九年级数学下册知识点总结
九年级上下册数学知识点
九年级上下册数学知识点
一、上册数学知识点
1. 数与式
- 整数与有理数的运算
- 代数表达式的简化与变形
- 绝对值与不等式
2. 方程与不等式
- 一元一次方程与不等式
- 二元一次方程组的解法
- 含参方程及其应用
3. 函数的初步认识
- 函数的概念与表示方法
- 线性函数与二次函数的图像和性质
- 函数的基本运算
4. 几何图形初步
- 平行线与角的关系
- 三角形的基本性质
- 四边形的性质与分类
5. 几何图形的计算
- 面积与体积的计算
- 相似三角形的性质与应用
- 圆的基本性质与计算
二、下册数学知识点
1. 比例与相似
- 比例的概念与性质
- 相似三角形的判定与性质
- 比例线段的应用
2. 解直角三角形
- 锐角三角函数
- 解直角三角形的应用
- 三角函数的图像与性质
3. 统计与概率
- 统计的基本概念与方法
- 概率的初步认识
- 随机事件的概率计算
4. 数据的收集与处理
- 数据的表示方法
- 频数分布与直方图
- 抽样与估计
5. 平面直角坐标系
- 坐标系的基本概念
- 坐标系中的几何变换
- 函数图像的交点问题
6. 综合应用题
- 数学知识在实际问题中的应用 - 解决问题的策略与方法
- 开放性与探究性问题
请注意,以上内容仅为九年级数学上下册的主要知识点概览,具体的教学内容和顺序可能会根据不同地区的教学大纲和教材有所差异。
教师和学生应参考具体的教材和课程标准进行学习和复习。
人教版九年级下册数学知识点总结
人教版九年级下册数学知识点总结一、反比例函数的概念反比例函数是指函数y=k/x(k≠0)的形式,其中自变量x 的指数为-1.在解决有关自变量指数问题时,应特别注意系数这一限制条件。
另外,反比例函数也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式。
反比例函数的自变量不能为0,故函数图像与x轴、y轴无交点。
二、反比例函数的图像画法反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称。
由于反比例函数中自变量x≠0,函数值y≠0,所以它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
反比例函数的画法分三个步骤:⑴列表;⑵描点;⑶连线。
在作反比例函数的图像时,应注意以下几点:①列表时选取的数值宜对称选取;②列表时选取的数值越多,画的图像越精确;③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线;④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。
三、反比例函数及其图像的性质1.函数解析式:y=k/x(k≠0)2.自变量的取值范围:x≠03.图像:1)图像的形状:双曲线,曲度越大。
2)图像的位置和性质:当k>0时,图像的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;当k<0时,图像的两支分别位于二、四象限;在每个象限内,y随x的增大而增大。
3)对称性:图像关于原点对称,即若(a,b)在双曲线的一支上,则(-a,-b)在另一支上。
图像关于直线y=x和y=-x对称。
4.k的几何意义如图1,设点P(a,b)是双曲线y=k/x的一点,在双曲线的另一支上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是|k|(三角形PAO和三角形PBO的面积都是1/2|k|)。
如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥XXX的延长线于C,则有三角形PQC的面积为2|k|。
九年级数学下册全册知识点
九年级数学下册全册知识点一、函数的概念及表示方法函数是一种特殊关系,它把一个集合的元素对应到另一个集合的元素上。
表示函数的方法有函数图象、函数表格、函数解析式等。
二、一元二次函数1. 一元二次函数的概念:一元二次函数是指形如f(x) = ax^2 + bx + c的函数。
2. 一元二次函数的图象特征:顶点、对称轴、开口方向等。
3. 一元二次函数的性质:增减性、奇偶性、最值等。
三、平面向量1. 向量的概念:向量是有方向和大小的量。
2. 向量的表示方法:用有向线段、坐标等表示向量。
3. 向量的运算:加法、数乘、线性运算等。
4. 向量的模和方向角:向量的大小和方向的度量。
5. 向量的共线和垂直:判断向量是否共线或垂直的方法。
四、三角函数1. 弧度制与角度制:角度的度量单位及弧度的概念。
2. 正弦、余弦和正切:三角函数的定义及计算方法。
3. 三角函数的周期性及图像变化规律。
4. 利用三角函数解决实际问题:如建模、测量、工程等应用。
五、立体几何1. 空间中的基本概念:直线、平面、点等。
2. 空间几何体的计算:如立体的体积、表面积等。
3. 空间几何体的判定:如平行、垂直、共面等。
六、概率1. 随机事件的概念:涉及随机现象及其结果的集合。
2. 概率的计算:如古典概型、几何概型等的概率计算方法。
3. 事件间的关系和事件的独立性:事件的并、交、差等运算及事件的独立性概念。
七、统计1. 数据的收集和整理:包括数据的调查、整理和处理。
2. 数据的统计指标:均值、中位数、众数等的计算和应用。
3. 数据的分析和图表绘制:如频率分布表、折线图、柱状图等的绘制与分析。
以上是九年级数学下册全册的知识点内容,通过对这些知识点的学习和掌握,可以帮助同学们更加深入地理解数学,并在解决问题时能够灵活运用相关知识。
希望同学们能够认真学习,不断提升数学能力,取得优异的成绩。
(沪科版)九年级数学下册知识点总结
(沪科版)九年级数学下册知识点总结
1. 几何与图形
- 三角形、四边形、多边形等几何图形的性质和判定方法;- 三角形的相似性质和判定方法;
- 直角三角形的性质和应用;
- 平行线与相交线的性质及其在解题中的应用;
- 圆的性质、弧与角、弦切线以及切线与切点的性质;
- 三视图的绘制和空间图形的认识等。
2. 函数与方程
