二次根式A单元夺冠试题湘教版八年级下
八年级下册数学《二次根式》单元测试题及答案

八年级下册数学《二次根式》单元测试卷一、单选题1n 的最小值是( )A .4B .6C .8D .122.式子x 1-有意义的x 的取值范围是( ) A .1x 2≥-且x≠1 B .x≠1 C .1x 2≥- D .1x>2-且x≠13.x ﹣5,则x 的取值范围是( )A .x <5B .x ≤5C .x ≥5D .x >5 4.下列根式中是最简二次根式的是( )A B C D 5.下列计算中,正确的是( )A =B .()2=8C =3D .⨯26.已知x +y -x 2y +xy 2=( )A .B .C .D .7.下列二次根式中,与 是同类二次根式的是( )A B C D8. )A .B .2C .D .29.下列计算正确的是( )A.5=B2= C.=D= 10.如图,在矩形ABCD 中无重叠放入面积分别为16cm 2和12cm 2的两张正方形纸片,则图中空白部分的面积为( )cm 2.A .16-B .-12+C .8-D .4-二、填空题11.若a 、b 为实数,且b+4,则a+b =_____. 12有意义,则m 的取值范围是__.13.把二次根式(x-1__. 14.计算:112-⎛⎫⎪⎝⎭=__. 15.计算:(﹣1)2018+()(2__.16a=_____.17_____. 18cm 、cm ,则这个三角形的周长是______.三、解答题19.计算:2﹣3.20(21.已知x =,求x 2+x+y 2﹣2xy ﹣y 的值.22.有理数a 、b 、c b c +.23.(1)已知a +3与2a ﹣15是一个正数的平方根,求a 的值;(2)已知x ,y 为实数,且y 的值. 利用二次根式有意义的条件分析得出答案.24.解答下列各题(1)计算:(2)当a ,b 时,求代数式a 2﹣ab +b 2的值.25m、n,使m2+n2=a且mn=a±将变成m2+n2±2mn,即变成(m±n)2+±2,所以,简.例如:5±22请仿照上例解下列问题:参考答案1.B【解析】【分析】=则6n 是完全平方数,满足条件的最小正整数n 为6.【详解】∵=∴6n 是完全平方数,∴n 的最小正整数值为6.故选B .【点睛】主要考查了二次根式的定义,关键是根据乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数进行解答.2.A【解析】根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使x 1-在实数范围内有意义,必须12x 10x 1{{x 2x 102x 1+≥≥-⇒⇒≥--≠≠且x 1≠.故选A . 3.C【解析】【分析】(a≤0),由此性质求得答案即可.【详解】,∴5-x≤0∴x≥5.故选C .【点睛】(a≥0)(a≤0).4.B【详解】A,故此选项错误;3B是最简二次根式,故此选项正确;C,故此选项错误;D=故选B.考点:最简二次根式.5.C【解析】【分析】根据二次根式的乘除运算法则和二次根式的性质逐一计算可得.【详解】A3=,故A选项错误;B、(232=,故B选项错误;C3,故C选项正确;D、D选项错误;故答案选:C.【点睛】本题主要考查二次根式的乘除法,解题的关键是掌握二次根式的性质和运算法则.6.B【解析】【分析】把x2y+xy2分解因式,然后将x、y值代入进行计算即可得.【详解】∵x,y=xy(x+y)=+××)]=故选B .【点睛】本题考查了代数式求值,涉及了因式分解,二次根式的混合运算,解题时灵活运用二次根式的乘法与加法法则是解题的关键.7.C【解析】【分析】先将各二次根式化简为最简二次根式,然后根据同类二次根式的定义判断即可.【详解】解:A 的被开方数是6、不符合题意;BC ,符合题意;D 2故选C .【点睛】本题主要考查的是同类二次根式的定义,掌握同类二次根式的定义是解题的关键. 8.D【解析】【分析】先化简各二次根式,再计算乘法,最后合并同类二次根式可得.【详解】原式=﹣12×==,2故选:D.【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的性质和运算法则.9.B【解析】【分析】根据二次根式的加减法对A进行判断;根据二次根式的除法法则对B、D进行判断;根据二次根式的乘法法则对C进行判断.【详解】解:A、与不能合并,所以A选项错误;B、原式,所以B选项正确;C、原式,所以C选项错误;D、原式=,所以D选项错误.2故选:B.【点睛】本题考查了二次根式的运算:熟练掌握二次根式的加法法则、二次根式的乘除法法则及二次根式的性质是解答本题的关键.10.B【解析】【分析】根据正方形的面积求出两个正方形的边长,从而求出AB、BC,再根据空白部分的面积等于长方形的面积减去两个正方形的面积列式计算即可得解.【详解】∵两张正方形纸片的面积分别为16cm2和12cm2,∴4=cm ,=cm ,∴AB=4cm,BC=4)cm ,∴空白部分的面积=4)×4−12−16=(12-+ cm 2.故选B.【点睛】此题考查二次根式的应用,解题关键在于将正方形面积直接开根即是正方形的边长. 11.5或3【解析】【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a 的值,b 的值,根据有理数的加法,可得答案.【详解】由被开方数是非负数,得221010a a ⎧-≥⎨-≥⎩, 解得a =1,或a =﹣1,b =4,当a =1时,a +b =1+4=5,当a =﹣1时,a +b =﹣1+4=3,故答案为5或3.【点睛】本题考查了函数表达式有意义的条件,当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负. 12.m≤12. 【解析】让二次根式的被开方数1-2m 为非负数列式求值即可.解:由题意得:1-2m≥0,解得m≤12.故答案为m≤12.13.【解析】【分析】根据二次根式有意义的条件可以判断x-1的符号,即可化简.【详解】解:x1x1=-=-=((故答案是:.【点睛】本题主要考查了二次根式的化简,正确根据二次根式有意义的条件,判断1-x>0,从而正确化简|1-x|是解决本题的关键.14【解析】【分析】按照实数的运算法则依次计算,112-⎛⎫⎪⎝⎭=2【详解】原式==2【点睛】此题考查的知识有:数的负指数幂,二次根式的分母有理化,熟练掌握相应的运算法则是解答此题的关键.15.2【解析】【分析】先计算乘方、二次根式的乘法,再计算加减可得.【详解】原式=1+4﹣3=2,故答案为:2.【点睛】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的运算法则.16.5【解析】【分析】根据同类二次根式的被开方数相同列方程求解即可.【详解】∵∴4+a=2a-1解得a=5.故答案为5.【点睛】本题主要考查了同类二次根式的定义,即:二次根式化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.17【解析】【分析】可先将各二次根式化为最简,然后根据同类二次根式的被开方数相同即可作出判断.【详解】4【点睛】此题主要考查同类二次根式的定义,属于基础题,化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.18.【解析】【分析】将三边相加,化简各二次根式后合并即可得.【详解】=cm),故答案为.【点睛】本题主要考查二次根式的应用,解题的关键是掌握二次根式的混合运算顺序和运算法则.19.【解析】【分析】先将各二次根式进行化简,再合并同类二次根式即可得解.【详解】+26=.【点睛】此题考查二次根式的混合运算,先化简,再合并同类二次根式,注意选择合适的方法简算.20.-【解析】试题分析:按二次根式的乘除的运算法则计算即可.试题分析:原式=-=-==-.621.【解析】【分析】先利用完全平方公式变形得到原式=(x﹣y)2+(x﹣y),然后利用整体代入的方法计算.【详解】原式=x2﹣2xy+y2+(x﹣y)=(x﹣y)2+(x﹣y).∵x=y,∴x﹣y=原式=(2=.【点睛】本题考查了二次根式的化简求值.二次根式的化简求值,一定要先化简再代入求值.二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.22.b-a+2c【解析】【分析】根据数轴得出a-b<0,b+c<0,b-c>0,进而化简得出即可.【详解】解:b c + =a b b c b c --+--=b-a+b+c-b+c=b-a+2c【点睛】此题主要考查了二次根式以及绝对值的性质与化简,正确化简二次根式是解题关键. 23.(1)a 的值为 4 或 18;(2)5.【解析】【分析】(1)直接利用平方根的定义分析得出答案;(2)利用二次根式有意义的条件分析得出答案.【详解】解:(1)根据平方根的性质得,32150a a ++-=,解得 :a=4, 3215a a ,+=- 解得:a=18, 答:a 的值为 4 或 18;(2)满足二次根式9090,x x -≥⎧⎨-≥⎩ 解得:x=9,∴y=4,32 5.==+=【点睛】此题主要考查了二次根式有意义的条件,正确得出 x ,y 的值是解题关键.24.【解析】【分析】(1)先化简各二次根式,再合并同类二次根式即可得;(2)将a、b的值代入原式,根据完全平方公式和平方差公式计算可得.【详解】(1)原式=(2)当a,b2)+)2=﹣(3﹣2)+5﹣=9.【点睛】本题主要考查二次根式的化简求值,解题的关键是熟练掌握二次根式的性质与运算法则.25.11【解析】【分析】(1)把3分成2+1计算即可;(2)把4分成3+1,根据二次根式的性质进行化简即可.【详解】(11;(2.【点睛】本题考查的是二次根式的性质和化简,正确理解阅读材料所示内容、掌握二次根式的性质是解题的关键.。
八年级数学下册《二次根式》综合练习题含答案

