名词解释

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

准确度:分析结果与真实值接近的程度,其大小可用误差表示。

精密度:平行测量的各测量值之间互相接近的程度,其大小可用偏差表示。

系统误差:是由某种确定的原因所引起的误差,一般有固定的方向(正负)和大小,重复测
定时重复出现。

包括方法误差、仪器或试剂误差及操作误差三种。

绝对误差(absolute error):测量值与真值之差称为绝对误差(δ)。

相对误差(relative error):绝对误差与真值的比值称为相对误差。

偶然误差:是由某些偶然因素所引起的误差,其大小和正负均不固定。

有效数字:是指在分析工作中实际上能测量到的数字。

通常包括全部准确值和最末一位欠准值(有±1个单位的误差)。

平均偏差(average deviation)::各单个偏差绝对值的平均值称为平均偏差。

标准偏差(standard deviation,S):有限次测量,各测量值对平均值的偏离程度。

t分布:指少量测量数据平均值的概率误差分布。

可采用t分布对有限测量数据进行统计处理。

置信水平与显著性水平:指在某一t值时,测定值x落在μ±tS范围内的概率,称为置信水平(也称置信度或置信概率),用P表示;测定值x落在μ±tS范围之外的概率(1-P),称为显著性水平,用α表示。

置信区间与置信限:指在一定的置信水平时,以测定结果x为中心,包括总体平均值μ在内的可信范围,即μ=x±uσ,式中uσ为置信限。

分为双侧置信区间与单侧置信区间。

显著性检验:用于判断某一分析方法或操作过程中是否存在较大的系统误差和偶然误差的检验。

包括t检验和F检验。

t检验:也叫准确度显著性检验。

主要用于检验两个分析结果是否存在显著的系统误差,即判断少量实验数据的平均值与标准试样标准值?之间是否存在显著性差异。

F检验:又称精密度显著性检验,通过比较两组数据的方差S2,以确定它们的精密度是否存在显著性差异。

3
滴定:将滴定剂通过滴管滴入待测溶液中的过程。

3.滴定度(T)两种表示方法:○1每毫升标准溶液中所含有的溶质的质量表示
○2每毫升标准溶液所能滴定的被测物质的质量表示(TT/A)化学计量点:滴定剂的量与被测物质的量正好符合化学反应式所表示的计量关系的一点。