- 一次函数和二次函数的性质、图像与应用;
- 线性方程组的解法及其应用;
- 一元一次方程和一元二次方程的解法;
- 二次函数、指数函数与对数函数的性质和应用。
3. 统计与概率
- 数据的收集整理和分析方法;
- 单纯随机抽样和系统抽样的特点与应用;
- 事件与事件的关系、概率的定义和性质;
- 用频率估计概率和概率与统计的关系等。
4. 三角函数
- 任意角的三角函数与恒等变换;
- 三角函数图像的变换与性质;
- 解三角形等。
5. 二次函数与一元二次方程
- 二次函数的单调性、最值、根与图像;
- 一元二次方程的根与一元二次方程的应用等。
6. 平面向量
- 向量的基本概念与运算;
- 向量共线及其运用;
- 平面向量的坐标表示与运算。
7. 平面直角坐标系
- 平面直角坐标系的建立和性质;
- 坐标表示和距离计算等。
以上是(沪科版)九年级数学下册的主要知识点总结,涵盖了几何与图形、函数与方程、统计与概率、三角函数、二次函数与一元二次方程、平面向量和平面直角坐标系的内容。
希望对您的研究有所帮助!。
九年级数学下册知识点
九年级数学下册知识点九年级下册数学知识点归纳圆★重点★①圆的重要性质;②直线与圆、圆与圆的位置关系;③与圆有关的角的定理;④与圆有关的比例线段定理。
☆内容提要☆一、圆的基本性质1.圆的定义(两种)2.有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。
3.“三点定圆”定理4.垂径定理及其推论5.“等对等”定理及其推论6.与圆有关的角:⑴圆心角定义(等对等定理)⑵圆周角定义(圆周角定理,与圆心角的关系)⑶弦切角定义(弦切角定理)二、直线和圆的位置关系1.切线的性质(重点)2.切线的判定定理(重点)3.切线长定理三、圆换圆的位置关系1.五种位置关系及判定与性质:(重点:相切)2.相切(交)两圆连心线的性质定理3.两圆的公切线:⑴定义⑵性质四、与圆有关的比例线段1.相交弦定理2.切割线定理五、与和正多边形1.圆的内接、外切多边形(三角形、四边形)2.三角形的外接圆、内切圆及性质3.圆的外切四边形、内接四边形的性质4.正多边形及计算中心角:初中数学复习提纲内角的一半:初中数学复习提纲(右图)(解Rt△OAM可求出相关元素,初中数学复习提纲、初中数学复习提纲等)六、一组计算公式1.圆周长公式2.圆面积公式3.扇形面积公式4.弧长公式5.弓形面积的计算方法6.圆柱、圆锥的侧面展开图及相关计算初三下册数学知识点总结一、锐角三角函数正弦等于对边比斜边余弦等于邻边比斜边正切等于对边比邻边余切等于邻边比对边正割等于斜边比邻边二、三角函数的计算幂级数c0+c1x+c2x2+...+cnxn+...=∑cnxn(n=0..∞)c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n(n=0..∞)它们的各项都是正整数幂的幂函数,其中c0,c1,c2,.....及a 都是常数,这种级数称为幂级数.泰勒展开式(幂级数展开法)f(x)=f(a)+f'(a)/1!.(x-a)+f''(a)/2!.(x-a)2+...f(n)(a)/n!.(x-a)n+...三、解直角三角形1.直角三角形两个锐角互余。
九年级下册数学全部知识点
九年级下册数学全部知识点一、有理数和小数1. 有理数的概念和分类2. 有理数的加法、减法、乘法和除法操作3. 小数的概念和表示方法4. 有限小数和循环小数的转换和运算5. 乘方和开方的计算二、代数式和方程式1. 代数式的概念和基本性质2. 一元一次方程的解法和实际应用3. 一元二次方程的解法和实际应用4. 不等式的解集和图像表示5. 平方差公式和完全平方公式的应用三、函数和图像1. 函数的定义和性质2. 一次函数的表达式、图像和性质3. 二次函数的表达式、图像和性质4. 绝对值函数的表达式、图像和性质5. 渐近线和奇偶性的判断四、几何图形与变换1. 平行线和垂直线的性质及判定2. 三角形的分类、性质和判定3. 四边形的分类、性质和判定4. 圆的性质和常见定理5. 平移、旋转、翻转和投影变换五、统计与概率1. 统计图表的制作和分析2. 中心、离散和形状的度量3. 概率的基本概念和计算方法4. 事件的独立性和互斥性以上列举了九年级下册数学的全部知识点,从有理数和小数的基础概念,到代数式和方程式的解法,再到函数和图像的性质和变换,以及几何图形和统计概率的应用,包含了数学学科的主要内容。
在学习这些知识点时,需要掌握基本的计算方法和推理能力,以及运用数学知识解决实际问题的能力。
数学作为一门学科,不仅有自己严谨的逻辑和推理规律,还有广泛的应用领域。
通过学习九年级下册数学知识,不仅可以提高我们的数学素养,还能培养我们的分析问题和解决问题的能力。
希望同学们能够认真学习,掌握这些知识,为将来更高层次的数学学习打下坚实的基础。
九年级下册数学知识点汇总(人教版)
九年级下册(人教版数学)知识点汇总目录反比例函数 (1)26.1反比例函数 (1)● 反比例函数的定义 (1)● 反比例函数的图像 (1)● 反比例函数图像的对称性 (1)● 反比例函数的性质 (2)● 反比例函数系数k的几何意义 (2)● 反比例函数图像上点的坐标特征 (2)● 待定系数法求反比例函数解析式 (2)● 反比例函数与一次函数的交点问题 (3)26.2实际问题与反比例函数 (3)● 根据实际问题列反比例函数关系式 (3)● 反比例函数的应用 (4)相似 (5)27.1图形的相似 (5)● 相似图形 (5)27.2相似三角形 (5)● 相似三角形的判定 (5)● 相似三角形的应用 (5)● 相似多边形的性质 (5)● 相似三角形的性质 (6)● 相似三角形的判定与性质 (6)● 作图--相似变换 (6)● 射影定理 (6)27.3位似 (7)● 位似变换 (7)● 作图-位似变换 (7)锐角三角函数 (8)28.1锐角三角函数 (8)● 锐角三角函数的定义 (8)● 锐角三角函数的增减性 (8)● 同角三角函数的关系 (8)● 互余两角三角函数的关系 (9)● 特殊角的三角函数值 (9)28.2解直角三角形及其应用 (9)● 解直角三角形 (9)● 解直角三角形的应用 (10)● 解直角三角形的应用--坡度坡角问题 (10)● 解直角三角形的应用--仰角俯角问题 (10)● 解直角三角形的应用--方向角问题 (10)投影与视图 (11)29.1投影 (11)● 平行投影 (11)● 中心投影 (11)● 视点、视角和盲区 (11)29.2三视图 (11)● 简单几何体的三视图 (11)● 简单组合体的三视图 (12)● 由三视图判定几何体 (12)● 作图--三视图 (12)29.3课题学习、制作立体模型 (12)● 课题学习制作立体模型 (12)反比例函数26.1反比例函数●反比例函数的定义【反比例函数的概念】形如的函数称为反比例函数.