八年级数学下册《二次根式》综合练习题测试1 二次根式学习要求掌握二次根式的概念和意义,会根据算术平方根的意义进行二次根式的运算.课堂学习检验一、填空题1.a +1表示二次根式的条件是______. 2.当x ______时,12--x 有意义,当x ______时,31+x 有意义. 3.若无意义2+x ,则x 的取值范围是______. 4.直接写出下列各式的结果: (1)49=_______;(2)2)7(_______; (3)2)7(-_______;(4)2)7(--_______; (5)2)7.0(_______;(6)22])7([- _______. 二、选择题5.下列计算正确的有( ).①2)2(2=- ②22=- ③2)2(2=- ④2)2(2-=-A .①、②B .③、④C .①、③D .②、④6.下列各式中一定是二次根式的是( ). A .23-B .2)3.0(-C .2-D .x7.当x =2时,下列各式中,没有意义的是( ). A .2-xB .x -2C .22-xD .22x -8.已知,21)12(2a a -=-那么a 的取值范围是( ).A .21>aB .21<a C .21≥a D .21≤a 三、解答题9.当x 为何值时,下列式子有意义? (1);1x -(2);2x -(3);12+x (4)⋅+-xx2110.计算下列各式:(1);)23(2 (2);)1(22+a(3);)43(22-⨯-(4).)323(2-综合、运用、诊断一、填空题11.x 2-表示二次根式的条件是______. 12.使12-x x有意义的x 的取值范围是______. 13.已知411+=-+-y x x ,则x y 的平方根为______. 14.当x =-2时,2244121x x x x ++-+-=________. 二、选择题15.下列各式中,x 的取值范围是x >2的是( ).A .2-xB .21-xC .x -21D .121-x16.若022|5|=++-y x ,则x -y 的值是( ). A .-7B .-5C .3D .7三、解答题17.计算下列各式:(1);)π14.3(2- (2);)3(22--(3);])32[(21-(4).)5.03(2218.当a =2,b =-1,c =-1时,求代数式aacb b 242-±-的值.拓广、探究、思考19.已知数a ,b ,c 在数轴上的位置如图所示:化简:||)(||22b b c c a a ---++-的结果是:______________________.20.已知△ABC 的三边长a ,b ,c 均为整数,且a 和b 满足.09622=+-+-b b a 试求△ABC 的c 边的长.测试2 二次根式的乘除(一)学习要求会进行二次根式的乘法运算,能对二次根式进行化简.课堂学习检测一、填空题1.如果y x xy ⋅=24成立,x ,y 必须满足条件______.2.计算:(1)=⨯12172_________;(2)=--)84)(213(__________; (3)=⨯-03.027.02___________.3.化简:(1)=⨯3649______;(2)=⨯25.081.0 ______;(3)=-45______. 二、选择题4.下列计算正确的是( ). A .532=⋅ B .632=⋅C .48=D .3)3(2-=-5.如果)3(3-=-⋅x x x x ,那么( ).A .x ≥0B .x ≥3C .0≤x ≤3D .x 为任意实数6.当x =-3时,2x 的值是( ). A .±3 B .3 C .-3 D .9三、解答题7.计算:(1);26⨯(2));33(35-⨯- (3);8223⨯(4);1252735⨯ (5);131aab ⋅(6);5252ac c b b a ⋅⋅(7);49)7(2⨯- (8);51322-(9).7272y x8.已知三角形一边长为cm 2,这条边上的高为cm 12,求该三角形的面积.综合、运用、诊断一、填空题9.定义运算“@”的运算法则为:,4@+=xy y x 则(2@6)@6=______.10.已知矩形的长为cm 52,宽为cm 10,则面积为______cm 2.11.比较大小:(1)23_____32;(2)25______34;(3)-22_______-6. 二、选择题12.若b a b a -=2成立,则a ,b 满足的条件是( ).A .a <0且b >0B .a ≤0且b ≥0C .a <0且b ≥0D .a ,b 异号13.把4324根号外的因式移进根号内,结果等于( ). A .11- B .11C .44-D .112三、解答题14.计算:(1)=⋅x xy 6335_______;(2)=+222927b a a _______;(3)=⋅⋅21132212_______; (4)=+⋅)123(3_______.15.若(x -y +2)2与2-+y x 互为相反数,求(x +y )x 的值.拓广、探究、思考16.化简:(1)=-+1110)12()12(________;(2)=-⋅+)13()13(_________.测试3 二次根式的乘除(二)学习要求会进行二次根式的除法运算,能把二次根式化成最简二次根式.课堂学习检测一、填空题1.把下列各式化成最简二次根式:(1)=12______;(2)=x 18______;(3)=3548y x ______;(4)=xy______; (5)=32______;(6)=214______;(7)=+243x x ______;(8)=+3121______. 2.在横线上填出一个最简单的因式,使得它与所给二次根式相乘的结果为有理式,如:23 与.2(1)32与______; (2)32与______;(3)a 3与______; (4)23a 与______; (5)33a 与______. 二、选择题 3.xx x x -=-11成立的条件是( ). A .x <1且x ≠0 B .x >0且x ≠1C .0<x ≤1D .0<x <14.下列计算不正确的是( ). A .471613= B .xy x x y 63132= C .201)51()41(22=-D .x x x3294= 5.把321化成最简二次根式为( ). A .3232B .32321C .281D .241三、计算题 6.(1);2516 (2);972(3);324 (4);1252755÷-(5);1525(6);3366÷(7);211311÷(8).125.02121÷综合、运用、诊断一、填空题7.化简二次根式:(1)=⨯62________(2)=81_________(3)=-314_________ 8.计算下列各式,使得结果的分母中不含有二次根式: (1)=51_______(2)=x 2_________(3)=322__________(4)=y x 5__________ 9.已知,732.13≈则≈31______;≈27_________.(结果精确到0.001) 二、选择题 10.已知13+=a ,132-=b ,则a 与b 的关系为( ). A .a =b B .ab =1C .a =-bD .ab =-111.下列各式中,最简二次根式是( ).A .yx -1B .ba C .42+x D .b a 25三、解答题12.计算:(1);3b a ab ab ⨯÷ (2);3212y xy ÷(3)⋅++ba b a13.当24,24+=-=y x 时,求222y xy x +-和xy 2+x 2y 的值.拓广、探究、思考14.观察规律:,32321,23231,12121-=+-=+-=+……并求值.(1)=+2271_______;(2)=+10111_______;(3)=++11n n _______.15.试探究22)(a 、a 与a 之间的关系.测试4 二次根式的加减(一)学习要求掌握可以合并的二次根式的特征,会进行二次根式的加、减运算.课堂学习检测一、填空题1.下列二次根式15,12,18,82,454,125,27,32化简后,与2的被开方数相同的有______,与3的被开方数相同的有______,与5的被开方数相同的有______.2.计算:(1)=+31312________; (2)=-x x 43__________.二、选择题3.化简后,与2的被开方数相同的二次根式是( ). A .10B .12C .21 D .61 4.下列说法正确的是( ).A .被开方数相同的二次根式可以合并B .8与80可以合并C .只有根指数为2的根式才能合并D .2与50不能合并5.下列计算,正确的是( ). A .3232=+B .5225=-C .a a a 26225=+D .xy x y 32=+ 三、计算题6..48512739-+7..61224-+8.⋅++3218121 9.⋅---)5.04313()81412(10..1878523x x x +- 11.⋅-+xx x x 1246932综合、运用、诊断一、填空题12.已知二次根式b a b +4与b a +3是同类二次根式,(a +b )a 的值是______.13.3832ab 与b a b 26无法合并,这种说法是______的.(填“正确”或“错误”) 二、选择题14.在下列二次根式中,与a 是同类二次根式的是( ).A .a 2B .23aC .3aD .4a三、计算题 15..)15(2822180-+-- 16.).272(43)32(21--+ 17.⋅+-+bb a b a a124118..21233ab bb a aba bab a-+-四、解答题19.化简求值:y y xy xx 3241+-+,其中4=x ,91=y .20.当321-=x 时,求代数式x 2-4x +2的值.拓广、探究、思考21.探究下面的问题:(1)判断下列各式是否成立?你认为成立的,在括号内画“√”,否则画“×”.①322322=+( ) ②833833=+( ) ③15441544=+( ) ④24552455=+( ) (2)你判断完以上各题后,发现了什么规律?请用含有n 的式子将规律表示出来,并写出n 的取值范围.(3)请你用所学的数学知识说明你在(2)题中所写式子的正确性.测试5 二次根式的加减(二)学习要求会进行二次根式的混合运算,能够运用乘法公式简化运算.课堂学习检测一、填空题1.当a =______时,最简二次根式12-a 与73--a 可以合并. 2.若27+=a ,27-=b ,那么a +b =______,ab =______.3.合并二次根式:(1)=-+)18(50________;(2)=+-ax xax45________. 二、选择题4.下列各组二次根式化成最简二次根式后的被开方数完全相同的是( ). A .ab 与2abB mn 与nm 11+ C .22n m +与22n m - D .2398b a 与4329b a5.下列计算正确的是( ). A .b a b a b a -=-+2))(2( B .1239)33(2=+=+C .32)23(6+=+÷D .641426412)232(2-=+-=-6.)32)(23(+-等于( ). A .7 B .223366-+- C .1D .22336-+三、计算题(能简算的要简算) 7.⋅-121).2218( 8.).4818)(122(+-9.).32841)(236215(-- 10.).3218)(8321(-+11..6)1242764810(÷+-12..)18212(2-综合、运用、诊断一、填空题13.(1)规定运算:(a *b )=|a -b |,其中a ,b 为实数,则=+7)3*7(_______.(2)设5=a ,且b 是a 的小数部分,则=-ba a ________.二、选择题14.b a -与a b -的关系是( ). A .互为倒数 B .互为相反数C .相等D .乘积是有理式15.下列计算正确的是( ).A .b a b a +=+2)(B .ab b a =+C .b a b a +=+22D .a aa =⋅1三、解答题 16.⋅+⋅-221221 17.