不等式的证明-高考理科数学试题

合集下载

高中数学不等式高考真题精选和解析

高中数学不等式高考真题精选和解析

高中数学不等式高考真题精选和解析1.(2020·全国卷Ⅱ)已知函数f(x)=|x-a2|+|x-2a+1|.(1)当a=2时,求不等式f(x)≥4的解集;(2)若f(x)≥4,求a的取值范围.2.(2020·全国卷Ⅰ)已知函数f(x)=|3x+1|-2|x-1|.(1)画出y=f(x)的图象;(2)求不等式f(x)>f(x+1)的解集.2.(2020·全国卷Ⅲ)设a,b,c∈R,a+b+c=0,abc=1.(1)证明:ab+bc+ca<0;(2)用max{a,b,c}表示a,b,c中的最大值,证明:max{a,b,c}≥3 4.4.(2019·全国卷Ⅰ)已知a,b,c为正数,且满足abc=1.证明:(1)1a +1b+1c≤a2+b2+c2;(2)(a+b)3+(b+c)3+(c+a)3≥24.5.已知函数f(x)=|x+1|+|2x-1|.(1)解不等式f(x)≤x+3;(2)若g(x)=|3x-2m|+|3x-2|,对任意的x1∈R,存在x2∈R,使得f(x1)=g(x2)成立,求实数m的取值范围.6.已知函数f(x)=|2x+1|+|x-1|.(1)求不等式f(x)≥3的解集;(2)若直线y=x+a与y=f(x)的图象所围成的多边形面积为92,求实数a的值.答案解析1.解 (1)当a =2时,f (x )=|x -4|+|x -3|.当x ≤3时,f (x )=4-x +3-x =7-2x ,由f (x )≥4,解得x ≤32;当3<x <4时,f (x )=4-x +x -3=1,f (x )≥4无解; 当x ≥4时,f (x )=x -4+x -3=2x -7,由f (x )≥4,解得x ≥112. 综上所述,f (x )≥4的解集为⎩⎨⎧⎭⎬⎫x |x ≤32或x ≥112. (2)f (x )=|x -a 2|+|x -2a +1|≥|(x -a 2)-(x -2a +1)|=|-a 2+2a -1|=(a -1)2(当且仅当2a -1≤x ≤a 2时取等号),∴(a -1)2≥4,解得a ≤-1或a ≥3,∴a 的取值范围为(-∞,-1]∪[3,+∞).2.解 (1)f (x )=⎩⎪⎨⎪⎧ x +3,x ≥1,5x -1,-13<x <1,-x -3,x ≤-13,作出图象,如图所示.(2)将函数f (x )的图象向左平移1个单位,可得函数f (x +1)的图象,如图所示:由-x -3=5(x +1)-1,解得x =-76.所以不等式的解集为⎝ ⎛⎭⎪⎫-∞,-76.3. 证明 (1)∵(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc =0,∴ab +bc +ca =-12(a 2+b 2+c 2).由abc =1得a ,b ,c 均不为0,则a 2+b 2+c 2>0,∴ab +bc +ca =-12(a 2+b 2+c 2)<0.(2)不妨设max{a ,b ,c }=a ,由a +b +c =0,abc =1可知,a >0,b <0,c <0,∵a =-b -c ,a =1bc ,∴a 3=a 2·a =(b +c )2bc =b 2+c 2+2bc bc ≥2bc +2bc bc =4. 当且仅当b =c 时,取等号,∴a ≥34,即max{a ,b ,c }≥34.4. 证明 (1)因为a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ac , 又abc =1,故有a 2+b 2+c 2≥ab +bc +ca=ab +bc +ca abc=1a +1b +1c . 当且仅当a =b =c =1时,等号成立.所以1a +1b +1c ≤a 2+b 2+c 2.(2)因为a ,b ,c 为正数且abc =1,故有(a +b )3+(b +c )3+(c +a )3≥3 3(a +b )3(b +c )3(c +a )3=3(a +b )(b +c )(c +a ) ≥3×(2ab )×(2bc )×(2ca )=24.当且仅当a =b =c =1时,等号成立.所以(a +b )3+(b +c )3+(c +a )3≥24.5.(1)原不等式等价于⎩⎨⎧ x ≤-1,-3x ≤x +3或⎩⎪⎨⎪⎧ -1<x ≤12,-x +2≤x +3或⎩⎪⎨⎪⎧ x >12,3x ≤x +3,解得-12≤x ≤32,故原不等式的解集为⎩⎨⎧⎭⎬⎫x |-12≤x ≤32. (2)由f (x )=|x +1|+|2x -1|=⎩⎪⎨⎪⎧ -3x ,x ≤-1,-x +2,-1<x ≤12,3x ,x >12,可知当x =12时,f (x )最小,无最大值,且f (x )min =f ⎝ ⎛⎭⎪⎫12=32. 设A ={y |y =f (x )},B ={y |y =g (x )}, 则A =⎩⎨⎧⎭⎬⎫y |y ≥32,因为g (x )=|3x -2m |+|3x -2|≥|(3x -2m )-(3x -2)|=|2m -2|,所以B ={y |y ≥|2m -2|}.由题意知A ⊆B ,所以|2m -2|≤32,所以m ∈⎣⎢⎡⎦⎥⎤14,74. 故实数m的取值范围为⎩⎨⎧⎭⎬⎫m |14≤m ≤74.6.解 (1)由题意,得f (x )=⎩⎪⎨⎪⎧ 3x ,x ≥1,x +2,-12<x <1,-3x ,x ≤-12.当x ≥1时,由f (x )≥3得3x ≥3,解得x ≥1;当-12<x <1时,由f (x )≥3得x +2≥3,解得x ≥1, 这与-12<x <1矛盾,故舍去;当x ≤-12时,由f (x )≥3得-3x ≥3,解得x ≤-1.综上可知,不等式f (x )≥3的解集为{x |x ≤-1或x ≥1}.(2)画出函数y =f (x )的图象,如图所示,其中A ⎝ ⎛⎭⎪⎫-12,32,B (1,3), ∴k AB =3-321+12=1,∴直线y =x +a 与直线AB 平行.若要围成多边形,则a >2.易得直线y =x +a 与y =f (x )的图象交于两点C ⎝ ⎛⎭⎪⎫a 2,3a 2,D ⎝ ⎛⎭⎪⎫-a 4,3a 4,则|CD|=2·|a2+a4|=324a,平行线AB与CD间的距离d=|a-2|2=a-22,|AB|=322,∴梯形ABCD的面积S=322+324a2·a-22=32+34a2·(a-2)=92(a>2),即(a+2)(a-2)=12,∴a=4.故所求实数a的值为4.。

2021年高考数学考点60不等式的证明柯西不等式必刷题文含解析

2021年高考数学考点60不等式的证明柯西不等式必刷题文含解析

考点60 不等式的证明、柯西不等式1.已知函数.(1)解不等式;(2)设函数的最小值为c,实数a,b满足,求证:.【答案】(1);(2)见解析2.已知函数.(1)当时,解不等式;(2)若的解集为,,求证:.【答案】(1);(2)证明见解析.3.已知函数.(1)求不等式的解集;(2)设,证明: .【答案】(1) (2)见解析【解析】(1)当时,恒成立,所以;当时,,所以,综合可知,不等式的解集为.4.设函数,(实数)(1)当,求不等式的解集;(2)求证:.【答案】(1);(2)【解析】(1)原不等式等价于,当时,可得,得;当时,可得,得不成立;当时,可得,得;综上所述,原不等式的解集为5.已知函数,关于的不等式的解集记为. (1)求;(2)已知,,求证:.【答案】(1)(2)见解析【解析】(1)由,得,即或或解得或,所以,集合.(2)证明:∵,,∴,∴,,,∵,∴.6.已知,且,证明:(1);(2).【答案】(1)见解析(2)见解析7.关于的不等式的解集为.(1)某某数的值;(2)若,且,求证:. 【答案】(1)1(2)见解析【解析】8.已知函数,.(1)解不等式;(2)设,求证:.【答案】(1);(2)证明见解析.【解析】(1)由题意得原不等式为,等价于或或,解得或或,综上可得.∴原不等式的解集为.(2),当且仅当时等号成立.9.已知实数x, y满足.(1)解关于x的不等式;(2)若,证明:【答案】(1);(2)9(2)且,.当且仅当时,取“=”.10.已知,且.(1)若恒成立,求的取值X围;(2)证明:.【答案】(1);(2)见解析.当时,,解得,故;综上,.(2),,.11.已知函数.(1)解不等式;(2)若对任意恒成立,求证:. 【答案】(1) ;(2)证明见解析.因为对任意恒成立,所以,又,所以.12.已知,不等式的解集是.(1)求集合;(2)设,证明:.【答案】(Ⅰ). (Ⅱ)见解析.13.已知函数()21f x x x =+--. (1)求不等式()2f x ≥的解集;(2)记()f x 的最大值为k ,证明:对任意的正数a ,b ,c ,当a b c k ++=a b c k ≤成立.【答案】(1) 1,2⎡⎫+∞⎪⎢⎣⎭;(2)见解析.14.已知实数,,a b c 满足()4a b c +=,证明: (1)()2228a b c +≥; (2)22228a b c ++≥. 【答案】(1)见解析;(2)见解析.【解析】(1)由()4a b c +=,得()2216a b c +=, 所以()222216a b bc c ++=, 即222162b bc c a ++=. 因为()222222b bc c b c ++≤+,当且仅当b c =时,取等号, 所以()222162b c a≤+, 所以()2228a b c ≤+,15.已知,.(1)求的最小值(2)证明:. 【答案】(1)3;(2)证明见解析. 【解析】(1)因为,,所以,即,当且仅当时等号成立,此时取得最小值3.(2).16.已知函数()2F x x m x =-++的图象的对称轴为1x =.(1)求不等式()2F x x ≥+的解集;(2)若函数()f x 的最小值为M ,正数a ,b 满足a b M +=,求证:12924a b +≥. 【答案】(1) ][(),04,-∞⋃+∞ (2)见解析17.已知函数()23f x x x m =---R ;(1)某某数m 的取值X 围;(2)设实数t 为m 的最大值,若实数a ,b ,c 满足2222a b c t ++=,求222111123a b c +++++的最小值.【答案】(1)3m ≤-;(2)3518.已知函数()31f x x x =++-的最小值为m . (1)求m 的值;(2)若0a >,0b >,a b m +=,求证1494a b +≥. 【答案】(1)4m =(2)见解析【解析】(1)()31314f x x x x x =++-≥++-=,取等号时,()()310x x +-≥,即31x -≤≤,故m=4.(2)由(1)a+b=4,所以14145444a b a b a b a b b a +⎛⎫⎛⎫+=+=++ ⎪⎪⎝⎭⎝⎭. 因为2144a b a b b a b a +≥⋅=,取等号时,4a b b a =,因为a+b=4,所以a=43,83b =.故1494a b +≥. 19.(1)已知函数()3,f x x a x a R =--+∈.若[]0,3x ∈时,()4f x ≤,某某数a 的取值X 围; (2)已知,,a b c R +∈,且1a b c ++=,求证:22213a b c ++≥. 【答案】(1)[-7,7](2)见解析【解析】、(1)当[]0,3x ∈时,()4f x ≤即7x a x -≤+,由此77x x a x -≤-≤+在[]0,3上恒成立,故得7a ≥-且27a x ≤+.当[]0,3x ∈时,27x +的最小值为7,所以a 的取值X 围是[]7,7-. (2)因为()()()2220a b a c b c -+-+-≥,所以222a b c ab bc ac ++≥++,所以()2223a b c ∴++≥()21a b c ++=,故22213a b c ++≥.20.已知函数f(x)=x+2,g(x)=2-2x, (Ⅰ)若,且恒成立,某某数的取值X 围; (Ⅱ)若,求的最大值.【答案】(1);(2).21.已知函数.(1)解不等式;(2)记函数的最小值为,若,,均为正实数,且,求的最小值.【答案】(1)(2)22.选修4-5:不等式选讲(1)已知,都是正实数,且,求的最小值;(2),,求.【答案】(1);(2)见解析.【解析】(1)由柯西不等式得,当且仅当时取等号;∴,∴的最小值为.(2). 23.已知函数.(Ⅰ)若,且恒成立,某某数的取值X围;(Ⅱ)若,求的最大值.【答案】(Ⅰ);(Ⅱ).24.已知函数的最小值为(,,为正数).(1)求的最小值;(2)求证:.【答案】(1)36;(2)见解析.【解析】(1)∵(当且仅当时取等号),由题意,得.根据柯西不等式,可知,∴.∴的最小值为36.(2)∵,,,∴,∴.25.已知a,b,c均为正数,且a+b+c=1,则的最大值为________.【答案】。

高考数学(理)三年真题专题演练—不等式、推理与证明

高考数学(理)三年真题专题演练—不等式、推理与证明
高考数学三年真题专题演练—不等式、推理与证明
1.【2021·浙江高考真题】若实数x,y满足约束条件 ,则 的最小值是()
A. B. C. D.
【答案】B
【分析】
画出满足条件的可行域,目标函数化为 ,求出过可行域点,且斜率为 的直线在 轴上截距的最大值即可.
【详解】
画出满足约束条件 的可行域,
如下图所示:
故选:B
【点睛】求线性目标函数z=ax+by(ab≠0)的最值,当b>0时,直线过可行域且在y轴上截距最大时,z值最大,在y轴截距最小时,z值最小;当b<0时,直线过可行域且在y轴上截距最大时,z值最小,在y轴上截距最小时,z值最大.
4.【2020年高考全国Ⅰ卷理数】埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为
A. B.
C. D.
下面来说明选项A的正确性:
设集合 ,且 , ,
则 ,且 ,则 ,
同理 , , , , ,
若 ,则 ,则 ,故 即 ,
又 ,故 ,所以 ,
故 ,此时 ,故 ,矛盾,舍.
若 ,则 ,故 即 ,
又 ,故 ,所以 ,
故 ,此时 .
若 ,则 ,故 ,故 ,
即 ,故 ,
此时 即 中有7个元素.
故A正确.
故选:A.
【点睛】“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.