其中是自变量,是函数,自变量的取值范围是不等于的一切实数.【反比例函数的判断】判断一个函数是否是反比例函数,首先看看两个变量是否具有反比例关系,然后根据反比例函数的意义去判断,其形式为或.●反比例函数的图像【反比例函数的图象】反比例函数的图象是由两条曲线组成的,这两条曲线通常称为双曲线当k>0时,两个分支分别位于第一、三象限内;当k<0时,两个分支分别位于第二、四象限①k>0②K<0●反比例函数图像的对称性【反比例函数图象的对称性】1、反比例函数图象本身既是轴对称图形又是中心对称图形,对称轴分别是:①二、四象限的角平分线y=-x ;一、三象限的角平分线y=x ;对称中心是:坐标原点.2、若经过原点的直线与反比例函数交于两点,则这两点关于原点对称;3、反比例函数与的图象关于x轴,y轴对称.●反比例函数的性质●反比例函数系数k的几何意义【反比例系数的几何意义】1.在反比例函数图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值.2.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是,且保持不变.●反比例函数图像上点的坐标特征【反比例函数图象上的点的坐标特征】1. 若点在反比例函数图象上,则点的横纵坐标满足反比例函数解析式2. 若点在反比例函数图象上,则也一定在反比例函数图象上3. 若点A(x,y)在反比例函数的图像上,则xy=k●待定系数法求反比例函数解析式【待定系数求反比例函数解析式的一般步骤】(1)设出含有待定系数的反比例函数解析式;(2)把已知条件(自变量与函数的对应值)带入解析式,得到待定系数的方程;(3)解方程,求出待定系数;(4)写出解析式.●反比例函数与一次函数的交点问题【反比例函数与一次函数的交点】1.(1)求反比例函数与一次函数的交点坐标时,先把两个函数关系式联立成方程组求解,若方程组有解,则两者有交点,方程组无解,则两者无交点;(2)已知反比例函数与一次函数的交点坐标,把点的坐标带入函数解析式可求得函数关系式或系数间的等量关系.2.判断正比例函数和反比例函数在同一直角坐标系中的交点个数可总结为:(1)当k1与k2同号时,正比例函数和反比例函数在同一直角坐标系中有2个交点;(2)当k1与k2异号时,正比例函数和反比例函数在同一直角坐标系中有0个交点.26.2实际问题与反比例函数●根据实际问题列反比例函数关系式【列反比例函数关系式的一般解题思路】根据实际问题列反比例函数关系式,注意分析问题中变量之间的联系,建立反比例函数的数学模型,在实际问题中,往往要结合题目的实际意义去分析.首先弄清题意,找出等量关系,再进行等式变形即可得到反比例函数关系式.根据图象去求反比例函数的解析式,或是知道一组自变量与函数值去求解析式,都是利用待定系数法去完成的.注意:要根据实际意义确定自变量的取值范围.【根据实际问题列反比例函数的步骤】步骤1:审:审清题意,找出题目中的常量、变量,并理清常量与变量之间的关系。
九年级数学下册各章知识点
九年级数学下册各章知识点第一章:有理数1. 有理数的概念:有理数是整数和分数的统称,包括正数、零和负数。
2. 整数的加减法:同号两数相加、异号两数相减。
3. 分数的加减法:通分后相加减。
4. 有理数的乘除法:同号异号相乘、除法转化为乘法求解。
5. 有理数的乘方:正数与负数的幂的性质。
第二章:代数式与方程1. 代数式的概念:包含有常数和变量,并且包含加减乘除等运算符号的式子。
2. 代数式的运算:常数与变量的运算、代数式的合并与展开。
3. 简单方程的解法:等式的转化与解方程。
4. 一元一次方程:含有一个未知数的一次方程的解法与应用。
5. 实际问题中的应用:运用方程进行实际问题的解答。
第三章:函数与图像1. 函数的概念:函数是自变量与因变量之间的关系,每个自变量对应唯一一个因变量。
2. 函数的表示:函数关系可以通过表格、图像、公式等形式表示。
3. 线性函数:函数图像为直线的函数。
4. 平方函数:函数图像为抛物线的函数。
5. 函数的最值:函数图像的最大值和最小值。
第四章:全等与相似1. 图形的基本概念:点、线、面及其性质。
2. 直线、射线、线段的比较:长度比较和角度比较。
3. 全等三角形:全等三角形的判定条件与性质。
4. 相似三角形:相似三角形的判定条件与性质。
5. 相似三角形的应用:运用相似三角形进行实际问题的解答。
第五章:平面图形的性质1. 四边形的性质:平行四边形、矩形、正方形、菱形等四边形的特殊性质。
2. 三角形的性质:等腰三角形、等边三角形等三角形的特殊性质。
3. 圆的性质:圆心角、圆内外切等与圆相关的性质。
4. 圆的应用:运用圆的性质解答实际问题。
5. 长方体与棱柱:长方体、正方体、棱柱的性质及计算表面积和体积。
第六章:统计与概率1. 统计调查:设计统计调查方案、收集数据、整理数据等。
2. 统计图表:直方图、折线图、饼图等图表的绘制与分析。
3. 概率的概念:事件发生的可能性。
4. 事件与概率:事件的概率计算、相互独立事件的概率计算等。
九年级下册数学知识点
九年级下册数学知识点九年级下册数学知识点1知识点1概念把形状相同的图形叫做相似图形。
(即对应角相等、对应边的比也相等的图形)解读:(1)两个图形相似,其中一个图形可以看做由另一个图形放大或缩小得到。
(2)全等形可以看成是一种特殊的相似,即不仅形状相同,大小也相同。
(3)判断两个图形是否相似,就是看这两个图形是不是形状相同,与其他因素无关。
知识点2比例线段对于四条线段a,b,c,d,如果其中两条线段的长度的比与另两条线段的长度的比相等,即(或a:b=c:d)那么这四条线段叫做成比例线段,简称比例线段。