⋅--+⨯2818)212(218..)21()21(20092008-+19..)()(22b a b a --+四、解答题20.已知,23,23-=+=y x 求(1)x 2-xy +y 2;(2)x 3y +xy 3的值.21.已知25-=x ,求4)25()549(2++-+x x 的值.拓广、探究、思考22.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们说这两个代数式互为有理化因式.如:a 与a ,63+与63-互为有理化因式.试写下列各式的有理化因式: (1)25与______; (2)y x 2-与______; (3)mn 与______; (4)32+与______; (5)223+与______; (6)3223-与______. 23.已知,732.13,414.12≈≈求)23(6-÷.(精确到0.01)答案与提示第二十一章 二次根式测试11.a ≥-1.2.<1, >-3.3.x <-2.4.(1)7; (2)7; (3)7; (4)-7; (5)0.7; (6)49.5.C . 6.B . 7.D . 8.D .9.(1)x ≤1;(2)x =0;(3)x 是任意实数;(4)x ≤1且x ≠-2.10.(1)18;(2)a 2+1;(3);23- (4)6. 11.x ≤0. 12.x ≥0且⋅=/21x 13.±1. 14.0. 15.B . 16.D . 17.(1)π-3.14;(2)-9;(3);23 (4)36. 18.21-或1. 19.0. 20.提示:a =2,b =3,于是1<c <5,所以c =2,3,4.测试21.x ≥0且y ≥0.2.(1);6 (2)24;(3)-0.18.3.(1)42;(2)0.45;(3).53- 4.B . 5.B . 6.B .7.(1);32 (2)45; (3)24; (4);53 (5);3b (6);52 (7)49; (8)12; (9)⋅y xy 263 8..cm 62 9..72 10.210.11.(1)>;(2)>;(3)<. 12.B . 13.D .14.(1);245y x (2);332b a + (3) ;34 (4)9. 15.1.16.(1);12- (2).2测试31.(1);32 (2);23x (3);342xy y x (4);xxy (5) ;36 (6);223 (7);32+x x (8)630. 2..3)5(;3)4(;3)3(;2)2(;3)1(a a3.C . 4.C . 5.C .6..4)8(;322)7(;22)6(;63)5(;215)4(;22)3(;35)2(;54)1(-7.⋅-339)3(;42)2(;32)1( 8.⋅y y x x x 55)4(;66)3(;2)2(;55)1( 9.0.577,5.196. 10.A . 11.C . 12..)3(;33)2(;)1(b a x bab + 13..112;2222222=+=+-y x xy y xy x14..1)3(;1011)2(;722)1(n n -+-- 15.当a ≥0时,a a a ==22)(;当a <0时,a a -=2,而2)(a 无意义.测试41..454,125;12,27;18,82,32 2.(1).)2(;33x3.C . 4.A . 5.C . 6..33 7..632+ 8.⋅827 9..23+ 10..214x 11..3x12.1. 13.错误. 14.C . 15..12+16.⋅-423411 17..321b a + 18.0. 19.原式,32y x +=代入得2. 20.1. 21.(1)都画“√”;(2)1122-=-+n nn n nn (n ≥2,且n 为整数);(3)证明:⋅-=-=-+-=-+111)1(1223222n n n n n n n n n n n n 测试51.6. 2..3,72 3.(1);22 (2) .3ax -4.D . 5.D . 6.B . 7.⋅66 8..1862-- 9..3314218- 10.⋅417 11..215 12..62484- 13.(1)3;(2).55-- 14.B . 15.D .16.⋅-41 17.2. 18..21- 19.ab 4(可以按整式乘法,也可以按因式分解法).20.(1)9; (2)10. 21.4.22.(1)2; (2)y x 2-; (3)mn ; (4)32-; (5)223-; (6)3223+(答案)不唯一. 23.约7.70.。
八年级数学下《二次根式》单元测试包含答案解析

八年级数学下《二次根式》单元测试含答案解析一、选择题1.化简的结果是()A.2 B.﹣2 C.2或﹣2 D.42.下列计算正确的是()A.B.C.D.3.化简得()A.1 B.C.D.4.能使=成立的取值范围是()A.a>3 B.a≥0 C.0≤a<3 D.a<3或a>35.下列各式计算正确的是()A.2•3=6B.=2C.( +)2=2+3=5 D.﹣•=﹣6.化简﹣得()A.2 B.C.﹣2 D.47.已知x,y为实数,且y=++,则的值为()A.﹣ B.C.D.28.如图,某水库堤坝的横断面为梯形,背水坡AD的坡比(坡比是斜坡的铅直距离与水平距离的比)为1:1.5,迎水坡BC的坡比为1:,坝顶宽CD为3m,坝高CF为10m,则坝底宽AB约为()(≈1.732,保留3个有效数字)A.32.2 m B.29.8 m C.20.3 m D.35.3 m9.若a=3﹣,则代数式a2﹣6a﹣2的值是()A.0 B.1 C.﹣1 D.10.化简(﹣2)2008×(2+)2009的结果是()A.﹣l B.﹣2 C. +2 D.﹣﹣2二、填空题11.若是二次根式,则x的取值范围是.12.=;(﹣)2﹣=.13.=;=.14.化简:﹣3的结果是.15.计算:=.16.在平面直角坐标系中点A到原点的距离是.17.如图,自动扶梯AB段的长度为20m,BC=10m,则AC=m.18.比较大小:32;﹣﹣.19.若(x﹣)2+=0,则=.20.已知的小数部分为a,则a(a+2)=.三、解答题21.计算:(1)﹣+;(2)()2﹣;(3)(2﹣3)2;(4)(7+)2﹣(7﹣)2.22.如图,实数a、b在数轴上的位置,化简﹣﹣.23.如图,某校自行车棚的人字架棚顶为等腰三角形ABC,点D是边AB的中点,中柱CD=2,AB=2,求△ABC的周长及面积.24.己知x=+1,y=﹣1,求x2+y2﹣xy的值.25.观察下列各式:=2,=3,=4请你将发现的规律用含自然数n(n≥1)的等式表示出来.参考答案与试题解析一、选择题1.化简的结果是()A.2 B.﹣2 C.2或﹣2 D.4【考点】二次根式的性质与化简.【专题】计算题.【分析】根据二次根式的性质进行化简即可.【解答】解:=2.故选A.【点评】本题考查了二次根式的性质与化简.解题的关键是要知道开方出来的数是一个≥0的数.2.下列计算正确的是()A.B.C.D.【考点】二次根式的混合运算.【分析】根据二次根式加减,乘除运算法则与二次根式的化简的知识,即可求得答案.【解答】解:A、,故本选项错误;B、=2﹣,故本选项错误;C、,故本选项正确;D、,故本选项错误.故选C.【点评】此题考查了二次根式的混合运算.解题的关键是掌握二次根式加减,乘除运算法则与二次根式的化简.3.化简得()A.1 B.C.D.【考点】二次根式的性质与化简.【分析】根据二次根式的性质化简.【解答】解:原式=2=,故选B.【点评】本题考查了二次根式的化简,注意要化简成最简二次根式.4.能使=成立的取值范围是()A.a>3 B.a≥0 C.0≤a<3 D.a<3或a>3【考点】二次根式的乘除法.【分析】根据平方根有意义,必须被开方数≥0,分母不能为0求解即可.【解答】解:∵=成立,∴,解得a>3,故选:A.【点评】本题主要考查了二次根式的乘除法,解题的关键是熟记运算法则.5.下列各式计算正确的是()A.2•3=6B.=2C.( +)2=2+3=5 D.﹣•=﹣【考点】二次根式的乘除法.【分析】运用二次根式的乘除法法则判定即可.【解答】解:A、2•3=6,故A选项错误;B、=3,故B选项错误;C、(+)2=2+3+2=5+2,故C选项错误;D、﹣•=﹣,故D选项正确.故选:D.【点评】本题主要考查了二次根式的乘除法,解题的关键是熟记运算法则.6.化简﹣得()A.2 B.C.﹣2 D.4【考点】二次根式的混合运算.【分析】先去括号,再合并同类二次根式即可.【解答】解:原式=2﹣2﹣2=﹣2.故选C .【点评】本题考查的是二次根式的混合运算,在进行此类运算时一般先把二次根式化为最简二次根式的形式后再运算.7.已知x ,y 为实数,且y=++,则的值为( )A .﹣B .C .D .2【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0列式求出x ,再求出y ,然后代入代数式进行计算即可得解.【解答】解:由题意得,6x ﹣1≥0且1﹣6x ≥0,解得x ≥且x ≤,所以,x=,y=,所以, ==.故选C .【点评】本题考查的知识点为:二次根式的被开方数是非负数.8.如图,某水库堤坝的横断面为梯形,背水坡AD 的坡比(坡比是斜坡的铅直距离与水平距离的比)为1:1.5,迎水坡BC 的坡比为1:,坝顶宽CD 为3m ,坝高CF 为10m ,则坝底宽AB 约为( )(≈1.732,保留3个有效数字)A .32.2 mB .29.8 mC .20.3 mD .35.3 m【考点】解直角三角形的应用﹣坡度坡角问题.【专题】应用题.【分析】根据坡比的定义可分别求出BF 、AE ,继而根据AB=BF +FE +AE 即可得出答案.【解答】解:在Rt△BCF中,∵CF:BF=1:1.5,CF=10m,∴BF=15m,在Rt△BCF中,∵DE:AE=1:,DE=10m,∴BF=10m,故可得AB=BF+FE+AE=15+3+10≈35.3m.故选D.【点评】本题考查了坡度、坡角的知识,关键是理解坡度的定义,分别求出BF、AE的长度.9.若a=3﹣,则代数式a2﹣6a﹣2的值是()A.0 B.1 C.﹣1 D.【考点】完全平方公式;实数的运算.【分析】先根据完全平方公式整理,然后把a的值代入计算即可.【解答】解:a2﹣6a﹣2,=a2﹣6a+9﹣9﹣2,=(a﹣3)2﹣11,当a=3﹣时,原式=(3﹣﹣3)2﹣11,=10﹣11,=﹣1.故选C.【点评】熟记完全平方公式:(a﹣b)2=a2﹣2ab+b2,利用完全平方公式先化简再代入求值更加简便.10.化简(﹣2)2008×(2+)2009的结果是()A.﹣l B.﹣2 C. +2 D.﹣﹣2【考点】二次根式的混合运算.【专题】计算题.【分析】先根据积的乘方得到原式=[(﹣2)(+2)]2008•(+2),然后利用平方差公式计算即可.【解答】解:原式=[(﹣2)(+2)]2008•(+2)=(3﹣4)2008•(+2)=+2.故选C.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.二、填空题11.