滴定终点:滴定终止(指示剂改变颜色)的一点。

滴定误差:滴定终点与化学计量点不完全一致所造成的相对误差。

可用林邦误差公式计算。

滴定曲线:描述滴定过程中溶液浓度或其相关参数随加入的滴定剂体积而变化的曲线。

滴定突跃和突跃范围:在化学计量点前后±0.1%,溶液浓度及其相关参数发生的急剧变化为滴定突跃。

突跃所在的范围称为突跃范围。

指示剂:滴定分析中通过其颜色的变化来指示化学计量点到达的试剂。

一般有两种不同颜色的存在型体。

指示剂的理论变色点:指示剂具有不同颜色的两种型体浓度相等时,即[In]=[XIn]时,溶液呈
两型体的中间过渡颜色,这点为理论变色点。

指示剂的变色范围:指示剂由一种型体颜色变为另一型体颜色时溶液参数变化的范围。

标准溶液:浓度准确已知的试剂溶液。

常用作滴定剂。

基准物质:可用于直接配制或标定标准溶液的物质。

直接挥发法:通过加热等方法使试样中挥发性组分逸出,用适宜的吸收剂将其全部吸收,称量吸收剂所增加的质量来计算该组分含量的方法。

间接挥发法:通过加热等方法使试样中挥发性组分逸出后,称其残渣,有样品质量的减少来计算待测组分的含量。

4
混合指示剂:两种或两种以上指示剂相混合,或一种指示剂与另一种惰性染料相混合。

利用颜色互补原理,使终点颜色变化敏锐。

滴定反应常数(Kt):是滴定反应平衡常数。

强碱(酸)滴定强酸(碱):Kt=1/Kw=1014;
强碱(酸)滴定弱酸(碱):Kt=Ka(b) /Kw。

Kt值越大,该滴定反应越完全,滴定突跃越大。

滴定曲线:以滴定过程中溶液pH值的变化对滴定体积(或滴定百分数)作图而得的曲线。

滴定突跃:化学计量点附近(±0.1%)pH的突变。

滴定误差:滴定终点与化学计量点不一致引起的误差,与指示剂的选择有关。

质子溶剂:能给出质子或接受质子的溶剂。

包括酸性溶剂、碱性溶剂和两性溶剂。

无质子溶剂:分子中无转移性质子的溶剂。

包括偶极亲质子溶剂和惰性溶剂。

均化效应和均化性溶剂:均化效应是指当不同的酸或碱在同一溶剂中显示相同的酸碱强度水平;具有这种作用的溶剂称为均化性溶剂。

区分效应和区分性溶剂:区分效应是指不同的酸或碱在同一溶剂中显示不同的酸碱强度水平;具有这种作用的溶剂称为区分性溶剂。

5
稳定常数:为一定温度时金属离子与EDTA配合物的形成常数,以KMY表示,此值越大,配合物越稳定。

逐级稳定常数和累积稳定常数:逐级稳定常数是指金属离子与其它配位剂L逐级形成MLn 型配位化合物的各级形成常数。

将逐级稳定常数相乘,得到累积稳定常数。

副反应系数:表示各种型体的总浓度与能参加主反应的平衡浓度之比。

它是分布系数的倒数。

配位剂的副反应系数主要表现为酸效应系数αY(H) 和共存离子效应αY(N)系数。

金属离子的
副反应系数以αM表示,主要是溶液中除EDTA外的其他配位剂和羟基的影响。

金属指示剂:一种能与金属离子生成有色配合物的有机染料显色剂,来指示滴定过程中金属离子浓度的变化。

金属指示剂必须具备的条件:金属指示剂与金属离子生成的配合物颜色应与指示剂本身的颜色有明显区别。

金属指示剂与金属配合物(MIn)的稳定性应比金属-EDTA配合物(MY)的稳定性低。

一般要求KMY'>KMIn'>102。

最高酸度:在配位滴定的条件下,溶液酸度的最高限度。

最低酸度:金属离子发生水解的酸度。

封闭现象:某些金属离子与指示剂生成极稳定的配合物,过量的EDTA不能将其从MIn中夺取出来,以致于在计量点附近指示剂也不变色或变色不敏锐的现象。

第八章电位法及永停滴定法
相界电位:两个不同物相接触的界面上的电位差。

液接电位:两个组成或浓度不同的电解质溶液相接触的界面间所存在的微小电位差。

不对称电位:当玻璃膜内外溶液H+浓度或pH值相等时,从前述公式可知,jM=0,但实际上jM不为0,仍有1~3 mV的电位差
碱差:当测定较强碱性溶液pH值(pH > 9)时,测得的pH值小于真实值而产生的负误差。

酸差:当用pH玻璃电极测定pH<1的强酸性溶液或高盐度溶液时,电极电位与pH之间不呈线性关系,所测定的值比实际的偏高,这个误差叫做酸差
简答题
3、什么叫盐桥?为什么说它能消除液接电位?
盐桥:沟通两个半电池、消除液接电位、保持其电荷平衡、使反应顺利进行的一种装置,内充高浓度的电解质溶液。

用盐桥将两溶液连接后,盐桥两端有两个液接界面,扩散作用以高浓度电解质的阴阳离子为主,而其是盐桥中电解质阴阳离子迁移速率几乎相等,所以形成的液接电位极小,在整个电路上方向相反,可使液接电位相互抵消。

4.试归纳比较各类指示电极和参比电极的组成、电极反应、电极电位。

电极
电极组成
电极反应
电极电位
金属-金属离子电极
M∣Mn+
金属-金属难溶盐电极
Mú MXn
惰性电极
Pt∣[Ox],[Red]
Ox + ne ===Red
膜电极
电极膜等
离子交换和扩散
标准氢电极
镀铂黑铂电极通氢气
甘汞电极
Hg êHg2Cl2,KCl(xM) êê
Hg2Cl2(s) +2e =2Hg(l) +2Cl-
Ag/AgCl电极
Ag çAgCl,(xM)KCl çç
AgCl + e == Ag + Cl-
(1)pH玻璃膜电极(硬质、非晶体)的构造
软质球状玻璃膜,含Na2O、CaO和SiO2,厚度小于0.1mm,内部溶液为pH 6-7(或4)的膜内缓冲溶液及0.1 mol/L 的KCL内参比溶液,内参比电极为Ag-AgCl电极
(2)pH电极响应的机理
玻璃电极对H+选择性响应主要与电极膜的特殊组成有关,普通玻璃电极膜是由固定带负电荷的硅酸晶格组成,在晶格中有体积小、活动能力强的钠离子,溶液中的H+可进入晶格占据Na+点位,而其他高价阴阳离子不能进出晶格。