知识点3相似多边形的性质相似多边形的性质:相似多边形的对应角相等,对应边的比相等。
解读:(1)正确理解相似多边形的定义,明确“对应”关系。
(2)明确相似多边形的“对应”来自于书写,且要明确相似比具有顺序性。
知识点4相似三角形的`概念对应角相等,对应边之比相等的三角形叫做相似三角形。
解读:(1)相似三角形是相似多边形中的一种;(2)应结合相似多边形的性质来理解相似三角形;(3)相似三角形应满足形状一样,但大小可以不同;(4)相似用“∽”表示,读作“相似于”;(5)相似三角形的对应边之比叫做相似比。
知识点5相似三角的判定方法(1)定义:对应角相等,对应边成比例的两个三角形相似;(2)平行于三角形一边的直线截其他两边(或其他两边的延长线)所构成的三角形与原三角形相似。
(3)如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似。
(4)如果一个三角的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。
(5)如果一个三角形的三条边分别与另一个三角形的三条边对应成比例,那么这两个三角形相似。
(6)直角三角形被斜边上的高分成的两个直角三角形与原三角形都相似。
知识点6相似三角形的性质(1)对应角相等,对应边的比相等;(2)对应高的比,对应中线的比,对应角平分线的比都等于相似比;(3)相似三角形周长之比等于相似比;面积之比等于相似比的平方。
九年级数学下册知识点总结
图1九年级数学下册知识点总结第一章 直角三角形边的关系一.锐角三角函数 1.正切:定义:在Rt△ABC 中,锐角∠A 的对边与邻边的比叫做∠A 的正切..,记作tanA , 即的邻边的对边A A A ∠∠=tan ;①tanA 是一个完整的符号,它表示∠A 的正切,记号里习惯省去角的符号“∠”; ②tanA 没有单位,它表示一个比值,即直角三角形中∠A 的对边与邻边的比; ③tanA 不表示“tan”乘以“A”;④初中阶段,我们只学习直角三角形中,∠A 是锐角的正切;⑤tanA 的值越大,梯子越陡,∠A 越大;∠A 越大,梯子越陡,tanA 的值越大。
2.正弦..: 定义:在Rt△ABC 中,锐角∠A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即斜边的对边A A ∠=sin ;3.余弦:定义:在Rt△ABC 中,锐角∠A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即斜边的邻边A A ∠=cos ;锐角A 的正弦、余弦和正切都是∠A 的三角函数当锐角A 变化时,相应的正弦、余弦和正切之也随之变化。
二.特殊角的三角函数值三.三角函数的计算1. 仰角:当从低处观测高处的目标时,视线与水平线所成的锐角称为仰角..2. 俯角:当从高处观测低处的目标时,视线与水平线所成的锐角称为俯角..3.规律:利用特殊角的三角函数值表,可以看出,(1)当角度在0°~90°间变化时,正弦值、正切值随着角度的增大(或减小)而增大(或减小);余弦值随着角度的增大(或减小)而减小(或增大)。
(2)0≤sin α≤1,0≤cos α≤1。
4.坡度:如图2,坡面与水平面的夹角叫做坡角坡角的正切称为坡度........... (或坡比..)。
用字母i 表示,即A lhi tan ==5.方位角:从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角...。
如图3,OA 、OB 、OC 的方位角分别为45°、135°、225°。
九年级下册数学知识点归纳
九年级下册数学知识点归纳一、实数与代数表达式1. 实数的概念与性质- 有理数与无理数的定义- 实数的四则运算规则- 绝对值的性质与计算- 实数的大小比较与不等式2. 代数表达式的运算- 单项式与多项式的概念- 多项式的加法、减法、乘法- 多项式的因式分解- 乘法公式的应用(平方差、完全平方等)3. 代数方程与不等式- 一元一次方程与一元二次方程的解法- 不等式的性质与解集表示- 线性不等式的图解法- 二元一次方程组的解法(代入法、消元法)二、平面几何1. 平行线与角- 平行线的判定与性质- 角的基本性质- 同位角、内错角、同旁内角的定义与性质2. 三角形的性质- 三角形的基本概念(边、角、高、中线等)- 等腰三角形与等边三角形的性质- 三角形的内角和外角性质- 三角形的面积计算公式3. 四边形的性质- 平行四边形、矩形、菱形、正方形的性质- 四边形的面积计算公式- 四边形的对角线性质4. 圆的性质- 圆的基本性质(圆心、半径、直径、弦、弧等)- 圆周角与圆心角的关系- 切线的性质与判定- 圆的面积与周长计算公式三、空间几何1. 立体图形的认识- 常见立体图形(棱柱、棱锥、圆柱、圆锥、球)的特征 - 立体图形的表面积与体积计算公式2. 空间图形的位置关系- 点、线、面在空间中的位置关系- 空间直线与平面的平行与垂直关系- 空间图形的相交与相切四、数列与数学归纳法1. 序列的概念与表示- 数列的定义与分类(等差数列、等比数列等)- 数列的通项公式与前n项和公式2. 数学归纳法的原理与应用- 数学归纳法的基本步骤- 利用数学归纳法证明等式、不等式- 数列的性质证明五、概率与统计1. 概率的基本概念- 随机事件的概率定义- 概率的加法原理与乘法原理- 条件概率与独立事件的概念2. 统计的基础知识- 数据的收集与整理- 频数分布表与直方图的绘制- 算术平均数、中位数、众数的计算以上是九年级下册数学的主要知识点归纳。
九年级下册数学每章知识点
九年级下册数学每章知识点第一章:多边形和三角形1. 多边形的定义和性质- 多边形是由线段组成的封闭图形,通常有三条或三条以上的边。
- 不同种类的多边形包括三角形、四边形、五边形等。
- 多边形的性质包括外角和内角的关系、对角线的数量等。
2. 三角形的分类和性质- 三角形按边长可以分为等边三角形、等腰三角形和普通三角形。
- 三角形按角度可以分为直角三角形、钝角三角形和锐角三角形。
- 三角形的性质包括角的和为180度、边的关系等。
