六 星期日 0
10
20 30
40 50
60 70
80 90
分钟
6.如图3所示,则ABC △的形状是( )
A.锐角三角形 B.钝角三角形
C.直角三角形 D.等腰三角形 7.把一张形状是多边形的纸片剪去其中某一个角,剩下的部分是一个四边形,那么这张纸片原来的形状不可能是( ) A.六边形 B.五边形 C.四边形 D.三角形
8.请你认真观察和分析图4中数字变化的规律,由此得到图中所缺的
数字应为( ) A.32 B.29 C.25 D.23
第Ⅱ卷(非选择题,满分96分)
注意事项:
1.课改实验区和非课改实验区使用不同的试卷,请你核对所得试卷标题是否有误.
2.答题前,考生务必先将自己的姓名、准考证号,用蓝、黑色墨水笔或圆珠笔填写在试卷左边的密封线内. 3.第Ⅱ卷第3页至第10页,答题时请用蓝、黑色墨水笔或圆珠笔将答案直接填写在试卷上. 二、填空题(本大题共10小题,每小题2分,满分20分.)
9.水位上升用正数表示,水位下降用负数表示.如图5所示,水面从原来的位置到第二次变化后的位置,其变化值是 . 10
______. 11.计算:2
tan 451_______-=. 12.分解因式:2
________ab ab +=.
13.如果32a b =,那么
________a b
b
-=. 14.如图6是一个正方体的侧面展开图,如果将它折叠成一个正方体后相对的面上的数相等,
则图中x 的值为 .
15.请你写出一个图象位于第二和第四象限的反比例函数的表达式: . 16.如图7,直线7040MA NB A B ==∥,∠,∠,则______P =∠.
17.如图8,四边形ABCD 是一个矩形,C 的半径是2cm ,4cm 2cm CF EF ==,.则
图中阴影部分的面积约为 2
cm (精确到2
0.1cm ).
18.如图9所示,小李和小陈做转陀螺游戏,他们同时分别转动一个陀螺,
当两个陀螺都停
图5
原水面 第一次 第二次
图3
A
图4
图6
图7 P
A B M N
A B
图9
下来时,与桌面相接触的边上的数字都是奇数的概率是 . 三、(本大题共2小题,每小题6分,满分12分.) 19.(本题满分6分) 解分式方程:
12
33x x
=-. 20.(本题满分6分)
如图10,PA PB ,是圆O 的两条切线,A B ,是切点,连结AB ,直线PO 交AB 于点M .请
你根据圆的对称性,写出PAB △的三个正确的结论.
结论(1):
结论(2): 结论(3):
四、(本大题共4小题,每小题8分,满分32分.) 21.(本题满分8分)
今年体育中考前,03(2)班的小李、小黄两位同学进行了8次立定跳远训练测试,她们的成绩分别如下:(单位:m )
(1)小李和小黄这8次训练的平均成绩分别是多少?
(2)按规定,女同学立定跳远达到1.94m 就可以得到该项目满分6分.如果按她们目前的水平参加考试,你认为小李与小黄在该项目上谁得6分的可能性更大些?请说明理由.
图10
22.(本题满分8分)
小明和小亮分别利用图11中(1),(2)的不同方法求出了五边形的内角和都是540.请你考虑在图(3)中再用另外一种方法求五边形的内角和,并写出求解的过程.
23.(本题满分8分)
某校八年级在学校团委的组织下,围绕“八荣八耻”开展了一次知识竞赛活动.竞赛规则:每班代表队都必须回答27道题,答对一题得5分,答错或不答都倒扣1分.
(1)在比赛到第18题结束时,03(3)班代表队得分为78分,这时03(3)班代表队答对了多少道题?
(2)比赛规定,只有得分超过100分(含100分)时才能获奖.03(3)班代表队在比赛到第18题结束时得分为78分,那么在后面的比赛中至少还要答对多少道题才有可能获奖?请简要说明理由. 24.(本题满分8分)
如图12,一天早上,小张正向着教学楼AB 走去,他发现教学楼后面有一水塔DC ,可过了一会抬头一看:“怎么看不到水塔了?”心里很是纳闷.经过了解,教学楼、水塔的高分别是20m 和30m ,它们之间的距离为30m ,小张身高为1.6m .小张要想看到水塔,他与教学楼之间的距离至少应有多少米?