高三数学高考真题理科专题六不等式,推理与证明

高三数学高考真题理科专题六不等式,推理与证明

专题六 不等式,推理与证明1.(2013·高考新课标全国卷Ⅰ)设△A n B n C n 的三边长分别为a n ,b n ,c n ,△A n B n C n 的面积为S n ,n =1,2,3,….若b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1=c n +a n 2,c n +1=b n +a n2,则( )A .{S n }为递减数列B .{S n }为递增数列C .{S 2n -1}为递增数列,{S 2n }为递减数列D .{S 2n -1}为递减数列,{S 2n }为递增数列解析:选B.在△A 1B 1C 1中,b 1>c 1,b 1+c 1=2a 1, ∴b 1>a 1>c 1.在△A 2B 2C 2中,a 2=a 1,b 2=c 1+a 12,c 2=b 1+a 12,b 2+c 2=2a 1,∴c 1<b 2<a 1<c 2<b 1.在△A 3B 3C 3中,a 3=a 2=a 1,b 3=c 2+a 22=c 2+a 12,c 3=b 2+a 22=b 2+a 12,b 3+c 3=2a 1,∴a 1<b 3<c 2,b 2<c 3<a 1, ∴c 1<b 2<c 3<a 1<b 3<c 2<b 1.由归纳知,n 越大,两边c n ,b n 越靠近a 1且c n +b n =2a 1,此时面积S n 越来越大,当且仅当c n =b n =a 1时△A n B n C n 面积最大.2.(2013·高考新课标全国卷Ⅱ)已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y ≤3,y ≥a (x -3).若z =2x +y的最小值为1,则a =( )A.14B.12 C .1 D .2解析:选B.作出不等式组表示的可行域,如图(阴影部分). 易知直线z =2x +y 过交点A 时,z 取最小值, 由⎩⎪⎨⎪⎧x =1,y =a (x -3), 得⎩⎪⎨⎪⎧x =1,y =-2a , ∴z min =2-2a =1,解得a =12,故选B.3.(2013·高考新课标全国卷Ⅱ)设x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x +y -1≥0,x ≤3,则z =2x -3y 的最小值是( )A .-7B .-6C .-5D .-3解析:选B.作出不等式组表示的可行域,如图(阴影部分).易知直线z =2x -3y 过点C 时,z 取得最小值. 由⎩⎪⎨⎪⎧ x =3,x -y +1=0,得⎩⎪⎨⎪⎧x =3,y =4,∴z min =2×3-3×4=-6,故选B. 4.(2013·高考大纲全国卷)不等式|x 2-2|<2的解集是( ) A .(-1,1) B .(-2,2) C .(-1,0)∪(0,1) D .(-2,0)∪(0,2)解析:选D.由|x 2-2|<2,得-2<x 2-2<2,即0<x 2<4,所以-2<x <0或0<x <2,故解集为(-2,0)∪(0,2).5.(2013·高考新课标全国卷Ⅱ)已知点A (-1,0),B (1,0),C (0,1),直线y =ax +b (a >0)将△ABC 分割为面积相等的两部分,则b 的取值范围是( )A .(0,1)B .(1-22,12)C .(1-22,13]D .[13,12)解析:选B.由题意画出图形,如图(1). 由图可知,直线BC 的方程为x +y =1. 由⎩⎪⎨⎪⎧x +y =1,y =ax +b ,解得M (1-b a +1,a +b a +1).可求N (0,b ),D(-ba,0).∵直线y =ax +b 将△ABC 分割为面积相等的两部分,∴S △B D M =12S △ABC .又S △BOC =12S △ABC ,∴S △CMN =S △O D N ,即12×|-b a |×b =12(1-b )×(1-b a +1). 整理得b 2a =(1-b )2a +1.∴(1-b )2b 2=1+a a,∴1b -1= 1+1a , ∴1b = 1+1a+1, 即b =11+1a+1,可以看出,当a 增大时,b 也增大.当a →+∞时,b →12,即b <12.当a →0时,直线y =ax +b 接近于y =b .当y =b 时,如图(2),S △CDM S △ABC =CN 2CO2=(1-b )212=12.∴1-b =22,∴b =1-22.∴b >1-22.由上分析可知1-22<b <12,故选B.6.(2013·高考山东卷)设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当zxy取得最小值时,x +2y -z 的最大值为( )A .0 B.98C .2 D.94解析:选C.z =x 2-3xy +4y 2(x ,y ,z ∈R +),∴z xy =x 2-3xy +4y 2xy =x y +4y x -3≥2x y ·4y x-3=1. 当且仅当x y =4yx,即x =2y 时“=”成立,此时z =x 2-3xy +4y 2=4y 2-6y 2+4y 2=2y 2,∴x +2y -z =2y +2y -2y 2=-2y 2+4y =-2(y -1)2+2. ∴当y =1时,x +2y -z 取最大值2.7.(2013·高考山东卷)在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x -y -2≥0,x +2y -1≥0,3x +y -8≤0,所表示的区域上一动点,则直线OM 斜率的最小值为( )A .2B .1C .-13D .-12解析:选C.如图所示,⎩⎪⎨⎪⎧2x -y -2≥0,x +2y -1≥0,3x +y -8≤0,所表示的平面区域为图中的阴影部分.由⎩⎪⎨⎪⎧x +2y -1=0,3x +y -8=0,得A (3,-1). 当M 点与A 重合时,OM 的斜率最小,k OM =-13.8.(2013·高考山东卷)设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0.则当xy z 取得最大值时,2x+1y -2z的最大值为( ) A .0 B .1 C.94D .3 解析:选B.z =x 2-3xy +4y 2(x >0,y >0,z >0), ∴xy z =xy x 2-3xy +4y 2=1x y +4y x-3≤14-3=1. 当且仅当x y =4y x ,即x =2y 时等号成立,此时z =x 2-3xy +4y 2=4y 2-6y 2+4y 2=2y 2,∴2x+1y -2z =22y +1y -22y 2=-1y 2+2y =-(1y -1)2+1,∴当y =1时,2x +1y -2z的最大值为1. 9.(2013·高考北京卷)设a ,b ,c ∈R ,且a >b ,则( )A .ac >bc B.1a <1bC .a 2>b 2D .a 3>b 3解析:选D.A 项,c ≤0时,由a >b 不能得到ac >bc ,故不正确;B 项,当a >0,b <0(如a =1,b =-2)时,由a >b 不能得到1a <1b,故不正确;C 项,由a 2-b 2=(a +b )(a -b )及a >b 可知当a +b <0时(如a =-2,b =-3或a =2,b =-3)均不能得到a 2>b 2,故不正确;D 项,a 3-b 3=(a -b )(a 2+ab +b 2)=(a -b )·[(a +b 2)2+34b 2],因为(a +b 2)2+34b 2 >0,所以可由a >b 知a 3-b 3>0,即a 3>b 3,故正确.10.(2013·高考安徽卷)已知一元二次不等式f (x )<0的解集为{x |x <-1或x >12},则f (10x )>0的解集为( )A .{x |x <-1或x >-lg 2}B .{x |-1<x <-lg 2}C .{x |x >-lg2 }D .{x |x <-lg 2}解析:选D.由题意知,一元二次不等式f (x )>0的解集为{x |-1<x <12}.而f (10x )>0,∴-1<10x <12,解得x <lg 12,即x <-lg 2.11.(2013·高考北京卷)设关于x ,y 的不等式组⎩⎪⎨⎪⎧2x -y +1>0,x +m <0,y -m >0,表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2,求得m 的取值范围是( )A .(-∞,43)B .(-∞,13)C .(-∞,-23)D .(-∞,-53)解析:选C.当m ≥0时,若平面区域存在,则平面区域内的点在第二象限,平面区域内不可能存在点P (x 0,y 0)满足x 0-2y 0=2,因此,m <0.如图所示的阴影部分为不等式组表示的平面区域.要使可行域内包含y =12x -1上的点,只需可行域边界点(-m ,m )在直线y =12x -1的下方即可,即m <-12m -1,解得m <-23.12.(2013·高考天津卷)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧3x +y -6≥0,x -y -2≤0,y -3≤0,则目标函数z =y -2x 的最小值为( )A .-7B .-4C .1D .2解析:选A.画出可行域(如图),由z =y -2x 得y =2x +z ,由图形可知,当直线y =2x +z 经过点A (5,3)时,z 取得最小值,最小值为z min =3-10=-7.13.(2013·高考福建卷)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤2,x ≥1,y ≥0,则z =2x +y 的最大值和最小值分别为( )A .4和3B .4和2C .3和2D .2和0解析:选B.作出可行域如图阴影部分.作直线2x +y =0,并向右上平移,过点A 时z 取最小值,过点B 时z 取最大值,可求得A (1,0),B (2,0),∴z min =2,z max =4.14.(2013·高考福建卷)若2x +2y =1,则x +y 的取值范围是( ) A .[0,2] B .[-2,0] C .[-2,+∞) D .(-∞,-2]解析:选D.∵2x +2y ≥22x +y ,2x +2y =1,∴22x +y ≤1,∴2x +y ≤14=2-2,∴x +y ≤-2,即(x +y )∈(-∞,-2]. 15.(2013·高考陕西卷)若点(x ,y )位于曲线y = |x |与y = 2所围成的封闭区域, 则2x -y 的最小值是( )A .-6B .-2C .0D .2 解析:选A.曲线y =|x |与y =2所围成的封闭区域如图阴影部分所示,当直线l :y =2x 向左平移时,(2x -y )的值在逐渐变小,当l 通过点A (-2,2)时,(2x -y )min =-6.16.(2013·高考陕西卷)设[x ]表示不大于x 的最大整数, 则对任意实数x ,有( )A .[-x ]=-[x ]B .[x +12]=[x ]C .[2x ]=2[x ]D .[x ]+[x +12]=[2x ]解析:选D.选项A ,取x =1.5,则[-x ]=[-1.5]=-2,-[x ]=-[1.5]=-1,显然[-x ]≠-[x ].选项B ,取x =1.5,则[x +12]=[2]=2≠[1.5]=1.选项C ,取x =1.5,则[2x ]=[3]=3,2[x ]=2[1.5]=2,显然[2x ]≠2[x ]. 17.(2013·高考天津卷)已知函数f (x )=x (1+a |x |).设关于x 的不等式f (x +a )<f (x )的解集为A .若⎣⎡⎦⎤-12,12⊆A ,则实数a 的取值范围是( ) A.⎝ ⎛⎭⎪⎫1-52,0 B.⎝ ⎛⎭⎪⎫1-32,0 C.⎝ ⎛⎭⎪⎫1-52,0∪⎝ ⎛⎭⎪⎫0,1+32 D.⎝⎛⎭⎪⎫-∞,1-52 解析:选A.∵⎣⎡⎦⎤-12,12⊆A ,∴f (a )<f (0),∴a (1+a |a |)<0,解得-1<a <0,可排除C. 又∵f ⎝⎛⎭⎫-12+a <f ⎝⎛⎭⎫-12, ∴⎝⎛⎭⎫-12+a ⎝⎛⎭⎫1+a ⎪⎪⎪⎪-12+a <-12⎝⎛⎭⎫1+a 2, ∴a ⎝⎛⎭⎫-12+a ⎪⎪⎪⎪-12+a <-54a .∵-1<a <0,∴⎝⎛⎭⎫-12+a ⎪⎪⎪⎪-12+a >-54, ∴-⎝⎛⎭⎫-12+a 2>-54,∴⎝⎛⎭⎫-12+a 2<54, ∴1-52<a <0.排除B ,D.故选A.18.(2013·高考湖南卷)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤2x ,x +y ≤1,y ≥-1,则x +2y 的最大值是( )A .-52B .0 C.53D.52解析:选C.不等式组表示的平面区域为图中阴影部分.平行移动y =-12x +12z ,可知该直线经过y =2x 与x +y =1的交点A (13,23)时,z 有最大值为13+43=53.19.(2013·高考江西卷)下列选项中,使不等式x <1x<x 2成立的x 的取值范围是( )A .(-∞,-1)B .(-1,0)C .(0,1)D .(1,+∞)解析:选A.由x <1x <x 2可得⎩⎨⎧x <1x,1x<x 2,即⎩⎨⎧x 2-1x<0,1-x3x <0,解得⎩⎪⎨⎪⎧x <-1或0<x <1,x <0或x >1,综合知x <-1.20.(2013·高考湖北卷)某旅行社租用A ,B 两种型号的客车安排900名客人旅行,A ,B 两种车辆的载客量分别为36人和60人,租金分别为1 600元/辆和2 400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆,则租金最少为( )A .31 200元B .36 000元C .36 800元D .38 400元 解析:选C.设租用A 型车x 辆,B 型车y 辆,目标函数为z =1 600x +2 400y ,则约束条件为 ⎩⎪⎨⎪⎧36x +60y ≥900,x +y ≤21,y -x ≤7,x ,y ∈N ,作出可行域,如图中阴影部分所示,可知目标函数过点(5,12)时,有最小值z min =36 800(元).21.(2013·高考重庆卷)(3-a )(a +6)(-6≤a ≤3)的最大值为( )A .9 B.92C .3 D.322解析:选B.(3-a )(a +6)= -a 2-3a +18= -⎝⎛⎭⎫a 2+3a +94+814 = -⎝⎛⎭⎫a +322+814, 由于-6≤a ≤3,∴当a =-32时,(3-a )(a +6)有最大值92.22.(2013·高考四川卷)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤8,2y -x ≤4,x ≥0,y ≥0,且z =5y -x 的最大值为a ,最小值为b ,则a -b 的值是( )A .48B .30C .24D .16解析:选C.先将不等式2y -x ≤4转化为x -2y ≥-4,画出不等式组表示的平面区域,并找出目标函数y =x 5+z5的最优解,进而求得a ,b 的值.∵⎩⎪⎨⎪⎧x +y ≤8,2y -x ≤4,x ≥0,y ≥0,∴⎩⎪⎨⎪⎧x +y ≤8,x -2y ≥-4,x ≥0,y ≥0,由线性约束条件得可行域为如图所示的阴影部分,由z =5y -x ,得y =x 5+z5.由图知目标函数y =x 5+z5,过点A (8,0)时,z min =5y -x =5×0-8=-8,即b =-8.目标函数y =x 5+z5过点B (4,4)时,z max =5y -x =5×4-4=16,即a =16.∴a -b =16-(-8)=24,故选C. 23.(2013·高考重庆卷)关于x 的不等式x 2-2ax -8a 2<0(a >0)的解集为(x 1,x 2),且x 2-x 1=15,则a =( )A.52B.72C.154D.152解析:选A.由x 2-2ax -8a 2<0(a >0)得(x +2a )(x -4a )<0(a >0),即-2a <x <4a ,故原不等式的解集为(-2a,4a ).由x 2-x 1=15得4a -(-2a )=15,即6a =15,所以a =52,故选A.24.(2013·高考大纲全国卷)若x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4,则z =-x +y 的最小值为________.解析:由不等式组作出可行域,如图阴影部分所示(包括边界),且A (1,1),B (0,4),C (0,43).由数形结合知,直线y =x +z 过点A (1,1)时,z min =-1+1=0.答案:025.(2013·高考山东卷)在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x +3y -6≤0,x +y -2≥0,y ≥0,所表示的区域上一动点,则|OM |的最小值是________.解析:如图所示,M 为图中阴影部分区域上的一个动点,由于点到直线的距离最短,所以|OM |的最小值=22= 2.答案: 2 26.(2013·高考江苏卷)抛物线y =x 2在x =1处的切线与两坐标轴围成的三角形区域为D(包含三角形内部与边界).若点P (x ,y )是区域D 内的任意一点,则x +2y 的取值范围是________.解析:由于y ′=2x ,所以抛物线在x =1处的切线方程为 y -1=2(x -1),即y =2x -1.画出可行域(如图).设x +2y =z ,则y =-12x +12z ,可知当直线y =-12x +12z 经过点A (12,0),B (0,-1)时,z 分别取到最大值和最小值,此时最大值z max =12,最小值z min =-2,故取值范围是[-2,12].答案:[-2,12]27.(2013·高考大纲全国卷)记不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4,所表示的平面区域为D ,若直线y=a (x +1)与D 有公共点,则a 的取值范围是________.解析:不等式组所表示的平面区域D 为如图所示阴影部分(含边界),且A (1,1),B (0,4),C (0,43).直线y =a (x +1)恒过定点P (-1,0)且斜率为a .由斜率公式可知k AP =12,k BP =4.若直线y =a (x +1)与区域D 有公共点,数形结合可得12≤a ≤4.答案:[12,4]28.(2013·高考山东卷)定义“正对数”:ln +x = ⎩⎪⎨⎪⎧0,0<x <1,ln x ,x ≥1.现有四个命题: ①若a >0,b >0,则ln +(a b )=b ln +a ;②若a >0,b >0,则ln +(ab )=ln +a +ln +b ;③若a >0,b >0,则ln +(a b )≥ln +a -ln +b ;④若a >0,b >0,则ln +(a +b )≤ln +a +ln +b +ln 2. 其中的真命题有________.(写出所有真命题的编号)解析:①当a >1时,∵b >0,∴a b >1,∴ln +(a b )=ln a b =b ln a =b ln +a .当0<a <1时,∵b >0,∴a b <1,∴ln +(a b )=0.又ln +a =0,∴b ln +a =0,∴ln +(a b )=b ln +a . 故①正确.②当a =2,b =14时,ln +(ab )=ln +12=0,而ln +a =ln 2,ln +b =0,从而ln +a +ln +b =ln 2.故②不成立.③a.当0<a ≤1,0<b ≤1时,ln +a -ln +b =0-0=0,而ln +(a b )≥0,∴ln +(a b)≥ln +a -ln +b .b .当0<a ≤1,b >1时,ln +a -ln +b =-ln +b <0.而ln +(a b )=0,∴ln +(a b)≥ln +a -ln +b .c .当a >1,0<b ≤1时,a b ≥a >1,∴ln +(a b )=ln(a b)≥ln a =ln +a =ln +a -ln +b .∴ln +(a b)≥ln +a -ln +b .d .当a >1,b >1,且a <b 时,ln +(a b )=0,ln +a -ln +b <0,∴ln +(a b )≥ln +a -ln +b .e .当a >1,b >1,且a >b 时,a b >1,∴ln +(a b )=ln(a b)=ln a -ln b =ln +a -ln +b .综上:ln +(a b)≥ln +a -ln +b ,故③正确.④a.当0<a +b ≤1时,0<a ≤1,0<b ≤1,∴ln +(a +b )=0,ln +a +ln +b +ln 2=0+0+ln 2>0.∴ln +(a +b )<ln +a +ln +b +ln 2.b .当a +b >1时,分以下三种情况:(ⅰ)当0<a ≤1,b ≥1时,∵a +b ≤1+b ≤b +b =2b ,∴ln +(a +b )=ln(a +b )≤ln 2b =ln +a +ln +b +ln 2. (ⅱ)当a ≥1,0<b ≤1时,∵a +b ≤1+a ≤a +a =2a ,∴ln +(a +b )=ln(a +b )≤ln 2a =ln a +ln 2=ln +a +ln +b +ln 2.(ⅲ)当0<a ≤1,0<b ≤1时,∴a +b ≤2,且ln +a =0,ln +b =0.∴ln +(a +b )=ln(a +b )≤ln 2=ln +a +ln +b +ln 2.综上:ln +(a +b )≤ln +a +ln +b +ln 2,故④正确. 答案:①③④29.(2013·高考浙江卷)设z =kx +y ,其中实数x 、y 满足⎩⎪⎨⎪⎧x ≥2,x -2y +4≥0,2x -y -4≤0. 若z 的最大值为12,则实数k =________.解析:作出可行域如图中阴影所示,由图可知,当0≤-k <12时,直线y =-kx +z 经过点M (4,4)时z 最大,所以4k +4=12,解得k =2(舍去);当-k ≥12时,直线y =-kx +z 经过点N (2,3)时z 最大,所以2k +3=12,解得k =92(舍去);当-k <0时,直线y =-kx +z 经过点M (4,4)时z 最大,所以4k +4=12,解得k =2,符合.综上可知,k =2.答案:230.(2013·高考天津卷)设a +b =2,b >0,则当a =________时,12|a |+|a |b取得最小值.解析:由于a +b =2,所以12|a |+|a |b =a +b 4|a |+|a |b =a 4|a |+b 4|a |+|a |b ,由于b >0,|a |>0,所以b4|a |+|a |b ≥2b 4|a |·|a |b =1,因此当a >0时,12|a |+|a |b 的最小值是14+1=54;当a <0时,12|a |+|a |b的最小值是-14+1=34.故12|a |+|a |b 的最小值为34,此时⎩⎪⎨⎪⎧b 4|a |=|a |b ,a <0,即a =-2.答案:-231.(2013·高考浙江卷)设z =kx +y ,其中实数x 、y 满足⎩⎪⎨⎪⎧x ≥2,x -2y +4≥0,2x -y -4≤0. 若z 的最大值为12,则实数k =________.解析:作出可行域如图中阴影所示,由图可知,当0≤-k <12时,直线y =-kx +z 经过点M (4,4)时z 最大,所以4k +4=12,解得k =2(舍去);当-k ≥12时,直线y =-kx +z 经过点N (2,3)时z 最大,所以2k +3=12,解得k =92(舍去);当-k <0时,直线y =-kx +z 经过点M (4,4)时z 最大,所以4k +4=12,解得k =2,符合.综上可知,k =2.答案:2 32.(2013·高考浙江卷)设a ,b ∈R ,若x ≥0时恒有0≤x 4-x 3+ax +b ≤(x 2-1)2,则ab =________.解析:因为x ≥0时恒有0≤x 4-x 3+ax +b ≤(x 2-1)2, 当x =0时,可得0≤b ≤1; 当x =1时,可得a +b =0, 所以a =-b ,所以-1≤a ≤0.由x ≥0时恒有0≤x 4-x 3+ax +b ≤(x 2-1)2, 得ax +b ≤x 3-2x 2+1,所以ax -a ≤(x 3-x 2)-(x 2-1), 所以a (x -1)≤(x 2-x -1)(x -1),所以当x >1时,有a ≤x 2-x -1恒成立,所以a ≤-1. 综上可知,a =-1,所以ab =-a 2=-1. 答案:-133.(2013·高考北京卷)设D 为不等式组⎩⎪⎨⎪⎧x ≥0,2x -y ≤0,x +y -3≤0,表示的平面区域,区域D 上的点与点(1,0)之间的距离的最小值为________.解析:不等式组⎩⎪⎨⎪⎧x ≥0,2x -y ≤0,x +y -3≤0,表示的区域D 如图阴影部分所示.由图知点P (1,0)与平面区域D 上的点的最短距离为点P (1,0)到直线y =2x 的距离d =|2×1-0×1|12+22=255.答案:25534.(2013·高考天津卷)设a +b =2,b >0,则12|a |+|a |b的最小值为________.解析:当a >0时,12|a |+|a |b =12a +a b =a +b 4a +a b =14+⎝⎛⎭⎫b 4a +a b ≥54;当a <0时,12|a |+|a |b =1-2a +-a b =a +b -4a +-a b =-14+⎝ ⎛⎭⎪⎫b -4a +-a b ≥-14+1=34. 综上所述,12|a |+|a |b 的最小值是34.答案:3435.(2013·高考陕西卷)若点(x ,y )位于曲线y =|x -1|与y =2所围成的封闭区域,则2x -y 的最小值为________.解析:如图,阴影部分为封闭区域.作直线2x -y =0,并向左上平移,过点A 时,2x -y 最小,由⎩⎪⎨⎪⎧y =2,y =|x -1|(x <1),得A (-1,2),∴(2x -y )min =2×(-1)-2=-4. 答案:-436.(2013·高考陕西卷)观察下列等式: 12=1,12-22=-3, 12-22+32=6,12-22+32-42=-10, …,照此规律,第n 个等式可为________. 解析:12=1, 12-22=-(1+2), 12-22+32=1+2+3,12-22+32-42=-(1+2+3+4), …,12-22+32-42+…+(-1)n +1n 2=(-1)n +1(1+2+…+n )=(-1)n +1n (n +1)2.答案:12-22+32-42+…+(-1)n +1n 2=(-1)n +1n (n +1)237.(2013·高考湖南卷)设函数f (x )=a x +b x -c x ,其中c >a >0,c >b >0.(1)记集合M ={(a ,b ,c )|a ,b ,c 不能构成一个三角形的三条边长,且a =b },则(a ,b ,c )∈M 所对应的f (x )的零点的取值集合为________;(2)若a ,b ,c 是△ABC 的三条边长,则下列结论正确的是________.(写出所有正确结论的序号)①∀x ∈(-∞,1),f (x )>0; ②∃x ∈R ,使a x ,b x ,c x 不能构成一个三角形的三条边长;③若△ABC 为钝角三角形,则∃x ∈(1,2),使f (x )=0.解析:(1)∵c >a >0,c >b >0,a =b 且a ,b ,c 不能构成三角形的三边,∴0<2a ≤c ,∴ca≥2.令f (x )=0得2a x =c x ,即(ca)x =2.∴x =log c a 2.∴1x =log 2ca≥1.∴0<x ≤1.(2)①∵a ,b ,c 是三角形的三条边长, ∴a +b >c .∵c >a >0,c >b >0,∴0<a c <1,0<bc<1.∴当x ∈(-∞,1)时,f (x )=a x +b x -c x =c x [(a c )x +(bc )x -1]>c x (a c +bc -1)=c x ·a +b -c c>0.∴∀x ∈(-∞,1),f (x )>0.故①正确.②令a =2,b =3,c =4,则a ,b ,c 可以构成三角形. 但a 2=4,b 2=9,c 2=16却不能构成三角形,故②正确. ③∵c >a ,c >b ,且△ABC 为钝角三角形, ∴a 2+b 2-c 2<0.又f (1)=a +b -c >0,f (2)=a 2+b 2-c 2<0, ∴函数f (x )在(1,2)上存在零点.故③正确. 答案:(1){x |0<x ≤1} (2)①②③ 38.(2013·高考陕西卷)观察下列等式:(1+1)=2×1,(2+1)(2+2)=22×1×3,(3+1)(3+2)(3+3)=23×1×3×5, …照此规律, 第n 个等式可为________.解析:从给出的规律可看出,左边的连乘式中,连乘式个数以及每个连乘式中的第一个加数与右边连乘式中第一个乘数的指数保持一致,其中左边连乘式中第二个加数从1开始,逐项加1递增,右边连乘式中从第二个乘数开始,组成以1为首项,2为公差的等差数列,项数与第几等式保持一致,则照此规律,第n 个等式可为(n +1)(n +2)…(n +n )=2n ×1×3×…×(2n -1).答案:(n +1)(n +2)…(n +n )=2n ×1×3×…×(2n -1) 39.(2013·高考湖南卷)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≤8,0≤x ≤4,0≤y ≤3,则x +y 的最大值为________.解析:如图,作出不等式组表示的平面区域,平行移动z =x +y ,易知当直线z =x +y 经过点A (4,2)时,z 取最大值6.答案:6 40.(2013·高考湖北卷)在平面直角坐标系中,若点P (x ,y )的坐标x ,y 均为整数,则称点P 为格点. 若一个多边形的顶点全是格点,则称该多边形为格点多边形. 格点多边形的面积为S ,其内部的格点数记为N ,边界上的格点数记为L . 例如图中△ABC 是格点三角形,对应的S =1,N =0,L =4.(1)图中格点四边形DE FG 对应的S ,N ,L 分别是________;(2)已知格点多边形的面积可表示为S =aN +bL +c ,其中a ,b ,c 为常数. 若某格点多边形对应的N =71,L =18,则S =________(用数值作答).解:(1)由图可知四边形DE FG 是直角梯形,高为2,下底为22,上底为2,所以梯形面积S =(2+22)×22=3.由图知N =1,L =6.(2)取相邻四个小正方形组成一个正方形,其面积S =4,N =1,L =8,结合△ABC ,四边形DE FG 可列方程组:⎩⎪⎨⎪⎧4b +c =1,a +6b +c =3,a +8b +c =4,解得⎩⎪⎨⎪⎧a =1,b =12,c =-1,S =1×71+12×18-1=79.答案:(1)3,1,6 (2)79 41.(2013·高考湖北卷)古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,…,第n 个三角形数为n (n +1)2=12n 2+12n .记第n 个k 边形数为N (n ,k )(k ≥3),以下列出了部分k 边形数中第n 个数的表达式:三角形数 N (n,3)=12n 2+12n ,正方形数 N (n,4)=n 2,五边形数 N (n,5)=32n 2-12n ,六边形数 N (n,6)=2n 2-n , …可以推测N (n ,k )的表达式,由此计算N (10,24)=________.解析:由N (n,4)=n 2,N (n,6)=2n 2-n ,…,可以推测:当k 为偶数时,N (n ,k )=⎝⎛⎭⎫k 2-1n 2-⎝⎛⎭⎫k2-2n ,于是N (n,24)=11n 2-10n ,故N (10,24)=11×102-10×10=1 000. 答案:1 000 42.(2013·高考四川卷)设P 1,P 2,…,P n 为平面α内的n 个点,在平面α内的所有点中,若点P 到点P 1,P 2,…,P n 的距离之和最小,则称点P 为点P 1,P 2,…,P n 的一个“中位点”.例如,线段AB 上的任意点都是端点A ,B 的中位点.现有下列命题:①若三个点A ,B ,C 共线,C 在线段AB 上,则C 是A ,B ,C 的中位点; ②直角三角形斜边的中点是该直角三角形三个顶点的中位点; ③若四个点A ,B ,C ,D 共线,则它们的中位点存在且唯一; ④梯形对角线的交点是该梯形四个顶点的唯一中位点. 其中的真命题是________.(写出所有真命题的序号)解析:∵|CA |+|CB |≥|AB |,当且仅当点C 在线段AB 上等号成立,即三个点A ,B ,C 共线,∴点C 在线段AB 上,∴点C 是A ,B ,C 的中位点,故①是真命题.如图(1),在Rt △ABC 中,∠C =90°,P 是AB 的中点,CH ⊥AB ,点P ,H 不重合,则|PC |>|HC |. 又|HA |+|HB |=|P A |+|PB |=|AB |,∴|HA |+|HB |+|HC |<|P A |+|PB |+|PC |,∴点P 不是点A ,B ,C 的中位点,故②是假命题. 如图(2),A ,B ,C ,D 是数轴上的四个点,若P 点在线段BC 上,则|P A |+|PB |+|PC |+|P D|=|A D|+,由中位点的定义及①可知,点P 是点A ,B ,C ,D 的中位点,显然点P 有无数个,故③是假命题.如图(3),由①可知,若点P 是点A ,C 的中位点,则点P 在线段AC 上,若点P 是点B ,D 的中位点,则点P 在线段B D 上,∴若点P 是点A ,B ,C ,D 的中位点,则P 是AC ,B D 的交点,∴梯形对角线的交点是梯形四个顶点的唯一中位点,故④是真命题.答案:①④43.(2013·高考四川卷)已知函数f (x )=4x +ax(x >0,a >0)在x =3时取得最小值,则a =________.解析:f (x )=4x +a x ≥24x ·a x =4a (x >0,a >0),当且仅当4x =a x ,即x =a2时等号成立,此时f (x )取得最小值4a .又由已知x =3时,f (x )min =4a ,∴a2=3,即a =36. 答案:36 44.(2013·高考重庆卷)设0≤α≤π,不等式8x 2-(8s in α)x +co s 2α≥0对x ∈R 恒成立,则α的取值范围为 ________.解析:由题意,要使8x 2-(8s in α)x +co s 2α≥0对x ∈R 恒成立,需Δ=64s in 2α-32co s2α≤0,化简得co s 2α≥12.又0≤α≤π,∴0≤2α≤π3或5π3≤2α≤2π,解得0≤α≤π6或5π6≤α≤π.答案:⎣⎡⎦⎤0,π6∪⎣⎡⎦⎤5π6,π 45.(2013·高考广东卷)若曲线y =ax 2-ln x 在点(1,a )处的切线平行于x 轴,则a =________.解析:因为y ′=2ax -1x,所以y ′|x =1=2a -1.因为曲线在点(1,a )处的切线平行于x 轴,故其斜率为0,故2a -1=0,a =12.答案:1246.(2013·高考安徽卷)若非负变量x 、y 满足约束条件⎩⎪⎨⎪⎧x -y ≥-1,x +2y ≤4,则x +y 的最大值为________.解析:根据题目中的约束条件画出可行域,注意到x ,y 非负,得可行域为如图所示的阴影部分(包括边界).作直线y =-x ,并向上平移,数形结合可知,当直线过点A (4,0)时,x +y 取得最大值,最大值为4.答案:4 47.(2013·高考广东卷)不等式x 2+x -2<0的解集为________.解析:方程x 2+x -2=0的根为x 1=-2,x 2=1,故不等式x 2+x -2<0的解集为(-2,1). 答案:(-2,1)48.(2013·高考广东卷)给定区域D :⎩⎪⎨⎪⎧x +4y ≥4,x +y ≤4,x ≥0,令点集T ={(x 0,y 0)∈D|x 0,y 0∈Z ,(x 0,y 0)是z =x +y 在D 上取得最大值或最小值的点},则T 中的点共确定________条不同的直线.解析:画出平面区域D(图中阴影部分),z =x +y 取得最小值时的最优整数解为(0,1),取得最大值时的最优整数解为(0,4),(1,3),(2,2),(3,1),(4,0).点(0,1)与(0,4),(1,3),(2,2),(3,1),(4,0)中的任何一个点都可以构成一条直线,共有5条,又(0,4),(1,3),(2,2),(3,1),(4,0),都在直线x +y =4上,故T 中的点共确定6条不同的直线.答案:649.(2013·高考新课标全国卷Ⅰ)设x ,y 满足约束条件⎩⎪⎨⎪⎧1≤x ≤3,-1≤x -y ≤0,则z =2x -y 的最大值为________.解析:作出可行域如图阴影部分.作直线2x -y =0,并向右平移,当平移至直线过点B 时,z =2x -y 取最大值.而由⎩⎪⎨⎪⎧x =3,x -y =0,可得B (3,3).∴z max =2×3-3=3. 答案:3 50.(2013·高考江苏卷) 设数列{a n }:1,-2,-2,3,3,3,-4,-4,-4,-4,…,(-1)k -1k ,…,(-1)k -1k ,…,即当(k -1)k 2<n ≤k (k +1)2(k ∈N *)时,a n =(-1)k -1k .记S n =a 1+a 2+…+a n (n ∈N *).对于l ∈N *,定义集合P l ={n |S n 是a n 的整数倍,n ∈N *,且1≤n ≤l }.(1)求集合P 11中元素的个数; (2)求集合P 2 000中元素的个数.解:(1)由数列{a n }的定义得a 1=1,a 2=-2,a 3=-2,a 4=3,a 5=3,a 6=3,a 7=-4,a 8=-4,a 9=-4,a 10=-4,a 11=5,所以S 1=1,S 2=-1,S 3=-3,S 4=0,S 5=3,S 6=6,S 7=2,S 8=-2,S 9=-6,S 10=-10,S 11=-5,从而S 1=a 1,S 4=0×a 4,S 5=a 5,S 6=2a 6,S 11=-a 11,所以集合P 11中元素的个数为5.(2)先证:S i (2i +1)=-i (2i +1)(i ∈N *).事实上,①当i =1时,S i (2i +1)=S 3=-3,-i (2i +1)=-3,故原等式成立; ②假设i =m 时成立,即S m (2m +1)=-m (2m +1),则i =m +1时,S (m +1)(2m +3)=S m (2m +1)+(2m +1)2-(2m +2)2=-m (2m +1)-4m -3=-(2m 2+5m +3)=-(m +1)·(2m +3).综合①②可得,S i (2i +1)=-i (2i +1).于是S (i +1)(2i +1)=S i (2i +1)+(2i +1)2=-i (2i +1)+(2i +1)2=(2i +1)(i +1).由上可知S i (2i +1)是2i +1的倍数,而a i (2i +1)+j =2i +1(j =1,2,…,2i +1),所以S i (2i +1)+j=S i (2i +1)+j (2i +1)是a i (2i +1)+j (j =1,2,…,2i +1)的倍数.又S (i +1)(2i +1)=(i +1)(2i +1)不是2i +2的倍数,而a (i +1)(2i +1)+j =-(2i +2)(j =1,2,…,2i +2),所以S (i +1)(2i +1)+j =S (i +1)(2i +1)-j (2i +2)=(2i +1)(i +1)-j (2i +2)不是a (i +1)(2i +1)+j (j =1,2,…,2i +2)的倍数,故当l =i (2i +1)时,集合P l 中元素的个数为1+3+…+(2i -1)=i 2,于是,当l =i (2i +1)+j (1≤j ≤2i +1)时,集合P l 中元素的个数为i 2+j .又2 000=31×(2×31+1)+47,故集合P 2 000中元素的个数为312+47=1 008. 51.(2013·高考湖南卷)在平面直角坐标系xOy 中,将从点M 出发沿纵、横方向到达点N的任一路径称为M到N的一条“L路径”.如图所示的路径MM1M2M3N与路径MN1N都是M到N的“L路径”.某地有三个新建的居民区,分别位于平面xOy内三点A(3,20),B(-10,0),C(14,0)处.现计划在x轴上方区域(包含x轴)内的某一点P处修建一个文化中心.(1)写出点P到居民区A的“L路径”长度最小值的表达式(不要求证明);(2)若以原点O为圆心,半径为1的圆的内部是保护区,“L路径”不能进入保护区,请确定点P的位置,使其到三个居民区的“L路径”长度之和最小.解:设点P的坐标为(x,y).(1)点P到居民区A的“L路径”长度最小值为|x-3|+|y-20|,x∈R,y∈[0,+∞).(2)由题意知,点P到三个居民区的“L路径”长度之和的最小值为点P分别到三个居民区的“L路径”长度最小值之和(记为d)的最小值.①当y≥1时,d=|x+10|+|x-14|+|x-3|+2|y|+|y-20|.因为d1(x)=|x+10|+|x-14|+|x-3|≥|x+10|+|x-14|,(*)当且仅当x=3时,不等式(*)中的等号成立.又因为|x+10|+|x-14|≥24,(**)当且仅当x∈[-10,14]时,不等式(**)中的等号成立,所以d1(x)≥24,当且仅当x=3时,等号成立.d2(y)=2|y|+|y-20|≥21,当且仅当y=1时,等号成立.故点P的坐标为(3,1)时,P到三个居民区的“L路径”长度之和最小,且最小值为45.②当0≤y≤1时,由于“L路径”不能进入保护区,所以d=|x+10|+|x-14|+|x-3|+1+|1-y|+|y|+|y-20|,此时,d1(x)=|x+10|+|x-14|+|x-3|,d2(y)=1+|1-y|+|y|+|y-20|=22-y≥21.由①知,d1(x)≥24,故d1(x)+d2(y)≥45,当且仅当x=3,y=1时等号成立.综上所述,在点P(3,1)处修建文化中心,可使该文化中心到三个居民区的“L路径”长度之和最小.52.(2013·高考广东卷)如图①,在等腰直角三角形ABC中,∠A=90°,BC=6,D,E 分别是AC,AB上的点,C D=B E=2,O为BC的中点.将△A DE沿DE折起,得到如图②所示的四棱椎A′-BC DE,其中A′O= 3.(1)证明:A′O⊥平面BC DE;(2)求二面角A′-C D-B的平面角的余弦值.解:(1)证明:法一:在折叠前的图形中,在等腰直角三角形ABC中,因为BC=6,O为BC的中点,所以AC=AB=32,OC=OB=3.又因为C D=B E=2,所以A D=A E=2 2.如图①,连接O D,在△OC D中,由余弦定理可得O D=OC2+CD2-2OC·CD cos 45°= 5.在折叠后的图形中,因为A′D=22,所以A′O2+O D2=A′D2,所以A′O⊥O D.同理可证A′O⊥O E.又O D∩O E=O,所以A′O⊥平面BC DE.法二:如图①,在折叠前的图形中,连接AO,交DE于点F,则F为DE的中点.在等腰Rt△ABC中,因为BC=6,O为BC的中点,所以AC=AB=32,OA=3.因为C D=B E=2,所以D和E分别是AC,AB的三等分点,则AF=2,OF=1.如图②,在折叠后的图形中,连接OF 和A ′F .因为A ′O =3,所以A ′F 2=OF 2+A ′O 2,所以A ′O ⊥OF . 在折叠前的图形中,DE ⊥OF ,所以在折叠后的图形中,DE ⊥A ′F ,DE ⊥OF . 又OF ∩A ′F =F ,OF ,A ′F ⊂平面OA ′F , 所以DE ⊥平面OA ′F .因为OA ′⊂平面OA ′F ,所以DE ⊥OA ′. 因为OF ∩DE =F ,OF ,DE ⊂平面BC DE , 所以A ′O ⊥平面BC DE.(2)法一:如图②,过O 作OM 垂直于C D 的延长线于点M ,连接A ′M .因为A ′O ⊥平面BC DE ,CM ⊂平面BC DE ,OM ⊂平面BC DE ,所以A ′O ⊥CM ,A ′O ⊥OM .因为A ′O ∩OM =O ,所以CM ⊥平面A ′OM . 因为A ′M ⊂平面A ′OM ,所以CM ⊥A ′M , 故∠A ′MO 就是所求二面角的平面角.在Rt △OMC 中,OC =3,∠OCM =45°,所以OM =322.在R t △A ′OM 中,因为A ′O =3,OM =322,所以A ′M =A ′O 2+OM 2= 3+92=302,所以co s ∠A ′MO =OM A ′M =322302=155,所以二面角A ′-C D-B 的平面角的余弦值为155.法二:以点O 为原点,建立空间直角坐标系O -xyz ,如图③所示(F 为DE 的中点),则A ′(0,0,3),C (0,-3,0),D(1,-2,0),所以OA ′→=(0,0,3),CA ′→=(0,3,3),DA ′→=(-1,2,3). 设n =(x ,y ,z )为平面A ′C D 的一个法向量,则⎩⎪⎨⎪⎧n ·CA ′→=3y +3z =0,n ·DA ′→=-x +2y +3z =0.令z =3,得n =(1,-1,3),|n |=1+1+3= 5.由(1)知,OA ′→=(0,0,3)为平面C D B 的一个法向量.又|OA ′→|=3,OA ′→·n =0×1+0×(-1)+3×3=3,所以co s <n ,OA ′→>=n ·OA ′→|n ||OA ′→|=33×5=155, 即二面角A ′-C D-B 的平面角的余弦值为155.。