3. 三角形的相似性与全等性- 相似三角形的定义是对应角相等,对应边成比例。
- 全等三角形的定义是三边和三角形的对应角均相等。
第二章:相似与全等1. 两个角相等的条件- 如果两个角的度数相等,那么它们是相等的。
2. 判定两个三角形相似的条件- 如果两个三角形的对应角相等,且对应边成比例,那么它们是相似的。
3. 利用相似三角形的性质解题- 根据相似三角形的性质,可以推导出边比例、高比例等相关信息,从而解决与长度有关的问题。
4. 判定两个三角形全等的条件- 如果两个三角形的对应边和对应角均相等,那么它们是全等的。
第三章:平面直角坐标系和图形的位置关系1. 平面直角坐标系的建立- 平面直角坐标系由横坐标x和纵坐标y组成,以原点为起点。
- 坐标点表示为(x,y),表示在横轴和纵轴上的位置。
2. 图形的位置关系- 图形之间的位置关系包括重合、相交、相离等。
- 可以通过坐标系中的点的位置关系来确定图形的位置。
第四章:一次函数与方程1. 函数的定义与表示- 函数是两个集合之间的对应关系,常表示为y=f(x)。
- 函数的定义域为x的取值范围,值域为y的取值范围。
2. 一次函数的概念与性质- 一次函数是表示为y=kx+b的函数形式,其中k为斜率,b为截距。
- 一次函数的图像为直线,斜率决定了直线的倾斜程度。
3. 解一次方程- 解一次方程指找到使方程成立的未知数的值。
- 可以通过移项、消元等方法来解一元一次方程。
九年级数学下册各单元知识点归纳
九年级数学下册各单元知识点归纳第一章:有理数与整式本章主要围绕有理数和整式展开,以下是各单元的知识点归纳。
1.1 有理数- 有理数的概念与性质- 有理数的相加、相减、相乘、相除- 有理数的比较大小和绝对值1.2 整式的加减- 整式的概念与性质- 整式的加减法则- 整式的乘法运算1.3 整式的除法- 整式的除法运算- 整式除法中的因式分解- 分子多项式与分母多项式的最高公因式第二章:平方根与实数本章主要介绍平方根和实数的相关知识点。
2.1 平方根的概念- 平方根的定义和性质- 平方根与平方的关系- 平方根的运算规律2.2 实数- 实数的概念与性质- 实数的运算性质- 实数的分类与表示第三章:一次函数与一元一次方程本章重点讲解一次函数和一元一次方程的内容。
3.1 一次函数- 一次函数的概念与性质- 一次函数的图象与性质- 一次函数的解析式与应用3.2 一元一次方程- 一元一次方程的概念与性质- 一元一次方程的解的判定- 一元一次方程的应用问题第四章:平面图形的认识本章着重介绍平面图形的认识和性质。
4.1 点、线、面- 平面几何基本概念:点、线、面- 线段、射线、角的概念和性质- 角的分类、角的计量和角的平分线4.2 三角形- 三角形的分类- 三角形的性质与判定- 三角形的周长和面积计算4.3 四边形与多边形- 四边形的分类与性质- 多边形的分类与性质- 多边形的内角和外角第五章:函数与一元二次方程本章讲解函数和一元二次方程的相关知识点。
5.1 函数的概念与性质- 函数的定义和性质- 函数的图象与性质- 函数的运算与复合函数5.2 一元二次方程- 一元二次方程的概念与性质- 一元二次方程的解的判定- 一元二次方程的应用问题第六章:统计与概率本章重点介绍统计和概率的相关知识。
6.1 统计- 统计调查的设计与数据的收集方法- 数据的整理与分析- 数据的图表表示和数据的统计指标6.2 概率- 概率的基本概念与性质- 随机事件与样本空间- 概率的计算方法与应用以上是九年级数学下册各单元的知识点归纳,希望对你的学习有所帮助。
九年级数学下册知识点总结(最新最全)
九年级下册知识点第一章 直角三角形边的关系1、正切:定义:在Rt △ABC 中,锐角∠A 的对边与邻边的比叫做∠A 的正切,记作tanA ,即tanA=∠A 的对边/∠A 的邻边。
①tanA 是一个完整的符号,它表示∠A 的正切,记号里习惯省去角的符号“∠”; ②tanA 没有单位,它表示一个比值,即直角三角形中∠A 的对边与邻边的比; ③tanA 不表示“tan ”乘以“A ”;④tanA 的值越大,梯子越陡,∠A 越大;∠A 越大,梯子越陡,tanA 的值越大。
(P1-6,11、P3-6、P4-12)2、正弦:定义:在Rt △ABC 中,锐角∠A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即sinA=∠A 的对边/斜边;3、余弦:定义:在Rt △ABC 中,锐角∠A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即cosA=∠A 的邻边/斜边;4、余切:定义:在Rt △ABC 中,锐角∠A 的邻边与对边的比叫做∠A 的余切,记作cotA ,即cotA=∠A 的邻边/∠A 的对边;5、一个锐角的正弦、余弦、正切、余切分别等于它的余角的余弦、正弦、余切、正切。
(通常我们称正弦、余弦互为余函数。
同样,也称正切、余切互为余函数,可以概括为:一个锐角的三角函数等于它的余角的余函数)用等式表达:若∠A 为锐角,则①sin A = cos(90°−∠A )等等。
6、记住特殊角的三角函数值表0°,30°,45°,60°,90°。
(P4-13、P5-15,16、P10-11、P12-3)7、当角度在0°~90°间变化时,正弦值、正切值随着角度的增大(或减小)而增大(或减小);余弦值、余切值随着角度的增大(或减小)而减小(或增大)。
0≤sin α≤1,0≤cos α≤1。
同角的三角函数间的关系:t αn α·cot α=1,tan α=sin α/cos α,cot α=cos α/sin α,sin 2α+cos 2α=18、在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,则有:(1)三边之间的关系:a 2+b 2=c 2;(2)两锐角的关系:∠A +∠B=90°;(3)边与角之间的关系:sin α等;(4)面积公式;(5)直角三角形△ABC 内接圆⊙O 的半径为(a+b-c)/2;(6)直角三角形△ABC 外接圆⊙O 的半径为c/2。
初三(九年级)下册数学知识点归纳