若是二次根式,则x的取值范围是x≤.【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,3﹣4x≥0,解得x≤.故答案为:x≤.【点评】本题考查的知识点为:二次根式的被开方数是非负数.12.=;(﹣)2﹣=0.【考点】二次根式的混合运算.【专题】计算题.【分析】先把化为最简二次根式,然后约分即可;根据二次根式的性质计算(﹣)2﹣.【解答】解:=×=;(﹣)2﹣=21﹣21=0.故答案为,0.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.13.=﹣1;=35.【考点】二次根式的性质与化简.【分析】根据二次根式的性质进行化简即可.【解答】解:=﹣1;==35.故答案为:﹣1;35.【点评】本题考查了二次根式的性质,=|a|=.14.化简:﹣3的结果是.【考点】二次根式的加减法.【分析】先进行二次根式的化简,然后合并同类二次根式即可.【解答】解:原式=2﹣=.故答案为:.【点评】本题考查了二次根式的加减法,解答本题的关键是掌握二次根式的化简以及同类二次根式的合并.15.计算:=2.【考点】二次根式的乘除法;平方差公式.【分析】本题是平方差公式的应用,是相同的项,互为相反项是﹣与.【解答】解:( +)(﹣)=5﹣3=2.【点评】运用平方差公式(a+b)(a﹣b)=a2﹣b2计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.16.在平面直角坐标系中点A到原点的距离是2.【考点】勾股定理;点的坐标.【专题】计算题.【分析】根据平面直角坐标系中点A,其中横坐标为﹣,纵坐标为﹣,利用勾股定理即可求出点A到原点的距离.【解答】解:∵在平面直角坐标系中,点A,∴点A到原点的距离为:=2.故答案为:2.【点评】此题主要考查学生对勾股定理和点的坐标的理解和掌握,此题难度不大,属于基础题.17.如图,自动扶梯AB段的长度为20m,BC=10m,则AC=10m.【考点】二次根式的应用.【分析】根据勾股定理求解即可.【解答】解:AC===10.故答案为:10.【点评】本题考查了二次根式的应用,解答本题的关键是根据勾股定理求出AC的长度.18.比较大小:3>2;﹣>﹣.【考点】实数大小比较.【分析】先求出两数的平方,再比较即可;求出两个数的倒数,根据倒数求出即可.【解答】解:∵(3)2=18,(2)2=12,∴3>2,∵=+,=+,又∵>,∴﹣>﹣,故答案为:>,>.【点评】本题考查了实数的大小比较的应用,解此题的关键是能选择适当的方法比较两个实数的大小.19.若(x﹣)2+=0,则=.【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.【解答】解:∵(x﹣)2+=0,∴,解得,∴==.故答案为.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.20.已知的小数部分为a,则a(a+2)=2.【考点】估算无理数的大小.【分析】先根据的范围求出a的值,代入后进行计算即可.【解答】解;∵1<<2,∴a=﹣1,∴a(a+2)=(﹣1)(﹣1+2)=(﹣1)(+1)=3﹣1=2,故答案为:2.【点评】本题考查了估算无理数的大小,二次根式的混合运算,平方差公式的应用,解此题的关键是求出a的值.三、解答题21.计算:(1)﹣+;(2)()2﹣;(3)(2﹣3)2;(4)(7+)2﹣(7﹣)2.【考点】二次根式的混合运算.【专题】计算题.【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)先利用二次根式的性质得到原式=﹣,然后约分后进行减法运算;(3)利用完全平方公式计算;(4)先利用平方差公式计算,然后进行乘法运算.【解答】解:(1)原式=2﹣+=;(2)原式=﹣=0;(3)原式=12﹣12+18=30﹣12;(4)原式=(7++7﹣)(7+﹣7+)=14×2=28.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.22.如图,实数a、b在数轴上的位置,化简﹣﹣.【考点】二次根式的性质与化简;实数与数轴.【专题】计算题.【分析】根据数轴表示数的方法得到a<0<b,再根据二次根式的性质得原式=|a|﹣|b|﹣|a﹣b|,然后去绝对值后合并即可.【解答】解:∵a<0<b,∴原式=|a|﹣|b|﹣|a﹣b|=﹣a﹣b+a﹣b=﹣2b.【点评】本题考查了二次根式的性质与化简:=|a|.也考查了实数与数轴.23.如图,某校自行车棚的人字架棚顶为等腰三角形ABC,点D是边AB的中点,中柱CD=2,AB=2,求△ABC的周长及面积.【考点】二次根式的应用.【分析】根据点D为AB的中点,三角形ABC为等腰三角形,可得CD⊥AB,并且求出AD 和BD的长度,在Rt△ACD中求出AC的长度,同理可求出BC的长度,继而以求得△ABC 的周长及面积.【解答】解:在等腰三角形ABC中,∵点D是边AB的中点,∴CD⊥AB,AD=BD=,在Rt△ACD中,∵AD=,CD=2,∴AC==3,同理可得,BC=3,则△ABC的周长为3+3+2=8,面积为×2×2=6.【点评】本题考查了二次根式的应用以及勾股定理的应用,解答本题的关键是得出CD为三角形ABC的高,并且运用勾股定理求出等腰三角形的腰长,难度一般.24.己知x=+1,y=﹣1,求x2+y2﹣xy的值.【考点】二次根式的化简求值.【分析】先把原式化为x2+y2﹣2xy+xy=(x﹣y)2+xy,再求出x﹣y和xy的值,整体代入即可.【解答】解:∵x=+1,y=﹣1,∴x﹣y=(+1)﹣(﹣1)=+1﹣+1=2,xy=(+1)(﹣1)=()2﹣12=2﹣1=1;∴原式x2+y2﹣2xy+xy=(x﹣y)2+xy=22+1=5.【点评】本题考查了二次根式的化简求值,以及分母有理化和数学的整体思想,是基础知识要熟练掌握.25.观察下列各式:=2,=3,=4请你将发现的规律用含自然数n(n≥1)的等式表示出来=(n+1)(n≥1).【考点】二次根式的性质与化简.【专题】规律型.【分析】观察分析可得:=(1+1);=(2+1)则将此题规律用含自然数n(n≥1)的等式表示出来是=(n+1)(n≥1).【解答】解:由分析可知,发现的规律用含自然数n(n≥1)的等式表示出来为=(n+1)(n≥1).故答案为:=(n+1)(n≥1).【点评】本题考查学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.本题的关键是根据数据的规律得到=(n+1)(n≥1).。
二次根式(A)单元夺冠试题 湘教版八年级下

二次根式A一、填空题。
1、当x _______时,x—2 有意义。
2、若(x—3)(x—2) =x—3 .x—2 成立,则x应满足____ 。
3、若x>0,化简x2y = .4、计算: 3yx·3x2y= 。
5、计算:( 28 -2 3 +7 )·7 +84 = 。
6、已知a=3+2 2 ,b=3-2 2 ,则a2b-ab2= 。
7、已知一个菱形的两条对角线长分别为(4+ 3 )cm,(4- 3 )cm,则它的面积是。
8、阅读:∵2< 5 <3,∴ 5 的整数部分是2,小数部分是( 5 -2),∵3<114,∴11 整数部分是否,小数部分是(11 —3)。
若x表示10 的整数部分,y表示10 的小数部分,请计算:(10 +x)y= 。
二、选择题9、下列各式①-12;②(—3)2;③9×(—3);④—2—5;⑤a2+b2;⑥10—3;⑦—a (其中A<0)中,其中是二次根式的有( ):A. 3个B.4个C.5个D.6个10、下列各式运算正确的是( ):A 、(352)=3×(5)2=3×5=15;B、(-5)2=-(5)2=-5;C、(b-a)2=b—a(b≥a);D、( 3 a)2=3a;11、若a、b为正实数,下列等式中一定成立的是():A、a2+b2=a2+b2;B、(a2+b2)2=a2+b2;C、( a + b )2= a2+b2;D、(a—b)2=a—b;12、已知一个直角三角形的两边长分别是6和8,则第三边长为():A、10;B、8;C、27 ;D、27 或10;13、化简( 3 — 2 )2008·( 3 + 2 )2009得():A、1;B、 3 — 2 ;C、 3 + 2 ;D、— 3 + 2 ;14、下列计算正确的是():A、—16—25=—16—25=—4—5=45; B、34=2 3 ;C、214 a4=122 a2;D、4a81b2=29ba (其中a≥0,b>0);15、计算:18 ÷( 3 — 6 )的结果是():A、 6 — 3 ;B、 3 ;C、— 6 —2 3 ;D、—3 3 ;16、化简:15 + 3甲、乙两同学的解法如下:甲:15 + 3 = 5 — 3 ( 5 + 3 )( 5 — 3 )= 5 — 3 2 ;乙:15 + 3 =12 ·25 + 3 =12 ·( 5 + 3 )( 5 — 3 )( 5 + 3 )= 5 — 3 2 ;对于甲乙两同学的解法,下列判断正确的是( ):A 、甲、乙都正确;B 、甲正确、乙不正确;C 、甲、乙都不正确;D 、乙正确、甲不正确; 三、解答题:17、若4—x +x —3 有意义,度求x 应满足的条件。
湘教版-数学-八年级上册-湘教版八年级下二次根式(全章)高频率习题及答案

二次根式16.1 二次根式:1. 有意义的条件是 。
2. 当__________3. 11m +有意义,则m 的取值范围是 。
4. 当__________x 是二次根式。
5. 在实数范围内分解因式:429__________,2__________x x -=-+=。
6. 2x =,则x 的取值范围是 。
7. 2x =-,则x 的取值范围是 。
8. )1x 的结果是 。
9. 当15x ≤5_____________x -=。
10. 把的根号外的因式移到根号内等于 。
11. 11x =+成立的条件是 。
12. 若1a b -+()2005_____________a b -=。
13. )()()230,2,12,20,3,1,x y y x x x x y +=--++中,二次根式有( )A. 2个B. 3个C. 4个D. 5个14. 下列各式一定是二次根式的是( )15. 若23a )A. 52a -B. 12a -C. 25a -D. 21a -16. 若A ==( ) A. 24a + B. 22a + C. ()222a + D. ()224a +17. 若1a≤)A. (1a-B. (1a-C. (1a-D. (1a-18.=x的取值范围是()A. 2x≠ B. 0x≥ C. 2x D. 2x≥19.)A. 0B. 42a- C. 24a- D. 24a-或42a-20. 下面的推导中开始出错的步骤是()()()()()23123224==-==∴=-∴=-A. ()1B. ()2C. ()3D. ()421.2440y y-+=,求xy的值。
22. 当a1取值最小,并求出这个最小值。