高考理科数学考点六十四不等式的证明

高考理科数学考点六十四不等式的证明

课时达标检测(六十四) 不等式的证明1.(2018·武汉调研)若正实数a ,b 满足a +b =12,求证:a +b ≤1. 证明:要证 a +b ≤1,只需证a +b +2ab ≤1,即证2ab ≤12,即证ab ≤14. 而a +b =12≥2ab ,∴ab ≤14成立, ∴原不等式成立.2.已知函数f (x )=|x +3|+|x -1|,其最小值为t .(1)求t 的值;(2)若正实数a ,b 满足a +b =t ,求证:1a +4b ≥94. 解:(1)因为|x +3|+|x -1|=|x +3|+|1-x |≥|x +3+1-x |=4,所以f (x )min =4,即t =4.(2)证明:由(1)得a +b =4,故a 4+b 4=1,1a +4b =⎝⎛⎭⎫1a +4b ⎝⎛⎭⎫a 4+b 4=14+1+b 4a +a b ≥54+2b 4a ×a b =54+1=94,当且仅当b =2a ,即a =43,b =83时取等号,故1a +4b ≥94. 3.设不等式-2<|x -1|-|x +2|<0的解集为M ,a ,b ∈M . (1)证明:⎪⎪⎪⎪13a +16b <14;(2)比较|1-4ab |与2|a -b |的大小,并说明理由.解:(1)证明:记f (x )=|x -1|-|x +2|=⎩⎪⎨⎪⎧ 3,x ≤-2,-2x -1,-2<x <1,-3,x ≥1.由-2<-2x -1<0解得-12<x <12, 则M =⎝⎛⎭⎫-12,12. 所以⎪⎪⎪⎪13a +16b ≤13|a |+16|b |<13×12+16×12=14. (2)由(1)得a 2<14,b 2<14. 因为|1-4ab |2-4|a -b |2=(1-8ab +16a 2b 2)-4(a 2-2ab +b 2)=(4a 2-1)(4b 2-1)>0.所以|1-4ab |2>4|a -b |2,故|1-4ab |>2|a -b |.4.(2018·广州模拟)已知x ,y ,z ∈(0,+∞),x +y +z =3.(1)求1x +1y +1z 的最小值;(2)证明:3≤x 2+y 2+z 2<9.解:(1)因为x +y +z ≥33xyz >0,1x +1y +1z ≥33xyz>0, 所以(x +y +z )⎝⎛⎭⎫1x +1y +1z ≥9,即1x +1y +1z ≥3,当且仅当x =y =z =1时,1x +1y +1z 取得最小值3.(2)证明:x 2+y 2+z 2=x 2+y 2+z 2+(x 2+y 2)+(y 2+z 2)+(z 2+x 2)3≥x 2+y 2+z 2+2(xy +yz +zx )3=(x +y +z )23=3, 当且仅当x =y =z =1时等号成立.又因为x 2+y 2+z 2-9=x 2+y 2+z 2-(x +y +z )2=-2(xy +yz +zx )<0,所以3≤x 2+y 2+z 2<9.5.(2018·安徽百所重点高中模拟)已知a >0,b >0,函数f (x )=|2x +a |+2⎪⎪⎪⎪x -b 2+1的最小值为2.(1)求a +b 的值;(2)求证:a +log 3⎝⎛⎭⎫1a +4b ≥3-b .解:(1)因为f (x )=|2x +a |+|2x -b |+1≥|2x +a -(2x -b )|+1=|a +b |+1,当且仅当(2x +a )(2x -b )≤0时,等号成立,又a >0,b >0,所以|a +b |=a +b ,所以f (x )的最小值为a +b +1=2,所以a +b =1.(2)由(1)知,a +b =1,所以1a +4b =(a +b )⎝⎛⎭⎫1a +4b =1+4+b a +4a b ≥5+2 b a ·4a b =9, 当且仅当b a =4a b且a +b =1, 即a =13,b =23时取等号. 所以log 3⎝⎛⎭⎫1a +4b ≥log 39=2,所以a +b +log 3⎝⎛⎭⎫1a +4b ≥1+2=3,即a +log 3⎝⎛⎭⎫1a +4b ≥3-b .6.(2018·长沙模拟)设α,β,γ均为实数.(1)证明:|cos(α+β)|≤|cos α|+|sin β|,|sin(α+β)|≤|cos α|+|cos β|;(2)若α+β+γ=0,证明:|cos α|+|cos β|+|cos γ|≥1.证明:(1)|cos(α+β)|=|cos αcos β-sin αsin β|≤|cos αcos β|+|sin αsin β|≤|cos α|+|sin β|; |sin(α+β)|=|sin αcos β+cos αsin β|≤|sin αcos β|+|cos αsin β|≤|cos α|+|cos β|.(2)由(1)知,|cos [α+(β+γ)]|≤|cos α|+|sin(β+γ)|≤|cos α|+|cos β|+|cos γ|, 而α+β+γ=0,故|cos α|+|cos β|+|cos γ|≥cos 0=1.7.(2018·安徽安师大附中、马鞍山二中阶段测试)已知函数f (x )=|x -2|.(1)解不等式:f (x )+f (x +1)≤2;(2)若a <0,求证:f (ax )-af (x )≥f (2a ).解:(1)由题意,得f (x )+f (x +1)=|x -1|+|x -2|.因此只要解不等式|x -1|+|x -2|≤2.当x ≤1时,原不等式等价于-2x +3≤2,即12≤x ≤1; 当1<x ≤2时,原不等式等价于1≤2,即1<x ≤2;当x >2时,原不等式等价于2x -3≤2,即2<x ≤52. 综上,原不等式的解集为⎩⎨⎧⎭⎬⎫x |12≤x ≤52. (2)证明:由题意得f (ax )-af (x )=|ax -2|-a |x -2|=|ax -2|+|2a -ax |≥|ax -2+2a -ax |=|2a -2|=f (2a ),所以f (ax )-af (x )≥f (2a )成立.8.(2018·重庆模拟)设a ,b ,c ∈R +且a +b +c =1.求证:(1)2ab +bc +ca +c 22≤12; (2)a 2+c 2b +b 2+a 2c +c 2+b 2a ≥2.证明:(1)因为1=(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ca ≥4ab +2bc +2ca +c 2, 当且仅当a =b 时等号成立,所以2ab +bc +ca +c 22=12(4ab +2bc +2ca +c 2)≤12. (2)因为a 2+c 2b ≥2ac b ,b 2+a 2c ≥2ab c ,c 2+b 2a ≥2bc a ,当且仅当a =b =c =13时等号成立. 所以a 2+c 2b +b 2+a 2c +c 2+b 2a≥⎝⎛⎭⎫ac b +ab c +⎝⎛⎭⎫ab c +bc a +⎝⎛⎭⎫ac b +bc a =a ⎝⎛⎭⎫c b +b c +b ⎝⎛⎭⎫a c +c a +c ⎝⎛⎭⎫a b +b a ≥2a +2b +2c =2,当且仅当a =b =c =13时等号成立.。

高考数学 不等式的证明 专题

高考数学  不等式的证明  专题

高考数学 不等式的证明 专题一.选择题(1) 已知R c b a ∈,,,那么下列命题中正确的是 ( )A .若b a >,则22bc ac > B .若cbc a >,则b a > C .若033<>ab b a 且,则b a 11> D .若022>>ab b a 且,则ba 11< (2) 设a >1,0<b <1,则a b b a log log +的取值范围为( )A .[)+∞,2B .),2(+∞C .)2,(--∞D .(]2,-∞-(3) 设x >0,P =2x +2-x ,Q =(sin x +cos x )2,则 ( )A .P ≥QB .P ≤QC .P >QD .P <Q(4)命题p:若a 、b ∈R,则|a|+|b|>1是|a+b|>1的充分而不必要条件.命题q:函数y=21--x 的定义域是(-∞,-1][⋃3,+∞).则( )A . “p 或q”为假B . “p 且q”为真C . p 真q 假D . p 假q 真(5)如果a ,b ,c 满足c<b<a ,且ac<0,那么下列选项中不一定...成立的是( )A . ab>acB . c(b-a)>0C . cb 2<ab 2D . ac(a-c)<0(6)若a 、b 为实数, 且a+b=2, 则3a +3b 的最小值为 ( )A .18B .6C .23D .243(7) 设p+q=1, p>0, q>0, 则不等式1)(log <pq x 成立的一个充分条件是 ( ) A . 0<x<41 B .41<x<21 C .21<x<1 D . x>1(8) 设42,=+∈+y x R y x 且,则y x lg lg +的最大值是( )A .2lg -B .2lgC .2lg 2D .2(9) 设a >0, b >0,则以下不等式中不恒成立....的是( )A .)11)((bab a ++≥4 B .33b a +≥22abC .222++b a ≥b a 22+ D .b a -≥b a -(10) 设0<x <1,a 、b 为正常数,则xb x a -+122的最小值为( )A .4abB .)(222b a +C .2)(b a + D .2)(b a -二.填空题(11) 设a <0,-1<b <0,则a ,ab ,ab 2从小到大的顺序为__________(12) 设1(,=+-∈+)且y x xy R y x ,则x +y 的最小值为_________ (13)若b a 11<<0,已知下列不等式:①a+b<ab ②|a|>|b| ③a<b ④baa b +>2, 其中正确的不等式的序号为 .(14)设集合{}φ≠<-+-m x x x 43|,则m 的取值范围是 .三.解答题(15) 已知01<<-a ,21a A +=,21a B -=,aC +=11,试比较A 、B 、C 的大小.(16) 已知正数x 、y 满足yxy x 11,12+=+求的最小值.: 210x y x y +=>Q 解且、11112x y x y x y ∴+=++≥=()(),24)11(min =+∴yx 判断以上解法是否正确?说明理由;若不正确,请给出正确解法.(17) 已知3201,log (1),log (1),,a a a a x a y a x y >≠=+=+且试比较的大小.(18) 已知函数)(x f 在R 上是增函数,R b a ∈,.(1)求证:如果)()()()(0b f a f b f a f b a -+-≥+≥+,那么; (2)判断(1)中的命题的逆命题是否成立?并证明你的结论;解不等式)2()11(lg )2()11(lg -+-+≥++-f xxf f x x f .参考答案 一选择题: 1.C[解析]:A .若b a >,则22bc ac >(错),若c=0,则A 不成立;B .若cbc a >,则b a > (错), 若c<0,则B 不成立; C .若033<>ab b a 且,则b a 11>(对),若033<>ab b a 且,则⎩⎨⎧>>00b aD .若022>>ab b a 且,则b a 11<(错),若⎩⎨⎧<<00b a ,则D 不成立。

高考数学(理)一轮复习课后检测:选修《不等式的证明》

高考数学(理)一轮复习课后检测:选修《不等式的证明》

选修4-5-2 不等式的证明一、选择题1.ab ≥0是|a -b |=|a |-|b |的( )A .充分不必要条件B .必要不充分条件C .充要条件D .不充分也不必要条件答案:B2.若实数x 、y 满足1x 2+1y 2=1,则x 2+2y 2有( ) A .最大值3+2 2 B .最小值3+2 2C .最大值6D .最小值6答案:B3.若a ,b ,c ∈R ,且满足|a -c |<b ,给出下列结论①a +b >c ;②b +c >a ;③a +c >b ;④|a |+|b |>|c |.其中错误的个数( )A .1B .2C .3D .4答案:A4.已知a >0,b >0,m =a b +b a,n =a +b ,p =a +b ,则m ,n ,p 的大小顺序是( ) A .m ≥n >p B .m >n ≥pC .n >m >pD .n ≥m >p答案:A5.设a 、b 、c ∈R +,则三个数a +1b ,b +1c ,c +1a( ) A .都大于2 B .都小于2C .至少有一个不大于2D .至少有一个不小于2答案:D6.若a >b >1,P =lg a ·lg b ,Q =12(lg a +lg b ),R =lg ⎝⎛⎭⎫a +b 2,则( )A .R <P <QB .P <Q <RC .Q <P <RD .P <R <Q答案:B二、填空题7.设两个不相等的正数a 、b 满足a 3-b 3=a 2-b 2,则a +b 的取值范围是__________.答案:⎝⎛⎭⎫1,43 8.用max{x ,y ,z }表示x ,y ,z 三个实数中的最大数,对于任意实数a ,b ,设max{|a |,|a +b +1|,|a -b +1|}=M ,则M 的最小值是__________.答案:129.设m >n ,n ∈N +,a =(lg x )m +(lg x )-m ,b =(lg x )n +(lg x )-n ,x >1,则a 与b 的大小关系为__________.答案:a ≥b三、解答题10.已知a >b >c >0,求证:a +33(a -b )(b -c )c≥6.(并指出等号成立的条件) 证明:因为a >b >c >0,所以a -b >0,b -c >0,所以a =(a -b )+(b -c )+c ≥33(a -b )(b -c )c ,当且仅当a -b =b -c =c 时,等号成立,所以a +33(a -b )(b -c )c≥33(a -b )(b -c )c +33(a -b )(b -c )c≥233(a -b )(b -c )c33(a -b )(b -c )c=6, 当且仅当33(a -b )(b -c )c =33(a -b )(b -c )c时,等号成立,故可求得a =3,b =2,c =1时等号成立.11.已知函数f (x )=ax 2+bx +c (a ,b ,c ∈R ),当x ∈[-1,1]时,恒有|f (x )|≤1.(1)求证:|b |≤1;(2)f (0)=-1,f (1)=1,求f (x )的表达式.解析:(1)证明:∵f (1)=a +b +c ,f (-1)=a -b +c ,∴b =12[f (1)-f (-1)]. ∵当x ∈[-1,1]时,|f (x )|≤1.∴|f (1)|≤1,|f (-1)|≤1.∴|b |=12|f (1)-f (-1)| ≤12[|f (1)|+|f (-1)|]≤1. (2)由f (0)=-1,f (1)=1,得c =-1,b =2-a .∴f (x )=ax 2+(2-a )x -1.∵当x ∈[-1,1]时,|f (x )|≤1.∴|f (-1)|≤1,即|2a -3|≤1,解得1≤a ≤2.∴a -22a =12-1a∈[-1,1]. 依题意,得⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫a -22a =⎪⎪⎪⎪⎪⎪a ⎝ ⎛⎭⎪⎫a -22a 2+(2-a )⎝ ⎛⎭⎪⎫a -22a -1≤1, 整理,得⎪⎪⎪⎪⎪⎪(a -2)24a +1≤1. 又a >0,(a -2)24a ≥0,(a -2)24a+1≥1. ∴(a -2)24a=0,即a =2, 从而b =0,故f (x )=2x 2-1.12.设正有理数x 是3的一个近似值,令y =1+21+x. (1)若x >3,求证:y <3;(2)求证:y 比x 更接近于 3.证明:(1)y -3=1+21+x- 3 =3-3+x -3x 1+x=(1-3)(x -3)1+x ,∵x >3,∴x -3>0,而1-3<0,∴y < 3.(2)∵|y -3|-|x -3|=⎪⎪⎪⎪⎪⎪(1-3)(x -3)1+x -|x -3| =|x -3|⎝ ⎛⎭⎪⎫3-11+x -1 =|x -3|⎝ ⎛⎭⎪⎫3-2-x 1+x ∵x >0,3-2<0,|x -3|>0,∴|y -3|-|x -3|<0,即|y -3|<|x -3|,∴y 比x 更接近于 3.。

历年高三数学高考考点之〈不等式〉必会题型及答案

历年高三数学高考考点之〈不等式〉必会题型及答案

历年高三数学高考考点之〈不等式〉必会题型及答案体验高考体验高考1.已知函数f (x )=⎪⎪⎪⎪⎪⎪x -12+⎪⎪⎪⎪⎪⎪x +12,M 为不等式f (x )<2的解集. (1)求M ;(2)证明:当a ,b ∈M 时,|a +b |<|1+ab |.(1)解 f (x )=⎩⎪⎨⎪⎧-2x ,x ≤-12,1,-12<x <12,2x ,x ≥12.当x ≤-12时,由f (x )<2得-2x <2,解得x >-1,所以-1<x ≤-12;当-12<x <12时,f (x )<2;当x ≥12时,由f (x )<2得2x <2,解得x <1, 所以,-12<x <1.所以f (x )<2的解集M ={x |-1<x <1}.(2)证明 由(1)知,当a ,b ∈M 时,-1<a <1,-1<b <1,从而(a +b )2-(1+ab )2=a 2+b 2-a 2b 2-1=(a 2-1)(1-b 2)<0,即(a +b )2<(1+ab )2, 因此|a +b |<|1+ab |.2.已知函数f (x )=|2x -a |+a .(1)当a =2时,求不等式f (x )≤6的解集;(2)设函数g (x )=|2x -1|.当x ∈R 时,f (x )+g (x )≥3,求a 的取值范围. 解 (1)当a =2时,f (x )=|2x -2|+2. 解不等式|2x -2|+2≤6得-1≤x ≤3.因此f (x )≤6的解集为{x |-1≤x ≤3}. (2)当x ∈R 时,f (x )+g (x )=|2x -a |+a +|1-2x |≥|2x -a +1-2x |+a =|1-a |+a , 当x =12时等号成立,所以当x ∈R 时,f (x )+g (x )≥3等价于|1-a |+a ≥3.①当a ≤1时,①等价于1-a +a ≥3,无解. 当a >1时,①等价于a -1+a ≥3, 解得a ≥2.所以a 的取值范围是[2,+∞).高考必会题型题型一 含绝对值不等式的解法 含有绝对值的不等式的解法(1)|f (x )|>a (a >0)⇔f (x )>a 或f (x )<-a ; (2)|f (x )|<a (a >0)⇔-a <f (x )<a ;(3)对形如|x -a |+|x -b |≤c ,|x -a |+|x -b |≥c 的不等式,可利用绝对值不等式的几何意义求解.例1 已知函数f (x )=|x -a |,其中a >1. (1)当a =2时,求不等式f (x )≥4-|x -4|的解集;(2)已知关于x 的不等式|f (2x +a )-2f (x )|≤2的解集为{x |1≤x ≤2},求a 的值. 解 (1)当a =2时,f (x )+|x -4|=⎩⎪⎨⎪⎧-2x +6,x ≤2,2,2<x <4,2x -6,x ≥4.当x ≤2时,由f (x )≥4-|x -4| 得-2x +6≥4, 解得x ≤1;当2<x <4时,f (x )≥4-|x -4|无解; 当x ≥4时,由f (x )≥4-|x -4| 得2x -6≥4,解得x ≥5;所以f (x )≥4-|x -4|的解集为{x |x ≤1或x ≥5}.(2)记h (x )=f (2x +a )-2f (x ), 则h (x )=⎩⎪⎨⎪⎧-2a ,x ≤0,4x -2a ,0<x <a ,2a ,x ≥a .由|h (x )|≤2,解得a -12≤x ≤a +12.又已知|h (x )|≤2的解集为{x |1≤x ≤2},所以⎩⎪⎨⎪⎧a -12=1,a +12=2,于是a =3.点评 (1)用零点分段法解绝对值不等式的步骤:①求零点;②划区间、去绝对值号;③分别解去掉绝对值的不等式;④取每个结果的并集,注意在分段时不要遗漏区间的端点值.(2)用图象法、数形结合可以求解含有绝对值的不等式,使得代数问题几何化,既通俗易懂,又简洁直观,是一种较好的方法.变式训练1 已知函数f (x )=|x -2|-|x -5|. (1)证明:-3≤f (x )≤3;(2)求不等式f (x )≥x 2-8x +15的解集.(1)证明 f (x )=|x -2|-|x -5|=⎩⎪⎨⎪⎧-3,x ≤2,2x -7,2<x <5,3,x ≥5.当2<x <5时,-3<2x -7<3. 所以-3≤f (x )≤3. (2)解 由(1)可知,当x ≤2时,f (x )≥x 2-8x +15的解集为空集;当2<x <5时,f (x )≥x 2-8x +15的解集为{x |5-3≤x <5}; 当x ≥5时,f (x )≥x 2-8x +15的解集为 {x |5≤x ≤6}.综上,不等式f (x )≥x 2-8x +15的解集为{x |5-3≤x ≤6}. 题型二 不等式的证明 1.含有绝对值的不等式的性质 |a |-|b |≤|a ±b |≤|a |+|b |. 2.算术—几何平均不等式定理1:设a ,b ∈R ,则a 2+b 2≥2ab .当且仅当a =b 时,等号成立. 定理2:如果a 、b 为正数,则a +b2≥ab ,当且仅当a =b 时,等号成立.定理3:如果a 、b 、c 为正数,则a +b +c3≥3abc ,当且仅当a =b =c 时,等号成立.定理4:(一般形式的算术—几何平均不等式)如果a 1,a 2,…,a n 为n 个正数,则a 1+a 2+…+a nn≥na 1a 2…a n ,当且仅当a 1=a 2=…=a n 时,等号成立. 例2 (1)已知x ,y 均为正数,且x >y .求证:2x +1x 2-2xy +y 2≥2y +3.(2)已知实数x ,y 满足:|x +y |<13,|2x -y |<16,求证:|y |<518.证明 (1)因为x >0,y >0,x -y >0, 2x +1x 2-2xy +y 2-2y=2(x -y )+1x -y2=(x -y )+(x -y )+1x -y2≥33x -y21x -y2=3,所以2x +1x 2-2xy +y 2≥2y +3.(2)因为3|y |=|3y |=|2(x +y )-(2x -y )|≤2|x +y |+|2x -y |, 由题设知|x +y |<13,|2x -y |<16,从而3|y |<23+16=56,所以|y |<518.点评 (1)作差法应该是证明不等式的常用方法.作差法证明不等式的一般步骤:①作差;②分解因式;③与0比较;④结论.关键是代数式的变形能力. (2)在不等式的证明中,适当“放”“缩”是常用的推证技巧. 变式训练2 (1)若a ,b ∈R ,求证:|a +b |1+|a +b |≤|a |1+|a |+|b |1+|b |.(2)已知a ,b ,c 均为正数,a +b =1,求证:a 2b +b 2c +c 2a≥1.证明 (1)当|a +b |=0时,不等式显然成立. 当|a +b |≠0时,由0<|a +b |≤|a |+|b |⇒1|a +b |≥1|a |+|b |,所以|a +b |1+|a +b |=11|a +b |+1≤11+1|a |+|b |=|a |+|b |1+|a |+|b |≤|a |1+|a |+|b |1+|b |. (2)因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a +a ≥2c ,故a 2b +b 2c +c 2a +(a +b +c )≥2(a +b +c ), 即a 2b +b 2c +c 2a ≥a +b +c , 所以a 2b +b 2c +c 2a≥1.题型三 柯西不等式的应用 柯西不等式(1)设a ,b ,c ,d 均为实数,则(a 2+b 2)(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时等号成立. (2)设a 1,a 2,a 3,…,a n ,b 1,b 2,b 3,…,b n 是实数,则(a 21+a 22+…+a 2n )(b 21+b 22+…+b 2n )≥(a 1b 1+a 2b 2+…+a n b n )2,当且仅当b i =0(i =1,2,…,n )或存在一个数k ,使得a i =kb i (i =1,2,…,n )时,等号成立.例3 (2015·福建)已知a >0,b >0,c >0,函数f (x )=|x +a |+|x -b |+c 的最小值为4.(1)求a +b +c 的值; (2)求14a 2+19b 2+c 2的最小值.解 (1)因为f (x )=|x +a |+|x -b |+c ≥|(x +a )-(x -b )|+c =|a +b |+c ,当且仅当-a ≤x ≤b 时,等号成立.又a >0,b >0,所以|a +b |=a +b . 所以f (x )的最小值为a +b +c . 又已知f (x )的最小值为4, 所以a +b +c =4.(2)由(1)知a +b +c =4,由柯西不等式得⎝ ⎛⎭⎪⎫14a 2+19b 2+c 2(4+9+1) ≥⎝ ⎛⎭⎪⎫a 2×2+b3×3+c ×12=(a +b +c )2=16, 即14a 2+19b 2+c 2≥87. 当且仅当12a 2=13b 3=c1,即a =87,b =187,c =27时等号成立.故14a 2+19b 2+c 2的最小值为87. 点评 (1)使用柯西不等式证明的关键是恰当变形,化为符合它的结构形式,当一个式子与柯西不等式的左边或右边具有一致形式时,就可使用柯西不等式进行证明. (2)利用柯西不等式求最值的一般结构为(a 21+a 22+…+a 2n )(1a 21+1a 22+…+1a 2n)≥(1+1+…+1)2=n 2.在使用柯西不等式时,要注意右边为常数且应注意等号成立的条件.变式训练3 已知定义在R 上的函数f (x )=|x +1|+|x -2|的最小值为a . (1)求a 的值;(2)若p ,q ,r 是正实数,且满足p +q +r =a ,求证:p 2+q 2+r 2≥3.(1)解 因为|x +1|+|x -2|≥|(x +1)-(x -2)|=3,当且仅当-1≤x ≤2时,等号成立, 所以f (x )的最小值等于3,即a =3. (2)证明 由(1)知p +q +r =3, 又因为p ,q ,r 是正实数,所以(p 2+q 2+r 2)(12+12+12)≥(p ×1+q ×1+r ×1)2=(p +q +r )2=9, 即p 2+q 2+r 2≥3.高考题型精练1.如果关于x 的不等式|x -3|-|x -4|<a 的解集不是空集,求实数a 的取值范围. 解 设y =|x -3|-|x -4|, 则y =⎩⎪⎨⎪⎧-1,x ≤3,2x -7,3<x <4,1,x ≥4的图象如图所示:若|x -3|-|x -4|<a 的解集不是空集, 则(|x -3|-|x -4|)min <a .由图象可知当a >-1时,不等式的解集不是空集. 即实数a 的取值范围是(-1,+∞).2.设x >0,y >0,若不等式1x +1y +λx +y ≥0恒成立,求实数λ的最小值.解 ∵x >0,y >0,∴原不等式可化为-λ≤(1x +1y )·(x +y )=2+y x +xy.∵2+y x +x y ≥2+2y x ·xy=4, 当且仅当x =y 时等号成立. ∴[(1x +1y)(x +y )]min =4,∴-λ≤4,λ≥-4.即实数λ的最小值是-4.3.若不等式|2x -1|+|x +2|≥a 2+12a +2对任意实数x 恒成立,求实数a 的取值范围.解 设y =|2x -1|+|x +2|=⎩⎪⎨⎪⎧-3x -1,x <-2,-x +3,-2≤x <12,3x +1,x ≥12.当x <-2时,y =-3x -1>5; 当-2≤x <12时,y =-x +3>52;当x ≥12时,y =3x +1≥52,故函数y =|2x -1|+|x +2|的最小值为52.因为不等式|2x -1|+|x +2|≥a 2+12a +2对任意实数x 恒成立,所以52≥a 2+12a +2.解不等式52≥a 2+12a +2,得-1≤a ≤12,故a 的取值范围为[-1,12].4.设不等式|x -2|<a (a ∈N *)的解集为A ,且32∈A ,12∉A ,(1)求a 的值;(2)求函数f (x )=|x +a |+|x -2|的最小值.解 (1)因为32∈A ,且12∉A ,所以⎪⎪⎪⎪⎪⎪32-2<a ,且⎪⎪⎪⎪⎪⎪12-2≥a ,解得12<a ≤32.又因为a ∈N *,所以a =1.(2)因为|x +1|+|x -2|≥|(x +1)-(x -2)|=3, 当且仅当(x +1)(x -2)≤0,即-1≤x ≤2时取到等号,所以f (x )的最小值为3. 5.已知f (x )=|x +1|+|x -1|,不等式f (x )<4的解集为M . (1)求M ;(2)当a ,b ∈M 时,证明:2|a +b |<|4+ab |. (1)解 f (x )=|x +1|+|x -1|=⎩⎪⎨⎪⎧-2x ,x <-1,2,-1≤x ≤1,2x ,x >1.当x <-1时,由-2x <4,得-2<x <-1; 当-1≤x ≤1时,f (x )=2<4; 当x >1时,由2x <4,得1<x <2. ∴综上可得-2<x <2,即M =(-2,2). (2)证明 ∵a ,b ∈M , 即-2<a <2,-2<b <2,∴4(a +b )2-(4+ab )2=4(a 2+2ab +b 2)-(16+8ab +a 2b 2)=(a 2-4)(4-b 2)<0, ∴4(a +b )2<(4+ab )2, ∴2|a +b |<|4+ab |.6.已知a 2+2b 2+3c 2=6,若存在实数a ,b ,c ,使得不等式a +2b +3c >|x +1|成立,求实数x 的取值范围.解 由柯西不等式知[12+(2)2+(3)2][a 2+(2b )2+(3c )2] ≥(1·a +2·2b +3·3c )2即6×(a 2+2b 2+3c 2)≥ (a +2b +3c )2. 又∵a 2+2b 2+3c 2=6, ∴6×6≥(a +2b +3c )2, ∴-6≤a +2b +3c ≤6,∵存在实数a ,b ,c ,使得不等式a +2b +3c >|x +1|成立.∴|x +1|<6,∴-7<x <5. ∴x 的取值范围是{x |-7<x <5}. 7.设函数f (x )=|x -a |+3x ,其中a >0. (1)当a =1时,求不等式f (x )≥3x +2的解集; (2)若不等式f (x )≤0的解集为{x |x ≤-1},求a 的值. 解 (1)当a =1时,f (x )≥3x +2可化为|x -1|≥2. 由此可得x ≥3或x ≤-1.故不等式f (x )≥3x +2的解集为{x |x ≥3或x ≤-1}. (2)由f (x )≤0得|x -a |+3x ≤0.此不等式化为不等式组⎩⎪⎨⎪⎧x ≥a ,x -a +3x ≤0或⎩⎪⎨⎪⎧x <a ,a -x +3x ≤0,即⎩⎪⎨⎪⎧x ≥a ,x ≤a 4或⎩⎪⎨⎪⎧x <a ,x ≤-a 2.因为a >0,所以不等式组的解集为{x |x ≤-a2}.由题设可得-a2=-1,故a =2.8.(2015·课标全国Ⅰ)已知函数f (x )=|x +1|-2|x -a |,a >0. (1)当a =1时,求不等式f (x )>1的解集;(2)若f (x )的图象与x 轴围成的三角形面积大于6,求a 的取值范围. 解 (1)当a =1时,f (x )>1化为|x +1|-2|x -1|-1>0.当x ≤-1时,不等式化为x -4>0,无解; 当-1<x <1时,不等式化为3x -2>0, 解得23<x <1;当x ≥1时,不等式化为-x +2>0,解得1≤x <2.所以f (x )>1的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪23<x <2. (2)由题设可得,f (x )=⎩⎪⎨⎪⎧x -1-2a ,x <-1,3x +1-2a ,-1≤x ≤a ,-x +1+2a ,x >a .所以函数f (x )的图象与x 轴围成的三角形的三个顶点分别为A ⎝⎛⎭⎪⎫2a -13,0,B (2a +1,0),C (a ,a +1),△ABC 的面积为23(a +1)2.由题设得23(a +1)2>6,故a >2.所以a 的取值范围为(2,+∞).。