初三(九年级)下册数学知识点归纳九年级下册知识点归纳包括二次函数、相似、锐角三角形、投影与视图共四章内容,主要总结了这几个单元的重点和难点的内容,是初三同学们和中考考生的必备资料!第二十六章二次函数26.1 二次函数及其图像二次函数(quadratic function)是指未知数的最高次数为二次的多项式函数。
二次函数可以表示为f(x)=ax^2+bx+c(a不为0)。
其图像是一条主轴平行于y轴的抛物线。
一般的,自变量x和因变量y之间存在如下关系:一般式y=ax+bx+c(a0,a、b、c为常数),顶点坐标为(-b/2a,-(4ac-b2)/4a) ;顶点式y=a(x+m)2+k(a0,a、m、k为常数)或y=a(x-h)2+k(a0,a、h、k为常数),顶点坐标为(-m,k)对称轴为x=-m,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,有时题目会指出让你用配方法把一般式化成顶点式;交点式y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和 B(x2,0)的抛物线] ;重要概念:a,b,c为常数,a0,且a决定函数的开口方向,a0时,开口方向向上,a0时,开口方向向下。
a的绝对值还可以决定开口大小,a的绝对值越大开口就越小,a的绝对值越小开口就越大。
牛顿插值公式(已知三点求函数解析式)y=(y3(x-x1)(x-x2))/((x3-x1)(x3-x2)+(y2(x-x1)(x-x3)) /((x2-x1)(x2-x3)+(y1(x-x2)(x-x3))/((x1-x2)(x1-x3) 。
由此可引导出交点式的系数a=y1/(x1*x2) (y1为截距)求根公式二次函数表达式的右边通常为二次三项式。
求根公式x是自变量,y是x的二次函数x1,x2=[-b((b^2-4ac))]/2a(即一元二次方程求根公式)(如右图)求根的方法还有因式分解法和配方法在平面直角坐标系中作出二次函数y=2x的平方的图像,可以看出,二次函数的图像是一条永无止境的抛物线。
最新版数学九年级下册知识点归纳总结
最新版数学九年级下册知识点归纳总结圆周角1、定义:顶点在圆上,角的两边都与圆相交的角。
(两条件缺一不可)2、定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
3、推论:1)在同圆或等圆中,相等的圆周角所对的弧相等。
2)直径(半圆)所对的圆周角是直角;900的圆周角所对的弦为直径。
(①常见辅助线:有直径可构成直角,有900圆周角可构成直径;②找圆心的方法:作两个900圆周角所对两弦交点)4、圆内接四边形的性质定理:圆内接四边形的对角互补。
(任意一个外角等于它的内对角)补充:1、两条平行弦所夹的弧相等。
2、圆的两条弦1)在圆外相交时,所夹角等于它所对的两条弧度数差的一半。
2)在圆内相交时,所夹的角等于它所夹两条弧度数和的一半。
3、同弧所对的(在弧的同侧)圆内部角其次是圆周角,最小的是圆外角。
直线与圆的位置关系①直线和圆无公共点,称相离。
AB与圆O相离,d>r。
②直线和圆有两个公共点,称相交,这条直线叫做圆的割线。
AB与⊙O相交,d③直线和圆有且只有一公共点,称相切,这条直线叫做圆的切线,这个的公共点叫做切点。
AB与⊙O相切,d=r。
(d为圆心到直线的距离)平面内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是:1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的方程如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交。
如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切。
如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离。
2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x轴),将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2。
令y=b,求出此时的两个x值x1、x2,并且规定x1当x=-C/Ax2时,直线与圆相离;旋转变换1.概念:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。
九年级下册数学知识点全汇总
九年级下册数学知识点全汇总### 一、代数九年级下册数学知识点的第一个大类是代数。
在代数部分,学生将学习如何解代数方程和不等式,包括一元一次方程、一元二次方程等。
此外,还会学习到如何化简代数表达式、理解函数的概念以及解线性方程组等内容。
#### 1.1 一元一次方程一元一次方程是九年级下册数学中的基础内容,学生需要掌握通过加减乘除等运算法则来解题的方法。
#### 1.2 一元二次方程一元二次方程是代数部分的拓展内容,学生将学习如何利用求根公式等方法来解决二次方程。
#### 1.3 代数表达式化简在代数表达式化简部分,学生需要运用因式分解等技巧,将复杂的代数式简化为最简形式。
### 二、几何第二大类是几何知识点。
在几何部分,九年级学生将继续深入学习平面几何和空间几何的相关内容,包括图形的性质、相似三角形、立体图形的计算等。
#### 2.1 图形的性质学生需要了解各种图形的性质,如平行四边形的性质、圆的性质、多边形的内角和等等。
#### 2.2 相似三角形相似三角形是几何部分的重要内容,学生需要学会判断三角形的相似性,并应用相似三角形的性质进行计算。
### 三、概率与统计最后一个大类是概率与统计。
在这一部分,学生将学习概率的基本概念、事件的概率计算、频率分布表、统计图表等内容。
#### 3.1 概率的基本概念学生需要理解试验、样本空间、随机事件等概念,并能够计算简单事件的概率。
#### 3.2 频率分布表与统计图表在统计学习中,学生将学会如何制作频率分布表、直方图、折线图等统计图表,并能够从图表中获取信息。
通过九年级下册数学知识点的全面汇总,学生可以系统地复习和掌握各个部分的知识,为期末考试和升学考试做好充分的准备。