23. 去掉下列各根式内的分母:())10x ())21x24. 已知2310x x -+=25. 已知,a b (10b -=,求20052006a b -的值。
16.2 二次根式的乘除1. 当0a ≤,0b __________=。
(2021年整理)数学八年级下《二次根式》复习测试题(答案)

数学八年级下《二次根式》复习测试题(答案)(推荐完整)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(数学八年级下《二次根式》复习测试题(答案)(推荐完整))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为数学八年级下《二次根式》复习测试题(答案)(推荐完整)的全部内容。
数学八年级下《二次根式》复习测试题(答案)(推荐完整)编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望数学八年级下《二次根式》复习测试题(答案)(推荐完整) 这篇文档能够给您的工作和学习带来便利。
同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为〈数学八年级下《二次根式》复习测试题(答案)(推荐完整)〉这篇文档的全部内容。
八年级数学必考题训练二次根式1.52-的绝对值是__________,它的倒数__________。
2.当x___________时,a -1有意义,若xx-2有意义,则x________. 3、下列根式中,最简二次根式是( )4。
下列根式中,与3是同类二次根式的是( ) A 。
24 B 。
12 C 。
32D. 18 5、如果错误!=-a ,那么a 一定是 ( )A 、负数B 、正数C 、正数或零D 、负数或零6。
把1a a-的根号外的因式移到根号内等于 。
7。
使等式()()1111x x x x +-=-+成立的条件是 。
数学八年级下《二次根式》复习测试题(答案).docx

数学八年级 ( 下 )复习测试题二次根式一、选择题 ( 共 20 分) :1、下列各式中,不是二次根式的是()A、45B、 3C、a22D、12 2、下列根式中 , 最简二次根式是 ( )A.XB.8XC.6X3D.X2+1 33、计算: 3÷6的结果是 ()163A、2B、2C、2D、 24、如果a2=- a,那么 a 一定是()A、负数B、正数C、正数或零D、负数或零5、下列说法正确的是()A、若2,则 a< 0B、若 2 ,则 a> 0a=- a a = aC、a4b8=a2b4D、 5 的平方根是56、若 2m-4 与 3m-1 是同一个数的平方根, 则 m为 ()A、-3B、 1C、-3 或1 D 、-17、能使等式x x成立的 x 值的取值范围是()x-2=x-2A、 x≠ 2B、 x≥ 0 C 、 x> 2 D 、 x≥2y的正确结果是 ()8、已知 xy> 0, 化简二次根式xx 2A.yB.-yC.-yD.--y9、已知二次根式x 2的值为 3,那么 x 的值是()A、 3B、 9C、 -3D、3或-310、若a 1, b5)5,则 a、b 两数的关系是(5A、a b B 、ab5C、a、b互相反数D、a、b互倒数二、填空 ( 共 30 分) :11、当 a=-3 ,二次根式1- a的等于。
12.若( x2)(3 x)x 23x 成立。
x 的取范;13、数 a 在数上的位置如所示,化:=___________.14、若 ab< 0, 化 a 2b的果是_____________.15、已知y2x x2 1 ,y。
x16、已知:当 a 取某一范内的数,代数式(2-a)2+(a-3) 2的是一个常数(确定),个常数是;17、若x1x y0,x 2006y 2005的;18、若正三角形的25cm,个正三角形的面是_______cm2。
19、在平面直角坐系中,点P( - 3, -1 )到原点的距离是。
初二下二次根式练习题目含答案

八年级下二次根式.......一.选择题(共3小题)1.下列各式中,二次根式的个数为()①;②;③;④;⑤;⑥;⑦.A.2 B.3 C.4 D.52.下列式子:①;②;③﹣;④;⑤,是二次根式的有()A.①③B.①③⑤C.①②③D.①②③⑤3.下列各式中①;②;③;④;⑤;⑥,一定是二次根式的有()个.A.1个B.2个C.3个D.4个二.解答题(共27小题)4.(2015春?大石桥市校级月考)求下列式子有意义的x的取值范围(1)(2)(3)(4)(5)(6)5.若下列各式有意义,求字母的取值范围.(1);(2);(3).6.求下列式子有意义的x的取值范围:(1)(2)(3)(4)(5)(6).7.(2016春?台州校级月考)若x,y是实数,且y=++,求3的值.8.已知y=++4,求|y﹣2x|﹣﹣的值.9.已知m、n是实数,且m=++1,求2m﹣3n的值.10.已知y=++4,求代数式y x的值.11.设x、y均为实数,且y=+2,求+的值.12.(2013春?大观区校级期中)已知实数a、b满足,求的值.13.(2015春?河北月考)在下列各式中,哪些是最简二次根式?哪些不是?对不是最简二次根式的进行化简.(1)(2)(3)(4)(5).14.下列各式中,哪些是最简二次根式?哪些不是?把不是最简二次根式的化简成最简二次根式.①;②;③;④(x>2);⑤﹣x;⑥;⑦(b>0);⑧;⑨(a>b>0);⑩;?;?.15.下列二次根式中,哪些是最简二次根式?把不是最简二次根式的化成最简二次根式.(1);(2);(3);(4);(5)(a>0).16.(2015春?宁城县期末).17.(1)(2)(3).18.化简与计算:(1)÷;(2)3a?(﹣)(b≥0).19.(1)计算:?(÷);(2)已知实数x、y满足:+(y﹣)2=0,求的值.20.化简(1)(2)(3)﹣(4)(5).21.(2012秋?英德市期末)化简:﹣3.22.(2012春?槐荫区校级期中)化简:(1)(2)(3).23.(2016春?萧山区期中)计算:(1);(2).24.(2016春?高密市校级月考)计算:(1)+++|﹣|(2)﹣+(﹣1)3+(3).25.计算:(1)4+﹣+4(2)6﹣2﹣3.26.(2016春?蚌埠期中)计算:(1)(2).27.(2016春?杭州期中)计算(1)+﹣(2)(3+)(3﹣)+(1+)2.28.如图,河堤横断面迎水坡AB的坡比是1:,堤高BC=10m,求坡面AB的长.29.(2013春?温州期中)如图,一道斜坡的坡比(BC与AC的长度之比)为1:10,AC=12m,求斜边AB的长(结果保留根号).30.如图,一铁路路基的横断面是等腰梯形ABCD,AD=BC,CD=8m,路基的高度DE=6m,斜坡BC的坡比是1:,求路基下底宽AB的长度.八年级下二次根式.......参考答案与试题解析一.选择题(共3小题)1.下列各式中,二次根式的个数为()①;②;③;④;⑤;⑥;⑦.A.2 B.3 C.4 D.5【分析】根据二次根式的定义,形如(其中a≥0)的式子就是二次根式.【解答】解:⑥,x>1时,无意义,不是二次根式;二次根式有:①③⑤⑦共4个.故选C.【点评】本题考查了二次根式的定义,理解定义是关键.2.(2016春?鄂城区期中)下列式子:①;②;③﹣;④;⑤,是二次根式的有()A.①③B.①③⑤C.①②③D.①②③⑤【分析】根据二次根式的定义:一般地,我们把形如(a≥0)的式子叫做二次根式可得答案.【解答】解:是二次根式的有①③⑤;②中被开方数小于0无意义,④是三次根式.故选B.【点评】此题主要考查了二次根式的定义,关键是掌握二次根式中的被开方数为非负数.3.(2016春?临沭县校级月考)下列各式中①;②;③;④;⑤;⑥,一定是二次根式的有()个.A.1个B.2个C.3个D.4个【分析】一般地,形如(a≥0)的代数式叫做二次根式.【解答】解:①当a<0时,不是二次根式;②当b+1<0即b<﹣1时,不是二次根式;③能满足被开方数为非负数,故本选项正确;④能满足被开方数为非负数,故本选项正确;⑤不一定能满足开方数为负数,不一定二次根式,故本选项错误;⑥=能满足被开方数为非负数,故本选项正确,故选:C.【点评】本题考查了二次根式的定义,注意判断二次根式的方法:二次根式一定要满足被开方数为非负数且根指数为2.二.解答题(共27小题)4.求下列式子有意义的x的取值范围(1)(2)(3)(4)(5)(6)【分析】(1)(2)(3)根据二次根式的性质和分式的意义,由被开方数大于等于0,分母不等于0可知;(4)(5)(6)根据二次根式的意义,被开方数是非负数可知.【解答】解:(1)根据二次根式的意义和分式有意义的条件,被开方数4﹣3x≥0,分母4﹣3x≠0,解得x<.所以x的取值范围是x<.(2)根据二次根式的意义和分式有意义的条件,被开方数3﹣x≥0,解得x≤3;分母x+2≠0,解得x≠﹣2.所以x的取值范围是x≤3且x≠﹣2.(3)根据二次根式的意义和分式有意义的条件,被开方数x﹣3≥0,解得x≥3;分母x﹣2≠0,解得x≠2.因为大于或等于3的数中不包含2这个数,所以x的取值范围是x≥3.(4)根据题意得:﹣x2≥0,∵x2≥0,∴x2=0,解得x=0.∴x的取值范围是x=0;(5)根据题意得:2x2+1≥0,∵x2≥0,∴2x2+1>0,故x的取值范围是任意实数;(6)根据题意得:2x﹣3≥0,解得x≥;2x﹣3≤0,解得x≤.综上,可知x=.∴x的取值范围是x=.【点评】本题主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.当二次根式在分母上时还要考虑分母不等于零,此时被开方数大于0.5.(2014春?和平区校级月考)若下列各式有意义,求字母的取值范围.(1);(2);(3).【分析】(1)根据被开方数大于等于0列式计算即可得解;(2)根据被开方数大于等于0,分母不等于0列式计算即可得解;(3)根据非负数的性质解答.【解答】解:(1)由题意得,x+1≥0,解得x≥﹣1;(2)由题意得,x+2≥0且x﹣1≠0,解得x≥﹣2且x≠1;(3)∵a2≥0,∴a2+3≥3,∴字母a的取值范围是全体实数.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.6.(2013春?修水县校级月考)求下列式子有意义的x的取值范围:(1)(2)(3)(4)(5)(6).【分析】分别根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:(1)由题意得,4﹣3a>0,解得a<;(2)由题意得,3﹣a≥0,解得a≤3;(3)由题意得,3﹣a>0,解得a<3;(4)由题意得,x+2≥0,解得x≥﹣2;(5)由非负数的性质,x为一切实数;(6)由题意得,2x﹣3≥0且3﹣2x≥0,解得x≥且x≤,所以,x=.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.7.若x,y是实数,且y=++,求3的值.