最短路径的Dijkstra算法及Matlab程序
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
两个指定顶点之间的最短路径
问题如下:给出了一个连接若干个城镇的铁路网络,在这个网络的两个指定城镇间,找一条最短铁路线。
以各城镇为图G 的顶点,两城镇间的直通铁路为图G 相应两顶点间的边,得图G 。对G 的每一边e ,赋以一个实数)(e w —直通铁路的长度,称为e 的权,得到赋权图G 。G 的子图的权是指子图的各边的权和。问题就是求赋权图G 中指定的两个顶点00,v u 间的具最小权的轨。这条轨叫做00,v u 间的最短路,它的权叫做00,v u 间的距离,亦记作),(00v u d 。
求最短路已有成熟的算法:迪克斯特拉(Dijkstra )算法,其基本思想是按距0u 从近到远为顺序,依次求得0u 到G 的各顶点的最短路和距离,直至0v (或直至G 的所有顶点),算法结束。为避免重复并保留每一步的计算信息,采用了标号算法。下面是该算法。
(i) 令0)(0=u l ,对0u v ≠,令∞=)(v l ,}{00u S =,0=i 。
(ii) 对每个i S v ∈(i i S V S \=),用
)}()(),({min uv w u l v l i
S u +∈ 代替)(v l 。计算)}({min v l i
S v ∈,把达到这个最小值的一个顶点记为1+i u ,令}{11++=i i i u S S 。 (iii). 若1||-=V i ,停止;若1||- 算法结束时,从0u 到各顶点v 的距离由v 的最后一次的标号)(v l 给出。在v 进入i S 之前的标号)(v l 叫T 标号,v 进入i S 时的标号)(v l 叫P 标号。算法就是不断修改各项点的T 标号,直至获得P 标号。若在算法运行过程中,将每一顶点获得P 标号所由来的边在图上标明,则算法结束时,0u 至各项点的最短路也在图上标示出来了。 例1 某公司在六个城市126,,,c c c 中有分公司,从i c 到j c 的直接航程票价记在下述矩阵的),(j i 位置上。(∞表示无直接航路),请帮助该公司设计一张城市1c 到其它城市间的票价最便宜的路线图。 ⎥⎥⎥⎥⎥⎥⎥⎦ ⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡∞∞∞∞∞∞05525251055010202525100102040 2010015252015050102540500 解 用矩阵n n a ⨯(n 为顶点个数)存放各边权的邻接矩阵,行向量pb 、1index 、2index 、d 分别用来存放P 标号信息、标号顶点顺序、标号顶点索引、最短通路的值。其中分量 ⎩⎨⎧=顶点未标号 当第顶点已标号当第i i i pb 01)(; )(2i index 存放始点到第i 点最短通路中第i 顶点前一顶点的序号; )(i d 存放由始点到第i 点最短通路的值。 求第一个城市到其它城市的最短路径的Matlab 程序如下: clear; clc; M=10000; a(1,:)=[0,50,M,40,25,10]; a(2,:)=[zeros(1,2),15,20,M,25]; a(3,:)=[zeros(1,3),10,20,M]; a(4,:)=[zeros(1,4),10,25]; a(5,:)=[zeros(1,5),55]; a(6,:)=zeros(1,6); a=a+a'; pb(1:length(a))=0;pb(1)=1;index1=1;index2=ones(1,length(a)); d(1:length(a))=M;d(1)=0;temp=1; while sum(pb) tb=find(pb==0); d(tb)=min(d(tb),d(temp)+a(temp,tb)); tmpb=find(d(tb)==min(d(tb))); temp=tb(tmpb(1)); pb(temp)=1; index1=[index1,temp]; index=index1(find(d(index1)==d(temp)-a(temp,index1))); if length(index)>=2 index=index(1); end index2(temp)=index; end d, index1, index2