考点70+不等式的证明、柯西不等式与均值不等式+-2019年领军高考数学(理)必刷题+Word版含解析

考点70+不等式的证明、柯西不等式与均值不等式+-2019年领军高考数学(理)必刷题+Word版含解析

考点70 不等式的证明、柯西不等式与均值不等式1.设函数,其中.(1)讨论极值点的个数;(2)设,函数,若,()满足且,证明:.【答案】(1)见解析;(2)见解析2.已知数列的前项和为,.(1)求的通项公式;(2)设,数列的前项和为,证明:.【答案】(1);(2)见解析【解析】(1)当时,,解得;当时,,解得.当时,,,以上两式相减,得,3.已知函数f(x)=|x-1|.(I) 解不等式f(2x)+f(x+4)≥8;(II) 若|a|<1,|b|<1,a≠0,求证:>.【答案】(Ⅰ)(II)证明见解析【解析】(Ⅰ)f(2x)+f(x+4)=|2x-1|+|x+3|=当x<-3时,由-3x-2≥8,解得x≤;当-3≤x<时,-x+4≥8无解;当x≥时,由3x+2≥8,解得x≥2.所以不等式f(2x)+f(x+4)≥8的解集为(II)证明:>等价于f(ab)>|a|,即|ab-1|>|a-b|. 因为|a|<1,|b|<1,所以|ab-1|2-|a-b|2=(a2b2-2ab+1)-(a2-2ab+b2)=(a2-1)(b2-1)>0,所以|ab-1|>|a-b|.故所证不等式成立.4.选修4-5:不等式选讲(Ⅰ)如果关于x的不等式的解集不是空集,求参数m的取值范围;(Ⅱ)已知正实数a,b,且,求证:。

【答案】(1);(2)见解析.5.设函数.(I)当时,解不等式;(II)若的解集为,(,),求证:.【答案】(1) (2)见解析6.已知函数.(1)若恒成立,求实数的最大值;(2)在(1)成立的条件下,正实数,满足,证明:. 【答案】(1)2;(2)证明见解析.【解析】(1)由已知可得,所以,7.选修4-5:不等式选讲设且.(1)求证:;(2)求证:.【答案】(1)见解析.(2)见解析.8.已知,,.证明:(Ⅰ);(Ⅱ).【答案】见解析【解析】(1)因为.所以.(2)由(1)及得.因为,.于是.9.选修4-5:不等式选讲已知函数d的最小值为4.(1)求的值;(2)若,且,求证:.【答案】(1) 或.(2)见解析.10.已知函数.(1)求不等式的解集;(2)若正数,满足,求证:.【答案】(1);(2)见解析【解析】(1)此不等式等价于或或,即不等式解集为.(2)∵,,,∴,即,当且仅当即时取等号,∴,当且仅当即时取等号,∴.f x<的解集. 11.已知函数,M为不等式()6(1)求集合M;∈,求证:.(2)若a,b M【答案】(1).(2)见试题解析.12.选修4-5:不等式选讲(1)已知,,且,,求证:.(2)若关于的不等式有解,求实数的取值范围.【答案】(1)见解析.(2) .13.选修4-5:不等式选讲已知函数.(1)解不等式;(2)若()对任意恒成立,求证:.【答案】(Ⅰ) ;(Ⅱ)见解析.【解析】(Ⅰ)或或或或或所以不等式的解集为.(Ⅱ)当时,,当时,,所以的最小值为,因为对任意恒成立,所以,又,且等号不能同时成立,所以,即.14.选修4-5:不等式选讲设,且,求证:(Ⅰ);(Ⅱ)【答案】(Ⅰ)见解析.(Ⅱ)见解析.15.选修4-5:不等式选讲已知函数.(Ⅰ)解不等式;(Ⅱ)若,且,证明:. 【答案】(Ⅰ).(Ⅱ)见解析.16.【选修4-5:不等式选讲】 已知函数.(Ⅰ)当1t =时,解不等式()1f x ≤;(Ⅱ)设,,a b c 为正实数,且,其中m 为函数()f x 的最大值,求证:.【答案】(1))[0 ∞+,(2)见解析 【解析】(1)1t =时,,,所以1{31x ≤-≤或或2{31x >-≤, 所以解集为[)0,+∞ . (Ⅱ)由绝对值不等式得,所以()f x 最大值3m =,当且仅当时等号成立.17.选修4-5:不等式选讲已知均为正实数,且.(1)求的最大值;(2)求的最大值.【答案】(1)12;(2).,当且仅当,即时,取等号所以原式,故原式的最大值为.18.(选修4——5:不等式选讲)已知关于的不等式的解集为.(1)求实数的取值范围;(2)已知且,当最大时,求的最小值及此时实数的值.【答案】(1),(2).易得时,取得最小值为.19.已知函数.(1)解不等式;(2)记函数的最小值为,若均为正实数,且,求的最小值【答案】(1)或.(2) .20.选修4-5:不等式选讲已知函数.(1)解不等式;(2)记函数的最小值为,若均为正实数,且,求的最小值. 【答案】(1)或(2)21.选修4-5:不等式选讲已知函数.(1)解不等式;(2)已知,若不等式恒成立,求实数的取值范围.【答案】(1);(2).【解析】(1)等价于,22.已知,,x y z 均为实数. (1)求证:;(2)若,求222x y z ++的最小值.【答案】(1)见解析;(2)187【解析】证明:(1)法一:,所以.法二:,所以.(2)证明:因为(由柯西不等式得)所以,当且仅当23y z x ==即时, 222x y z ++有最小值187. 23.函数,其最小值为.(1)求的值; (2)正实数满足,求证:.【答案】(1)3;(2)24.已知函数,,若恒成立,实数的最大值为.()求实数.()已知实数、、满足,且的最大值是,求的值.【答案】(1)(2)【解析】()根据题意可得,若恒成立,25.已知,且..a b c R +∈.(1)的最小值;(2)证明:.【答案】(1)最小值为9;(2)见解析.【解析】(1)由柯西不等式,得,当且仅当时,取等号.所以的最小值为9.(2)由,。

高考数学 考点 第二章 不等式 一元二次不等式及其解法(理)-人教版高三全册数学试题

高考数学 考点 第二章 不等式 一元二次不等式及其解法(理)-人教版高三全册数学试题

一元二次不等式及其解法一元二次不等式的解集有两相等实根x =x概念方法微思考1.一元二次不等式ax 2+bx +c >0(a >0)的解集与其对应的函数y =ax 2+bx +c 的图象有什么关系? 提示 ax 2+bx +c >0(a >0)的解集就是其对应函数y =ax 2+bx +c 的图象在x 轴上方的部分所对应的x 的取值X 围.2.一元二次不等式ax 2+bx +c >0(<0)恒成立的条件是什么?提示 显然a ≠0.ax 2+bx +c >0恒成立的条件是⎩⎪⎨⎪⎧a >0,Δ<0;ax2+bx +c <0恒成立的条件是⎩⎪⎨⎪⎧a <0,Δ<0.1.(2019•某某)设x R ∈,使不等式2320x x +-<成立的x 的取值X 围为__________. 【答案】2(1,)3-【解析】2320x x +-<,将232x x +-分解因式即有: (1)(32)0x x +-<;2(1)()03x x +-<;由一元二次不等式的解法“小于取中间,大于取两边” 可得:213x -<<;即:2{|1}3x x -<<;或2(1,)3-.故答案为:2(1,)3-.2.(2020•B 卷模拟)已知方程20x bx c ++=的两个根是2,3. (1)某某数b ,c 的值;(2)求不等式210cx bx -+的解集. 【解析】二次方程20x bx c ++=的根为2,3, 23b ∴+=-,23c ⨯=; 5b ∴=-,6c =;(2)不等式22106510(21)(31)0cx bx x x x x -+⇒++⇒++; 1123x ∴--; 则不等式不等式210cx bx -+的解集11{|}23x x --.1.(2020•某某模拟)已知区间(,)a b 是关于x 的一元二次不等式2210mx x -+<的解集,则32a b +的最小值是()A B .5+.52D .3 【答案】C【解析】(,)a b 是不等式2210mx x -+<的解集, a ∴,b 是方程2210mx x -+=的两个实数根且0m >, 2a b m ∴+=,1ab m=, ∴112a b ab a b+=+=;且0a >,0b >; 11132(32)()2a b a b a b∴+=++ 1231231(5)(52)(526)222b a b a a b a b =+++=+,=时“=”成立;32a b ∴+的最小值为15(522+=.故选C .2.(2020•某某模拟)一元二次不等式(23)(1)0x x -+>的解集为()A .3{|1}2x x -<<B .3{|2x x >或1}x <-C .3{|1}2x x -<<D .{|1x x >或3}2x <-【答案】B【解析】不等式(23)(1)0x x -+>对应方程的解为32和1-, 所以不等式的解集为{|1x x <-,3}2x >.故选B .3.(2020•某某模拟)若(3,6)x ∈,则不等式23100x x --成立的概率为() A .13B .14C .23D .34【答案】A【解析】不等式23100x x --可化为(5)(2)0x x -+, 解得2x -或5x ,利用几何概型的概率公式计算所求概率为 651633P -==-. 故选A .4.(2020•一卷模拟)已知关于x 的不等式2230ax x a -+<在(0,2]上有解,则实数a 的取值X 围是()A .(-∞B .4(,)7-∞C .)+∞D .4(,)7+∞ 【答案】A【解析】(0x ∈,2]时,不等式可化为32aax x+<; 当0a =时,不等式为02<,满足题意; 当0a >时,不等式化为32x x a+<,则2323x a x>=,当且仅当x =所以a,即0a <;当0a <时,32x x a+>恒成立;综上知,实数a 的取值X围是(-∞. 故选A .5.(2020•乃东区校级一模)若不等式210x ax ++对一切(0x ∈,1]2成立,则a 的最小值为()A .52-B .0C .2-D .3-【答案】A【解析】不等式210x ax ++对一切(0x ∈,1]2成立1()max a x x ⇔--,(0x ∈,1]2.令1()f x x x =--,(0x ∈,1]2. 22211()10x f x x x'-=-+=>,∴函数()f x 在(0x ∈,1]2上单调递增,∴当12x =时,函数()f x 取得最大值,115()2222f =--=-. a ∴的最小值为52-.故选A .6.(2020•乃东区校级一模)关于x 的不等式0ax b ->的解集是(1,)+∞,则关于x 的不等式()(3)0ax b x +->的解集是()A .(-∞,1)(3-⋃,)+∞B .(1,3)-C .(1,3)D .(-∞,1)(3⋃,)+∞ 【答案】A【解析】关于x 的不等式0ax b ->的解集是(1,)+∞,∴01a b a>⎧⎪⎨=⎪⎩.∴关于x 的不等式()(3)0ax b x +->可化为(1)(3)0x x +->,1x ∴<-或3x >.∴关于x 的不等式()(3)0ax b x +->的解集是{|1x x <-或3}x >.故选A .7.(2020•某某二模)对于实数x ,规定[]x 表示不大于x 的最大整数,那么不等式24[]36[]450x x -+<成立的x 的X 围是()A .315(,)22B .[2,8]C .[2,8)D .[2,7]【答案】C【解析】由24[]36[]450x x -+<,得315[]22x <<, 又[]x 表示不大于x 的最大整数,所以28x <. 故选C .8.(2020春•某某期末)已知不等式20x bx c +-<的解集为{|36}x x <<,则不等式2(1)20bx c x -++->的解集为() A .1{|9x x <,或2}x >B .1{|2}9x x << C .1{|9x x <-,或2}x >D .1{|2}9x x -<<【答案】C【解析】由题意,20x bx c +-=的两根为3,6. 则3636b c +=-⎧⎨⨯=-⎩,解得918b c =-⎧⎨=-⎩,则不等式2(1)20bx c x -++->可化为291720x x -->, 解得19x <-,或2x >.故选C .9.(2020春•某某期末)关于x 的不等式2(1)10(0)ax a x a -++><的解集为() A .1{|1}x x a <<B .{|1x x <或1}x a >C .1{|x x a <或1}x >D .1{|1}x x a<<【答案】A【解析】不等式可化为(1)(1)0ax x -->, 0a <,∴原不等式等价于1()(1)0x x a--<,且不等式对应的一元二次方程的根为1a和1;又11a<,原不等式的解集为1{|1} x xa<<.故选A.10.(2020春•某某期末)关于x的不等式210x mx-+>的解集为R,则实数m的取值X围是() A.(0,4)B.(-∞,2)(2-⋃,)+∞C.[2-,2]D.(2,2)-【答案】D【解析】不等式210x mx-+>的解集为R,所以△0<,即240m-<,解得22m-<<.故选D.11.(2020春•某某期末)一元二次不等式(32)(1)0x x-+<的解集是()A.3(1,)2B.3(,1)(,)2-∞-+∞C.3(,1)2-D.3(,)(1,)2-∞-+∞【答案】B【解析】不等式(32)(1)0x x-+<⇒不等式(23)(1)0x x-+>对应方程的解为32和1-,所以不等式的解集为{|1x x<-或3}2 x>.故选B.12.(2020春•某某期末)不等式2230x x+-<的解集为() A.(3,1)-B.(1,3)-C.(-∞,3)(1-⋃,)+∞D.31x-<<【答案】A【解析】2230x x+-<,(3)(1)0x x∴+-<,解得31x-<<.用集合表示为(3,1)-.故选A .13.(2019•某某三模)若不等式210ax ax +-的解集为实数集R ,则实数a 的取值X 围为() A .04a B .40a -<<C .40a -<D .40a - 【答案】D【解析】0a =时,不等式210ax ax +-化为10-,解集为实数集R ; 0a ≠时,应满足00a <⎧⎨⎩, 所以2040a a a <⎧⎨+⎩,解得40a -<;综上,实数a 的取值X 围是40a -. 故选D .14.(2020•某某模拟)设[]x 表示不小于实数x 的最小整数,则满足关于x 的不等式2[][]120x x +-的解可以为()A .3C . 4.5-D .5- 【答案】BC【解析】不等式2[][]120x x +-可化为([]4)([]3)0x x +-, 解得4[]3x -;又[]x 表示不小于实数x 的最小整数,且4=,[3]3=,[ 4.5]4-=-,[5]5-=-; 所以满足不等式2[][]120x x +-的解可以为B 、C . 故选BC .15.(2020•鼓楼区校级模拟)设关于x 的不等式28(1)7160ax a x a ++++,()a Z ∈,只有有限个整数解,且0是其中一个解,则全部不等式的整数解的和为__________. 【答案】10-【解析】设28(1)716y ax a x a =++++,其图象为抛物线.对于任意一个给定的a 值其抛物线只有在开口向下的情况下才能满足0y 而整数解只有有限个,所以0a <.因为0为其中的一个解可以求得167a -,又a Z ∈,所以2a =-,1-,则不等式为22820x x --+和290x -+,可分别求得252x -和33x -,x 为整数,4x ∴=-,3-,2-,1-,0和3x =-,2-,1-,0,1,2,3 ∴全部不等式的整数解的和为10-故答案为:10-.16.(2020春•仓山区校级期末)已知关于x 的不等式230x ax ++,它的解集是[1,3],则实数a =__________. 【答案】4-【解析】关于x 的不等式230x ax ++,它的解集是[1,3], 所有关于x 的方程230x ax ++=的两根为1和3, 由根与系数的关系知,实数(13)4a =-+=-. 故答案为:4-.17.(2020•某某一模)若关于x 的不等式230x mx -+<的解集是(1,3),则实数m 的值为__________. 【答案】4【解析】不等式230x mx -+<的解集是(1,3), 所以方程230x mx -+=的解1和3, 由根与系数的关系知, 134m =+=.故答案为:4.18.(2020•某某模拟)若关于x 的不等式210mx mx -+<的解集不是空集,则m 的取值X 围是__________.【答案】(-∞,0)(4⋃,)+∞【解析】若0m =,则原不等式等价为10<,此时不等式的解集为空集.所以不成立,即0m ≠. 若0m ≠,要使不等式210mx mx -+<的解集不是空集,则 ①0m >时,有△240m m =->,解得4m >. ②若0m <,则满足条件.综上满足条件的m 的取值X 围是(-∞,0)(4⋃,)+∞. 故答案为:(-∞,0)(4⋃,)+∞.19.(2020•某某二模)已知关于x 的不等式2(4)(4)0ax a x --->的解集为A ,且A 中共含有n 个整数,则当n 最小时实数a 的值为__________. 【答案】2-【解析】已知关于x 的不等式2(4)(4)0ax a x --->, ①0a <时,4[()](4)0x a x a-+-<,其中40a a +<,故解集为4(a a+,4), 由于44()2(4a a a a a +=-----=-, 当且仅当4a a -=-,即2a =-时取等号,4a a ∴+的最大值为4-,当且仅当44a a+=-时,A 中共含有最少个整数,此时实数a 的值为2-; ②0a =时,4(4)0x -->,解集为(,4)-∞,整数解有无穷多,故0a =不符合条件; ③0a >时,4[()](4)0x a x a -+->,其中44a a+,∴故解集为(-∞,44)(a a+⋃,)+∞,整数解有无穷多,故0a >不符合条件; 综上所述,2a =-. 故答案为:2-.。

高考数学——不等式的证明策略

高考数学——不等式的证明策略

不等式的证明策略1.已知a >0,b >0,且a +b =1. 求证:(a +a 1)(b +b 1)≥425. 2.证明不等式n n2131211<++++ (n ∈N *)3. 求使y x +≤a y x +(x >0,y >0)恒成立的a 的最小值.一、填空题1.已知x 、y 是正变数,a 、b 是正常数,且ybx a +=1,x +y 的最小值为__________. 2.设正数a 、b 、c 、d 满足a +d =b +c ,且|a -d |<|b -c |,则ad 和bc 的大小关系是__________. 3.若m <n ,p <q ,且(p -m )(p -n )<0,(q -m )(q -n )<0,则m 、n 、p 、q 的大小顺序是__________. 二、解答题4.已知a ,b ,c 为正实数,a +b +c =1.求证:(1)a 2+b 2+c 2≥31(2)232323+++++c b a ≤65.已知x ,y ,z ∈R ,且x +y +z =1,x 2+y 2+z 2=21,证明:x ,y ,z ∈[0,32]6.证明下列不等式:(1)若x ,y ,z ∈R ,a ,b ,c ∈R +,则cb a y b ac x a c b +++++22z 2≥2(xy +yz +zx ) (2)若x ,y ,z ∈R +,且x +y +z =xyz , 则z y x y x z x z y +++++≥2(zy x 111++) 7.已知i ,m 、n 是正整数,且1<i ≤m <n .(1)证明:n i A i m <m i A i n ;(2)证明:(1+m )n >(1+n )m8.若a >0,b >0,a 3+b 3=2,求证:a +b ≤2,ab ≤1.参考答案1.:(分析综合法)欲证原式,即证4(ab )2+4(a 2+b 2)-25ab +4≥0,即证4(ab )2-33(ab )+8≥0,即证ab ≤41或ab ≥8.∵a >0,b >0,a +b =1,∴ab ≥8不可能成立∵1=a +b ≥2ab ,∴ab ≤41,从而得证. 证法二:(均值代换法) 设a =21+t 1,b =21+t 2. ∵a +b =1,a >0,b >0,∴t 1+t 2=0,|t 1|<21,|t 2|<21.4254116254123162541)45(41)141)(141()21)(21()141)(141(211)21(211)21(11)1)(1(2242222222222222222112122221122212122=≥-++=--+=-++++++=++++++++=+++⨯+++=+⨯+=++∴t t t t t t t t t t t t t t t t t t t t t b b a a b b a a 显然当且仅当t =0,即a =b =21时,等号成立.证法三:(比较法)∵a +b =1,a >0,b >0,∴a +b ≥2ab ,∴ab ≤41425)1)(1(04)8)(41(4833442511425)1)(1(2222≥++∴≥--=++=-+⋅+=-++b b a a ab ab ab ab ab b a b b a a b b a a 证法四:(综合法)∵a +b =1, a >0,b >0,∴a +b ≥2ab ,∴ab ≤41.4251)1(41 16251)1(169)1(434111222≥+-⇒⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≥≥+-⇒≥-⇒=-≥-∴ab ab ab ab ab ab 425)1)(1(≥++b b a a 即 证法五:(三角代换法)∵ a >0,b >0,a +b =1,故令a =sin 2α,b =cos 2α,α∈(0,2π) .425)1)(1(4252sin 4)2sin 4(412sin 125162sin 24.3142sin 4,12sin 2sin 416)sin 4(2sin 42cos sin 2cos sin )cos 1)(cos sin 1(sin )1)(1(2222222222222442222≥++≥-⇒⎪⎭⎪⎬⎫≥≥+-=-≥-∴≤+-=+-+=++=++b b a a b b a a 即得ααααααααααααααααα 22.证法一:(1)当n 等于1时,不等式左端等于1,右端等于2,所以不等式成立;(2)假设n =k (k ≥1)时,不等式成立,即1+k13121+++ <2k , ,1211)1(11)1(21121131211+=++++<+++=++<+++++k k k k k k k k k k 则∴当n =k +1时,不等式成立. 综合(1)、(2)得:当n ∈N *时,都有1+n13121+++<2n .另从k 到k +1时的证明还有下列证法:,1111212212:.12112,01),1(21)1(2,0)1()1()1(2)1(21)1(22+=+++>++=-++<++∴>++<++∴>+-=+++-=+--+k k k kk k k k k k k k k k k k k k k k k k k 又如.12112+<++∴k k k证法二:对任意k ∈N *,都有: .2)1(2)23(2)12(22131211),1(21221n n n nk k k k k k k =--++-+-+<++++--=-+<+=因此证法三:设f (n )=),131211(2nn ++++-那么对任意k ∈N*都有:1)1(])1(2)1[(11]1)1(2)1(2[1111)1(2)()1(2>+-+=++-+⋅+=-+-++=+--+=-+k k k k k k k k k k k k k k k k f k f∴f (k +1)>f (k )因此,对任意n ∈N * 都有f (n )>f (n -1)>…>f (1)=1>0,∴.2131211n n<++++ 3.解法一:由于a 的值为正数,将已知不等式两边平方,得: x +y +2xy ≤a 2(x +y ),即2xy ≤(a 2-1)(x +y ),①∴x ,y >0,∴x +y ≥2xy , ②当且仅当x =y 时,②中有等号成立.比较①、②得a 的最小值满足a 2-1=1, ∴a 2=2,a =2 (因a >0),∴a 的最小值是2. 解法二:设yx xyy x xy y x y x y x yx yx u ++=+++=++=++=212)(2. ∵x >0,y >0,∴x +y ≥2xy (当x =y 时“=”成立),∴y x xy +2≤1,yx xy+2的最大值是1. 从而可知,u 的最大值为211=+, 又由已知,得a ≥u ,∴a 的最小值为2. 解法三:∵y >0, ∴原不等式可化为y x+1≤a 1+yx, 设y x =tan θ,θ∈(0,2π). ∴tan θ+1≤a 1tan 2+θ;即tan θ+1≤a se c θ ∴a ≥sin θ+cos θ=2sin(θ+4π), ③又∵sin(θ+4π)的最大值为1(此时θ=4π). 由③式可知a 的最小值为2. 一、1.分析:令xa=cos 2θ,y b =sin 2θ,则x =a sec 2θ,y =bc s c 2θ,∴x +y =a sec 2θ+b csc 2θ=a +b +a tan 2θ+b co t 2θ≥a +b +2ab b a b a 2cot tan 22++=θ⋅θ.答案:a +b +2ab2.分析:由0≤|a -d |<|b -c |⇔(a -d )2<(b -c )2⇔(a +b )2-4ad <(b +c )2-4bc∵a +d =b +c ,∴-4ad <-4bc ,故ad >bc . 答案:ad >bc3.分析:把p 、q 看成变量,则m <p <n ,m <q <n . 答案:m <p <q <n二、4.(1)证法一:a 2+b 2+c 2-31=31(3a 2+3b 2+3c 2-1) =31[3a 2+3b 2+3c 2-(a +b +c )2] =31[3a 2+3b 2+3c 2-a 2-b 2-c 2-2ab -2ac -2bc ] =31[(a -b )2+(b -c )2+(c -a )2]≥0 ∴a 2+b 2+c 2≥31 证法二:∵(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc ≤a 2+b 2+c 2+a 2+b 2+a 2+c 2+b 2+c 2∴3(a 2+b 2+c 2)≥(a +b +c )2=1 ∴a 2+b 2+c 2≥31证法三:∵33222c b a c b a ++≥++∴a 2+b 2+c 2≥3cb a ++∴a 2+b 2+c 2≥31 证法四:设a =31+α,b =31+β,c =31+γ.∵a +b +c =1,∴α+β+γ=0∴a 2+b 2+c 2=(31+α)2+(31+β)2+(31+γ)2=31+32(α+β+γ)+α2+β2+γ 2 =31+α2+β2+γ2≥31 ∴a 2+b 2+c 2≥31629)(323232323323,23323,21231)23(23:)2(=+++<+++++∴+<++<+++<⨯+=+c b a c b a c c b b a a a 同理证法一 ∴原不等式成立. 证法二:3)23()23()23(3232323+++++≤+++++c b a c b a336)(3=+++=c b a∴232323+++++c b a ≤33<6 ∴原不等式成立. 5.证法一:由x +y +z =1,x 2+y 2+z 2=21,得x 2+y 2+(1-x -y )2=21,整理成关于y 的一元二次方程得:2y 2-2(1-x )y +2x 2-2x +21=0,∵y ∈R ,故Δ≥0 ∴4(1-x )2-4×2(2x 2-2x +21)≥0,得0≤x ≤32,∴x ∈[0,32]同理可得y ,z ∈[0,32]证法二:设x =31+x ′,y =31+y ′,z =31+z ′,则x ′+y ′+z ′=0,于是21=(31+x ′)2+(31+y ′)2+(31+z ′)2=31+x ′2+y ′2+z ′2+32(x ′+y ′+z ′) =31+x ′2+y ′2+z ′2≥31+x ′2+2)(2z y '+'=31+23x ′2故x ′2≤91,x ′∈[-31,31],x ∈[0,32],同理y ,z ∈[0,32]证法三:设x 、y 、z 三数中若有负数,不妨设x <0,则x 2>0,21=x 2+y 2+z 2≥x 2+21232)1(2)(2222+-=+-=+x x x x z y >21,矛盾.x 、y 、z 三数中若有最大者大于32,不妨设x >32,则21=x 2+y 2+z 2≥x 2+2)(2z y +=x 2+2)1(2x -=23x 2-x +21=23x (x -32)+21>21;矛盾. 故x 、y 、z ∈[0,32] 0)()()()()()(222)(4)(2))(()(2)]()()([)(2)(:)2()(20)()()()2()2()2()(22:)1.(62222222222223333332222222222222222222222222222222222≥-+-+-+-+-+-⇔++≥+++++⇔+++++≥+++++++⇔++≥+++++⋅⇔++≥+++++++≥+++++∴≥-+-+-=-++-++-+=++-+++++y x z x z y z y x y x xy x z zx z y yz xyz z xy yz x xy y x zx x z yz z y xyz z xy yz x x z z y y x xy y x zx x z yz z y z y x zx yz xy y x xy x z zx z y yz xyz zx yz xy zyx y x z x z y z y x zx yz xy z c b a y b a c x a c b x a c z c a z c b y b c y b a x a b zx x acz c a yz z c b y b c xy y b a x a b zx yz xy z cb a y b ac x c b 所证不等式等介于证明证明∵上式显然成立,∴原不等式得证.7.证明:(1)对于1<i ≤m ,且A i m =m ·…·(m -i +1),n i n n n n n nm i m m m m m m ii m i i m 11A ,11A +-⋅⋅-⋅=+-⋅⋅-⋅= 同理, 由于m <n ,对于整数k =1,2,…,i -1,有mkm n k n ->-, 所以i m i i n i i i mi i n n m mn A A ,A A >>即(2)由二项式定理有:(1+m )n =1+C 1n m +C 2n m 2+…+C nn m n , (1+n )m =1+C 1m n +C 2m n 2+…+C m m n m ,由(1)知m iA i n>n iA i m(1<i ≤m ),而C i m=!A C ,!A i i i ni n i m = ∴m i C i n >n i C i m (1<m <n )∴m 0C 0n =n 0C 0n =1,m C 1n =n C 1m =m ·n ,m 2C 2n >n 2C 2m ,…, m m C m n >n m C m m ,m m +1C 1+m n >0,…,m n C n n >0, ∴1+C 1n m +C 2n m 2+…+C n n m n >1+C 1m n +C 2m n 2+…+C m m n m ,即(1+m )n >(1+n )m 成立.8.证法一:因a >0,b >0,a 3+b 3=2,所以 (a +b )3-23=a 3+b 3+3a 2b +3ab 2-8=3a 2b +3ab 2-6=3[ab (a +b )-2]=3[ab (a +b )-(a 3+b 3)]=-3(a +b )(a -b )2≤0. 即(a +b )3≤23,又a +b >0,所以a +b ≤2,因为2ab ≤a +b ≤2, 所以ab ≤1.证法二:设a 、b 为方程x 2-mx +n =0的两根,则⎩⎨⎧=+=ab n ba m ,因为a >0,b >0,所以m >0,n >0,且Δ=m 2-4n ≥0①因为2=a 3+b 3=(a +b )(a 2-ab +b 2)=(a +b )[(a +b )2-3ab ]=m (m 2-3n )所以n =mm 3232-②将②代入①得m 2-4(mm 3232-)≥0, 即mm 383+-≥0,所以-m 3+8≥0,即m ≤2,所以a +b ≤2,由2≥m 得4≥m 2,又m 2≥4n ,所以4≥4n ,即n ≤1,所以ab ≤1.证法三:因a >0,b >0,a 3+b 3=2,所以2=a 3+b 3=(a +b )(a 2+b 2-ab )≥(a +b )(2ab -ab )=ab (a +b )于是有6≥3ab (a +b ),从而8≥3ab (a +b )+2=3a 2b +3ab 2+a 3+b 3= (a +b )3,所以a +b ≤2,(下略)证法四:因为333)2(2b a b a +-+8))((38]2444)[(22222b a b a ab b a ab b a b a -+=----++=≥0, 所以对任意非负实数a 、b ,有233b a +≥3)2(b a +因为a >0,b >0,a 3+b 3=2,所以1=233b a +≥3)2(b a +,∴2b a +≤1,即a +b ≤2,(以下略)证法五:假设a +b >2,则a 3+b 3=(a +b )(a 2-ab +b 2)=(a +b )[(a +b )2-3ab ]>(a +b )ab >2ab ,所以ab <1, 又a 3+b 3=(a +b )[a 2-ab +b 2]=(a +b )[(a +b )2-3ab ]>2(22-3ab )因为a 3+b 3=2,所以2>2(4-3ab ),因此ab >1,前后矛盾,故a +b ≤2(以下略)。