希望同学们能够认真对待每一个知识点,努力取得优异的成绩!。
人教版九年级数学下册详细知识点
人教版九年级数学下册详细知识点1. 整式的加减运算- 同类项的加减法- 不同类项的加减法- 图形法- 代数法- 消元法2. 二次根式的运算- 二次根式的化简- 二次根式的加减法- 二次根式的乘法- 二次根式的除法- 二次根式的混合运算3. 平面向量- 平面向量的概念- 平面向量的加法- 平面向量的数乘- 平面向量的线性运算- 平面向量的模- 平面向量的数量积- 平面向量的投影4. 一次函数与一元一次方程- 一次函数的概念- 一次函数的图象- 一次函数的性质- 一次函数的表示方法- 一元一次方程的概念- 一元一次方程的解- 一元一次方程的应用5. 特殊三角函数值的计算- 30°、45°、60°特殊角的三角函数值- 任意角的正弦、余弦、正切值的计算6. 相似三角形与三角比- 相似三角形的条件- 相似三角形的性质- 三角比的定义- 三角比的性质和应用- 相似三角形和三角比的综合应用7. 幂的乘法与除法- 幂的乘法- 幂的除法- 科学计数法- 根式及其运算8. 多边形的面积- 任意多边形的面积- 三角形的面积- 正多边形的面积- 扇形和梯形的面积9. 数据的收集、整理和分析- 数据的收集和整理- 数据的图形表示- 数据的分析与解释- 统计指标的运算以上是人教版九年级数学下册的详细知识点。
不同章节涵盖了整式的运算、二次根式的处理、平面向量的操作、一次函数与一元一次方程、特殊三角函数值的计算、相似三角形与三角比、幂的乘除法、多边形的面积以及数据的收集、整理和分析等内容。
通过学习这些知识,学生将能够更好地掌握九年级数学下册的重点内容。
初中九年级下册数学知识点
初中九年级下册数学知识点一、代数与函数1.一次函数1.1 函数的定义1.2 函数的图象和性质1.3 函数表达式及其应用2.二次函数2.1 二次函数的图象和性质2.2 一般的二次函数2.3 二次函数的应用3.指数与对数函数3.1 指数函数的概念与性质3.2 指数函数的图象与应用3.3 对数函数的概念与性质3.4 对数函数的图象与应用4.分式函数4.1 分式函数的定义与性质4.2 分式函数的图象与应用5.根式与整式5.1 平方根与立方根的概念5.2 根式的化简与运算6.方程与不等式6.1 一元一次方程组及其解法6.2 一元二次方程的解法6.3 一元一次不等式及其解法6.4 一元二次不等式及其解法7.二元一次方程组与一元二次不等式系统 7.1 二元一次方程组的解法7.2 一元二次不等式系统的解法二、几何与图形1.平面图形1.1 三角形的性质及分类1.2 四边形的性质及分类1.3 正多边形的性质2.空间图形2.1 空间几何体的投影与视图2.2 空间几何体的表面积与体积3.相似与全等3.1 相似图形的判定与性质3.2 相似三角形的性质与判定3.3 全等图形的判定与性质4.三角比4.1 正弦定理与余弦定理的应用 4.2 解直角三角形4.3 解一般三角形5.向量与坐标5.1 向量及其运算5.2 二维坐标系与平面直角坐标系三、数据统计与概率1.数据的收集与整理1.1 数据的收集方法1.2 数据的整理与概述2.统计指标与图表2.1 统计指标的计算2.2 统计图表的制作与分析3.概率与统计3.1 事件与概率3.2 随机事件的概率计算3.3 概率分布与统计这是初中九年级下册数学知识点的简要概述。
对于每个知识点,都有更详细的内容和例题。
希望这份知识点的整理能够帮助你更好地学习和理解数学知识。
祝你学业进步!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识点总结第五章二次函数一、二次函数概念:1.二次函数的概念:一般地,形如y=a x2+b x+c(a,b,c是常数,a≠0)的函数,叫做二次函数。
注意:和一元二次方程类似,二次项系数a≠0,而b,c可以为零.二次函数的定义域是全体实数.2. 二次函数y=a x2+b x+c的结构特征:⑴等号左边是函数,右边是关于自变量的二次式,的最高次数是2.⑵a,b,c是常数,a是二次项系数,b是一次项系数,c是常数项.二、二次函数的基本形式—三、二次函数图像的平移)八、二次函数的图像与各项系数之间的关系1.二次项系数a二次函数y=a x2+b x+c中,a作为二次项系数,显然a≠0.⑴当a>0时,抛物线开口向上,a的值越大,开口越小,反之a的值越小,开口越大;⑵当a<0时,抛物线开口向下,a的值越小,开口越小,反之的值越大,开口越大.总结起来,a决定了抛物线开口的大小和方向,a的正负决定开口方向,|a|的大小决定开口的大小.2.一次项系数b在二次项系数a确定的前提下,b决定了抛物线的对称轴.《⑴在a>0的前提下,当b>0时,-b/2a<0,即抛物线的对称轴在y轴左侧;当b=0时,-b/2a=0,即抛物线的对称轴就是y轴;当b<0时,-b/2a>0,即抛物线对称轴在y轴的右侧.⑵在a<0的前提下,结论刚好与上述相反,即当b>0时,-b/2a>0,即抛物线的对称轴在y轴右侧;当b=0时,-b/2a=0,即抛物线的对称轴就是y轴;当b<0时,-b/2a<0,即抛物线对称轴在y轴的左侧.总结起来,在确定的前提下,b决定了抛物线对称轴的位置.a b的符号的判定:对称轴x=-b/2a在y轴左边则ab>0,在y轴的右侧则a b<0,概括的说就是“左同右异”…3.常数项c⑴当c>0时,抛物线与y轴的交点在x轴上方,即抛物线与y轴交点的纵坐标为正;⑵当c=0时,抛物线与y轴的交点为坐标原点,即抛物线与y轴交点的纵坐标为;⑶当c<0时,抛物线与y轴的交点在x轴下方,即抛物线与y轴交点的纵坐标为负.总结起来,c决定了抛物线与y轴交点的位置.总之,只要a,b,c都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;<3. 已知抛物线与轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图像的对称根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此|a|永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:—十一、函数的应用二次函数应用:1.刹车距离;2.何时获得最大利润;3.最大面积是多少。