当内外玻璃膜与水溶液接触时,Na2SiO3晶体骨架中的Na+与水中的H+发生交换,形成双电层,产生电位差,扩散达动态平衡后达稳定相界电位(膜电位),其膜电位可用表达。

对于整个玻璃电极而言,电极电位为。

此式即为采用玻璃电极进行pH测定的理论依据。

6、说明直接电位法、电位滴定法和永停滴定法的测量电池分别是哪种化学电池。

直接电位法(离子选择性电极法):选择合适的指示电极和参比电极,浸入待测溶液中组成原电池,
测定原电池的电动势或电极电位,利用Nernst方程直接求出待测物质含量的方法。

电位滴定法:根据滴定过程中指示电极的电位或电动势变化确定滴定终点
直接电位法、电位滴定法的测量电池为原电池。

永停滴定法:把两个相同的惰性电极(铂电极)插入滴定溶液中,在两个电极之间外加一小电压,观察滴定过程中通过两个电极间的电流突变,根据电流的变化情况确定滴定终点。

永停滴定法的测量电池为电解池。

紫外-可见分光光度法
名词解释:吸光度、透光率、吸光系数(摩尔吸光系数、百分吸光系数)、发色团、助色团、红移、蓝移。

吸光度:指光线通过溶液或某一物质前的入射光强度与该光线通过溶液或物质后的透射光强度比值的对数,用来衡量光被吸收程度的一个物理量。

吸光度用A表示。

透光率:透过透明或半透明体的光通量与其入射光通量的百分率。

吸光系数:单位浓度、单位厚度的吸光度
摩尔吸光系数:一定波长下C为1mol/L ,l为1cm时的吸光度值
百分吸光系数:一定波长下C为1%(w/v) ,l为1cm时的吸光度值
发色团:分子中能吸收紫外或可见光的结构单元,含有非键轨道和n分子轨道的电子体系,能引起π→π*跃迁和n→π*跃迁,
助色团:一种能使生色团吸收峰向长波位移并增强其强度的官能团,如-OH、-NH3、-SH及一些卤族元素等。

这些基团中都含有孤对电子,它们能与生色团中n电子相互作用,使π→π*跃迁跃迁能量降低并引起吸收峰位移。

红移和蓝移:由于化合物结构变化(共轭、引入助色团取代基)或采用不同溶剂后,吸收峰位置向长波方向的移动,叫红移(长移);吸收峰位置向短波方向移动,叫蓝移(紫移,短移)
简答题
2.什么叫选择吸收?它与物质的分子结构有什么关系?
物质对不同波长的光吸收程度不同,往往对某一波长(或波段)的光表现出强烈的吸收。

这时称该物质对此波长(或波段)的光有选择性的吸收。

由于各种物质分子结构不同,从而对不同能量的光子有选择性吸收,吸收光子后产生的吸收光谱不同,利用物质的光谱可作为物质分析的依据。

3.电子跃迁有哪几种类型?跃迁所需的能量大小顺序如何?具有什么样结构的化合物产生紫外吸收光谱?紫外吸收光谱有何特征?
电子跃迁类型有以下几种类型:σ→σ*跃迁,跃迁所需能量最大;n →σ*跃迁,跃迁所需能量较大,π→π*跃迁,跃迁所需能量较小;n→π*跃迁,所需能量最低。

而电荷转移跃迁吸收峰可延伸至可见光区内,配位场跃迁的吸收峰也多在可见光区内。

分子结构中能产生电子能级跃迁的化合物可以产生紫外吸收光谱。

紫外吸收光谱又称紫外吸收曲线,为分子光谱,属于连续的带状光谱,是以波长或波数为横坐标,以吸光度为纵坐标所描绘的图线。

在吸收光谱上,一般都有一些特征值,如最大吸收波长(吸收峰),最小吸收波长(吸收谷)、肩峰、末端吸收等。

紫外-可见分光光度计从光路分类有哪几类?各有何特点?
(1)单光束分光光度计:结构简单,操作方便,维修容易,适用于常规分析。

(2)双光束分光光度计:能自动记录吸收光谱曲线,自动消除光源强度变化所引起的误差。

(3)双波长分光光度计:能提高方法的灵敏度和选择性,能获得导数光谱。

可用于多组分混合物、混浊试样分析,以及存在背景干扰或共存组分吸收干扰的情况下的分析。

(4)二极管阵列分光光度计:可全部波长同时检测,可获得时间、光强度和波长三维谱
12.以有机化合物的官能团说明各种类型的吸收带,并指出各吸收带在紫外-可见吸收光谱中的大概位置和各吸收带的特征。