关于证明不等式的高考题

关于证明不等式的高考题

1、已知a, b ∈ R,且a + b = 1。

求证:3a + 3b < 4。

以下哪个选项是正确的推导步骤?A. 利用均值不等式,得到3a + 3b ≥ 2√(3a * 3b)B. 直接计算3a + 3b的值C. 利用指数函数的性质,得到3a + 3b > 4D. 通过代入a + b = 1,化简得到3a + 3b < 4(答案:A,后续需进一步推导至D的结论)2、设x, y > 0,且x + y = 4。

下列不等式中正确的是:A. x2 + y2 ≥ 8B. √(xy) ≥ 2C. 1/(x + 1) + 1/(y + 1) ≤ 1/2D. x3 + y3 ≥ 64(答案:A)3、若a, b, c > 0,且a + b + c = 1,则下列不等式成立的是:A. a2 + b2 + c2 ≥ 1/3B. abc ≥ (1/3)3C. 1/(a + b) + 1/c ≥ 4D. √a + √b + √c ≤ 1(答案:A)4、设x > 1,y > 1,且xy = 4。

下列不等式正确的是:A. x + y ≥ 4B. x + y ≤ 4C. 1/x + 1/y ≥ 1D. 1/x + 1/y ≤ 1/2(答案:C)5、已知a, b > 0,且a + b = 2。

下列不等式中正确的是:A. a3 + b3 ≥ 8B. ab ≥ 1C. 1/a + 1/b ≤ 2D. √(a2 + b2) ≤ 2(答案:D)6、设x, y ∈ R,且xy ≠ 0。

若|x| + |y| = 2,则下列不等式恒成立的是:A. x2 + y2 ≥ 2B. 1/x2 + 1/y2 ≥ 1C. |x + y| ≥ 2D. |x - y| ≤ 2(答案:A)7、已知a, b, c ∈ R,且a - b = b - c = 1/2。

则下列不等式中正确的是:A. a2 + b2 + c2 ≥ 3/2B. ab + bc + ca ≥ -1/4C. a + b + c ≤ 3/2D. |a| + |b| + |c| ≥ 3/2(答案:B,注意此题需利用平方和与平方差公式进行推导)8、设x > 0,y > 0,且x + y = 5。

高考数学不等式、推理与证明、复数(含高考真题)

高考数学不等式、推理与证明、复数(含高考真题)

高中数学不等式、推理与证明、复数(含高考真题及解析)1.【2022年全国甲卷】若z=1+i.则|i z+3z̅|=()A.4√5B.4√2C.2√5D.2√2【答案】D【解析】【分析】根据复数代数形式的运算法则,共轭复数的概念以及复数模的计算公式即可求出.【详解】因为z=1+i,所以i z+3z̅=i(1+i)+3(1−i)=2−2i,所以|i z+3z̅|=√4+4=2√2.故选:D.2.【2022年全国甲卷】若z=−1+√3i,则zzz̅−1=()A.−1+√3i B.−1−√3i C.−13+√33iD.−13−√33i【答案】C【解析】【分析】由共轭复数的概念及复数的运算即可得解.【详解】z̅=−1−√3i,zz̅=(−1+√3i)(−1−√3i)=1+3=4.z zz̅−1=−1+√3i3=−13+√33i故选:C3.【2022年全国乙卷】设(1+2i)a+b=2i,其中a,b为实数,则()A.a=1,b=−1B.a=1,b=1C.a=−1,b=1D.a=−1,b=−1【答案】A【解析】【分析】根据复数代数形式的运算法则以及复数相等的概念即可解出.因为a,b∈R,(a+b)+2a i=2i,所以a+b=0,2a=2,解得:a=1,b=−1.故选:A.4.【2022年全国乙卷】若x,y满足约束条件{x+y⩾2,x+2y⩽4,y⩾0,则z=2x−y的最大值是()A.−2B.4C.8D.12【答案】C【解析】【分析】作出可行域,数形结合即可得解.【详解】由题意作出可行域,如图阴影部分所示,转化目标函数z=2x−y为y=2x−z,上下平移直线y=2x−z,可得当直线过点(4,0)时,直线截距最小,z最大,所以z max=2×4−0=8.故选:C.5.【2022年全国乙卷】已知z=1−2i,且z+az̅+b=0,其中a,b为实数,则()A.a=1,b=−2B.a=−1,b=2C.a=1,b=2D.a=−1,b=−2【答案】A【解析】先算出z̅,再代入计算,实部与虚部都为零解方程组即可 【详解】z̅=1+2iz +az̅+b =1−2i +a(1+2i )+b =(1+a +b)+(2a −2)i由z +az̅+b =0,得{1+a +b =02a −2=0 ,即{a =1b =−2 故选:A6.【2022年新高考1卷】若i (1−z)=1,则z +z̅=( ) A .−2 B .−1 C .1 D .2【答案】D 【解析】 【分析】利用复数的除法可求z ,从而可求z +z̅. 【详解】由题设有1−z =1i =i i2=−i ,故z =1+i ,故z +z̅=(1+i )+(1−i )=2,故选:D7.【2022年新高考2卷】(2+2i )(1−2i )=( ) A .−2+4i B .−2−4iC .6+2iD .6−2i【答案】D 【解析】 【分析】利用复数的乘法可求(2+2i )(1−2i ). 【详解】(2+2i )(1−2i )=2+4−4i +2i =6−2i , 故选:D.8.【2022年北京】若复数z 满足i ⋅z =3−4i ,则|z |=( ) A .1 B .5C .7D .25【答案】B 【解析】利用复数四则运算,先求出z,再计算复数的模.【详解】由题意有z=3−4ii =(3−4i)(−i)i⋅(−i)=−4−3i,故|z|=√(−4)2+(−3)2=5.故选:B.9.【2022年浙江】已知a,b∈R,a+3i=(b+i)i(i为虚数单位),则()A.a=1,b=−3B.a=−1,b=3C.a=−1,b=−3D.a=1,b=3【答案】B【解析】【分析】利用复数相等的条件可求a,b.【详解】a+3i=−1+b i,而a,b为实数,故a=−1,b=3,故选:B.10.【2022年浙江】若实数x,y满足约束条件{x−2≥0,2x+y−7≤0,x−y−2≤0,则z=3x+4y的最大值是()A.20B.18C.13D.6【答案】B【解析】【分析】在平面直角坐标系中画出可行域,平移动直线z=3x+4y后可求最大值.【详解】不等式组对应的可行域如图所示:当动直线3x +4y −z =0过A 时z 有最大值. 由{x =22x +y −7=0可得{x =2y =3,故A(2,3), 故z max =3×2+4×3=18, 故选:B.11.【2022年浙江】已知a,b ∈R ,若对任意x ∈R,a|x −b|+|x −4|−|2x −5|≥0,则( ) A .a ≤1,b ≥3 B .a ≤1,b ≤3 C .a ≥1,b ≥3 D .a ≥1,b ≤3【答案】D 【解析】 【分析】将问题转换为a|x −b|≥|2x −5|−|x −4|,再结合画图求解. 【详解】由题意有:对任意的x ∈R ,有a|x −b|≥|2x −5|−|x −4|恒成立.设f(x)=a|x −b|,g(x)=|2x −5|−|x −4|={1−x,x ≤523x −9,52<x <4x −1,x ≥4,即f(x)的图像恒在g(x)的上方(可重合),如下图所示:由图可知,a≥3,1≤b≤3,或1≤a<3,1≤b≤4−3a≤3,故选:D.12.【2022年新高考2卷】(多选)若x,y满足x2+y2−xy=1,则()A.x+y≤1B.x+y≥−2C.x2+y2≤2D.x2+y2≥1【答案】BC【解析】【分析】根据基本不等式或者取特值即可判断各选项的真假.【详解】因为ab≤(a+b2)2≤a2+b22(a,b∈R),由x2+y2−xy=1可变形为,(x+y)2−1=3xy≤3(x+y2)2,解得−2≤x+y≤2,当且仅当x=y=−1时,x+y=−2,当且仅当x=y=1时,x+y=2,所以A错误,B正确;由x2+y2−xy=1可变形为(x2+y2)−1=xy≤x2+y22,解得x2+y2≤2,当且仅当x=y =±1时取等号,所以C正确;因为x2+y2−xy=1变形可得(x−y2)2+34y2=1,设x−y2=cosθ,√32y=sinθ,所以x=cosθ+√3y=√3,因此x2+y2=cos2θ+53sin2θ√3=1+√3−13cos2θ+13=43+23sin(2θ−π6)∈[23,2],所以当x=√33,y=−√33时满足等式,但是x2+y2≥1不成立,所以D错误.故选:BC .1.(2022·北京四中三模)在复平面内,复数12iiz -=对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】C 【解析】 【分析】根据复数的除法运算法则求复数z 的代数形式,根据复数的几何意义确定对应点的象限. 【详解】()()()12i i 12i 2i i i i z -⋅--===--⋅-, 所以复数z 在复平面上的对应点为()2,1--,该点在第三象限. 故选:C.2.(2022·湖南·长沙一中模拟预测)已知复数23i i i 1iz ++=+,z 是z 的共轭复数,则z z ⋅=( )A .0B .12C .1D .2【答案】B 【解析】 【分析】利用复数的除法可求z ,进而可求z z ⋅. 【详解】∵()()23i i i 11i 11i 1i 1i 1i 1i 22z ++--+====-++++-, 所以1111111i i =2222442z z ⎛⎫⎛⎫⋅=---++= ⎪⎪⎝⎭⎝⎭.故选:B .3.(2022·内蒙古·满洲里市教研培训中心三模(文))复数z 满足()12i 3i z +=-,则z 的虚部为( ) A .75-B .7i 5-C .7i 5D .15【答案】A 【解析】 【分析】化简方程求出复数z 的代数形式,结合复数虚部的定义确定其虚部. 【详解】因为()12i 3i z +=-,所以()()()()3i 12i 3i 17i 17i 12i 12i 12i 555z ----====-++-, 所以复数z 的虚部为75-,故选:A.4.(2022·黑龙江·哈九中模拟预测(文))观察下列等式,3211=,332123+=,33321236++=,33332123410+++=,根据上述规律,3333333123456n ++++++⋅⋅⋅+=( ) A .43224n n n ++B .43224n n n ++C .43224n n n -+D .43224n n n -+【答案】B 【解析】 【分析】根据3211=,23()212=+,26()2123=++,210()21234=+++,观察其规律,可得3333333123456n ++++++⋅⋅⋅+=()21234n +++++.【详解】3211=,332123+=()212=+,33321236++=()2123=++, 33332123410+++=()21234=+++,根据上述规律,得3333333123456n ++++++⋅⋅⋅+=()21234n +++++2(1)2n n +⎛⎫= ⎪⎝⎭=43224n n n++. 故选:B.5.(2022·江苏·南京市天印高级中学模拟预测)若复数z 满足1i 1i z -=+() ,则z =( ) A .i - B .i C .1 D .1-【答案】A 【解析】 【分析】根据复数的除法运算求得复数z ,继而可得其共轭复数. 【详解】由题意1i 1i z -=+(),得21i (1i)i 1i 2z ++===-, 故i z =-, 故选:A6.(2022·四川眉山·三模(文))由若干个完全一样的小正方体无空隙地堆砌(每相邻两层堆砌的规律都相同)成一个几何体,几何体部分如图所示.用下面公式不能计算出该几何体三视图中所看到的小正方体或全部小正方体个数的是( )A .()1122n n n +++⋅⋅⋅+=B .()21321n n ++⋅⋅⋅+-=C .()()222121126n n n n ++++⋅⋅⋅+=D .()223331124n n n +++⋅⋅⋅+=【答案】D 【解析】 【分析】计算正视图或左视图看到的小正方形的个数是相同的,再计算俯视图中看到的小正方形的个数和几何体的全部小正方体个数即可. 【详解】从正视图或左视图可以看出小正方形的个数为()1122n n n +++⋅⋅⋅+= 从俯视图可以看到小正方形的个数为()21321n n ++⋅⋅⋅+-=几何体的全部小正方体个数为()()222121126n n n n ++++⋅⋅⋅+=故选:D.7.(2022·北京·北大附中三模)已知0a b >>,下列不等式中正确的是( ) A .c ca b> B .2ab b < C .12a b a b-+≥- D .1111a b <-- 【答案】C 【解析】 【分析】由0a b >>,结合不等式的性质及基本不等式即可判断出结论. 【详解】解:对于选项A ,因为110,0a b a b>><<,而c 的正负不确定,故A 错误; 对于选项B ,因为0a b >>,所以2ab b >,故B 错误;对于选项C ,依题意0a b >>,所以10,0a b a b ->>-,所以12a b a b-+≥=-,故C 正确;对于选项D ,因为10,111,1a b a b a >>->->--与11b -正负不确定,故大小不确定,故D 错误; 故选:C.8.(2022·山东泰安·模拟预测)已知42244921x x y y ++=,则2253x y +的最小值是( )A .2B .127 C .52D .3【答案】A 【解析】 【分析】对原式因式分解得()()2222421x y x y ++=,然后利用基本不等式即可求解. 【详解】由42244921x x y y ++=,得()()222222222222425342122x y x y x y x y x y ⎛⎫⎛⎫++++++=≤= ⎪ ⎪⎝⎭⎝⎭,即()222453x y ≤+,所以22532x y +≥,当且仅当222242x y x y +=+,即22337y x ==时,等号成立,所以2253x y +的最小值是2. 故选:A.9.(2022·辽宁实验中学模拟预测)已知实数a ,b 满足()2log 1,01a a b a +=<<,则21log 4b a a -的最小值为( ) A .0 B .1- C .1 D .不存在【答案】A 【解析】 【分析】由题设条件可得2log 1a b a =-,从而利用换底公式的推论可得21log 1b a a =-,代入要求最小值的代数式中,消元,利用均值不等式求最值 【详解】2log 1a a b +=2log 1a b a ⇒=-21log 1b a a ⇒=- 又01a <<,则2011a <-<()()22211log 11441b a a a a -=+---10≥=当且仅当()221141a a =--即a = 故选:A10.(2022·全国·模拟预测)已知正实数x ,y 满足()21x y =,则2x y+的最小值为( ) A .1 B .2C .4D .32【答案】B【解析】 【分析】将已知的式子12x y ==()f t t =0t >,的单调性,从而可得12x y =,即21xy =,再利用基本不等式可求得结果 【详解】因为()21x y =,所以12x y ==设()f t t =0t >,易知()f t t =()0,∞+上单调递增,故12x y =,即21xy =,又0x >,0y >,所以22x y +≥=, 当且仅当2x y =时取等号, 所以2x y +的最小值为2. 故选:B . 【点睛】关键点点睛:此题考查函数单调性的应用,考查基本不等式的应用,解题的关键是将已知等式转化为等式两边结构相同的形式,然后构造函数判断其单调性,从而可得21xy =,再利用基本不等式可求得结果,考查数学转化思想,属于较难题11.(2022·北京·101中学三模)设m 为实数,复数1212i,3i z z m =+=+(这里i 为虚数单位),若12z z ⋅为纯虚数,则12z z +的值为______.【答案】【解析】 【分析】先根据12z z ⋅为纯虚数计算出m 的值,再计算12z z + ,最后计算12z z +的值 【详解】1212i,3i z z m =+=+,23i z m ∴=-12(12i)(3i)3i 2i 6(6)(23)i z z m m m m m ⋅=+-=-++=++-∴ 12z z ⋅为纯虚数 606m m ∴+=⇒=-12(12i)(63i)55i z z ∴+=++-+=-+12z z ∴+故答案为:12.(2022·全国·模拟预测)已知正数a ,b 满足21a b +=,则2221a b ab++的最小值为______.【答案】4##4+【解析】 【分析】根据题意得()222222221a b a b a b ab ab+++++=,再化简整理利用基本不等式求解即可. 【详解】()22222222221246a b a b a b a ab b ab ab ab+++++++==26444a b b a =++≥=,当且仅当2621a bba ab ⎧=⎪⎨⎪+=⎩,即3a =,2b =故答案为:4.13.(2022·浙江·杭师大附中模拟预测)已知正数,,a b c ,则2222ab bca b c +++的最大值为_________.【解析】 【分析】将分母变为222212233a b b c ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭,分别利用基本不等式即可求得最大值.【详解】2222222122233abbc ab bca b ca b b c++=≤++⎛⎫⎛⎫+++⎪ ⎪⎝⎭⎝⎭(当且仅当=c=时取等号),2222ab bca b c+∴++14.(2022·宁夏·吴忠中学三模(理))在第24届北京冬奥会开幕式上,一朵朵六角雪花飘拂在国家体育场上空,畅想着“一起向未来”的美好愿景.如图是“雪花曲线”的一种形成过程:图1,正三角形的边长为1,在各边取两个三等分点,往外再作一个正三角形,得到图2中的图形;对图2中的各边作相同的操作,得到图3中的图形;依此类推,我们就得到了以下一系列图形,记第n个图形(图1为第一个图形)中的所有外围线段长的和为n c,则满足12381nc c c c++++>的最小正整数n的值为______.(参考数据:lg20.3010≈,lg30.4771≈)【答案】9【解析】【分析】根据图形变化规律分析出n c的通项公式,然后求和确定.【详解】由图形变化规律可得11231643,4,,,3()33nnc c c c-===⋅⋅⋅=⨯,12343(1())439(()1)814313nnnc c c c-++++==->-,则有441()10lg()lg108.006332lg2lg3n n n>⇒>⇒>=-,所以最小正整数n的值为9.故答案为:9.15.(2022·江苏·扬中市第二高级中学模拟预测)若i为虚数单位,复数z满足11iz≤++≤则1i z --的最大值为_______.【答案】【解析】 【分析】利用复数的几何意义知复数z 对应的点Z 到点(1,1)C --的距离d 满足1d ≤≤1i z --表示复数z 对应的点Z 到点(1,1)P 的距离,数形结合可求得结果. 【详解】复数z 满足11z i ≤++()11i z ≤---≤即复数z 对应的点Z 到点(1,1)C --的距离d 满足1d ≤设(1,1)P ,1i z --表示复数z 对应的点Z 到点(1,1)P 的距离数形结合可知1i z --的最大值||||AP CP ==故答案为:。