第六章图形的相似一、比例线段1.比例线段的相关概念如果选用同一长度单位量得两条线段a,b的长度分别为m,n,那么就说这两条线段的比是a/b=m/n,或写成a:b=m:n在两条线段的比a:b中,a叫做比的前项,b叫做比的后项。
在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段若四条a,b,c,d满足a/b=c/d或a:b=c:d,那么a,b,c,d叫做组成比例的项,线段a,d叫做比例外项,线段b,c叫做比例内项,线段的d 叫做a,b,c的第四比例项。
如果作为比例内项的是两条相同的线段,即a/b=b/c或a:b=b:c,那么线段b叫做线段a,c的比例中项。
:2.比例的性质3.黄金分割二、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例。
推论:(1)平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。
逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。
(2)平行于三角形一边且和其他两边相交的直线截得的三角形的三边与原三角形的三边对应成比例。
/三、相似三角形1.相似三角形的概念对应角相等,对应边成比例的三角形叫做相似三角形。
相似用符号“∽”来表示,读作“相似于”。
相似三角形对应边的比叫做相似比(或相似系数)。
2.相似三角形的基本定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。
用数学语言表述如下:∵D E∥B C,∴△AD E∽△A B C相似三角形的等价关系:(1)反身性:对于任一△A B C,都有△A B C∽△A B C;:(2)对称性:若△A B C∽△A’B’C’,则△A’B’C’∽△A B C(3)传递性:若△A B C∽△A’B’C’,并且△A’B’C’∽△A’’B’’C’’,则△A B C∽△A’’B’’C’’。
3.三角形相似的判定(1)三角形相似的判定方法①定义法:对应角相等,对应边成比例的两个三角形相似②平行法:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似③判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,可简述为两角对应相等,两三角形相似。
④判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应相等,并且夹角相等,那么这两个三角形相似,可简述为两边对应成比例且夹角相等,两三角形相似。
⑤判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似,可简述为三边对应成比例,两三角形相似(2)直角三角形相似的判定方法¥①以上各种判定方法均适用②定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似③垂直法:直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。
4.相似三角形的性质(1)相似三角形的对应角相等,对应边成比例(2)相似三角形对应高的比、对应中线的比与对应角平分线的比都等于相似比(3)相似三角形周长的比等于相似比(4)相似三角形面积的比等于相似比的平方。
5.相似多边形(1)如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形。
相似多边形对应边的比叫做相似比(或相似系数)~(2)相似多边形的性质①相似多边形的对应角相等,对应边成比例②相似多边形周长的比、对应对角线的比都等于相似比③相似多边形中的对应三角形相似,相似比等于相似多边形的相似比④相似多边形面积的比等于相似比的平方6.位似图形如果两个图形不仅是相似图形,而且每组对应点所在直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,此时的相似比叫做位似比。
性质:每一组对应点和位似中心在同一直线上,它们到位似中心的距离之比都等于位似比。
由一个图形得到它的位似图形的变换叫做位似变换。
利用位似变换可以把一个图形放大或缩小。
第七章锐角三角函数#一.知识框架二.知识概念3.互余角的三角函数间的关系sin(90°-α)=co sα, co s(90°-α)=sinα,t an(90°-α)=c o tα,c o t(90°-α)=t a nα.4.同角三角函数间的关系(1)平方关系:>sin2(α)+co s2(α)=1t an2(α)+1=se c2(α)co t2(α)+1=c sc2(α)(2)积的关系:sinα=t anα·c o sαco sα=co tα·s inαt anα=s inα·s e cαco tα=co sα·c s cαse cα=t anα·c s cαcs cα=se cα·c o tα#(3)倒数关系:t anα·co tα=1sinα·c s cα=1co sα·se cα=15.三角函数值(1)特殊角三角函数值(2)0°~90°的任意角的三角函数值,查三角函数表。
(3)锐角三角函数值的变化情况(i)锐角三角函数值都是正值(i i)当角度在0°~90°间变化时,《正弦值随着角度的增大(或减小)而增大(或减小)余弦值随着角度的增大(或减小)而减小(或增大)正切值随着角度的增大(或减小)而增大(或减小)余切值随着角度的增大(或减小)而减小(或增大)(i ii)当角度在0°≤α≤90°间变化时,0≤sinα≤1, 1≥co sα≥0, 当角度在0°<α<90°间变化时,t a nα>0,c o tα>0.6.仰角、俯角当我们进行测量时,在视线与水平线所成的角中,视线在水平线上方的角叫做仰角,在水平线下方的角叫做俯角。
第八章统计和概率的简单应用一、统计二、概率。