(1)R带:由含杂原子的不饱和基团的n →π*跃迁产生,如C=O;C=N;—N=N—,其λ200~400nm,强度较弱ε<100。

(2)K带:由共轭双键的π→π*跃迁产生,如(—CH=CH—)n,—CH=C—CO—,其λ>200nm,ε>104。

(3)B带:苯环本身振动及闭合环状共轭双键π-π*跃迁而产生的吸收带,是芳香族化合物的主要特征吸收带,其λ256nm,宽带,具有精细结构;ε~200。

(4)E带:由苯环环形共轭系统的π→π*跃迁产生,也是芳香族化合物的特征吸收带其中E1带180nm,εmax>104 (常观察不到),E2带200nm,εmax=7000。

(5)电荷转移吸收带:有电子给予体和电子接受体的有机或无机化合物电荷转移跃迁。

其λ范围宽,e>104。

(6)配位体场吸收带:配合物中心离子d-d或f-f跃迁产生。

可延伸至可见光区,e<102。

荧光分析法
1.如何区别荧光、磷光、瑞利光和拉曼光?如何减少散射光对荧光测定的干扰?
荧光:是某些物质吸收一定的紫外光或可见光后,基态分子跃迁到激发单线态的各个不同能级,然后经过振动弛豫回到第一激发态的最低振动能级,在发射光子后,分子跃迁回基态的各个不同振动能级。

这时分子发射的光称为荧光。

荧光的波长比原来照射的紫外光的波长更长。

磷光:是有些物质的激发分子通过振动弛豫下降到第一激发态的最低振动能层后,经过体系间跨越至激发三重态的高振动能层上,再通过振动弛豫降至三重态的最低振动能层,然后发出光辐射跃迁至基态的各个振动能层.这种光辐射称为磷光。

磷光的波长比荧光更长。

瑞利光:光子和物质分子发生弹性碰撞时.不发生能量的交换,仅是光子运动的方向发生改变,这种散射光叫做瑞利光,其波长和入射光相同。

拉曼光:光子和物质分子发生非弹性碰撞时,在光子运动方向发生改变的同时,光子与物质分子发生能量交换,使光于能量发生改变。

当光子将部分能量转给物质分子时,光子能量减少,波长比入射光更长;当光子从物质分子得到能量时,光子能量增加,波氏比入射光为短。

这两种光均称为拉曼光。

为了消除瑞利光散射的影响,荧光的测量通常在与激发光成直角的方向上进行,并通过调节荧光计的狭缝宽度来消除
为消除拉曼光的影响可选择适当的溶剂和选用合适的激发光波长
2.何谓荧光效率?具有哪些分子结构的物质有较高的荧光效率?
荧光效率又称荧光量子效率,是物质发射荧光的量子数和所吸收的激发光量子数的比值称,用Ψf表示。