【分析】根据二次根式中的被开方数必须是非负数列出不等式,求出x、y的值,代入代数式计算即可.【解答】解:由题意得,4x﹣1≥0,1﹣4x≥0,解得,x=,则y=,3=2.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.8.(2015秋?永登县期中)已知y=++4,求|y﹣2x|﹣﹣的值.【分析】首先根据被开方数是非负数求得x的值,则y的值即可求得,进而代入代数式求值.【解答】解:∵,则x=3.∴x=3,y=4当x=3,y=4时,原式=|4﹣6|﹣﹣=﹣8.【点评】本题考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,正确求得x的值是关键.9.(2015春?蓟县期中)已知m、n是实数,且m=++1,求2m﹣3n的值.【分析】根据二次根式有意义的条件得出m,n的值,进而代入计算即可求解.【解答】解:∵m=++1,∴n﹣5≥0且5﹣n≥0,解得n=5,∴m=++1=0+0+1=1,∴2m﹣3n=2﹣15=﹣13.故2m﹣3n的值是﹣13.【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.10.已知y=++4,求代数式y x的值.【分析】根据二次根式中的被开方数是非负数列出算式,求出x、y的值,计算即可.【解答】解:由题意得,x﹣3≥0,3﹣x≥0,解得x=3,则y=4,y x=64.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.11.(2015秋?会宁县期中)设x、y均为实数,且y=+2,求+的值.【分析】根据二次根式的有意义的条件求出x的值,代入已知式子求出y的值,代入计算即可.【解答】解:由题意得,x2﹣3≥0,3﹣x2≥0,1﹣x>0,解得,x=﹣,则y=2,+=﹣﹣=﹣.【点评】本题考查的是二次根式的有意义的条件和二次根式的计算,掌握二次根式的被开方数是非负数的解题的关键.12.已知实数a、b满足,求的值.【分析】根据非负数的性质﹣﹣算术平方根列出关于a、b的方程组,通过解该方程组求得a、b的值,然后将其代入所求的代数式求值即可.【解答】解:由题意可得,解得,.当时a=﹣1、b=﹣3时,原式==.【点评】本题综合考查了非负数的性质﹣﹣算术平方根、解二元一次方程组、二次根式有意义的条件.式子(a≥0)叫二次根式.二次根式的性质是:二次根式中的被开方数必须是非负数,否则二次根式无意义.另外,几个非负数的和为0,这几个非负数都为0.13.在下列各式中,哪些是最简二次根式?哪些不是?对不是最简二次根式的进行化简.(1)(2)(3)(4)(5).【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:(1)=,含有开得尽方的因数,因此不是最简二次根式.(2)=,被开方数中含有分母,因此它不是最简二次根式;(3),被开方数不含分母,被开方数不含能开得尽方的因数或因式,因此它不是最简二次根式;(4)==,在二次根式的被开方数中,含有小数,不是最简二次根式;(5)==,被开方数中含有分母,因此它不是最简二次根式.【点评】本题考查最简二次根式的定义.解决此题的关键,是掌握最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.14.下列各式中,哪些是最简二次根式?哪些不是?把不是最简二次根式的化简成最简二次根式.①;②;③;④(x>2);⑤﹣x;⑥;⑦(b>0);⑧;⑨(a>b>0);⑩;?;?.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:②③?是最简二次根式,①原式==9;④原式==x﹣2;⑤原式=﹣x=﹣;⑥原式=;⑦=|a|;⑨=(a﹣b);⑩=;?==.【点评】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.15.下列二次根式中,哪些是最简二次根式?把不是最简二次根式的化成最简二次根式.(1);(2);(3);(4);(5)(a>0).【分析】根据最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式进行判断,根据二次根式的性质进行化简即可.【解答】解:(1)=;(2)=;(3)是最简二次根式;(4)=4m;(5)=(a+3).【点评】本题考查的是最简二次根式的概念和二次根式的化简,掌握最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式是解题的关键.16..【分析】首先把乘除法混合运算转化成乘法运算,然后进行乘法运算即可.【解答】解:原式=3×(﹣)×2=﹣3××2×=﹣=﹣×10=﹣.【点评】本题考查了分式的乘除混合运算,正确转换成乘法运算是关键.17.(2014春?赵县期末)(1)(2)(3).【分析】(1)先将各二次根式化为最简,再运用乘法分配律进行运算,然后再进行二次根式的加减.(2)运用平方差公式进行计算即可.(3)直接进行开方运算即可得出答案.【解答】解:(1)原式=6×(3﹣5﹣2)=18﹣60﹣12,=6﹣60,=12﹣60;(2)原式=﹣,=18﹣75,=﹣57;(3)==.【点评】本题考查二次根式的乘除运算,难度不大,注意在运算时公式的运用,更要细心.18.化简与计算:(1)÷;(2)3a?(﹣)(b≥0).【分析】(1)利用二次根式除法运算法则求出即可;(2)利用二次根式乘法运算法则求出即可.【解答】解:(1)÷=×=;(2)3a?(﹣)(b≥0)=3a×(﹣)=﹣2a=﹣12ab.【点评】此题主要考查了二次根式的乘除运算,熟练掌握二次根式乘除运算法则是解题关键.19.(2014春?孝义市期末)(1)计算:?(÷);(2)已知实数x、y满足:+(y﹣)2=0,求的值.【分析】(1)利用二次根式的乘除法法则求解;(2)利用算术平方根和一个数的平方等于0求出x,y,再求的值.【解答】解:(1)?(÷)=?===;(2)由+(y﹣)2=0,可知,=0且(y﹣)2=0,即,解得.所以==.【点评】本题主要考查了二次根式的乘除法,非负数的性质及算术平方根,解题的关键是利用算术平方根和一个数的平方等于0求解.20.(2014春?新疆月考)化简(1)(2)(3)﹣(4)(5).【分析】(1)(2)(3)根据积的算术平方根的性质进行化简即可;(4)根据商的算术平方根的性质进行化简即可;(5)分子、父母同乘﹣,化简即可.【解答】解:(1)=10;(2)=3;(3)﹣=﹣xy;(4)=;(5)==﹣2.【点评】本题考查了二次根式的性质与化简,熟记积与商的算术平方根的性质是解题的关键.21.化简:﹣3.【分析】先分母有理化,再算除法,最后算减法.【解答】解:原式=﹣3=﹣3=3﹣3=0.【点评】本题考查了二次根式的混合运算,分母有理化的应用,关键是能正确分母有理化.22.(2012春?槐荫区校级期中)化简:(1)(2)(3).【分析】(1)将二次根式的被开方数转化为32×3的形式;(2)将被开方数同时乘以5;(3)先分母有理化,然后计算.【解答】解:(1)=3;(2)==;(3)==.【点评】本题考查了分母有理化、二次根式的性质与化简.二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.即一项符号和绝对值相同,另一项符号相反绝对值相同.23.计算:(1);(2).【分析】(1)先将二次根式化成最简二次根式,再合并同类二次根式即可;(2)先乘方、化简二次根式,再合并同类二次根式.【解答】解:(1)原式=4=;(2)原式=6﹣2=6.【点评】二次根式的加减实际就是合并同类二次根式,一般需要先化为最简二次根式,再合并.24.(2016春?高密市校级月考)计算:(1)+++|﹣|(2)﹣+(﹣1)3+(3).【分析】(1)先去绝对值符号,根据数的开方法则计算出各数,再由有理数的加减法则进行计算即可;(2)先根据数的开方法则计算出各数,再由有理数的加减法则进行计算即可;(3)先把各式化为最简二次根式,再合并同类项即可.【解答】解:(1)原式=0.5++0.7+=1.9;(2)原式=0.1﹣﹣+0=﹣;(3)原式=4+3﹣2+4=7+2.【点评】本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.25.(2015春?东城区期末)计算:(1)4+﹣+4(2)6﹣2﹣3.【分析】(1)首先化简二次根式,进而合并求出即可;(2)首先化简二次根式,进而合并求出即可.【解答】解:(1)原式=4+3﹣2+4=7+2;(2)原式=6﹣﹣=6﹣.【点评】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.26.(2016春?蚌埠期中)计算:(1)(2).【分析】(1)先对式子进行化简,再合并同类项即可解答本题;(2)根据平方差公式对式子进行化简,然后再合并同类项即可解答本题.【解答】解:(1)==5;(2)==5﹣4﹣3+2=0.【点评】本题考查二次根式的混合运算,解题的关键是明确二次根式混合运算的计算方法.27.计算(1)+﹣(2)(3+)(3﹣)+(1+)2.【分析】(1)先把二次根式化为最简二次根式,合并同类二次根式即可;(2)根据平方差公式和完全平方公式把原式展开,合并同类二次根式即可.【解答】解:(1)原式=2+4=5;(2)原式=32﹣()2+1+2+2=9﹣2+3+2=10+2.【点评】本题考查的是二次根式的混合运算,正确把二次根式化简、掌握平方差公式和完全平方公式是解题的关键.28.(2015?梅列区校级质检)如图,河堤横断面迎水坡AB的坡比是1:,堤高BC=10m,求坡面AB 的长.【分析】根据坡比求出AC的长,再根据勾股定理求出AB的长.【解答】解:∵河堤横断面迎水坡AB的坡比是1:,BC=10m,∴AC=10m,∴AB==20m.答:坡面AB的长为20m.【点评】本题考查了解直角三角形的应用﹣﹣坡度坡角问题,灵活运用勾股定理是解题的关键.29.如图,一道斜坡的坡比(BC与AC的长度之比)为1:10,AC=12m,求斜边AB的长(结果保留根号).【分析】根据坡比(BC与AC的长度之比)为1:10,AC=12m,可求出BC的长度,然后利用勾股定理求出AB的长度即可.【解答】解:∵坡比(BC与AC的长度之比)为1:10,AC=12m,∴BC==,∴AB===.即斜边AB的长度为.【点评】本题考查了解直角三角形的应用,难度一般,解答本题的关键是掌握坡比的定义并根据坡比求出AC的长度.30.如图,一铁路路基的横断面是等腰梯形ABCD,AD=BC,CD=8m,路基的高度DE=6m,斜坡BC的坡比是1:,求路基下底宽AB的长度.【分析】分别过D、C作梯形的高DE、CF,则DE=CF=6m,EF=DC=8m,由斜坡BC的坡比是1:,根据坡比的概念得到CF:BF=1:,可计算出BF,再根据等腰梯形的性质得AE=BF=6m,利用AB=AE+EF+BF计算即可.【解答】解:分别过D、C作梯形的高DE、CF,如图∴DE=CF=6m,EF=DC=8m,∵斜坡BC的坡比是1:,∴CF:BF=1:,∴BF=CF=6m,又∵四边形为等腰梯形,∴AE=BF=6m,∴AB=6m+8m+6m=(12+8)m.故路基下底宽AB的长度为(12+8)m.【点评】本题考查了解直角三角形的应用﹣坡度坡角问题,等腰梯形的性质.掌握坡比的概念是解题的关键,坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.。