图11 (3) (1) (2)
图12
五、(本大题共2小题,每小题10分,满分20分.) 25.(本题满分10分)
请你根据图13中图象所提供的信息,解答下面问题: (1)分别写出12l l ,中变量y 随x
(2 26.(本题满分10分)
任意剪一个三角形纸片,如图14中的ABC △,不妨设它的一个锐角为A ∠,首先利用对折的方法得到高AN .然后按图中所示的方法分别将含有B C ∠,∠的部分向里折,找出AB AC ,的中点D E ,,同时得到两条折痕
DF EG ,,分别沿折痕DF EG ,剪下图中的
三角形①,②,并按图中箭头所指的方向分别旋转180. (1)你能拼成一个什么样的四边形?并说明你的理由; (2)请你利用这个图形,证明三角形的面积公式:1
2
S =⨯底 六、(本大题共1题,满分12分)
27.如图15,抛物线2
22y x mx m =-+++的图象与x 轴交于()10A B -,,两点,在x 轴上方且平行于x 轴的直线EF 与抛物线交于E F ,两点,E 在F 的左侧,过E F ,分别作x
轴的垂线,垂足是M N ,.
(1)求m 的值及抛物线的顶点坐标;
(2)设BN t =,矩形EMNF 的周长为C ,求C 与t 的函数表达式;
图14
B
(3)当矩形EMNF 的周长为10时,将ENM △沿EN 翻折,点M 落在坐标平面内的点记为M ',试判断点M '是否在抛物线上?并说明理由.
2006年柳州市、北海市中考
数学试题参考答案及评分标准(课改实验区用)
第Ⅰ卷:一、选择题
第Ⅱ卷:二、填空题
第Ⅱ卷:三、解答题
19.解:()323x x =- ························································································· 2分 6x =- ································································································· 4分 检验:当6x =-时,()()()3336630x x -=⨯-⨯--≠ ····················
··············· 5分
6x ∴=-是原方程的根 ··
·········································· 6分 20.PA PB AM BM ==,,PAB PBA =∠∠等(每写 一个正确结论给2分) 21.解:(1)小李的平均成绩
(1
1.94800.0800.0200.020.030.018
=⨯⨯+-++++++⎡⎤⎣⎦ ·
··················· 1分
小黄的平均成绩
()1280.350.080.280.040.310.250.30.098
=⨯⨯+-++--+--⎡⎤⎣⎦ ················ 3分 1.94= ················································································································· 4分
(本题计算方法不唯一,计算过程及结果正确的均按步骤给分.) (2)小李得6分的可能性大些. ····································································· 6分 因为小李8次跳远,有7次达到满分6分,而小黄只有4次. ······················ 8分 (答案不唯一,只要言之有理,均可以给相应的分数.) 22.解:如图,在BC 边上任取一点F ··························································· 1分 连结AF EF DF ,, 得ABF AFE EFD DFC △,△,△,△ ··································· 3分 三角形的内角和180180BFC ==,∠ ······················· 6分
∴五边形ABCDE 的内角和1804180540=⨯-= ·
············· 8分 (解法不唯一,其它解法按相应步骤给分.)
23.解:(1)方法一:设03(3)班代表队答对x 道题 ·································· 1分 根据题意,得:()518178x x --= ································································ 3分 16x = ·············································································· 4分 即03(3)班代表队答对了16道题.
方法二:设03(3)班代表队答对x 道题,得了y 分 ·········································· 1分 根据题意,得:()518618y x x x =--=- ···················································· 2分 当78y =时,61878x -= ··············································································· 3分 16x = ·························································································· 4分 即03(3)班代表队答对了16道题.
(2)方法一:设至少还要答对y 道题,才有可能获奖 ······································· 5分 根据题意,得:()52718110078y y ----≥ ············································ 6分 解得 31
6
y ≥ ······························································································· 7分
y 是正整数
∴03(3)班代表队至少还要答对6道题才有可能获奖. ······························· 8分 方法二:设至少还要答对t 道题,得y 分,才有可能获奖. ··························· 5分 根据题意,得:()5271878669y t t t =---+=+ ······································ 6分 当100y ≥时,669100t +≥ 31
6
t ≥ ················································································· 7分
t 是正整数
A
B
C
D
E
F
即03(3)班代表队至少还要答对6道题才有可能获奖.
24.解:方法一:如图,设小张与教学楼的距离至少应有x 米,才能看到水塔.连结FD ,由题意知,点A 在FD 上,过F 作FG CD ⊥于G ,交AB 于H ,则四边形FEBH BCGH ,都是矩形. ············································································································· 1分 AB CD ∥
AFH DFG ∴△∽△ ·············································· 3分
::AH DG FH FG ∴= ·········································· 5分即(
)()()20 1.6:30 1.6:30x x --=+
解得55.2x = ·························
·················
················· 6分经检验55.2x =是所列方程的根. ························· 7分答:小张与教学楼的距离至少应有55.2米. ······················································· 8分 方法二:设小张与教学楼的距离至少应有x 米,才能看到水塔.