高考数学理科高考试题分类汇编《不等式》

高考数学理科高考试题分类汇编《不等式》

高考数学理科高考试题分类汇编:不等式E1 不等式的概念与性质 5.,,[山东卷] 已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( )A. 1x 2+1>1y 2+1 B. ln(x 2+1)>ln(y 2+1) C. sin x >sin y D. x 3>y 35.D [解析] 因为a x <a y (0<a <1),所以x >y ,所以sin x >sin y ,ln(x 2+1)>ln(y 2+1),1x 2+1>1y 2+1都不一定正确,故选D.4.[四川卷] 若a >b >0,c <d <0,则一定有( ) A.a c >b d B.a c <b d C.a d >b c D.a d <b c4.D [解析] 因为c <d <0,所以1d <1c <0,即-1d >-1c >0,与a >b >0对应相乘得,-a d >-b c >0,所以a d <bc.故选D.E2 绝对值不等式的解法 9.、[安徽卷] 若函数f (x )=|x +1|+|2x +a |的最小值为3,则实数a 的值为( ) A .5或8 B .-1或5 C .-1或-4 D .-4或8 9.D [解析] 当a ≥2时,f (x )=⎩⎪⎨⎪⎧3x +a +1(x >-1),x +a -1⎝⎛⎭⎫-a 2≤x ≤-1,-3x -a -1⎝⎛⎭⎫x <-a 2.由图可知,当x =-a2时,f min (x )=f ⎝⎛⎭⎫-a 2=a 2-1=3,可得a =8. 当a <2时,f (x )⎩⎪⎨⎪⎧3x +a +1⎝⎛⎭⎫x >-a2,-x -a +1⎝⎛⎭⎫-1≤x ≤-a 2,-3x -a -1(x <-1).由图可知,当x =-a 2时,f min (x )=f ⎝⎛⎭⎫-a 2=-a2+1=3,可得a =-4.综上可知,a 的值为-4或8.E3 一元二次不等式的解法 2.、[全国卷] 设集合M ={x |x 2-3x -4<0},N ={x |0≤x ≤5},则M ∩N =( ) A .(0,4] B .[0,4) C .[-1,0) D .(-1,0]2.B [解析] 因为M ={x |x 2-3x -4<0}={x |-1<x <4},N ={x |0≤x ≤5},所以M ∩N ={x |-1<x <4}∩{0≤x ≤5}={x |0≤x <4}.12.、[新课标全国卷Ⅱ] 设函数f (x )=3sin πx m,若存在f (x )的极值点x 0满足x 20+[f (x 0)]2<m 2,则m 的取值范围是( )A .(-∞,-6)∪(6,+∞)B .(-∞,-4)∪(4,+∞)C .(-∞,-2)∪(2,+∞)D .(-∞,-1)∪(1,+∞)12.C [解析] 函数f (x )的极值点满足πx m =π2+k π,即x =m ⎝⎛⎭⎫k +12,k ∈Z ,且极值为±3,问题等价于存在k 0使之满足不等式m 2⎝⎛⎭⎫k 0+122+3<m 2.因为⎝⎛⎭⎫k +122的最小值为14,所以只要14m 2+3<m 2成立即可,即m 2>4,解得m >2或m <-2,故m 的取值范围是(-∞,-2)∪(2,+∞).E4 简单的一元高次不等式的解法 E5 简单的线性规划问题5.[安徽卷] x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一...,则实数a 的值为( )A.12或-1 B .2或12 C .2或1 D .2或-1 5.D [解析]方法一:画出可行域,如图中阴影部分所示,可知点A (0,2),B (2,0),C (-2,-2), 则z A =2,z B =-2a ,z c =2a -2.要使对应最大值的最优解有无数组,只要z A =z B >z C 或z A =z C >z B 或z B =z C >z A , 解得a =-1或a =2.方法二:画出可行域,如图中阴影部分所示,z =y -ax 可变为y =ax +z ,令l 0:y =ax ,则由题意知l 0∥AB 或l 0∥AC ,故a =-1或a =2.6.[北京卷] 若x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0,且z =y -x 的最小值为-4,则k 的值为( ) A .2 B .-2 C.12 D .-126.D [解析] 可行域如图所示,当k >0时,知z =y -x 无最小值,当k <0时,目标函数线过可行域内A 点时z 有最小值.联立⎩⎪⎨⎪⎧y =0,kx -y +2=0,解得A ⎝⎛⎭⎫-2k ,0,故z min =0+2k =-4,即k =-12.11.[福建卷] 若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≤0,x +2y -8≤0,x ≥0,则z =3x +y 的最小值为________.11.1 [解析] 作出不等式组表示的平面区域(如图所示),把z =3x +y 变形为y =-3x +z ,则当直线y =3x +z 经过点(0,1)时,z 最小,将点(0,1)代入z =3x +y ,得z min =1,即z =3x +y 的最小值为1.3.[广东卷] 若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≤1,y ≥-1,且z =2x +y 的最大值和最小值分别为m 和n ,则m -n =( )A .5B .6C .7D .83.B [解析] 本题考查运用线性规划知识求目标函数的最值,注意利用数形结合思想求解.画出不等式组表示的平面区域,如图所示.当目标函数线经过点A (-1,-1)时,z 取得最小值;当目标函数线经过点B (2,-1)时,z 取得最大值.故m =3,n =-3,所以m -n =6.14.[湖南卷] 若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≤4,y ≥k ,且z =2x +y 的最小值为-6,则k=________.14.-2 [解析] 画出可行域,如图中阴影部分所示,不难得出z =2x +y 在点A (k ,k )处取最小值,即3k =-6,解得k =-2.14.[全国卷] 设x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +2y ≤3,x -2y ≤1,则z =x +4y 的最大值为________.14.5 [解析] 如图所示,满足约束条件的可行域为△ABC 的内部(包括边界), z =x +4y 的最大值即为直线y =-14x +14z 的纵截距最大时z 的值.结合题意,当y =-14x +14z 经过点A 时,z 取得最大值.由⎩⎪⎨⎪⎧x -y =0,x +2y =3,可得点A 的坐标为(1,1), 所以z max =1+4=5.9.、[新课标全国卷Ⅰ] 不等式组⎩⎪⎨⎪⎧x +y ≥1,x -2y ≤4的解集记为D ,有下面四个命题:p 1:∀(x ,y )∈D ,x +2y ≥-2,p 2:∃(x ,y )∈D ,x +2y ≥2, p 3:∀(x ,y )∈D ,x +2y ≤3, p 4:∃(x ,y )∈D ,x +2y ≤-1. 其中的真命题是( ) A .p 2,p 3 B .p 1,p 2 C .p 1,p 4 D .p 1,p 39.B [解析] 不等式组表示的区域D 如图中的阴影部分所示,设目标函数z =x +2y ,根据目标函数的几何意义可知,目标函数在点A (2,-1)处取得最小值,且z min =2-2=0,即x +2y 的取值范围是[0,+∞),故命题p 1,p 2为真,命题p 3,p 4为假.9.[新课标全国卷Ⅱ] 设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -7≤0,x -3y +1≤0,3x -y -5≥0,则z =2x -y 的最大值为( )A .10B .8C .3D .29.B [解析] 已知不等式组表示的平面区域如图中的阴影部分所示,根据目标函数的几何意义可知,目标函数在点A (5,2)处取得最大值,故目标函数的最大值为2×5-2=8.9.[山东卷] 已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y -1≤0,2x -y -3≥0,当目标函数z =ax +by (a >0,b >0)在该约束条件下取到最小值2 5时,a 2+b 2的最小值为( )A. 5B. 4C. 5D. 29.B [解析] 画出约束条件表示的可行域(如图所示).显然,当目标函数z =ax +by 过点A (2,1)时,z 取得最小值,即2 5=2a +b ,所以2 5-2a =b ,所以a 2+b 2=a 2+(2 5-2a )2=5a 2-8 5a +20,构造函数m (a )=5a 2-8 5a +20(5>a >0),利用二次函数求最值,显然函数m (a )=5a 2-85a +20的最小值是4×5×20-(8 5)24×5=4,即a 2+b 2的最小值为4.故选B.18.,[陕西卷] 在直角坐标系xOy 中,已知点A (1,1),B (2,3),C (3,2),点P (x ,y )在△ABC 三边围成的区域(含边界)上.(1)若P A →+PB →+PC →=0,求|OP →|;(2)设OP →=mAB →+nAC →(m ,n ∈R ),用x ,y 表示m -n ,并求m -n 的最大值. 18.解:(1)方法一:∵P A →+PB →+PC →=0,又P A →+PB →+PC →=(1-x ,1-y )+(2-x ,3-y )+(3-x ,2-y )=(6-3x ,6-3y ),∴⎩⎪⎨⎪⎧6-3x =0,6-3y =0,解得⎩⎪⎨⎪⎧x =2,y =2, 即OP →=(2,2),故|OP →|=2 2. 方法二:∵P A →+PB →+PC →=0,则(OA →-OP →)+(OB →-OP →)+(OC →-OP →)=0, ∴OP →=13(OA →+OB →+OC →)=(2,2),∴|OP →|=2 2.(2)∵OP →=mAB →+nAC →, ∴(x ,y )=(m +2n ,2m +n ),∴⎩⎪⎨⎪⎧x =m +2n ,y =2m +n ,两式相减得,m -n =y -x ,令y -x =t ,由图知,当直线y =x +t 过点B (2,3)时,t 取得最大值1,故m -n 的最大值为1.5.,[四川卷] 执行如图1-1所示的程序框图,如果输入的x ,y ∈R ,那么输出的S 的最大值为( )图1-1A .0B .1C .2D .35.C [解析] 题中程序输出的是在⎩⎪⎨⎪⎧x +y ≤1,x ≥0,y ≥0的条件下S =2x +y 的最大值与1中较大的数.结合图像可得,当x =1,y =0时,S =2x +y 取得最大值2,2>1,故选C.2.[天津卷] 设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≥0,x -y -2≤0,y ≥1,则目标函数z =x +2y 的最小值为( )A .2B .3C .4D .52.B [解析] 画出可行域,如图所示.解方程组⎩⎪⎨⎪⎧x +y -2=0,y =1,得⎩⎪⎨⎪⎧x =1,y =1,即点A (1,1).当目标函数线过可行域内A 点时,目标函数有最小值,即z min =1×1+2×1=3.13. [浙江卷] 当实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x ≥1时,1≤ax +y ≤4恒成立,则实数a的取值范围是________.13.⎣⎡⎦⎤1,32 [解析] 实数x ,y 满足的可行域如图中阴影部分所示,图中A (1,0),B (2,1),C ⎝⎛⎭⎫1,32.当a ≤0时,0≤y ≤32,1≤x ≤2,所以1≤ax +y ≤4不可能恒成立;当a >0时,借助图像得,当直线z =ax +y 过点A 时z 取得最小值,当直线z =ax +y 过点B 或C 时z 取得最大值,故⎩⎪⎨⎪⎧1≤a ≤4,1≤2a +1≤4,1≤a +32≤4,解得1≤a ≤32.故a ∈⎣⎡⎦⎤1,32.E6 2a b+≤16.、[辽宁卷] 对于c >0,当非零实数a ,b 满足4a 2-2ab +4b 2-c =0且使|2a +b |最大时,3a -4b +5c的最小值为________.16.-2 [解析] 由题知2c =-(2a +b )2+3(4a 2+3b 2).(4a 2+3b 2)⎝⎛⎭⎫1+13≥(2a +b )2⇔4a 2+3b 2≥34(2a +b )2,即2c ≥54(2a +b )2,当且仅当4a 21=3b 213,即2a =3b =6λ(同号)时,|2a +b |取得最大值85c ,此时c =40λ2.3a -4b +5c =18λ2-1λ=18⎝⎛⎭⎫1λ-42-2≥-2, 当且仅当a =34,b =12,c =52时,3a -4b +5c取最小值-2.14.,[山东卷] 若⎝⎛⎭⎫ax 2+b x 6的展开式中x 3项的系数为20,则a 2+b 2的最小值为________. 14.2 [解析]T r +1=C r 6(ax 2)6-r ·⎝⎛⎭⎫b x r=C r 6a 6-r ·b r x 12-3r ,令12-3r =3,得r =3,所以C 36a 6-3b 3=20,即a 3b 3=1,所以ab =1,所以a 2+b 2≥2ab =2,当且仅当a =b ,且ab =1时,等号成立.故a 2+b 2的最小值是2.10.,[四川卷] 已知F 为抛物线y 2=x 的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,OA →·OB →=2(其中O 为坐标原点),则△ABO 与△AFO 面积之和的最小值是( )A .2B .3 C.1728D.1010.B [解析] 由题意可知,F ⎝⎛⎭⎫14,0.设A (y 21,y 1),B (y 22,y 2),∴OA →·OB →=y 1y 2+y 21y 22=2,解得y 1y 2=1或y 1y 2=-2.又因为A ,B 两点位于x 轴两侧,所以y 1y 2<0,即y 1y 2=-2. 当y 21≠y 22时,AB 所在直线方程为y -y 1=y 1-y 2y 21-y 22(x -y 21)= 1y 1+y 2(x -y 21), 令y =0,得x =-y 1y 2=2,即直线AB 过定点C (2,0).于是S △ABO +S △AFO =S △ACO +S △BCO +S △AFO =12×2|y 1|+12×2|y 2|+12×14|y 1|=18(9|y 1|+8|y 2|)≥18×29|y 1|×8|y 2|=3,当且仅当9|y 1|=8|y 2|且y 1y 2=-2时,等号成立.当y 21=y 22时,取y 1=2,y 2=-2,则AB 所在直线的方程为x =2,此时求得S △ABO +S △AFO =2×12×2×2+12×14×2=1728,而1728>3,故选B. 14.,[四川卷] 设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|P A |·|PB |的最大值是________.14.5 [解析] 由题意可知,定点A (0,0),B (1,3),且两条直线互相垂直,则其交点P (x ,y )落在以AB 为直径的圆周上,所以|P A |2+|PB |2=|AB |2=10.∴|P A ||PB |≤|P A |2+|PB |22=5,当且仅当|P A |=|PB |时等号成立.E7 不等式的证明方法20.[北京卷] 对于数对序列P :(a 1,b 1),(a 2,b 2),…,(a n ,b n ),记T1(P)=a1+b1,T k(P)=b k+max{T k-1(P),a1+a2+…+a k}(2≤k≤n),其中max{T k-1(P),a1+a2+…+a k}表示T k-1(P)和a1+a2+…+a k两个数中最大的数.(1)对于数对序列P:(2,5),(4,1),求T1(P),T2(P)的值;(2)记m为a,b,c,d四个数中最小的数,对于由两个数对(a,b),(c,d)组成的数对序列P:(a,b),(c,d)和P′:(c,d),(a,b),试分别对m=a和m=d两种情况比较T2(P)和T2(P′)的大小;(3)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P使T5(P)最小,并写出T5(P)的值.(只需写出结论)20.解:(1)T1(P)=2+5=7,T2(P)=1+max{T1(P),2+4}=1+max{7,6}=8.(2)T2(P)=max{a+b+d,a+c+d},T2(P′)=max{c+d+b,c+a+b}.当m=a时,T2(P′)=max{c+d+b,c+a+b}=c+d+b.因为a+b+d≤c+b+d,且a+c+d≤c+b+d,所以T2(P)≤T2(P′).当m=d时,T2(P′)=max{c+d+b,c+a+b}=c+a+b.因为a+b+d≤c+a+b,且a+c+d≤c+a+b,所以T2(P)≤T2(P′).所以无论m=a还是m=d,T2(P)≤T2(P′)都成立.(3)数对序列P:(4,6),(11,11),(16,11),(11,8),(5,2)的T5(P)值最小,T1(P)=10,T2(P)=26,T3(P)=42,T4(P)=50,T5(P)=52.19.、、[天津卷] 已知q和n均为给定的大于1的自然数.设集合M={0,1,2,…,q -1},集合A={x|x=x1+x2q+…+x n q n-1,x i∈M,i=1,2,…,n}.(1)当q=2,n=3时,用列举法表示集合A.(2)设s,t∈A,s=a1+a2q+…+a n q n-1,t=b1+b2q+…+b n q n-1,其中a i,b i∈M,i=1,2,…,n.证明:若a n<b n,则s<t.19.解:(1)当q=2,n=3时,M={0,1},A={x|x=x1+x2·2+x3·22,x i∈M,i=1,2,3},可得A={0,1,2,3,4,5,6,7}.(2)证明:由s,t∈A,s=a1+a2q+…+a n q n-1,t=b1+b2q+…+b n q n-1,a i,b i∈M,i =1,2,…,n及a n<b n,可得s-t=(a1-b1)+(a2-b2)q+…+(a n-1-b n-1)q n-2+(a n-b n)q n-1≤(q-1)+(q-1)q+…+(q-1)q n-2-q n-1=(q-1)(1-q n-1)1-q-q n-1=-1<0,所以s<t.E8 不等式的综合应用9.、[安徽卷] 若函数f(x)=|x+1|+|2x+a|的最小值为3,则实数a的值为() A.5或8 B.-1或5C.-1或-4 D.-4或89.D[解析] 当a≥2时,f (x )=⎩⎪⎨⎪⎧3x +a +1(x >-1),x +a -1⎝⎛⎭⎫-a 2≤x ≤-1,-3x -a -1⎝⎛⎭⎫x <-a 2.由图可知,当x =-a2时,f min (x )=f ⎝⎛⎭⎫-a 2=a 2-1=3,可得a =8. 当a <2时,f (x )⎩⎪⎨⎪⎧3x +a +1⎝⎛⎭⎫x >-a2,-x -a +1⎝⎛⎭⎫-1≤x ≤-a 2,-3x -a -1(x <-1).由图可知,当x =-a 2时,f min (x )=f ⎝⎛⎭⎫-a 2=-a2+1=3,可得a =-4.综上可知,a 的值为-4或8.13.[福建卷] 要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是________(单位:元).13.160 [解析] 设底面矩形的一边长为x ,由容器的容积为4 m 3,高为1 m 得,另一边长为4xm.记容器的总造价为y 元,则 y =4×20+2⎝⎛⎭⎫x +4x ×1×10 =80+20⎝⎛⎭⎫x +4x ≥80+20×2x ·4x=160(元),当且仅当x =4x,即x =2时,等号成立.因此,当x =2时,y 取得最小值160元, 即容器的最低总造价为160元. 21.,,,[陕西卷] 设函数f (x )=ln(1+x ),g (x )=xf ′(x ),x ≥0,其中f ′(x )是f (x )的导函数. (1)令g 1(x )=g (x ),g n +1(x )=g (g n (x )),n ∈N +,求g n (x )的表达式; (2)若f (x )≥ag (x )恒成立,求实数a 的取值范围;(3)设n ∈N +,比较g (1)+g (2)+…+g (n )与n -f (n )的大小,并加以证明.21.解:由题设得,g (x )=x1+x (x ≥0).(1)由已知,g 1(x )=x 1+x, g 2(x )=g (g 1(x ))=x 1+x 1+x 1+x =x1+2x ,g 3(x )=x 1+3x ,…,可得g n (x )=x 1+nx. 下面用数学归纳法证明.①当n =1时,g 1(x )=x1+x ,结论成立.②假设n =k 时结论成立,即g k (x )=x1+kx.那么,当n =k +1时,g k +1(x )=g (g k (x ))=g k (x )1+g k (x )=x 1+kx 1+x 1+kx =x1+(k +1)x ,即结论成立.由①②可知,结论对n ∈N +成立.(2)已知f (x )≥ag (x )恒成立,即ln(1+x )≥ax1+x恒成立. 设φ(x )=ln(1+x )-ax1+x (x ≥0),则φ′(x )=11+x -a(1+x )2=x +1-a (1+x )2, 当a ≤1时,φ′(x )≥0(仅当x =0,a =1时等号成立), ∴φ(x )在[0,+∞)上单调递增,又φ(0)=0, ∴φ(x )≥0在[0,+∞)上恒成立,∴a ≤1时,ln(1+x )≥ax1+x 恒成立(仅当x =0时等号成立).当a >1时,对x ∈(0,a -1]有φ′(x )<0, ∴φ(x )在(0,a -1]上单调递减, ∴φ(a -1)<φ(0)=0.即a >1时,存在x >0,使φ(x )<0,故知ln(1+x )≥ax1+x不恒成立. 综上可知,a 的取值范围是(-∞,1].(3)由题设知g (1)+g (2)+…+g (n )=12+23+…+nn +1,比较结果为g (1)+g (2)+…+g (n )>n -ln(n +1).证明如下:方法一:上述不等式等价于12+13+…+1n +1<ln(n +1),在(2)中取a =1,可得ln(1+x )>x1+x,x >0. 令x =1n ,n ∈N +,则1n +1<ln n +1n .下面用数学归纳法证明.①当n =1时,12<ln 2,结论成立.②假设当n =k 时结论成立,即12+13+…+1k +1<ln(k +1).那么,当n =k +1时,12+13+…+1k +1+1k +2<ln(k +1)+1k +2<ln(k +1)+ln k +2k +1=ln(k+2),即结论成立.由①②可知,结论对n ∈N +成立.方法二:上述不等式等价于12+13+…+1n +1<ln(n +1),在(2)中取a =1,可得ln(1+x )>x1+x,x >0. 令x =1n ,n ∈N +,则ln n +1n >1n +1.故有ln 2-ln 1>12,ln 3-ln 2>13,……ln(n +1)-ln n >1n +1,上述各式相加可得ln(n +1)>12+13+…+1n +1,结论得证.方法三:如图,⎠⎛0n x x +1d x 是由曲线y =xx +1,x =n 及x 轴所围成的曲边梯形的面积,而12+23+…+nn +1是图中所示各矩形的面积和,∴12+23+…+n n +1>⎠⎛0n x x +1d x = ⎠⎛0n⎝⎛⎭⎫1-1x +1d x =n -ln (n +1), 结论得证.E9 单元综合16.、[辽宁卷] 对于c >0,当非零实数a ,b 满足4a 2-2ab +4b 2-c =0且使|2a +b |最大时,3a -4b +5c的最小值为________.16.-2 [解析] 由题知2c =-(2a +b )2+3(4a 2+3b 2).(4a 2+3b 2)⎝⎛⎭⎫1+13≥(2a +b )2⇔4a 2+3b 2≥34(2a +b )2,即2c ≥54(2a +b )2, 当且仅当4a 21=3b213,即2a =3b =6λ(同号)时,|2a +b |取得最大值85c ,此时c =40λ2.3a -4b +5c =18λ2-1λ=18⎝⎛⎭⎫1λ-42-2≥-2, 当且仅当a =34,b =12,c =52时,3a -4b +5c取最小值-2.12.、[辽宁卷] 已知定义在[0,1]上的函数f (x )满足: ①f (0)=f (1)=0;②对所有x ,y ∈[0,1],且x ≠y ,有|f (x )-f (y )|<12|x -y |.若对所有x ,y ∈[0,1],|f (x )-f (y )|<k 恒成立,则k 的最小值为( ) A.12 B.14 C.12πD.18 12.B [解析] 不妨设0≤y <x ≤1.当x -y ≤12时,|f (x )-f (y )|<12|x -y |=12(x -y )≤14.当x -y >12时,|f (x )-f (y )|=|f (x )-f (1)-(f (y )-f (0))|≤|f (x )-f (1)|+|f (y )-f (0)|<12|x -1|+12|y -0|=-12(x -y )+12<14.故k min =14.3.[天津卷] 设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≥0,x -y -2≤0,y ≥1,则目标函数z =x +2y 的最小值为( )A .2B .3C .4D .53.B [解析] 画出可行域,如图所示.解方程组⎩⎪⎨⎪⎧x +y -2=0,y =1,得⎩⎪⎨⎪⎧x =1,y =1,即点A (1,1).当目标函数线过可行域内min =1×1+2×1=3. 16.[广州七校联考] 不等式|x +2|+|x -1|≤5的解集为________.16.[-3,2] [解析] 根据绝对值的几何意义,得不等式的解集为-3≤x ≤2.4.[安徽六校联考] 若正实数x ,y 满足x +y =2,且1xy≥M 恒成立,则M 的最大值为( )A .1B .2C .3D .44.A [解析] ∵x +y ≥2xy ,且x +y =2,∴2≥2xy ,当且仅当x =y =1时,等号成立,∴xy ≤1,∴1xy≥1,∴1≥M ,∴M max =1.7.[福建宁德期末] 已知关于x 的不等式x 2-4ax +3a 2<0(a >0)的解集为(x 1,x 2),则x 1+x 2+ax 1x 2的最小值是( )A.63B.23 3C.43 3D.236 7.C [解析] 由题知x 1+x 2=4a ,x 1x 2=3a 2,∴x 1+x 2+a x 1x 2=4a +13a ≥2 43=4 33,当且仅当a =36时,等号成立.6.[长沙模拟] 若f (x )为奇函数,且在区间(0,+∞)上单调递增,f (2)=0,则f (x )-f (-x )x>0的解集是( )A .(-2,0)∪(0,2)B .(-∞,-2)∪(0,2)C .(-2,0)∪(2,+∞)D .(-∞,-2)∪(2,+∞)6.D [解析] 因为f (x )为奇函数,且在区间(0,+∞)上单调递增,所以f (x )在区间(-∞,0)上单调递增.又f (-x )=-f (x ),所以f (x )-f (-x )x >0等价于2f (x )x>0.根据题设作出f (x )的大致图像如图所示.由图可知,2f (x )x>0的解集是(-∞,-2)∪(2,+∞).13.[浙江六市六校联考] 已知正数x ,y 满足x +y +1x +9y=10,则x +y 的最大值为________.13.8 [解析] ∵1x +9y =10-(x +y ),∴(x +y )1x +9y =10(x +y )-(x +y )2.又(x +y )1x +9y=10+9x y +yx≥10+6=16,∴10(x +y )-(x +y )2≥16,即(x +y )2-10(x +y )+16≤0,∴2≤x +y ≤8,∴x +y 的最大值为8.。

高考数学复习:利用导数证明不等式

高考数学复习:利用导数证明不等式

3
f(-1)=e,f(1)=e,f(2)=0,
∴函数 f(x)在区间[-1,2]的最大值为 e,最小值为 0. ....................................... 5 分
(2)证明 令
1 2
x 1 2
g(x)=f(x)-2x +x-2e=(2-x)e -2x +x-2e,则
解得x=2,当x∈(2,+∞)时,g'(x)<0;
当x∈(0,2)时,g'(x)>0,
∴g(x)在(2,+∞)内单调递减,在(0,2)内单调递增,可得g(x)max=f(2)=e2+2.
由于12>e2+2,即f(x)min>g(x)max,所以f(x)>g(x),
故当x>0时,f(x)>-x3+3x2+(3-x)ex.
3(3 -1)

=
3(-1)(2 ++1)
.

令f'(x)=0可得x=1,当x∈(1,+∞)时,f'(x)>0;当x∈(0,1)时,f'(x)<0,
∴f(x)在(1,+∞)内单调递增,在(0,1)内单调递减.
(2)证明 由(1)可得f(x)min=f(1)=12.
令g(x)=-x3+3x2+(3-x)ex,则g'(x)=-3x2+6x-ex+(3-x)ex=(2-x)(ex+3x),由g'(x)=0,
所以g(a)的单调递减区间是(1,+∞),单调递增区间是(0,1),
所以g(a)≤g(1)=0,即ln a≤a-1.

专题17 不等式选讲-高考数学(理)十年真题(2010-2019)分类汇编(新课标Ⅰ卷)(解析版)

专题17 不等式选讲-高考数学(理)十年真题(2010-2019)分类汇编(新课标Ⅰ卷)(解析版)