(精校版)八年级数学下册二次根式单元测试题及答案

(直打版)八年级数学下册二次根式单元测试题及答案(word版可编辑修改)编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((直打版)八年级数学下册二次根式单元测试题及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(直打版)八年级数学下册二次根式单元测试题及答案(word版可编辑修改)的全部内容。
(3) (4)。
八年级下《二次根式》单元测试卷含答案 (2).doc

2八年级下《二次根式》单元测试卷含答案一、选择题1.下列根式中,与 3 是同类二次根式的是()A 、24B 、 12C 、3D、18 22. 在式子x( x 0) , 2 ,y 1( y 2) ,2x (x 0) ,x2 2二次根式有()A、2个 B 、3个 C 、4个 D 、 5 个3.与a3b 不是同类二次根式的是()A 、abB 、bC 、1D 、b 2 a ab a34.若 x<0,则x x2的结果是()xA. 0 B .— 2 C.0或—2 D.25.下列二次根式中属于最简二次根式的是()A.14 B .48 C .aD .4a 4 b6.如果x x 6 x( x 6) ,那么()A.x≥0 B .x≥6 C .0≤x≤6 D .x 为一切实数7.小明的作业本上有以下四题:①16a 4 4a2 ;②5a 10a 5 2a ;③ a 1a ④ 3a 2a a 。
做错的题是()A.① B .② C .③ D .④8.化简 1 1的结果为()5 6A.11 B . 30 330 C .330 D .30 1130309.若a 1 ,则 1 a 3化简后为()1 ,x y ,33中,a 21 a ; aA、 a 1 a 1B、1a 1 a C 、a 1 1 a D 、1 a a 110.能使等式xx 成立的 x 的取值范围是( )x2x2A 、 x 2B 、 x 0C 、 x2 D 、 x 2二、填空题11.当 __________ 时, x 2 1 2x 有意义。
12.若最简二次根式3 4a 2 1与 2 6a 21 是同类二次根式,则 a ______ 。
2313.已知 x 32, y 32 ,则 x3 y xy 3 _________。
14. x 1 x 1 x 2 1 成立的条件是。
15.比较大小: 2 313 。
16. 2xy8y, 1227。
17.计算 a39a3 a =。
a31 与 32 的关系是。
(完整版)八年级数学下册二次根式练习题及答案

八年级数学下册二次根式练习题及答案九年级数学科检测范围:二次根式完卷时间:45分钟满分:100分一、填空题。
1、当x ________时,2?x在实数范围内有意义。
2、计算: =________。
3、化简: = _______。
4、计算:2×=________。
5、化简:=_______。
6、计算:÷7、计算:-20-5=_______。
8化简: = ______。
1235=_______。
二、选择题。
、x为何值时,x在实数范围内有意义 x?1A、x > 1B、x ≥ 1C、x 10a = - a ,则a的取值范围是A、 a>0B、 a 11、若a?4=,则的值为A、B、1C、100 D、19612、下列二次根式中,最简二次根式的是A、17B、13C、±17D、±132)14、下列计算正确的是A、2+ =B、2+=22C、2=D、15、若x A、-1B、1C、2x-D、5-2x16、计算的结果是A、2+1B、3C、1D、-1三、解答题。
17、计算: -18、计算:00·00819、利用计算器探索填空:44?=_______; 444?8=_______;444444?88=_______;…… 由此猜想:n个8) =__________。
44444?881、≤、、、65、、、、-二、选择题9、A 10、D 11、C 12、B 13、B 14、C 15、D 16、A 三、解答题 17、解:原式=2-18、解:原式=[]200·=00·=-2219、解:;66;666;……;666…6。
20、解:∵x+ =,∴= 10,121∴x+2,∴x+=8,xx222- + =-21x1x1221∴ = x+2,xx∴x- = ±6。
1x5初中数学二次根式测试题判断题:.1.2=2.…….?1?x2是二次根式.……………2?122=2?2=13-12=1.4.a,ab2),c1a是同类二次根式.……5.a?b的有理化因式为填空题:6.等式a?b.…………选择题:3b1?x?x2=______________.4b?a是同类二次根式,则a=_________,b=__________.16.下列变形中,正确的是………2=2×3=25?=9?42=a+b=-2517.下列各式中,一定成立的是……+118.若式子=a2a2?1=?1?1ab=1bab2x?1-?2x+1有意义,则x的取值范围是 (111)x≥x≤x=以上都不对222a19.当a<0,b<0时,把化为最简二次根式,得…………………………………b111ab -ab -?ab bab bbb20.当a<0时,化简|2a-a|的结果是…a -a a -3a计算:23.-;24.÷;+-422?1+20;a3b-ab+2ba+ab)÷ba.求值:27.已知a=28.已知x=29.已知解答题:30.已知直角三角形斜边长为已知|1-x|- 12,b=14,求ba?-的值.1,求x2-x+的值.?2x?2y+3x?2y?8=0,求x的值.6+)cm,一直角边长为cm,求这个x2?8x?16=2x-5,求x的取值范围.- -试卷答案1.√;2.×;3.×;4.√;5.×..x≤1..二次根式8.∵a有意义的条件是什么?a≥0.≥3?4?2,∴ 119.2-2=?23.222a10.a.911.从数轴上看出a、b是什么数?[a<0,b>0.]3a -4b是正数还是负数? [3a-4b<0.]6a-4b.12.3.?2?0,2??0.<.x?8和y?2各表示什么?[x-8和y-2的算术平方根,算术平方根一定非负,]你能得到什么结论?[x-8=0,y-2=0.]8,2.)=-11.3+25.11114.x2-2x+1=2;-x+x2=2.[x-1;-x.]当<x <1时,x-1422113与-x各是正数还是负数?[x-1是负数,-x也是负数.]-2x.2213..∴ 直角三角形的面积为:S=12×3×=- -326?答:这个直角三角形的面积为cm2.2=|1-x|-|x-右边=2x-5.x的取31.由已知,等式的左边=|1-x|-?1?x?0只有|1-x|=x-1,|x-4|=4-x时,左边=右边.这时?解得1≤x≤4.∴x?4?0.?值范围是1≤x≤4.- -人教版八年级上册测试数学试卷一、填空题1.______个.. 当x= 时,二次根式x?1取最小值,其最小值为。
(完整版)八年级下册数学二次根式测试题及答案(2套-高分必做),推荐文档

-1- x 2132 -122132 a ab 2 a + b a - b (x -1)2 2x -3 3 3 4 a 3 11(3a -4b )2x -8 y - 2 5 x 2 - 2x +1 1- x + x 2 44b - a 3 (- 2 )259 +16 9 16(-9) ⨯(-4) (a + b )2 a 2 -1 a +1 a -1 a ba 248 1 8 130.5 122 1a初中数学二次根式测试题(一)判断题:(每小题 1 分,共 5 分).1. ( 2)2 =2.……( )2.是二次根式.……………( )3.=- =13-12=1.( )4., , c是同类二次根式.……()5. 的有理化因式为 .…………()(二)填空题:(每小题 2 分,共 20 分)6. 等式 =1-x 成立的条件是.7. 当 x时,二次根式有意义.8.比较大小: -2 2- .9. 计算:(3 1 )2 - ( 1 )2 等于 .1 10. 计算:3 2 2 1 2 ·= .9 11. 实数 a 、b 在数轴上对应点的位置如图所示:aob则 3a - = .12.若+ =0,则 x = ,y =.13.3-2的有理化因式是.114.当 <x <1 时, -=.215.若最简二次根式3b -1a + 2 与是同类二次根式,则 a =,b = .(三)选择题:(每小题 3 分,共 15 分)16 A 2 2 2 3 6B .下列变形中,正确的是………()( )(2 5) = × =( )=- (C )= + (D )= 9 ⨯ 17. 下列各式中,一定成立的是……()(A )=a +b(B )=a 2+11(C ) =·(D )= b18. 若式子 2x -1 -+1 有意义,则 x 的取值范围是………………………()11 1(A )x ≥(B )x ≤(C )x =(D )以上都不对22 219.当 a <0,b <0 时,把化为最简二次根式,得…………………………………( )(A (B )1 (C ) - b - ab (D ) b 20.当 a <0 时,化简|2a - |的结果是…()(A )a (B )-a(C )3a (D )-3a(五)计算:(每小题 5 分,共 20 分)23.(- 4)-( 3 - 2 ); 1- 2x 4(a 2 +1)2ababab48 12 3 122 a 3b a b ab ba5 - 25 x - 2 y 3x + 2 y - 86 3 6 3 724.(5+ - 6 )÷ ;2-4+2( -1)0;26.( -+2 + )÷ .(六)求值:(每小题 6 分,共 18 分)1 1bb27. 已 知 a = ,b = ,求-的值.2 4128. 已知 x =,求 x 2-x +的值.+29. 已知+ =0,求(x +y )x 的值.(七)解答题:30.(7 分)已知直角三角形斜边长为(2+ )cm ,一直角边长为( +2 )cm ,求这个直角三角形的面积.a -b 25. 50 +2 +1b ax 2 - 8x +16 a 3 3x -8 y - 2 5 5 5 3 21 25 5 5 5 5 5 5 x - 2 y 3x + 2 y - 8 x - 2 y 3x + 2 y - 8 (26 + 3)2 - ( 6 + 2 3)231.(7 分)已知|1-x |-=2x -5,求 x 的取值范围.试卷答案【答案】1.√;2.×;3.×;4.√;5.×. 6. 【答案】x ≤1.37. 【提示】二次根式有意义的条件是什么?a ≥0.