以下分子结构的物质有较高的荧光效率:
(1)长共轭结构:如含有芳香环或杂环的物质。

(2)分子的刚性和共平面性:分子的刚性和共平面性越大,荧光效率就越大,并且荧光波长产生长移。

(3)取代基:能增加分子的π电子共轭程度的取代基,常使荧光效率提高,荧光长移,如-NH2、-OH、-OCH3、-CN等。

3.哪些因素会影响荧光波长和强度?
(1)温度:物质的荧光随温度降低而增强。

(2)溶剂:一般情况下,荧光波长随着溶剂极性的增大而长移,荧光强度也有增强。

溶剂如能与溶质分子形成稳定氢键,荧光强度减弱。

(3)pH:荧光物质本身是弱酸或弱碱时,溶液的pH对该荧光物质的荧光强度有较大影响。

(4)荧光熄灭剂:荧光熄灭是指荧光物质分子与溶剂分子或溶质分子的相互作用引起荧光强度降低或荧光强度与浓度不呈线性关系的现象。

(5)散射光的干扰:包括瑞利光和拉曼光对荧光测定有干扰。

红外吸收光谱法
1、红外光区是如何划分的?写出相应的能级跃迁类型.
区域名称
波长(µm)
波数(cm-1)
能级跃迁类型
近红外区
泛频区
0.75-2.5
13158-4000
OH、NH、CH键的倍频吸收
中红外区
基本振动区
2.5-25
4000-400
分子振动,伴随转动
远红外区
分子转动区
25-300
400-10
分子转动
2、红外吸收光谱法与紫外可见吸收光谱法有何不同?
I R
UV
起源
分子振动、转动能级跃迁
外层价电子能级及振动、转动能级跃迁
适用
所有红外吸收的化合物
具n-π*、π-π*跃迁有机化合物
特征性
特征性强
简单、特征性不强
光谱描述
透光率为纵坐标,波数为横坐标
吸光度或透光率为纵坐标,波长为横坐标
用途
鉴定化合物类别、鉴定官能团、推测结构
定量、推测有机物共轭骨架
红外光谱仪与紫外-可见分光光度计在主要部件上的不同。

I R
UV
光源
Nernst灯和硅碳棒
紫外区使用氘灯,可见区使用钨灯
单色器
Michelson干涉仪或光栅
棱镜或光栅
吸收池
盐窗做成的气体池或液体池
紫外区须用石英比色皿
可见区用石英或玻璃比色皿
检测器
真空热电偶、热电型或光电导型检测器
光电倍增管
3.简述红外吸收光谱产生的条件。

(1)辐射应具有使物质产生振动跃迁所需的能量,即必须服从νL= △V·ν
(2)辐射与物质间有相互偶合作用,偶极矩必须发生变化,即振动过程△μ≠0;
4.何为红外非活性振动?
有对称结构分子中,有些振动过程中分子的偶极矩变化等于零,不显示红外吸收,称为红外非活性振动。

5、何为振动自由度?为何基本振动吸收峰数有时会少于振动自由度?
振动自由度是分子基本振动的数目,即分子的独立振动数。

对于非直线型分子,分子基本振动数为3n-6。

而对于直线型分子,分子基本振动数为3n-5。

振动吸收峰数有时会少于振动自由度其原因可能为:
分子对称,振动过程无偶极矩变化的红外非活性活性。

两个或多个振动的能量相同时,产生简并。

吸收强度很低时无法检测。

振动能对应的吸收波长不在中红外区。

6.基频峰的分布规律有哪些?
(1)折合质量越小,伸缩振动频率越高
(2)折合质量相同的基团,伸缩力常数越大,伸缩振动基频峰的频率越高。

(3)同一基团,一般n> b > g
原子吸收分光光度法
1.在原子吸收分光光度法中为什么常常选择共振吸收线作为分析线?
原子吸收一定频率的辐射后从基态到第一激发态的跃迁最容易发生,吸收最强。

对大多数元素来说,共共振线(特征谱线)是元素所有原子吸收谱线中最灵敏的谱线。

因此,在原子吸收光谱分析中,常用元素最灵敏的第一共振吸收线作为分析线。

2.什么叫积分吸收?什么叫峰值吸收系数?为什么原子吸收分光光度法常采用峰值吸收而不应用积分吸收?
积分吸收与吸收介质中吸收原子的浓度成正比,而与蒸气和温度无关。

因此,只要测定了积分吸收值,就可以确定蒸气中的原子浓度但由于原于吸收线很窄,宽度只有约0.002nm,要在如此小的轮廓准确积分,要求单色器的分辨本领达50万以上,这是一般光谱仪不能达到的。

Waish从理论上证明在吸收池内元素的原子浓度和温度不太高且变比不大的条件下,峰值吸收与待测基态原子浓度存在线性关系,可采用峰值吸收代替积分吸收。

而峰值吸收系数的测定、只要使用锐线光源,而不要使用高分辨率的单色器就能做别。

3.原子吸收分光光度法对光源的基本要求是什么?为什么要求用锐线光源?
原子吸收分光光度法对光源的基本要求是光源发射线的半宽度应小于吸收线的半宽度;发射线中心频率恰好与吸收线中心频率V0相重合。

原子吸收法的定量依据使比尔定律,而比尔定律只适应于单色光,并且只有当光源的带宽比吸收峰的宽度窄时,吸光度和浓度的线性关系才成立。

然而即使使用一个质量很好的单色器,其所提供的有效带宽也要明显大于原子吸收线的宽度。

若采用连续光源和单色器分光的方法测定原子吸收则不可避免的出现非线性校正曲线,且灵敏度也很低。

故原子吸收光谱分析中要用锐线光源。

4.原子吸收分光光度计主要由哪几部分组成?各部分的功能是什么?
原子吸收分光光度计由光源、原子化系统、分光系统和检测系统四部分组成.
光源的功能是发射被测元素的特征共振辐射。