专题17不等式选讲历年考题细目表题型年份考点试题位置解答题2019 不等式选讲2019年新课标1理科23 解答题2018 综合测试题2018年新课标1理科23 解答题2017 综合测试题2017年新课标1理科23 解答题2016 综合测试题2016年新课标1理科24 解答题2014 综合测试题2014年新课标1理科24 解答题2013 综合测试题2013年新课标1理科24 解答题2012 综合测试题2012年新课标1理科24 解答题2011 综合测试题2011年新课标1理科24 解答题2010 综合测试题2010年新课标1理科24历年高考真题汇编1.【2019年新课标1理科23】已知a,b,c为正数,且满足abc=1.证明:(1)a2+b2+c2;(2)(a+b)3+(b+c)3+(c+a)3≥24.【解答】证明:(1)分析法:已知a,b,c为正数,且满足abc=1.要证(1)a2+b2+c2;因为abc=1.就要证:a2+b2+c2;即证:bc+ac+ab≤a2+b2+c2;即:2bc+2ac+2ab≤2a2+2b2+2c2;2a2+2b2+2c2﹣2bc﹣2ac﹣2ab≥0(a﹣b)2+(a﹣c)2+(b﹣c)2≥0;∵a,b,c为正数,且满足abc=1.∴(a﹣b)2≥0;(a﹣c)2≥0;(b﹣c)2≥0恒成立;当且仅当:a=b=c=1时取等号.即(a﹣b)2+(a﹣c)2+(b﹣c)2≥0得证.故a2+b2+c2得证.(2)证(a+b)3+(b+c)3+(c+a)3≥24成立;即:已知a,b,c为正数,且满足abc=1.(a+b)为正数;(b+c)为正数;(c+a)为正数;(a+b)3+(b+c)3+(c+a)3≥3(a+b)•(b+c)•(c+a);当且仅当(a+b)=(b+c)=(c+a)时取等号;即:a=b=c=1时取等号;∵a,b,c为正数,且满足abc=1.(a+b)≥2;(b+c)≥2;(c+a)≥2;当且仅当a=b,b=c;c=a时取等号;即:a=b=c=1时取等号;∴(a+b)3+(b+c)3+(c+a)3≥3(a+b)•(b+c)•(c+a)≥3×8••24abc=24;当且仅当a=b=c=1时取等号;故(a+b)3+(b+c)3+(c+a)3≥24.得证.故得证.2.【2018年新课标1理科23】已知f(x)=|x+1|﹣|ax﹣1|.(1)当a=1时,求不等式f(x)>1的解集;(2)若x∈(0,1)时不等式f(x)>x成立,求a的取值范围.【解答】解:(1)当a=1时,f(x)=|x+1|﹣|x﹣1|,由f(x)>1,∴或,解得x,故不等式f(x)>1的解集为(,+∞),(2)当x∈(0,1)时不等式f(x)>x成立,∴|x+1|﹣|ax﹣1|﹣x>0,即x+1﹣|ax﹣1|﹣x>0,即|ax﹣1|<1,∴﹣1<ax﹣1<1,∴0<ax<2,∵x∈(0,1),∴a>0,∴0<x,∴a∵2,∴0<a≤2,故a的取值范围为(0,2].3.【2017年新课标1理科23】已知函数f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范围.【解答】解:(1)当a=1时,f(x)=﹣x2+x+4,是开口向下,对称轴为x的二次函数,g(x)=|x+1|+|x﹣1|,当x∈(1,+∞)时,令﹣x2+x+4=2x,解得x,g(x)在(1,+∞)上单调递增,f(x)在(1,+∞)上单调递减,∴此时f(x)≥g(x)的解集为(1,];当x∈[﹣1,1]时,g(x)=2,f(x)≥f(﹣1)=2.当x∈(﹣∞,﹣1)时,g(x)单调递减,f(x)单调递增,且g(﹣1)=f(﹣1)=2.综上所述,f(x)≥g(x)的解集为[﹣1,];(2)依题意得:﹣x2+ax+4≥2在[﹣1,1]恒成立,即x2﹣ax﹣2≤0在[﹣1,1]恒成立,则只需,解得﹣1≤a≤1,故a的取值范围是[﹣1,1].4.【2016年新课标1理科24】已知函数f(x)=|x+1|﹣|2x﹣3|.(Ⅰ)在图中画出y=f(x)的图象;(Ⅱ)求不等式|f(x)|>1的解集.【解答】解:(Ⅰ)f(x),由分段函数的图象画法,可得f(x)的图象,如右:(Ⅱ)由|f(x)|>1,可得当x≤﹣1时,|x﹣4|>1,解得x>5或x<3,即有x≤﹣1;当﹣1<x时,|3x﹣2|>1,解得x>1或x,即有﹣1<x或1<x;当x时,|4﹣x|>1,解得x>5或x<3,即有x>5或x<3.综上可得,x或1<x<3或x>5.则|f(x)|>1的解集为(﹣∞,)∪(1,3)∪(5,+∞).5.【2014年新课标1理科24】若a>0,b>0,且.(Ⅰ)求a3+b3的最小值;(Ⅱ)是否存在a,b,使得2a+3b=6?并说明理由.【解答】解:(Ⅰ)∵a>0,b>0,且,∴2,∴ab≥2,当且仅当a=b时取等号.∵a3+b3 ≥224,当且仅当a=b时取等号,∴a3+b3的最小值为4.(Ⅱ)∵2a+3b≥22,当且仅当2a=3b时,取等号.而由(1)可知,2246,故不存在a,b,使得2a+3b=6成立.6.【2013年新课标1理科24】已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.(Ⅰ)当a=﹣2时,求不等式f(x)<g(x)的解集;(Ⅱ)设a>﹣1,且当x∈[,]时,f(x)≤g(x),求a的取值范围.【解答】解:(Ⅰ)当a=﹣2时,求不等式f(x)<g(x)化为|2x﹣1|+|2x﹣2|﹣x﹣3<0.设y=|2x﹣1|+|2x﹣2|﹣x﹣3,则y,它的图象如图所示:结合图象可得,y<0的解集为(0,2),故原不等式的解集为(0,2).(Ⅱ)设a>﹣1,且当x∈[,]时,f(x)=1+a,不等式化为1+a≤x+3,故x≥a﹣2对x∈[,]都成立.故a﹣2,解得a,故a的取值范围为(﹣1,].7.【2012年新课标1理科24】已知函数f(x)=|x+a|+|x﹣2|①当a=﹣3时,求不等式f(x)≥3的解集;②f(x)≤|x﹣4|若的解集包含[1,2],求a的取值范围.【解答】解:(1)当a=﹣3时,f(x)≥3 即|x﹣3|+|x﹣2|≥3,即,可得x≤1;,可得x∈∅;,可得x≥4.取并集可得不等式的解集为{x|x≤1或x≥4}.(2)原命题即f(x)≤|x﹣4|在[1,2]上恒成立,等价于|x+a|+2﹣x≤4﹣x在[1,2]上恒成立,等价于|x+a|≤2,等价于﹣2≤x+a≤2,﹣2﹣x≤a≤2﹣x在[1,2]上恒成立.故当1≤x≤2时,﹣2﹣x的最大值为﹣2﹣1=﹣3,2﹣x的最小值为0,故a的取值范围为[﹣3,0].8.【2011年新课标1理科24】设函数f(x)=|x﹣a|+3x,其中a>0.(Ⅰ)当a=1时,求不等式f(x)≥3x+2的解集(Ⅱ)若不等式f(x)≤0的解集为{x|x≤﹣1},求a的值.【解答】解:(Ⅰ)当a=1时,f(x)≥3x+2可化为|x﹣1|≥2.由此可得x≥3或x≤﹣1.故不等式f(x)≥3x+2的解集为{x|x≥3或x≤﹣1}.(Ⅱ)由f(x)≤0得|x﹣a|+3x≤0此不等式化为不等式组或即或因为a>0,所以不等式组的解集为{x|x}由题设可得1,故a=29.【2010年新课标1理科24】设函数f(x)=|2x﹣4|+1.(Ⅰ)画出函数y=f(x)的图象:(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围.【解答】解:(Ⅰ)由于f(x),函数y=f(x)的图象如图所示.(Ⅱ)由函数y=f(x)与函数y=ax的图象可知,极小值在点(2,1)当且仅当a<﹣2或a时,函数y=f(x)与函数y=ax的图象有交点.故不等式f(x)≤ax的解集非空时,a的取值范围为(﹣∞,﹣2)∪[,+∞).考题分析与复习建议本专题考查的知识点为:解绝对值不等式、证明不等式、利用不等式恒成立求参数的值或范围,求含有绝对值的函数最值也是考查的热点.求解的一般方法是去掉绝对值,也可以借助数形结合求解.历年考题主要以解答题题型出现,重点考查的知识点为解绝对值不等式、证明不等式、利用不等式恒成立求参数的值或范围,求含有绝对值的函数最值也是考查的热点.预测明年本考点题目会比较稳定,备考方向以知识点解绝对值不等式、利用不等式恒成立求参数的值或范围,证明不等式为重点较佳.最新高考模拟试题1.已知函数()22()f x x a x a R =-+-∈. (1)当2a =时,求不等式()2f x >的解集;(2)若[2,1]x ∈-时不等式()32f x x ≤-成立,求实数a 的取值范围. 【答案】(1)2{|3x x <或()4cos(2)6f x x π=-;(2)空集. 【解析】解:(1)不等式()2f x >,即2222x x -+->.可得22222x x x ≥⎧⎨-+->⎩,或122222x x x <<⎧⎨-+->⎩或12222x x x ≤⎧⎨--+>⎩,解得23x <或2x >,所以不等式的解集为2{|2}3x x x <>或.(2)当[2,1]x ∈-时,220x -<,所以()22f x x a x =-+-, 由()32f x x ≤-得1x a -≤,即11a x a -≤≤+,则1211a a -≤-⎧⎨+≥⎩,该不等式无解,所以实数a 的取值范围是空集(或者∅). 2.已知()221f x x x =-++. (1)求不等式()6f x <的解集;(2)设m 、n 、p 为正实数,且()3m n p f ++=,求证:12mn np pm ++≤. 【答案】(1) ()1,3- (2)见证明 【解析】(1)①2x ≥时,()24133f x x x x =-++=-, 由()6f x <,∴336x -<,∴3x <,即23x ≤<,②12x -<<时,()4215f x x x x =-++=-,由()6f x <,∴56x -<,∴1x >-,即12x -<<, ③1x ≤-时,()42133f x x x x =---=-,由()6f x <,∴336x -<,∴1x >-,可知无解,综上,不等式()6f x <的解集为()1,3-; (2)∵()221f x x x =-++,∴()36f =, ∴()36m n p f ++==,且,,m n p 为正实数∴()222222236m n p m n p mn mp np ++=+++++=, ∵222m n mn +≥,222m p mp +≥,222n p np +≥, ∴222m n p mn mp np ++≥++,∴()()2222222363m n p m n p mn mp np mn mp np ++=+++++=≥++ 又,,m n p 为正实数,∴可以解得12mn np pm ++≤. 3.[选修4—5:不等式选讲]已知函数()|||2|(0)f x x m x m m =--+>. (1)当1m =,求不等式()1f x ≥的解集;(2)对于任意实数,x t ,不等式()21f x t t <++-恒成立,求实数m 的取值范围.【答案】(1)113x x ⎧⎫-≤≤-⎨⎬⎩⎭;(2)()0,2 【解析】(1)当1m =时,()1f x ≥为:1211x x --+≥当1x ≥时,不等式为:1211x x ---≥,解得:3x ≤-,无解当112x -≤<时,不等式为:1211x x -+--≥,解得:13x ≤-,此时1123x -≤≤- 当12x <-时,不等式为:1211x x -+++≥,解得:1x -≥,此时112x -≤<-综上所述,不等式的解集为113x x ⎧⎫-≤≤-⎨⎬⎩⎭(2)对于任意实数x ,t ,不等式()21f x t t <++-恒成立等价于()()max min |2||1|f x t t <++- 因为|2||1||(2)(1)|3t t t t ++-≥+--=,当且仅当(2)(1)0t t +-≤时等号成立 所以()min |2||1|3t t ++-=因为0m >时,()2f x x m x m =--+=2,23,22,m x m x m x x m x m x m ⎧+<-⎪⎪⎪--≤≤⎨⎪-->⎪⎪⎩,函数()f x 单调递增区间为(,)2m -∞-,单调递减区间为(,)2m-+∞ ∴当2m x =-时,()max 322m mf x f ⎛⎫=-= ⎪⎝⎭332m∴<,又0m >,解得:02m << ∴实数m 的取值范围()0,24.选修4-5不等式选讲已知关于x 的不等式20x m x -+≤的解集为{|2}x x ≤-,其中0m >. (1)求m 的值;(2)若正数a ,b ,c 满足a b c m ++=,求证:2222b c aa b c++≥.【答案】(1)2m =(2)见证明 【解析】(1)由题意知:20x m x -+≤即20x m x m x ≥⎧⎨-+≤⎩或20x mm x x ≤⎧⎨-+≤⎩化简得:3x mm x ≥⎧⎪⎨≤⎪⎩或x m x m ≤⎧⎨≤-⎩ 0m > ∴不等式组的解集为{}x x m ≤- 2m ∴-=-,解得:2m =(2)由(1)可知,2a b c ++=由基本不等式有:22b a b a +≥,22c b c b+≥,22a c a c +≥三式相加可得:222222b c a a b c b c a a b c +++++≥++222b c a a b c a b c ∴++≥++,即:2222b c a a b c++≥ 5.选修4-5:不等式选讲 已知函数()13f x x x a =+++ (1)当1a =-时,解不等式()2f x ≥;(2)若存在0x 满足00()211f x x ++<,求实数a 的取值范围. 【答案】(1) 1|02x x x ⎧⎫≤≥⎨⎬⎩⎭或 (2) 24a << 【解析】(1)当1a =-时,()|1||31|f x x x =++-,当13x ≥时,不等式等价于1312x x ++-≥,解得12x ≥,12x ∴≥; 当113x -<<时,不等式等价于1312x x +-+≥,解得0x ≤,10x ∴-<≤;当1x ≤-时,不等式等价于1312x x ---+≥,解得12x ≤-,1x -∴≤.综上所述,原不等式的解集为1|02x x x ⎧⎫≤≥⎨⎬⎩⎭或. (2)由()00211f x x ++<,得003131x x a +++<,而()()000000313333333|3|x x a x x a x x a a +++=+++≥+-+=-, (当且仅当()()003330x x a ++≤时等号成立) 由题可知min (()2|1|)1f x x ++<,即31a -<, 解得实数a 的取值范围是24a <<. 6.已知函数()|2|f x ax =-.(Ⅰ)当4a =时,求不等式()|42|8f x x ++≥的解集;(Ⅱ)若[2,4]x ∈时,不等式()|3|3f x x x +-≤+成立,求a 的取值范围.【答案】(I )(,1][1,)-∞-+∞;(II )[1,2]- 【解析】(I )当4a =时,原不等式即|42||42|8x x -++≥,即|21||21|4x x -++≥.当12x ≥时,21214x x -++≥,解得1x ≥,∴1x ≥; 当1122x -≤≤时,12214x x -++≥,无解;当12x ≤-时,12214x x ---≥,解得1x ≤-,∴1x ≤-;综上,原不等式的解集为(,1][1,)-∞-+∞(II )由()|3|3f x x x +-≤+得|2||3|3ax x x -+-≤+(*) 当[2,3]x ∈时,(*)等价于|2|33|2|2ax x x ax x -+-≤+⇔-≤即22a x -≤,所以2222a x x -+≤≤+恒成立,所以813a -≤≤ 当(3,4]x ∈时,(*)等价于|2|33|2|6ax x x ax -+-≤+⇔-≤ 即48ax -≤≤,所以48a x x-≤≤恒成立,所以12a -≤≤ 综上,a 的取值范围是[1,2]-7.已知函数()21f x x x a =-++,()2g x x =+. (1)当1a =-时,求不等式()()f x g x <的解集;(2)设12a >-,且当1,2x a ⎡⎫∈-⎪⎢⎣⎭,()()f x g x ≤,求a 的取值范围.【答案】(1)()0,2;(2)11,23⎛⎤- ⎥⎝⎦ 【解析】(1)当1a =-时,不等式()()f x g x <化为:21120x x x -+---<当12x ≤时,不等式化为12120x x x -+---<,解得:102x <≤当112x <≤时,不等式化为21120x x x -+---<,解得:112x <≤当1x >时,不等式化为21120x x x -+---<,解得:12x << 综上,原不等式的解集为()0,2 (2)由12a x -≤<,得221a x -≤<,21210a x --≤-< 又102x a a ≤+<+ 则()()211f x x x a x a =--++=-++∴不等式()()f x g x ≤化为:12x a x -++≤+得21a x ≤+对1,2x a ⎡⎫∈-⎪⎢⎣⎭都成立 21a a ∴≤-+,解得:13a ≤又12a >-,故a 的取值范围是11,23⎛⎤- ⎥⎝⎦8.已知函数()|2|f x x =-.(Ⅰ)求不等式()|1|f x x x <++的解集;(Ⅱ)若函数5log [(3)()3]y f x f x a =++-的定义域为R ,求实数a 的取值范围.【答案】(I )1,3⎛⎫+∞ ⎪⎝⎭(II )(,1)-∞【解析】解:(I )由已知不等式()|1|f x x x <++,得|2||1|x x x -<++, 当2x ≥时,不等式为21x x x -<++,解得3x >-,所以2x ≥; 当12x -<<时,不等式为21x x x -<++,解得13x >,所以123x <<; 当1x ≤-时,不等式为21x x x -<--,解得3x >,此时无解. 综上:不等式的解集为1,3⎛⎫+∞ ⎪⎝⎭.(II )若5log [(3)()3]y f x f x a =++-的定义域为R ,则(3)()30f x f x a ++->恒成立. ∵|1||2|3|12|333x x a x x a a ++--≥+-+-=-,当且仅当[1,2]x ∈-时取等号. ∴330a ->,即1a <.所以实数a 的取值范围是(,1)-∞. 9.已知函数()123f x x x =-+-. (Ⅰ)解关于x 的不等式()4f x ≤;(Ⅱ)若()20f x m m -->恒成立,求实数m 的取值范围.【答案】(Ⅰ)111,3⎡⎤⎢⎥⎣⎦;(Ⅱ)()2,1-.【解析】解:(I )当1x ≤时,不等式为:()1234x x -+-≤,解得1x ≥,故1x =. 当13x <<时,不等式为:()1234x x -+-≤,解得1x ≥,故13x <<1<x <3, 当3x ≥时,不等式为:()1234x x -+-≤,解得113x ≤,故1133x ≤≤. 综上,不等式()4f x ≤的解集为111,3⎡⎤⎢⎥⎣⎦.(II )由()20f x m m -->恒成立可得()2m m f x +<恒成立.又()37,35,1337,1x x f x x x x x -≥⎧⎪=-+<<⎨⎪-+≤⎩,故()f x 在(],1-∞上单调递减,在()1,3上单调递减,在[)3,+∞上单调递增,∴()f x 的最小值为()32f =. ∴22m m +<,解得21m -<<. 即m 的最值范围是()2,1-.10.已知函数()211f x x x =-++. (Ⅰ)解不等式()3f x ≥;(Ⅱ)记函数()f x 的最小值为m ,若,,a b c 均为正实数,且232a b c m ++=,求222a b c ++的最小值. 【答案】(Ⅰ){}11x x x ≤-≥或;(Ⅱ)914. 【解析】(Ⅰ)由题意, 3,11()2,1213,2x x f x x x x x ⎧⎪-≤-⎪⎪=--<<⎨⎪⎪≥⎪⎩,所以()3f x ≥等价于133x x ≤-⎧⎨-≥⎩或11223x x ⎧-<<⎪⎨⎪-≥⎩或1233x x ⎧≥⎪⎨⎪≥⎩.解得:1x ≤-或1x ≥,所以不等式的解集为{}11x x x ≤-≥或; (Ⅱ)由(1)可知,当12x =时, ()f x 取得最小值32,所以32m =,即233a b c ++=, 由柯西不等式得2222222()(123)(23)9a b c a b c ++++≥++=, 整理得222914a b c ++≥, 当且仅当123a b c ==时, 即369,,141414a b c ===时等号成立.所以222a b c ++的最小值为914.11.已知函数()12f x x a x =+++. (Ⅰ)求1a =时,()3f x ≤的解集;(Ⅱ)若()f x 有最小值,求a 的取值范围,并写出相应的最小值. 【答案】(Ⅰ)[3,0]-; (Ⅱ)见解析. 【解析】(Ⅰ)当1a =时,232()12121231x x f x x x x x x --≤-⎧⎪=+++=-<<-⎨⎪+≥-⎩∵()3f x ≤当2x -≤时()233f x x =--≤解得32x -≤≤-当21x -<<-时()13f x =≤恒成立当1x -≥时()233f x x =+≤解得10x -≤≤ 综上可得解集[3,0]-.(Ⅱ)(1)212()12(1)2121(1)211a x a x f x x a x a x a x a x a x -+--≤-⎧⎪=+++=-+--<<-⎨⎪+++≥-⎩当(1)0a -+>,即1a <-时,()f x 无最小值; 当(1)0a -+=,即1a =-时,()f x 有最小值1-;当(1)0a -+<且10a -≤,即11a -<≤时, min ()(1)f x f a =-= 当(1)0a -+<且10a ->,即1a >时, min ()(2)1f x f =-= 综上:当1a <-时,()f x 无最小值; 当1a =-时,()f x 有最小值1-;当11a -<≤时, min ()(1)f x f a =-= ; 当1a >时, min ()(2)1f x f =-=; 12.选修4-5:不等式选讲 已知函数()|23||1|f x x x =--+. (1)求不等式()6f x ≤的解集;(2)设集合M 满足:当且仅当x M ∈时,()|32|f x x =-,若,a b M ∈,求证:228223a b a b -++≤. 【答案】(1) {}210x x -≤≤;(2)见解析. 【解析】(1)()4,1323132,1234,2x x f x x x x x x x ⎧⎪-+<-⎪⎪=--+=-+-≤≤⎨⎪⎪->⎪⎩当1x <- 时,46x -+≤ ,得2x -≥ ,故21x -≤<-; 当312x -≤≤时,326x -+≤ ,得43x ≥- ,故312x -≤<;当32x >时,46x -≤ ,得10x ≤ ,故3102x <≤; 综上,不等式()6f x ≤的解集为{}210x x -≤≤(2)由绝对值不等式的性质可知()231(23)(1)32f x x x x x x =--+≤-++=- 等价于23(1)32x x x -≤-++-,当且仅当(23)(1)0x x -+≤,即213x -≤≤时等号成立,故21,3M ⎡⎤=-⎢⎥⎣⎦所以221,133a b -≤≤-≤≤, 所以222510(1),4(1)99a b ≤-≤-≤--≤-, 即228(1)(1)3a b ---≤.13.[选修4—5:不等式选讲] 已知函数()31f x x m x m =---- (1)若1m =,求不等式()1f x <的解集.(2)对任意的x R ∈,有()(2)f x f ≤,求实数m 的取值范围. 【答案】(1)(,3)-∞;(2)1123m -≤≤ 【解析】(1)()141f x x x =---<,所以11441(4)11(4)1141x x x x x x x x x <≤≤>⎧⎧⎧⎨⎨⎨---<---<--+<⎩⎩⎩或或解之得不等式()1f x <的解集为(,3)-∞. (2)当131,2m m m +>>-时,由题得2必须在3m+1的右边或者与3m+1重合, 所以1231,3m m ≥+∴≤,所以1123m -<≤,当131,2m m m +==-时,不等式恒成立,当131,2m m m +<<-时,由题得2必须在3m+1的左边或者与3m+1重合,由题得1231,3m m ≤+≥,所以m 没有解.综上,1123m -≤≤. 14.已知()21f x x x =+-. (1)证明()1f x x +≥; (2)若,,a b c +∈R ,记33311134abc a b c +++的最小值为m ,解关于x 的不等式()f x m <. 【答案】(1)见证明;(2) 2433x x ⎧⎫-<<⎨⎬⎩⎭【解析】(1)()2212211f x x x x x x +=+-≥-+=.当且仅当()2x 2x 10-≤,等号成立(2)∵333333311131333333234444abc abc abc abc m a b c a b c abc abc +++≥+=+≥⋅==,当且仅当a=b=c 等号成立由不等式()3f x <即()213f x x x =+-<.由()31,01211,02131,2x x f x x x x x x x ⎧⎪-+≤⎪⎪=+-=-<<⎨⎪⎪-≥⎪⎩得:不等式()3f x <的解集为2433x x ⎧⎫-<<⎨⎬⎩⎭.15.选修4—5:不等式选讲已知函数()11f x x mx =++-,m R ∈。