【答案】≥ .28.【提示】∵ 3 < 4 = 2 ,∴ - 2 < 0 ,2 - 1 9.【提示】(3 )2-( )2=?【答案】2 .2 2 10.> 0 .【答案】<. 11. 【提示】从数轴上看出 a 、b 是什么数?[ a <0,b >0. ] 3a -4b 是正数还是负数? [ 3a -4b <0. ]【答案】6a -4b .12. 【提示】和 各表示什么?[x -8 和 y -2 的算术平方根,算术平方根一定非负,]你能得到什么结论?[x -8=0,y -2=0.]【答案】8,2. 13.【提示】(3-2)(3+2 )=-11.【答案】3+2 .1 1114.【提示】x 2-2x +1=()2;-x +x 2=( )2.[x -1;-x .]当 <x <1 时,422113 x -1 与 -x 各是正数还是负数?[x -1 是负数, -x 也是负数.]【答案】 -2x .2 2215. 【提示】二次根式的根指数是多少?[3b -1=2.]a +2 与 4b -a 有什么关系时,两式是同类二次根式?[a +2=4b -a .] 【答案】1,1.16. 【答案】D .17.【答案】B .18.【答案】C .19.【答案】B .20.【答案】D .23.【答案】3.a24.22-2.25.5 .26.a 2+a -+2.bb ( a + b ) - b ( a - b )ab + b - ab + b2b27. ==.2 ⨯ a - ba - b当 a = 1 ,b = 1 时,原式= 4 =2.241 - 12 4 28. 【提示】本题应先将 x 化简后,再代入求值.1【解】∵ x =- 2 5 + 2==5 - 4+ 2 .∴ x 2-x + =( +2)2-( +2)+ =5+4 +4- -2+ =7+4 .29.【解】∵≥0, ≥0,而+ =0,⎧x - 2 y = 0 ∴ ⎨ ⎧x = 2 解得 ⎨ y = 1. ∴ (x +y )x =(2+1)2=9.⎩3x + 2 y - 8 = 0. ⎩30.【解】在直角三角形中,根据勾股定理:另一条直角边长为:=3(cm ).3 5 566 3 (x - 4)23 ⎩数学八年级(下) 复习测试题∴ 直角三角形的面积为:S = 1×3×(+ 2 2 3答:这个直角三角形的面积为( 2)= + 3 2+ 3 )cm 2.(cm 2) 31.【解】由已知,等式的左边=|1-x |- =|1-x |-|x -4 右边=2x -5.⎧1 - x ≤ 0只有|1-x |=x -1,|x -4|=4-x 时,左边=右边.这时⎨x - 4 ≤ 0. 解得 1≤x ≤4.∴ x 的取值范围是 1≤x ≤4.3 3 6453 -a 2 + 2x 2X 38X6X 3 yxx-2 x x-2 - y x 2 -yy二次根式一、选择题(共 20 分):1、下列各式中,不是二次根式的是( )A 、B 、C 、D 、2、下列根式中,最简二次根式是()A.B. C. D.3、计算:3÷ 16的结果是 ( ) A 、2 B 、 2C 、 2D 、4、如果 a2=-a ,那么 a 一定是 ( )A 、负数B 、正数C 、正数或零D 、负数或零5、下列说法正确的是() a 2=- aa 2= aA 、若,则 a <0 B 、若,则 a >0C 、 a 4b 8=a 2b 4D 、5 的平方根是6、若 2m-4 与 3m-1 是同一个数的平方根,则 m 为( )A 、-3B 、1C 、-3 或 1D 、-17、能使等式=成立的x 值的取值范围是( )A 、x≠2B 、x≥0C 、x >2D 、x≥28、已知 xy >0,化简二次根式 x 的正确结果是()A. B. C.- D.-9、已知二次根式 的值为 3,那么 x 的值是()A 、3B 、9C 、-3D 、3 或-31 26 32 X 2+15-yx - 2 3 - x x - 2 x -1 x + y 3 2 - 12 3 - 23 24 - 34 3 25 3 3 a 2b1 5(x - 2)(3 - x ) 2 - x (-3)22 2 (a-3)210、若 a = , b = ,则 a 、b 两数的关系是( )5A 、 a = bB 、 ab = 5C 、 a 、b 互为相反数D 、a 、b 互为倒数二、填空题(共 30 分):11、当 a=-3 时,二次根式 1-a 的值等于。
湘教版八年级下第二次月评估试卷考至二次根式

第二次月评估(考至二次根式)一、填空题:1、分解因式:x 2—4y 2= 。
2、下列各式:5x ,12 (x —y ),x π—2 ,m —1m+1 ,1x —2 中,分式有 。
3、计算:4mn ÷(2m —n )2·m n3 = 。
4、如图所示,AB10cm 2M8cm 6cm 20cm22cm 2cm2A 计算:(6 3 —38 )—(75 —32 );23、化简求值:a 2—b 2ab —ab —b 2ab —a 2 +a b ,其中a=—112 ,b=23 。
AB CD①②③ ④15题图14题图EABCD6题图ABD O5题图EHGC BADF4题图24、在建设社会主义新农村中,某乡镇决定对一段公路进行改造,已中这项工和由甲工和队单独做需要40天完成;如果先由乙队单独做10天,那么剩下的工和还需要两队合做20天才能完成。
问乙队单独完成这项工程需要多少天?四、探究说理题:25、如图,E 、F 分别为□ABCD 的边AD 和BC 上的点,并且AE=CF ,AF 和BE 相交于点G ,CE 和DF 相交于点D ,EF 和GH 是否相互平分,请说明理由。
26、已知,如图BCE 、△CDF 分别是以□ABCD 的邻边BC 、CD 为边向外所作的等边三角形。
求证:AE=AF 。
ACDBEA BCDEFGH五、综合题:27、如图①,小明在研究正方形ABCD 的有关问题时,得出“在正方形ABCD 中,如果点E 是CD 的中点,点F 是BC 边上一边,且∠FAE=∠EAD ,那么EF ⊥AE ,”他的证明思路是这样的:先由∠1=∠2得出EG=ED ,又DE=EC ,得到EG=EC ,易证△EGF ≌△ECF ,得到∠5=∠6,又易知∠3=∠4,得∠4+∠5=∠3+∠6=900,证得EF ⊥AE 。
(1)你认为他的思路正确吗?(2)他又将“正方形”改为“矩形”、“菱形”和“任意平行四行”(分别如图②③④),其他条件不变,发现仍然有“EF ⊥AE ”的结论,你同意小明的观点吗?若同意,请你任意选②③④中的一种加以证明,若不同意,请说明理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次根式A
一、填空题。
1、当x _______时,x—2 有意义。
2、若(x—3)(x—2) =x—3 .x—2 成立,则x应满足____ 。
3、若x>0,化简x2y = .
4、计算: 3y
x·
3x2
y
= 。
5、计算:( 28 -2 3 +7 )·7 +84 = 。
6、已知a=3+2 2 ,b=3-2 2 ,则a2b-ab2= 。
7、已知一个菱形的两条对角线长分别为(4+ 3 )cm,(4- 3 )cm,则它的面积是。
8、阅读:∵2< 5 <3,∴ 5 的整数部分是2,小数部分是( 5 -2),∵3<11
4,∴11 整数部分是否,小数部分是(11 —3)。
若x表示10 的整数部分,y表示10 的小数部分,请计算:(10 +x)y= 。
二、选择题
9、下列各式①-1
2
;②(—3)2;③9×(—3);④
—2
—5
;⑤a2+b2;⑥
10—3;⑦—a (其中A<0)中,其中是二次根式的有( ):
A. 3个
B.4个
C.5个
D.6个
10、下列各式运算正确的是( ):
A 、(352)=3×(5)2=3×5=15;B、(-5)2=-(5)2=-5;
C、(b-a)2=b—a(b≥a);
D、( 3 a)2=3a;
11、若a、b为正实数,下列等式中一定成立的是():
A、a2+b2=a2+b2;
B、(a2+b2)2=a2+b2;
C、( a + b )2= a2+b2;
D、(a—b)2=a—b;
12、已知一个直角三角形的两边长分别是6和8,则第三边长为():
A、10;
B、8;
C、27 ;
D、27 或10;
13、化简( 3 — 2 )2008·( 3 + 2 )2009得():
A、1;
B、 3 — 2 ;
C、 3 + 2 ;
D、— 3 + 2 ;
14、下列计算正确的是():
A、—16
—25
=
—16
—25
=
—4
—5
=
4
5
; B、
3
4
=2 3 ;
C、21
4 a4=
1
2
2 a2;D、
4a
81b2
=
2
9b
a (其中a≥0,b>0);
15、计算:18 ÷( 3 — 6 )的结果是():
A、 6 — 3 ;
B、 3 ;
C、— 6 —2 3 ;
D、—3 3 ;
16、化简:
1
5 + 3
甲、乙两同学的解法如下:
甲:1
5 + 3 = 5 — 3 ( 5 + 3 )( 5 — 3 )
= 5 — 3 2 ;
乙:
1
5 + 3 =12 ·25 + 3 =12 ·( 5 + 3 )( 5 — 3 )( 5 + 3 )
= 5 — 3 2 ;
对于甲乙两同学的解法,下列判断正确的是( ):
A 、甲、乙都正确;
B 、甲正确、乙不正确;
C 、甲、乙都不正确;
D 、乙正确、甲不正确; 三、解答题:
17、若4—x +x —3 有意义,度求x 应满足的条件。
18、计算:(32
3
)2;
19、计算:1
3 10 ×(—6 5 );
20、a 2b ÷ab 3 (其中a >0,b >0);
21、计算:(515 +
3
5 )÷15 ;
22、在实数范围内分解因式:9a 2—5;
23、已知x 、y 是实数,且满足y=x —6 +6—x +1试求9x —2y 的值。
四、阅读理解题:
24、阅读理解:小强和小红解答题目:“先化简,再求值:x+1—2x+x 2 ,其中x=4”时,
得到一同的答案。
小强:原式=x+(1—x )2 =x+1—x=1;
小红:原式=x+(1—x )2 =x+|1—x|,当x=4时,原式=4+|1—4|=7。
问:(1) 的解答正确。
(2) 的解答错误,错误的原因在于未能正确运用二次根式的性质: (用式子表示)。
五、探究题:
25、如图所示,校园内有两棵树,相距12米,其中大树高11米,小树高6米,一只小鸟
从大树的顶端飞到小树的顶端,至少要飞多少米?
26、如图,四边形ABCD 是一块菱形空坪,其周长为32 2 米,∠BAD=600,对角线AC 、
BD 相交于点O ,点E 、F 、G 、H 分别为OA ,OB 。
OC ,OD 的中点,现准备在四边形EFGH 内种植一种花草,其单价为25元/米2,则需投资多少元?
A B
C
D
E
F
G O H
六、综合题:
27、已知长方形的长A=12 32 ,B=1
3
18
(1)求该长方形的周长;
(2)若另一个正方形,其面积与该长方形面积相等,试计算该正方形的周长; (3)通过计算比较,你从中得到什么启示? (4)发挥你的想象力,你还通报得到什么结论?。