原子化系统的功能是提供能量,使试样干燥,蒸发和原子化。

分光系统的作用是将所需要的共振吸收线分离出来。

检测系统将光信号转换成电信号后进行显示和记录结果。

5.可见分光光度计的分光系统放在吸收池的前面,而原子吸收分光光度计的分光系统放在原子化系统(吸收系统)的后面,为什么?
可见分光光度计的分光系统的作用是将来自光源的连续光谱按波长顺序色散,并从中分离出一定宽度的谱带与物质相互作用,因此可见分光光度计的分光系统一般放在吸收池的前面。

原子吸收分光光度计的分光系统的作用是将所需要的共振吸收线分离出来,避免临近谱线干扰。

为了防止原子化时产生的辐射不加选择地都进入检测器以及避免光电倍增管的疲劳,单色器通常配置在原子化器之后。

6.什么叫灵敏度、检出限?它们的定义与其他分析方法有何异同?
原子吸收分光光度法的灵敏度,它表示当被测元素浓度或含量改变一个单位时吸收值的变化量。

检出限是指能以适当的置信度被检出的元素的最小浓度(又称相对检出限)或最小量(又称绝对检出限)
原子吸收分光光度法在定义灵敏度时,并没有考虑测定时的噪声,这是与其它分析方法灵敏度的定义有所不同。

而检出限的定义由最小测量值Al导出:A1=Ab平均-kSb,式中,Ab 平均是空白溶液测定的平均值。

Sb是空白溶液测定的标准偏差,k是置信因子。

这与其它分析方法不同。

核磁共振波谱法
解释下列各词
(1)屏蔽效应和去屏蔽效应(2)自旋偶合和自旋分裂
(3)化学位移和偶合常数(4)化学等价核和磁等价核
(1)屏蔽效应:原子核外电子运动在外加磁场H0作用下产生与外加磁场方向相反的次级磁场,造成核实际受到的磁场强度减弱。

去屏蔽效应:烯烃、醛、芳环中,π电子在外加磁场作用下产生环流,使氢原子周围产生感应磁场,如果感应磁场的方向与外加磁场相同,即增加了外加磁场,所以在外加磁场还没有达到Ho时,就发生能级的跃迁,称为去屏蔽效应,该区域称为去屏蔽区。

(2)自旋偶合:相邻核自旋产生核磁矩间的相互干扰的现象。

自旋裂分:由自旋偶合引起的共振峰分裂现象。

(3)化学位移在一定的辐射频率下,处于不同化学环境的有机化合物中的自旋核,产生核磁共振的磁场强度或共振吸收频率不同的现象。

偶合常数:多重峰的峰间距;用来衡量偶合作用的大小。

(4)化学等价核:化学位移完全相同的核。

磁等价核:分子中的一组化学等价核,若它们对组外任何一个核都是以相同的大小偶合,则这一组核为磁等价核。

2.下列哪一组原子核不产生核磁共振信号,为什么?
、、、、
并不是是所有原子核都能产生核磁共振信号,原子核能产生核磁共振现象是因为具有核自旋,其自旋量子数须不等于0。

质量数和质子数均为偶数的原子核,自旋量子数为0 ,质量数为奇数的原子核,自旋量子数为半整数,质量数为偶数,质子数为奇数的原子核,自旋量子数为整数。

由此,、这一组原子核都不产生核磁共振信号。

3.为什么强射频波照射样品,会使NMR信号消失,而UV与IR吸收光谱法则不消失?
自旋核在磁场作用下,能级发生分裂,处在低能态核和处于高能态核的分布服从波尔兹曼分布定律,当B0 = 1.409 T,温度为300K时,高能态和低能态的1H核数之比为处于低能级的核数比高能态核数多十万分之一,而NMR信号就是靠这极弱过量的低能态核产生的。

若以合适的射频照射处于磁场的核,核吸收能量后,由低能态跃迁到高能态,其净效应是吸收,产生共振信号。

若用强射频波照射样品,高能态核不能通过有效途径释放能量回到低能态,低能态的核数越来越少,一定时间后高能态和低能态的核数相等,这时不再吸收,核磁共振信号消失。

而UV与IR吸收光谱法是根据光线被吸收后的减弱程度来判断样品中待测元素的含量的,即使用较强辐射照射,吸收也不会消失。

相关文档
最新文档