专题05 构造函数证明不等式(学生版) -2025年高考数学压轴大题必杀技系列导数

专题05 构造函数证明不等式(学生版) -2025年高考数学压轴大题必杀技系列导数

专题5 构造函数证明不等式函数与导数一直是高考中的热点与难点, 利用导数证明不等式在近几年高考中出现的频率比较高.求解此类问题关键是要找出与待证不等式紧密联系的函数,然后以导数为工具来研究该函数的单调性、极值、最值(值域),从而达到证明不等式的目的.(一) 把证明()f x k >转化为证明()min f x k>此类问题一般简单的题目可以直接求出()f x 的最小值,复杂一点的题目是()f x 有最小值,但无法具体确定,这种情况下一般是先把()f x 的最小值转化为关于极值点的一个函数,再根据极值点所在范围,确定最小值所在范围【例1】(2024届黑龙江省哈尔滨市三中学校高三下学期第五次模拟)已知函数()()21ln f x a x x x =+--(a ÎR ).(1)讨论()f x 的单调性;(2)当102a <£时,求证:()1212f x a a³-+.【解析】(1)由题意可知,函数2()(1)ln f x a x x x =+--的定义域为(0,)+¥,导数1(1)(21)()2(1)1x ax f x a x x x+-¢=+--=,当0a £时,,()0x Î+¥,()0f x ¢<;当0a >时,1(0,)2x a Î,()0f x ¢<;1(,),()02x f x a¢Î+¥>;综上,当0a £时,函数()f x 在区间(0,)+¥上单调递减;当0a >时,函数()f x 在区间1(0,2a 上单调递减,在区间1(,)2a+¥上单调递增.(2)由(1)可知,当102a <£时,函数()f x 在区间1(0,)2a 上单调递减,在区间1(,)2a+¥上单调递增.所以函数211111()()(1)ln()1ln(2)22224f x f a a a a a a a a³=+--=+-+,要证1()212f x a a ³-+,需证111ln(2)2142a a a a a+-+³-+,即需证11ln(2)0,(0,]42a a a a +-³Î恒成立.令1()ln(2)4g a a a a =+-,则()2222111()1044a g a a aa -=--+=-£¢,所以函数()g a 在区间1(0,2单调递减,故111()()00222g a g ³=+-=,所以11ln(2)0,(0,]42a a a a +-³Î恒成立,所以当102a <£时,1()212f x a a³-+.【例2】(2024届重庆市南开中学高三上学期第一次质量检测)已知函数()()sin ln 1f x x x =-+.(1)求证:当π1,2x æöÎ-ç÷èø时,()0f x ³;(2)求证:()()111111ln 1sin sin sin sinln ln 2224622n n n n *+<++++<+ÎN L .【解析】(1)证明:因为()()sin ln 1f x x x =-+,则()0sin 0ln10f =-=,()1cos 1f x x x =-+¢,当(]1,0x Î-时,cos 1x £,111x ³+,()0f x ¢£,函数()f x 单调递减,则()()00f x f ³=成立;当π0,2x æöÎç÷èø时,令()1cos 1p x x x =-+,则()()21sin 1p x x x ¢=-+,因为函数()211y x =+、sin y x =-在π0,2æöç÷èø上均为减函数,所以,函数()p x ¢在π0,2æöç÷èø上为减函数,因为()010p ¢=>,2π1102π12p æö¢=-<ç÷èøæö+ç÷èø,所以存在π0,2x æöÎç÷èø,使得()00p x ¢=,且当00x x <<时,()0p x ¢>,此时函数()f x ¢单调递增,当0π2x x <<时,()0p x ¢<,此时函数()f x ¢单调递减,而()00f ¢=,所以()00f x ¢>,又因为π02f æö¢<ç÷èø,所以存在10π,2x x æöÎç÷èø,使得()10f x ¢=,当10x x <<时,()0f x ¢>,此时函数()f x 单调递增,当1π2x x <<时,()0f x ¢<,此时函数()f x 单调递减,因为π1e 2+<,所以,ππ1ln 11ln e 022f æöæö=-+>-=ç÷ç÷èøèø,所以,对任意的π0,2x æöÎç÷èø时,()0f x >成立,综上,()0f x ³对任意的π1,2x æöÎ-ç÷èø恒成立.(2)证明:由(1),对任意的n *ÎN ,11022n <£,则111sin ln 10222f n n n æöæö=-+>ç÷ç÷èøèø,即1121sinln 1ln 222n n n n +æö>+=ç÷èø,对任意的n *ÎN ,()()()()22122221221022*******n n n n n n n n n n n +-+++-==>+++,所以,2122221n n n n ++>+,则2122ln ln 221n n n n ++>+,所以111135721sin sin sin sinln ln ln ln 24622462n n n +++++>+++L ,从而可得111146822sin sin sin sinln ln ln ln 246235721n n n +++++>++++L ,上述两个不等式相加可得11112sin sin sin sin 2462n æö++++ç÷èøL ()3456782122ln ln ln ln ln ln ln ln ln 1234567221n n n n n ++>++++++++=++L ,所以,()11111sin sin sin sinln 124622n n ++++>+L ,又由(1),因为1102n -<-<,则111121sin ln 1sin ln022222n f n n n n n -æöæöæö-=---=-->ç÷ç÷ç÷èøèøèø,可得1212sinln ln 2221n nn n n -<-=-,当2n ³且n *ÎN 时,()()()()()()22222122110212221222122n n n n n n n n n n n -----==-<------,所以,2212122n n n n -<--,即221ln ln 2122n n n n -<--,所以,当2n ³时,1111462sin sin sin sinln 2ln ln ln 24623521nn n ++++<++++-L L ,从而有11113521sin sin sin sinln 2ln ln ln 24622422n n n -++++<++++-L L ,上述两个不等式相加得:11112sin sin sin sin 2462n æö++++ç÷èøL 3456782122ln 2ln ln ln ln ln ln ln ln 2ln 2ln 2345672221n nn n n -<+++++++++=+--L ,所以,11111sin sin sin sinln 2ln 24622n n ++++<+L ,当1n =时,1111sin ln ln 2sin 02222f æöæö-=--=->ç÷ç÷èøèø,即1sin ln 22<,所以,对任意的n *ÎN ,11111sin sin sin sinln ln 224622n n ++++<+L ,因此,()()111111ln 1sin sin sin sinln ln 2224622n n n n *+<++++<+ÎN L . (二) 把证明()()f x g x > 转化为证明()()0f xg x ->此类问题是证明不等式中最基本的一类问题,把两个函数通过作差转化为一个函数,再利用导数研究该函数的性质,通过函数性质证明该不等式.【例3】(2024届西省榆林市第十中学高三下学期一模)已知函数()()e 11xf x a x =+--,其中a ÎR .(1)讨论函数()f x 的单调性;(2)当2a =时,证明:()ln cos f x x x x >-.【解析】(1)()()e 11x f x a x =+--Q ,()e 1x f x a \=¢+-,当1a ³时,()e 10xf x a =+->¢,函数()f x 在R 上单调递增;当1a <时,由()e 10xf x a =+->¢,得()ln 1x a >-,函数()f x 在区间()()ln 1,a ¥-+上单调递增,由()e 10xf x a =+-<¢,得()ln 1x a <-,函数()f x 在区间()(),ln 1a -¥-上单调递减.综上,当1a ³时,()f x 在R 上单调递增,无减区间.当1a <时,()f x 在()()ln 1,a ¥-+上单调递增,在()(),ln 1a -¥-上单调递减.(2)Q 当2a =时,()e 1xf x x =+-,\要证()ln cos f x x x x >-,即证()e cos 1ln 0,0,x x x x x x ++-->Î+¥,①当01x <£时,e cos 10x x x ++->Q ,ln 0x x £,e cos 1ln 0x x x x x \++-->;②当1x >时,令()e cos 1ln xg x x x x x =++--,则()e sin ln x g x x x =--¢,设()()h x g x ¢=,则()1e cos xh x x x=¢--,1x >Q ,e e 2x \>>,110x-<-<,1cos 1x -£-£,()0h x ¢\>,()h x \在()1,+¥上单调递增,()()1e sin100h x h \>=-->,即()0g x ¢>,()g x \在()1,+¥上单调递增,()()1e cos10g x g \>=+>,即e cos 1ln 0x x x x x ++-->.综上,当2a =时,()ln cos f x x x x >-. (三) 把证明()()f x g x > 转化为证明()()min maxf xg x >有时候把证明()()f x g x > 转化为证明()()0f x g x ->后,可能会出现()()f x g x -的导函数很复杂,很难根据导函数研究()()f x g x -的最值,而()f x 的最小值及()g x 的最大值都比较容易求,可考虑利用证明()()min max f x g x >的方法证明原不等式,但要注意这种方法有局限性,因为()()f x g x >未必有()()min max f x g x >.【例4】(2024届广东省部分学校高三上学期第二次联考)已知函数()()e 0xf x ax a =¹.(1)讨论()f x 的单调性;(2)当24e a ³时,证明:()()1ln 01f x x x x -+>+.【解析】(1)由题意可得()()1e xf x a x +¢=.则0a >时,由()0f x ¢>,得1x >-,由()0f x ¢<,得1x <-,则()f x 在(),1-¥-上单调递减,在()1,-+¥上单调递增;当a<0时,由()0f x ¢<,得1x >-,由()0f x ¢>,得1x <-,则()f x 在(),1-¥-上单调递增,在()1,-+¥上单调递减.(2)因为0x >,所以e 01x x x >+.因为24e a ³,所以()()2e 4e 1ln 1ln 11xx ax x x x x x x x --+³-+++.要证()()1ln 01f x x x x -+>+,即证()24e 1ln 01x x x x x --+>+,即证()224e ln 1x x x x ->+.设()()224e 1x g x x -=+,则()()()234e 11x x g x x --¢=+.当()0,1x Î时,()0g x ¢<,当()1,x Î+¥时,()0g x ¢>,则()g x 在()0,1上单调递减,在()1,+¥上单调递增.故()()min 11eg x g ==.设()ln x h x x =,则()21ln xh x x-¢=.当()0,e x Î时,()0h x ¢>,当()e,x Î+¥时,()0h x ¢<,则()h x 在()0,e 上单调递增,在()e,+¥上单调递减.故()()max 1e eh x h ==.因为()()min max g x h x =,且两个最值的取等条件不同,所以()224e ln 1x x x x ->+,即当24e a ³时,()()1ln 01f x x x x -+>+.(四) 把证明()()f xg x >转化为证明()()()(),f xh x h x g x >>若直接证明()()f x g x >比较困难,有时可利用导数中的常见不等式如ln 1,e +1x x x x £-³构造一个中间函数()h x ,或利用不等式的性质通过放缩构造一个中间函数()h x ,再通过证明()()()(),f x h x h x g x >>来证明原不等式.【例5】已知函数()sin 2cos xf x x=+在区间()0,a 上单调.(1)求a 的最大值;(2)证明:当0x >时,()31e xf x +<.【解析】 (1)由已知得,22cos (2cos )sin sin 2cos 1()(2cos )(2cos )x x x x x f x x x +++¢==++,要使函数()f x 在区间(0,)a 上单调,可知在区间(0,)a 上单调递增,令()0f x ¢>,得2cos 10x +>,即1cos 2x >-,解得22(2,2)33x k k p pp p Î-++,(k Z Î),当0k =时满足题意,此时,在区间2(0,3p 上是单调递增的,故a 的最在值为23p.(2)当0x >时,要证明()31e xf x +<,即证明e 1()3x f x -<,而1xe x ->,故需要证明e 1()33x xf x -<<.先证:e 133x x -<,(0x >)记()e 1x F x x =--,()e 1x F x ¢=-Q ,,()0x Î+¥时,()0F x ¢>,所以()F x 在(0,)+¥上递增,\()e 1xF x x =--(0)0F >=,故1xe x ->,即e133xx -<.再证:()3x f x <,(0x >)令1()()3G x f x x =-,则sin 1(),2cos 3x G x x x =-+则()()()()222cos 12cos 1132cos 32cos x x G x x x ¢--+=-=++,故对于0x ">,都有()0¢<G x ,因而()G x 在(0,)¥+上递减,对于0x ">,都有()(0)0G x G <=,因此对于0x ">,都有()3xf x <.所以e 1()33x x f x -<<成立,即e 1()3x f x -<成立,故原不等式成立.(五) 改变不等式结构,重新构造函数证明不等式此类问题要先对待证不等式进行重组整合,适当变形,找到其等价的不等式,观察其结构,根据结构构造函数.常见的变形方法有:①去分母,把分数不等式转化为整式不等式;②两边取对数,把指数型不等式转化为对数型不等式;③不等式为()()()()f x h x g x h x >类型,且()()0h x >或<0的解集比较容易确定,可考虑两边同时除以()h x ;④不等式中含有,有时为了一次求导后不再含有对数符号,可考虑不等式两边同时除以x ;⑤通过换元把复杂的不等式转化为简单不等式.【例6】(2024届河南省创新发展联盟5月月考)已知函数1e 1()ln x af x x x x-=--.(1)讨论()f x 的单调性;(2)当52a ³时,证明:()11()ln e 1ln x f x x x x x -++->-.【解析】(1)函数1e 1()ln x af x x x x -=--的定义域为(0,)+¥,求导得11222e (1)11(1)(e 1)()x x a x x a f x x x x x -----=-+=¢,若0a £,则1e 10x a --<,且当()0,1x Î时,()0f x ¢>,当()1,x ¥Î+时,()0f x ¢<,即函数()f x 在(0,1)上递增,在(1,)+¥上递减;若0a >,令1e 10x a --=,解得1ln x a =-,若1ln 0a -£,即e a ³,则1e 10x a --³恒成立,当()0,1x Î时,()0f x ¢<,当()1,x ¥Î+时,()0f x ¢>,即函数()f x 在(0,1)上递减,在(1,)+¥上递增;若01ln 1a <-<,即1e a <<,则当()()0,1ln 1,x a ¥Î-È+时,()0f x ¢>,当()1ln ,1x a Î-时,()0f x ¢<,即函数()f x 在(0,1ln ),(1,)a -+¥上递增,在(1ln ,1)a -上递减;ln x x若1ln 1a -=,即1a =,则()0f x ¢³在()0,¥+上恒成立,函数()f x 在(0,)+¥上递增;若1ln 1a ->,即01a <<,则当()()0,11ln ,x a ¥ÎÈ-+时,()0f x ¢>,当(1,1ln )x a Î-时,()0f x ¢<,即函数()f x 在(0,1),(1ln ,)a -+¥上递增,在(1,1ln )a -上递减,所以当0a £时,()f x 的递增区间为()0,1,递减区间为()1,¥+;当01a <<时,()f x 的递增区间为()0,1和()1ln ,a ¥-+,递减区间为()1,1ln a -;当1a =时,()f x 的递增区间为()0,¥+,无递减区间;当1e a <<时,()f x 的递增区间为()0,1ln a -和()1,¥+,递减区间为()1ln ,1a -;当e a ³时,()f x 的递增区间为()1,¥+,递减区间为()0,1.(2)要证()()11ln e 1ln x f x x x x x -++->-,需证()11e e ln 10x x a x x x --+-->,而15e ,02x a x -³>,即有()()1111e 5e e ln 1e ln 12x x x x a x x x x x x----+--³+--,则只需证明()115e e ln 102x x x x x --+-->,即证15e ln 12x x x x -æö+->ç÷èø,即证()215ln 12e x x x x -+->,令()()5ln 12h x x x =+-,则()ln h x x ¢=,当()0,1x Î时,()0h x ¢<,当()1,x ¥Î+时,()0h x ¢>,即函数()h x 在(0,1)上单调递减,在(1,)+¥上单调递增,则()min 3()12h x h ==,令()21(0)e x x x x j -=>,则()()12ex x x x j --¢=,当()0,2x Î时,()0x j ¢>,当()2,x ¥Î+时,()0x j ¢<,函数()j x 在(0,2)上单调递增,在(2,)+¥上单调递减,则()max min 43()2()e 2x h x j j ==<=,从而()215ln 12e x x x x -+->,即()11()ln e 1ln x f x x x x x -++->-成立.(六) 通过减元法构造函数证明不等式对于多变量不等式 ,一般处理策略为消元或是把一个看作变量其他看作常量;当都不能处理的时候,通过变形,再换元产生一个新变量,从而构造新变量的函数.【例7】(2024届江西省南昌市高三三模)定义:若变量,0x y >,且满足:1mmx y a b æöæö+=ç÷ç÷èøèø,其中,0,Z a b m >Î,称y 是关于的“m 型函数”.(1)当2,1a b ==时,求y 关于x 的“2型函数”在点æççè处的切线方程;(2)若y 是关于x 的“1-型函数”,(i )求x y +的最小值:(ii )求证:()1111n n n nn n n n nx ya b+++æö+³+ç÷èø,()N n *Î.【解析】(1)解:当2,1a b ==时,可得12214x y æö=-ç÷èø,则122111242x y x -æöæö=-×-ç÷¢ç÷èøèø,所以1x y =¢=,所求切线方程为1)y x =-,即40x +-=.(2)解:由y 是关于x 的“1-型函数”,可得111x y a b --æöæö+=ç÷ç÷èøèø,即1a b x y +=,(i)因为2()()a b ay bx x y x y a b a b x y x y æö+=++=+++³++=ç÷èø,当且仅当2ay x x y ì=ïíï+î即x a y b ì=ïí=ïî时取得最小值.(ii )由111x y a b --æöæö+=ç÷ç÷èøèø,即1a b x y +=,则()()x a y b ab --=,且x a >,y b >,可设x a at -=,by b t-=,其中(0,)t Î+¥,于是11[(1)]1(1)1nnnnnn n n x y a t b a t b t t éùæöæö+=+++=+++ç÷ç÷êúèøèøëû,记1()(1)1nnnnh t a t b t æö=+++ç÷èø,可得()()()11112111111n n n nn nn n n na t b h t na t nb t t t t a ---++éù+æöæöæö=+++-=-êúç÷ç÷ç÷èøèøèøêëû¢ú,由()0h t ¢=,得1n n b t a +æö=ç÷èø,记10n n b t a +æö=ç÷èø,当00t t <<时()0h t ¢<,当0t t >时,()0h t ¢>,则()()11min0001()1111nnn nnn n n n n n n b a h t h t a t b a b t a b ++éùéùæöæöæöêúêú==+++=+++ç÷ç÷ç÷êúêúèøèøèøëûëû111111111111n n n nn n n n n n n nn n n n n n n n n n a b a b a b a a b b b a ++++++++++æöæöæöæö=+×++×=+++ç÷ç÷ç÷ç÷èøèøèøèø111n n n nn n a b+++æö=+ç÷èø,所以()1111n n n nn n n n nx ya b+++æö+³+ç÷èø.(七) 与极值点或零点有关的多变量不等式的证明此类问题通常是给出函数的零点或极值点12,x x 或123,,x x x ,与证明与12,x x 或123,,x x x 有关的不等式,求解时要有意识的利用方程思想代入消元(若i x 是()f x 的零点,则()0i f x =,若i x 是()f x 的极值点,则()0i f x ¢=,),减少变量个数.【例8】(2024届湖南娄底市高三下学期高考考前仿真联考)已知函数()2e 2ln x af x a x x x =--.(1)当1a =时,讨论函数()f x 的单调性;(2)若22e a >,(i )证明:函数()f x 有三个不同的极值点;(ii )记函数()f x 三个极值点分别为123,,x x x ,且123x x x <<,证明:()()()23131e a f x f x a x x æö-<--ç÷èø.【解析】(1)函数()f x 的定义域为(0,)+¥,当1a =时,()2e 2ln xf x x x x=--,则()422323e e 21e 2(2)(e 2(2))x xx x x x x x x f x x x x x x x x -----¢=+-=+=,令e (0)x y x x =->,则e 10(0)x y x ¢=->>,所以e x y x =-在(0,)+¥上递增,所以0e e 01x y x =->-=,所以当2x >时,()0f x ¢>,当02x <<时,()0f x ¢<,所以()f x 在(0,2)上递减,在(2,)+¥上递增;(2)(i )因为,()0x Î+¥,且()233(2e 2(2)(e ))x xa a x f x x x x a x x x -¢=+--=-,(2)0f ¢=,由e 0xax -=,得e xa x=(,()0x Î+¥),令()(0)x e g x x x =>,则2(e 1)()(0)x x g x x x-¢=>,当01x <<时,()0g x ¢<,当1x >时,()0g x ¢>,所以()g x 在(0,1)上递减,在(1,)+¥上递增,所以min ()(1)e g x g ==,当2e (2)e 2a g >=>时,e xa x=在(0,1)和(2,)+¥上各有一个实数根,分别记为13,x x ,则1301,2x x <<>,设22x =,当10x x <<或23x x x <<时,()0f x ¢<,当12x x x <<或3x x >时,()0f x ¢>,所以()f x 在()10,x 和()23,x x 上递减,在()12,x x 和3(,)x +¥上递增,所以函数()f x 在(0,)+¥上有三个不同的极值点,(ii )由(i )1301,2x x <<>,所以13,x x 是方程e x ax =的两个不相等的实数根,即11e x ax =,33e xax =,所以11111211111e 221()ln ln ln x a a af x a x a x a x x x x x x æö=--=--=-+ç÷èø,同理3331()ln f x a x x æö=-+ç÷èø,所以()()313131313111ln ln a x a x f x f x x x x x x x æöæö-+++ç÷ç÷-èøèø=--31313111ln ln a x x x x x x æö-+--ç÷èø=-13331131ln x x x a x x x x x æö--+ç÷èø=-,由11e x ax =,33e x ax =,得3331113311e e ln ln ln ln e e e x x x x x x x a x x x a-====-,所以()()1331331313113131313131ln 11x x x x x a a x x f x f x x x x x x a x x x x x x x x æöæö---+-+-ç÷ç÷-æöèøèø===-ç÷---èø,因为2e ,2a æöÎ+¥ç÷èø,所以要证()()()23131e a f x f x a x x æö-<--ç÷èø,只要证()()23131e f x f x a a x x -<--,即证23111e a a a x x æö-<-ç÷èø,即证31111e a x x -<-,即证311e a x x <,只需证13e ax x <,即31e e xx <×,即311ex x -<,由(i )可得1301,2x x <<>,所以3110e e 1x --<<<,根据(i )中结论可知函数e ()=xg x x在(0,1)上递减,所以要证311ex x -<,即证311()(e )x g x g -<,因为3113e e x x a x x ==,所以13()()g x g x =,所以只要证313()(e )x g x g -<,即1333e 13e e e xx x x --<,得13e 3e e x x -<,即3131e ln x x --<,得313e 01ln xx ---<,令1()1ln e(2)xh x x x -=-->,则111e 1()e (2)x x x h x x x x---¢=-+=>,令1()e 1(2)x u x x x -=->,则1()(1)e 0(2)x u x x x -¢=-<>,所以()u x 在(2,)+¥上递减,所以2()(2)10eu x u <=-<,所以()0h x ¢<,所以()h x 在(2,)+¥上递减,所以1()(2)1ln 20e h x h <=--<,所以得证.(八) 与数列前n 项和有关的不等式的证明此类问题一般先由已知条件及导数得出一个不等式,再把该不等式中的自变量依次用1,2,3,L ,n 代换,然后用叠加法证明.【例9】(2024届重庆市九龙坡区高三下学期5月质量抽测)已知函数()213ln 22f x x x ax =+-+,()0a >.(1)当[)1,x ¥Î+时,函数()0f x ³恒成立,求实数a 的最大值;(2)当2a =时,若()()120f x f x +=,且12x x ¹,求证:122x x +>;(3)求证:对任意*N n Î,都有()2112ln 1ni i n n i =-æö++>ç÷èøå.【解析】(1)当1x ³时,()213ln 022f x x x ax =+-+³恒成立,即ln 1322x a x x x £++恒成立,只需min ln 1322x a x xx æö£++ç÷èø即可,令()ln 1322x g x x x x =++,1x ³,则()22221ln 132ln 1222x x x g x x x x ---=-¢+=,令()22ln 1h x x x =--,1x ³,则()22222x h x x x x=¢-=-,当1x ³时,()0h x ¢³恒成立,()h x 在[)1,x ¥Î+单调递增,所以()()10h x h ³=,所以()0g x ¢³在[)1,x ¥Î+恒成立,()g x 在[)1,x ¥Î+单调递增,所以()()min 12g x g ==,所以2a £,即实数a 的最大值为2.(2)当2a =时,()213ln 222f x x x x =+-+,0x >,所以()()21120x f x x x x-=+=¢-³,()f x 在()0,x ¥Î+上单调递增,又()10f =,()()120f x f x +=且12x x ¹,不妨设1201x x <<<,要证122x x +>,即证明212x x >-,因为()f x 在()0,x ¥Î+上单调递增,即证()()212f x f x >-,因为()()120f x f x +=,即证()()1120f x f x +-<,设()()()()()()2213132ln 2ln 22222222F x f x f x x x x x x x =+-=+-++-+---+()()()2ln 221ln 221x x x x x x x x éùéù=-+-+=---+ëûëû,01x <<,令()2t x x =-,则01t <<,则()ln 1t t t j =-+,()111tt t t j -=-=¢,由01t <<可得()0t j ¢>,()t j 在()0,1单调递增,所以()()10t j j <=,即()()()20F x f x f x =+-<,所以()()1120f x f x +-<成立,所以122x x +>.(3)由(2)可知当2a =时,()f x 在()1,¥+单调递增,且()()10f x f >=,由213ln 2022x x x +-+>得22ln 430x x x +-+>,即()22ln 21x x +->,令1n x n +=,则2112ln 21n n n n ++æö+->ç÷èø,即2112ln 1n n n n +-æö+>ç÷èø,所以22112ln 111-æö+>ç÷èø,23122ln 122-æö+>ç÷èø,24132ln 133-æö+>ç÷èø,…,2112ln 1n n n n +-æö+>ç÷èø,相加得()2112ln 1ni i n n i =-æö++>ç÷èøå.(九)通过同构函数把复杂不等式化为简单不等式此类问题通常是构造一个函数()f x ,把所证不等式转化为()()()()f g x f h x >,再根据()f x 的单调性转化为证明一个较简单的不等式.【例10】(2024届广东省广州市高中毕业班冲刺训练二)已知函数()e axf x x =(0a >).(1)求()f x 在区间[]1,1-上的最大值与最小值;(2)当1a ³时,求证:()ln 1f x x x ³++.【解析】(1)解:()()e 1axf x ax =+¢(0x >)(0a >),令()0f x ¢=,则1x a =-,当01a <£时,11a-£-,所以()0f x ¢³在区间[]1,1-上恒成立,()f x 在区间[]1,1-上单调递增,所以()()min 1e a f x f -=-=-,()()max 1e af x f ==.当1a >时,111a -<-<,则当11,x a éöÎ--÷êëø时,()0f x ¢<,()f x 在区间11,a éö--÷êëø上单调递减;当1,1x a æùÎ-çúèû时,()0f x ¢>,()f x 在区间1,1a æù-çúèû上单调递增,所以()min 11e f x f a a æö=-=-ç÷èø,而()1e 0a f --=-<,()1e 0a f =>.所以()()max 1e af x f ==综上所述,当01a <£时,()min e a f x -=-,()max e af x =;当1a >时,所以()min 1ef x a =-,()max e af x =.(2)因为0x >,1a ³,所以e e ax x x x ³,欲证e ln 1ax x x x ³++,只需证明e ln 1x x x x ³++,只需证明ln ln e e e e ln 1x x x x x x x x x +==³++,因此构造函数()e 1x h x x =--(x ÎR ),()e 1xh x ¢=-,当(),0x Î-¥时,()0h x ¢<,()h x 在(),0¥-上单调递减;当()0,x Î+¥时,()0h x ¢>,()h x 在()0,¥+上单调递增:所以()()00h x h ³=,所以e 1x x ³+,所以e ln 1x x x x ³++,因此()ln 1f x x x ³++.【例1】(2024届内蒙古呼和浩特市高三第二次质量监测)对于函数()f x ,若实数0x 满足()00f x x =,则0x 称为()f x 的不动点.已知函数()()e 2e 0x xf x x a x -=-+³.(1)当1a =-时,求证()0f x ³;(2)当0a =时,求函数()f x 的不动点的个数;(3)设*N n Î,()ln 1n +>+L .【解析】(1)当1a =-时,有()()e 2e 0x xf x x x -=--³,所以()1e 2e x x f x =+-¢()0x ³,所以()1e 220e x x f x =+-³=¢当且仅当1e e xx=,e 1x=,即0x =时,等号成立,所以当[)0,x Î+¥时,()0f x ¢³,()f x 单调递增,所以()()()min 00f x f x f ³==,所以()0f x ³得证.(2)当0a =时,()()e 20xf x x x =-³,根据题意可知:方程e 2x x x -=()0x ³解的个数即为函数()f x 的不动点的个数,化e 2x x x -=()0x ³为e 30x x -=()0x ³,令()e 3xg x x =-()0x ³,所以函数()g x 的零点个数,即为函数()f x 的不动点的个数,()e 3x g x ¢=-()0x ³,令()0g x ¢=,即e 3x =,解得ln 3x =,x[)0,ln 3ln 3()ln 3,¥+()g x ¢-+()g x 单调递减33ln 3-单调递增因为()010g =>,()ln 333ln 30g =-<,所以()g x 在[)0,ln 3上有唯一一个零点,又()555e 15215170g =->-=>,所以()g x 在()ln 3,¥+上有唯一一个零点,综上所述,函数()f x 有两个不动点.(3)由(1)知,()e 2e 0,0,x xx x ¥--->Î+,令ln ,1x s s =>,则12ln 0s s s --->,即12ln ,1s s s s->>,设*N s n =Î,则满足1s >,>1ln 1n æö>+ç÷èø,()1ln ln 1ln n n n n +æö>=+-ç÷èø,()ln 2ln1ln 3ln 2ln(1)ln ln 1n n n >-+-+++-=+L L ,即()ln 1n >+L .【例2】(2024届四川省自贡市高三第三次诊断性考试)已知函数1()1ln (0)f x a x a x=++>(1)求函数()f x 的单调区间;(2)函数()f x 有唯一零点1x ,函数2()sin e ag x x x =--在R 上的零点为2x .证明:12x x <.【解析】(1)函数1()1ln (0)f x a x a x=++>的定义域为()0,¥+,且2211()a ax f x x x x -¢=-+=,所以当10x a<<时()0f x ¢<,当1x a >时()0f x ¢>,所以()f x 的单调递减区间为10,a æöç÷èø,单调递增区间为1,a æö+¥ç÷èø;(2)法一:由(1)可知若函数()f x 有唯一零点1x ,则11x a=,即1ln 10f a a a a æö=-++=ç÷èø,令()ln 1x x x x j =-++,则()ln x x j ¢=-,当1x >时,()()0,x x j j ¢<单调递减,当01x <<时,()()0,x x j j ¢>单调递增,因为44e 2.753.144127>=>,55e 3243256<=<,所以()433ln 344ln 27ln e ln 270j =-+=-=->,()544ln 455ln 256ln e ln 2560j =-+=-=-<,当01x <<时()()1ln 10x x x j =-+>,当x ®+¥时()x j ®-¥,所以()x j 在()3,4上存在唯一零点,所以33a <<,即11143a <<,令()2e sin h x x x x -=+-,则()22e cos 10h x x x -=-+-<¢,所以()h x 在()0,¥+上单调递减,故22113113111sin sin sin 03e333333h h a æöæö>=+->+-=>ç÷ç÷èøèø,所以211e sin a a a->-,又()2222sin e 0g x x x a -=--=,所以2221111sin e sin sin x x a x x a a--=>-=-,令()sin F x x x =-,则()1cos 0F x x =-³¢,所以()F x 在()0,¥+上单调递增,又()()21>F x F x ,所以21x x >.法二:因为0a >,由(1)可知若函数()f x 有唯一零点1x ,则11x a=,即()()1111111111ln 1ln 10ln 10f x a x x x x x x x =++=++=Þ++=,设211()ln 1,0,0e e h x x x h h æöæö=++><ç÷ç÷èøèø,而()h x 在()0,¥+上单调递增,所以1211,e e x æöÎç÷èø,()1cos 0g x x ¢=-≥,所以()g x 在R 上单调递增,又12(0)0,0e ag x =-<\>,令22211()sin ,()1cos 0e e x x x x x x x j j ¢=--=-+>,所以()j x 在()0,¥+上单调递增,所以()111sin 0e e x j j æö\<=-<ç÷èø,而()222212211sin sin 0e e a g x x x x x x =--=--=,()()11122211221111sin sin e e g x x x g x x x x x x x \=--<=--\<.【例3】(2024届四川省成都市实验外国语学校教育集团高三下学期联考)已知函数()e xf x =,()lng x x =.(1)若函数()()111x h x ag x x +=---,a ÎR ,讨论函数()h x 的单调性;(2)证明:()()()()1212224x f x f x g x -->-.(参考数据:45e 2.23»,12e 1.65»)【解析】(1)由题意()()1ln 1,11x h x a x x x +=-->-,所以()()22,11ax a h x x x -+¢=>-,当0a =时,()0h x ¢>,所以()h x 在()1,+¥上为增函数;当0a ¹时,令()0h x ¢=得21x a=-,所以若0a >时,211a-<,所以()0h x ¢>,所以()h x 在()1,+¥上为增函数,若0<a 时,211a->,且211x a <<-时,()0h x ¢>,21x a >-时,()0h x ¢<,所以()h x 在21,1a æö-ç÷èø上为增函数,在21,a æö-+¥ç÷èø上为减函数,综上:当0a ³时,()h x 在()1,+¥上为增函数,当0<a 时,()h x 在21,1a æö-ç÷èø上为增函数,在21,a æö-+¥ç÷èø上为减函数;(2)()()()()1212224x f x f x g x -->-等价于()2121e e 2ln 204x x x x ---+>,设()()2121e e 2ln 24x x F x x x =---+,则()()()222e 2e 12e e 2e e x xx x xxx x x x F x x x x x-+--¢=--==,因为0x >,所以e 10x x +>,设()e 2x x x j =-,则()()10e xx x j ¢=+>,则()x j 在()0,¥+上单调递增,而()4544e 20,1e 2055j j æö=-<=->ç÷èø,所以存在04,15x æöÎç÷èø,使()00x j =,即00e 2xx =,所以00ln ln 2x x +=,即00ln ln 2x x =-,当00x x <<时,()0F x ¢<,则()F x 在()00,x 上单调递减,当0x x >时,()0F x ¢>,则()F x 在()0,x +¥上单调递增,所以()()00200min 121e e 2ln 24x x F x x x =---+()000220001421212ln 22222ln 224x x x x x x =---++=-+-+,设()21422ln 22,15m t t t t æö=-+-+<<ç÷èø,则()3220m t t ¢=+>,则()m t 在4,15æöç÷èø上单调递增,42581632ln 222ln 20516580m æö=-+-+=->ç÷èø,则()min 0F x >,则不等式()2121e e 2ln 204x x x x ---+>恒成立,即不等式()()()()1212224x f x f x g x -->-成立.【例4】(2024届天津市滨海新区高考模拟检测)已知函数()ln a xf x x+=,其中a 为实数.(1)当1a =时,①求函数()f x 的图象在e x =(e 为自然对数的底数)处的切线方程;②若对任意的x D Î,均有()()m x n x £,则称()m x 为()n x 在区间D 上的下界函数,()n x 为()m x 在区间D 上的上界函数.若()1kg x x =+,且()g x 为()f x 在[)1,+¥上的下界函数,求实数k 的取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(六十四) 不等式的证明
1.(2018·武汉调研)若正实数a ,b 满足a +b =1
2,求证:a +b ≤1.
证明:要证 a +b ≤1,只需证a +b +2ab ≤1, 即证2ab ≤12,即证ab ≤1
4.
而a +b =12≥2ab ,∴ab ≤1
4成立,
∴原不等式成立.
2.已知函数f (x )=|x +3|+|x -1|,其最小值为t . (1)求t 的值;
(2)若正实数a ,b 满足a +b =t ,求证:1a +4b ≥9
4
.
解:(1)因为|x +3|+|x -1|=|x +3|+|1-x |≥|x +3+1-x |=4,所以f (x )min =4,即t =4. (2)证明:由(1)得a +b =4,故a 4+b 4=1,1a +4
b =⎝⎛⎭⎫1a +4b ⎝⎛⎭⎫a 4+b 4=14+1+b 4a +a b ≥54+2
b 4a ×a b =54+1=94,当且仅当b =2a ,即a =43,b =83时取等号,故1a +4b ≥9
4.
3.设不等式-2<|x -1|-|x +2|<0的解集为M ,a ,b ∈M . (1)证明:⎪⎪⎪⎪13a +16b <1
4;
(2)比较|1-4ab |与2|a -b |的大小,并说明理由. 解:(1)证明:记f (x )=|x -1|-|x +2| =⎩⎪⎨⎪

3,x ≤-2,-2x -1,-2<x <1,-3,x ≥1.
由-2<-2x -1<0解得-12<x <12,
则M =⎝⎛⎭
⎫-12,1
2. 所以⎪⎪⎪⎪13a +16b ≤13|a |+16|b |<13×12+16×12=14. (2)由(1)得a 2<14,b 2<1
4
.
因为|1-4ab |2-4|a -b |2=(1-8ab +16a 2b 2)-4(a 2-2ab +b 2)=(4a 2-1)(4b 2-1)>0.
所以|1-4ab |2>4|a -b |2, 故|1-4ab |>2|a -b |.
4.(2018·广州模拟)已知x ,y ,z ∈(0,+∞),x +y +z =3. (1)求1x +1y +1
z 的最小值; (2)证明:3≤x 2+y 2+z 2<9.
解:(1)因为x +y +z ≥33
xyz >0,1x +1y +1z ≥33
xyz >0,
所以(x +y +z )⎝⎛⎭⎫
1x +1y +1z ≥9,
即1x +1y +1z ≥3,当且仅当x =y =z =1时,1x +1y +1
z 取得最小值3. (2)证明:x 2+y 2+z 2
=x 2+y 2+z 2+(x 2+y 2)+(y 2+z 2)+(z 2+x 2)3
≥x 2+y 2+z 2+2(xy +yz +zx )3
=(x +y +z )23
=3,
当且仅当x =y =z =1时等号成立.
又因为x 2+y 2+z 2-9=x 2+y 2+z 2-(x +y +z )2=-2(xy +yz +zx )<0, 所以3≤x 2+y 2+z 2<9.
5.(2018·安徽百所重点高中模拟)已知a >0,b >0,函数f (x )=|2x +a |+2⎪⎪⎪⎪x -b
2+1的最小值为2.
(1)求a +b 的值;
(2)求证:a +log 3⎝⎛⎭⎫
1a +4b ≥3-b .
解:(1)因为f (x )=|2x +a |+|2x -b |+1≥|2x +a -(2x -b )|+1=|a +b |+1, 当且仅当(2x +a )(2x -b )≤0时,等号成立, 又a >0,b >0,所以|a +b |=a +b ,
所以f (x )的最小值为a +b +1=2,所以a +b =1.
(2)由(1)知,a +b =1,
所以1a +4
b =(a +b )⎝⎛⎭⎫1a +4b =1+4+b a +4a b ≥5+2 b a ·4a
b =9,
当且仅当b a =4a
b 且a +b =1, 即a =13,b =2
3时取等号.
所以log 3⎝⎛⎭⎫1a +4b ≥log 39=2, 所以a +b +log 3⎝⎛⎭⎫1a +4b ≥1+2=3, 即a +log 3⎝⎛⎭⎫1a +4b ≥3-b .
6.(2018·长沙模拟)设α,β,γ均为实数.
(1)证明:|cos(α+β)|≤|cos α|+|sin β|,|sin(α+β)|≤|cos α|+|cos β|; (2)若α+β+γ=0,证明:|cos α|+|cos β|+|cos γ|≥1.
证明:(1)|cos(α+β)|=|cos αcos β-sin αsin β|≤|cos αcos β|+|sin αsin β|≤|cos α|+|sin β|; |sin(α+β)|=|sin αcos β+cos αsin β|≤|sin αcos β|+|cos αsin β|≤|cos α|+|cos β|. (2)由(1)知,|cos[α+(β+γ)]|≤|cos α|+|sin(β+γ)|≤|cos α|+|cos β|+|cos γ|, 而α+β+γ=0,故|cos α|+|cos β|+|cos γ|≥cos 0=1.
7.(2018·安徽安师大附中、马鞍山二中阶段测试)已知函数f (x )=|x -2|. (1)解不等式:f (x )+f (x +1)≤2; (2)若a <0,求证:f (ax )-af (x )≥f (2a ).
解:(1)由题意,得f (x )+f (x +1)=|x -1|+|x -2|. 因此只要解不等式|x -1|+|x -2|≤2.
当x ≤1时,原不等式等价于-2x +3≤2,即1
2≤x ≤1;
当1<x ≤2时,原不等式等价于1≤2,即1<x ≤2; 当x >2时,原不等式等价于2x -3≤2,即2<x ≤5
2.
综上,原不等式的解集为⎩⎨⎧

⎬⎫x |
12≤x ≤52.
(2)证明:由题意得f (ax )-af (x )=|ax -2|-a |x -2|=|ax -2|+|2a -ax |≥|ax -2+2a -ax |=|2a -2|=f (2a ),
所以f (ax )-af (x )≥f (2a )成立.
8.(2018·重庆模拟)设a ,b ,c ∈R +且a +b +c =1. 求证:(1)2ab +bc +ca +c 22≤12;
(2)a 2+c 2b +b 2+a 2c +c 2+b 2
a ≥2.
证明:(1)因为1=(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ca ≥4ab +2bc +2ca +c 2, 当且仅当a =b 时等号成立,
所以2ab +bc +ca +c 22=12(4ab +2bc +2ca +c 2)≤1
2.
(2)因为a 2+c 2b ≥2ac b ,b 2+a 2c ≥2ab c ,c 2+b 2a ≥2bc
a ,
当且仅当a =b =c =1
3
时等号成立.
所以a 2+c 2b +b 2+a 2c +c 2+b 2a ≥⎝⎛⎭⎫ac b +ab c +⎝⎛⎭⎫ab c +bc a +⎝⎛⎭⎫ac b +bc a =a ⎝⎛⎭⎫c b +b c +b ⎝⎛⎭⎫a c +c
a +c ⎝⎛⎭⎫
a b +b a ≥2a +2b +2c =2,
当且仅当a =b =c =1
3时等号成立.。

相关文档
最新文档