连结FD ,由题意知,点A 在FD 上,过E 作EG FD ∥交AB 于H ,交DC 于G ,则四边形FEHA AHGD ,都是平行四边形. ······························································ 1分 AB CD ∥ EBH ECG ∴△∽△ ·················································::BH CG EB EC ∴= ············································ 5()()()20 1.6:30 1.6:30x x --=+ 解得55.2x = ···················································· 6分 经检验55.2x =是所列方程的根. ······································································· 7分 答:小张与教学楼的距离至少应有55.2米. ······················································· 8分 方法三:设小张与教学楼的距离至少应有x 米,才能看到水塔. 连结FD ,由题意知,点A 在FD 上,过A 作HG EC ∥,交CD 于G ,交EF 延长线于H ,则四边形HEBA ABCG ,都是矩形 ···························HF DG ∥ AHF AGD ∴△∽△ ·············································· 3::HF GD AH AG ∴= ······································· 5分
()()20 1.6:3020:30x --=
解得55.2x = ········································································································· 6分 经检验55.2x =是所列方程的根. ······································································· 7分 答:小张与教学楼的距离至少应有55.2米. ······················································· 8分 25.解:(1)1l :y 的值随x 的增大而增大; ····················································· 1分 2l :y 的值随x 的增大而减少. ·
·········································································· 2分 (2)设直线1l ,2l 的函数表达式分别为11y a x b y a x b =+=+,,由题意得
11111a b b +=⎧⎨
=-⎩,22221
30
a b a b +=⎧⎨+=⎩ ···················· 4分
解得1121a b =⎧⎨=-⎩,2212
3
2
a b ⎧=-⎪⎪⎨⎪=⎪⎩ ··························· 8分
∴直线1l ,2l 的函数表达式分别为13
2122
y x y x =-=-+, ·
··························· 9分 ∴所求的方程组为21
1322
y x y x =-⎧⎪
⎨=-+⎪⎩或2123x y x y -=⎧⎨
+=⎩ ··············································· 10分 (注明:结果与以上方程组为同解方程组的也给相同的分数.)
26.(1)答:拼出的四边形HFGM 是矩形. ····················································· 1分
证明:由题意,得123490====∠
∠∠∠ AHD BFD △≌△
AME CGE △≌△ ···························································
14H M ∴==∠∠,∠∠ ······································ 4分
2390H M ∴====∠∠∠∠
∴四边形HFGM 是矩形. ····································· 5分 (2)由题意,得
BDF NDF ADH △≌△≌△ CEG NEG AEM △≌△≌△ ············································································· 6分
NF BF NG CG ∴==,,1
2FG BC =
······························································ 8分 1
2
ABC HFGM S S FG AN BC AN ∴===△矩形 ····················································· 10分
即:三角形的面积1
2=⨯底高.
27.解:(1)
抛物线经过点()10A -,
20122m m ∴=--++
1m = ······················································································································ 2分
()2
22314y x x x ∴=-++=--+ ······································································ 3分
∴抛物线顶点坐标为()14,
···················································································· 4分 (2)在2
23y x x =-++中,令0y =,则2
230x x -++=,1213x x =-=,
B ∴点坐标为()30, ·
······························································································· 5分 ()314AB ∴=--=
B
BN t =
42MN t ∴=- 当3x t =-时,
()()2
3233y t t =--+-+
24t t =-+,即24NF t t =-+ ·············································································· 6分 ()22424C t t t ∴=--+
2248t t =-++ ······································································································· 7分 C ∴与t 之间的函数表达式为()224802C t t t =-++<< ································ 8分
(注:不写t 的取值范围的或写错的扣1分.)
(3)当10C =时,212248101t t t t -++===,,此时M 与O 重合.
ENM △翻折后如图,M N ON PM PF ''==,
过M '作M Q FN '
⊥于Q 在223y x x =-++中,令03x y ==,,
3OE ∴=,10
322
MN =
-= ··············································· 9分
设PF a =,则3PM a PN a '==-,
在Rt PNM '△中,222M P M N PN '
'+=,即()2
2223a a +=- 5513
3666a PN ∴==-=, ·················································································· 10分
11
22
PN QM PM M N '''= 52
10
6136
PM M N QM PN ⨯'''∴===
在Rt QNM '△中,2
22QN M Q M N ''+=,2413QN ∴==
M '∴坐标为102421313⎛⎫+ ⎪⎝⎭,,即36241313M ⎛⎫
' ⎪⎝⎭, ···················································· 11分
当3613x =
时,14724
16913
y =≠
∴点M '不在抛物线上. ·
······················································································ 12分 (对于(3)的评分要求:结论1分,解答过程3分.)。

相关文档
最新文档