数据结构中图的应用
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
}
name& getV(int n) { return vertices[n].v; } //没有越界检查
int nextV(int m, int n)//返回m号顶点的第n号顶点后第一个邻接顶点号,无返回-1
{
for (list<edge>::iterator iter = vertices[m].e->begin();
vNum++; return true;
}
bool insertE(name v1, name v2, dist cost)
{
int i, j;
if (v1 == v2 || !find(v1, i) || !find(v2, j)) return false;
if (edge[i][j] != NoEdge) return false;
{
int i, j;
if (v1 == v2 || !find(v1, i) || !find(v2, j)) return false;
for (list<edge>::iterator iter = vertices[i].e->begin();
iter != vertices[i].e->end() && iter->vID < j; iter++);
class LinkedList
{
friend class Network<name, dist, LinkedList<name, dist> >;
public:
LinkedList() : vNum(0), eNum(0) {}
~LinkedList()
{
for (int i = 0; i < vNum; i++) delete vertices[i].e;
delete []edge; delete []vertex;
}
bool insertV(name v)
{
if (find(v)) return false;
vertex[vNum] = v;
for (int i = 0; i < maxV; i++) edge[vNum][i] = NoEdge;
}
bool insertV(name v)
{wenku.baidu.com
if (find(v)) return false;
vertices.push_back(vertex(v, new list<edge>));
vNum++; return true;
}
bool insertE(const name& v1, const name& v2, const dist& cost)
edge[i][j] = cost; eNum++; return true;
}
name& getV(int n) { return vertex[n]; } //没有越界检查
int nextV(int m, int n)//返回m号顶点的第n号顶点后第一个邻接顶点号,无返回-1
{
for (int i = n + 1; i < vNum; i++) if (edge[m][i] != NoEdge) return i;
return false;
}
bool find(const name& v, int& i)
{
for (i = 0; i < vNum; i++) if (v == vertex[i]) return true;
return false;
}
};
template <class name, class dist>
下面给出两种储存方法的实现。
#ifndef Graphmem_H
#define Graphmem_H
#include <vector>
#include <list>
using namespace std;
template <class name, class dist, class mem> class Network;
{
vertex = new name[maxV]; edge = new dist*[maxV];
for (int i = 0; i < maxV; i++) edge[i] = new dist[maxV];
}
~AdjMatrix()
{
for (int i = 0; i < maxV; i++) delete []edge[i];
if (iter == vertices[i].e->end())
{
vertices[i].e->push_back(edge(j, cost)); eNum++; return true;
}
if (iter->vID == j) return false;
vertices[i].e->insert(iter, edge(j, cost)); eNum++; return true;
图在数据结构中应用十分广泛,对于图来说最重要的当然是算法,而且相当的一部分都是很专业的,一般的人几乎不会接触到;相对而言,结构就显得分量很轻。你可以看到关于图中元素的操作很少,远没有单链表那里列出的一大堆“接口”。——一个结构如果复杂,那么能确切定义的操作就很有限。
基本储存方法
不管怎么说,还是先得把图存起来。不要看书上列出了好多方法,根本只有一个——邻接矩阵。如果矩阵是稀疏的,那就可以用十字链表来储存矩阵(见前面的《稀疏矩阵(十字链表)》)。如果我们只关系行的关系,那么就是邻接表(出边表);反之,只关心列的关系,就是逆邻接表(入边表)。
const int maxV = 20;//最大节点数
template <class name, class dist>
class AdjMatrix
{
friend class Network<name, dist, AdjMatrix<name, dist> >;
public:
AdjMatrix() : vNum(0), eNum(0)
return -1;
}
private:
int vNum, eNum;
dist NoEdge, **edge; name *vertex;
bool find(const name& v)
{
for (int i = 0; i < vNum; i++) if (v == vertex[i]) return true;
name& getV(int n) { return vertices[n].v; } //没有越界检查
int nextV(int m, int n)//返回m号顶点的第n号顶点后第一个邻接顶点号,无返回-1
{
for (list<edge>::iterator iter = vertices[m].e->begin();
vNum++; return true;
}
bool insertE(name v1, name v2, dist cost)
{
int i, j;
if (v1 == v2 || !find(v1, i) || !find(v2, j)) return false;
if (edge[i][j] != NoEdge) return false;
{
int i, j;
if (v1 == v2 || !find(v1, i) || !find(v2, j)) return false;
for (list<edge>::iterator iter = vertices[i].e->begin();
iter != vertices[i].e->end() && iter->vID < j; iter++);
class LinkedList
{
friend class Network<name, dist, LinkedList<name, dist> >;
public:
LinkedList() : vNum(0), eNum(0) {}
~LinkedList()
{
for (int i = 0; i < vNum; i++) delete vertices[i].e;
delete []edge; delete []vertex;
}
bool insertV(name v)
{
if (find(v)) return false;
vertex[vNum] = v;
for (int i = 0; i < maxV; i++) edge[vNum][i] = NoEdge;
}
bool insertV(name v)
{wenku.baidu.com
if (find(v)) return false;
vertices.push_back(vertex(v, new list<edge>));
vNum++; return true;
}
bool insertE(const name& v1, const name& v2, const dist& cost)
edge[i][j] = cost; eNum++; return true;
}
name& getV(int n) { return vertex[n]; } //没有越界检查
int nextV(int m, int n)//返回m号顶点的第n号顶点后第一个邻接顶点号,无返回-1
{
for (int i = n + 1; i < vNum; i++) if (edge[m][i] != NoEdge) return i;
return false;
}
bool find(const name& v, int& i)
{
for (i = 0; i < vNum; i++) if (v == vertex[i]) return true;
return false;
}
};
template <class name, class dist>
下面给出两种储存方法的实现。
#ifndef Graphmem_H
#define Graphmem_H
#include <vector>
#include <list>
using namespace std;
template <class name, class dist, class mem> class Network;
{
vertex = new name[maxV]; edge = new dist*[maxV];
for (int i = 0; i < maxV; i++) edge[i] = new dist[maxV];
}
~AdjMatrix()
{
for (int i = 0; i < maxV; i++) delete []edge[i];
if (iter == vertices[i].e->end())
{
vertices[i].e->push_back(edge(j, cost)); eNum++; return true;
}
if (iter->vID == j) return false;
vertices[i].e->insert(iter, edge(j, cost)); eNum++; return true;
图在数据结构中应用十分广泛,对于图来说最重要的当然是算法,而且相当的一部分都是很专业的,一般的人几乎不会接触到;相对而言,结构就显得分量很轻。你可以看到关于图中元素的操作很少,远没有单链表那里列出的一大堆“接口”。——一个结构如果复杂,那么能确切定义的操作就很有限。
基本储存方法
不管怎么说,还是先得把图存起来。不要看书上列出了好多方法,根本只有一个——邻接矩阵。如果矩阵是稀疏的,那就可以用十字链表来储存矩阵(见前面的《稀疏矩阵(十字链表)》)。如果我们只关系行的关系,那么就是邻接表(出边表);反之,只关心列的关系,就是逆邻接表(入边表)。
const int maxV = 20;//最大节点数
template <class name, class dist>
class AdjMatrix
{
friend class Network<name, dist, AdjMatrix<name, dist> >;
public:
AdjMatrix() : vNum(0), eNum(0)
return -1;
}
private:
int vNum, eNum;
dist NoEdge, **edge; name *vertex;
bool find(const name& v)
{
for (int i = 0; i < vNum; i++) if (v == vertex[i]) return true;