北师大版七年级列一元一次方程解应用题的类型及练习
北师大七年级数学上一元一次方程应用题归类
列一元一次方程解应用题的类型及练习列一元一次方程解应用题的一般步骤:(1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,•然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,•是否符合实际,检验后写出答案.(1)和、差、倍、分问题此问题中常用“多、少、大、小、几分之几”或“增加、减少、缩小”等等词语体现等量关系。
审题时要抓住关键词,确定标准量与比校量,并注意每个词的细微差别。
例:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.问这个班有多少学生?变式1:某水利工地派48人去挖土和运土,如果每人每天平均挖土5方或运土3方,那么应怎样安排人员,正好能使挖出的土及时运走?变式2:某校组织师生春游,如果只租用45座客车,刚好坐满;如果只租用60座客车,可少租一辆,且余30个座位.请问参加春游的师生共有多少人?(2)等积变形问题此类问题的关键在“等积”上,是等量关系的所在,必须掌握常见几何图形的面积、体积公式。
“等积变形”是以形状改变而体积不变为前提。
常用等量关系为:①形状面积变了,周长没变;②原体积=变形体积。
例:要锻造一个半径为5cm,高为8cm的圆柱形毛坯,应截取截面半径为4cm的圆钢多长?变式1:直径为30 cm,高为50cm的圆柱形瓶里放满了饮料,现把饮料倒入底面直径为10cm 的圆柱形小杯,刚好倒满30杯,求小杯的高变式2:用一根长为10米的铁丝围成一个长方形,(1)使得长方形的长比宽多1.4米,此时长方形的长、宽各为多少米?(2)使得长方形的长比宽多0.8米,此时长方形的长、宽各为多少米?它所围成的长方形与(1)中所围长方形相比,面积有什么变化?(3)日历问题日历上数字的规律:上下相差7,左右相差1例:(1)在一份日历中,任意框出一个竖列上相邻的四个数,观察他们之间是什么关系?如果框出的四个数的和为58,这四天分别是几号?(2)如果用一个正方形所圈出的4个数的和为76,这四天分别是几号?变式1:在某张月历中,一个竖列上相邻的四个数的和是50,求出这四个数.变式2:小彬假期外出旅行一周,这一周各天的日期之和是84,小彬几号回家?变式3:爷爷的生日那天的上、下、左、右4个日期的和为80,你能说出爷爷的生日是几号吗?(4)数字问题。
北师大版七年级数学上册《应用一元一次方程——打折销售售》典型例题(含答案)
北师大版七年级数学上册《应用一元一次方程——打折销售售》典型例题(含答案)例1:一种蔬菜加工后出售,单价可提40%,但重量要降低20%,现有未加工的这种蔬菜1000千克,加工后共卖了1568元,问不加工每千克可卖多少钱?1000千克能卖多少钱?比加工后少卖多少钱?解析:本题的关键在于第一问,求出其他问题就解决。
由题意可知如下相等关系:加工后的蔬菜重量×加工后的蔬菜单价=1568元。
而加工后的蔬菜重量=1000×(1-20%),如果设加工前这种蔬菜每千克可卖x元,则加工后这种蔬菜每千克为(1+40%)x元,故可得方程。
解答:设不加工每千克可卖x元,依题意,得1000(1-20%)(1+40%)x=1568.解方程得:x=1.4.所以1000x=1400,1568-1400=168.答:不加工每千克可卖1.4元,1000千克能卖1400元,比加工后少卖168元。
例2:某企业生产一种产品,每件成本价400元,销售价510元,为了进一步扩大市场,该企业决定降低销售价的同时降低生产成本.经过市场调研,预计下季度这种产品每件销售价降低4%,销售量将提高10%,要使销售利润保持不变,该产品每件的成本价应降低多少元?解析:由已知可得如下相等关系:调整成本前的销售利润=调整成本后的销售利润。
若设该产品每件的成本价应降低x 元,假定调整前可卖m件这种产品,则调整前的销售利润是(510-400)m,而调整后的销售价为510(1-4%),调整后的成本价为400-x。
调整后的销售数量m(1+10%),所以调整后的销售利润是:[510(1-4%)-(400-x)]×(1+10%)m,由相等关系可得方程:[510(1-4%)-(400-x)]×(1+10%)m=(510-400)m。
解答:设该产品每件的成本价应降低x元,降价前可销售该产品m件,依题意,得[510(1-4%)-(400-x)]×(1+10%)m=(510-400)m。
北师大版数学七年级上册《一元一次方程应用题分类》(4)
北师大版数学七年级上册--《一元一次方程应用题分类》一、形积问题1、有一块棱长为4厘米的正方体铜块,要将它熔化后铸成长4厘米、宽2厘米的长方体铜块,铸成后的铜块的高是多少厘米(不计损耗)?2、一个长方形的周长为36厘米,若长减少4厘米,宽增加2厘米,长方形就变成正方形,求正方形的边长。
3、把一块长宽高分别为5cm、3cm、3cm的长方体铁块,浸入半径为4cm的圆柱体玻璃杯中(盛有水,铁块被水完全淹没)水面将增高多少?(不外溢)二、打折销售问题1.一家服装店将某种服装按成本提高40%后标价,又以八折优惠卖出,?结果每件仍获利15元,这种服装每件的成本为多少元?2、某商品的进价为700元,为了参加市场竞争,商店按标价的九折再让利40元销售,此时仍可获利10%,此商品的标价为多少元?13、一件商品按成本价提高20%后标价,又以9折销售,售价为270元,这种商品的成本价是多少元?4、五一期间,百货大楼推出全场打八折的优惠活动,持贵宾卡可在八折基础上继续打折,小明妈妈持贵宾卡买了标价为10000元的商品,共节省2800元,则用贵宾卡又享受了几折优惠?5、新华书店准备将一套图书打折出售,如果按定价的6折出售将赔60元,若按定价出售则赚20元,试问这套图书的进价是多少?6、某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?7、某服装店出售某种服装,已知售价比进价高20%以上才能出售,为了获得更多利润,该店老板以高出进价80%的价格标价,若你想买下标价360元的这种服装,最多降价多少元,该店老板还会出售?三、希望工程问题(调配问题)1、某文艺团体组织了一场义演为“希望工程”募捐,共售出1000张门票,已知成人票每张8元,学生票每张5元,共得票款6950元,成人票和学生票各几张?2、甲、乙两个水池共蓄水50吨,甲池用去5吨,乙池又注入8吨水后,甲池的水比乙池的水少3吨,问原来甲、乙两个水池各有多少吨水?3、某工厂第一车间人数比第二车间人数的少30人,如果从第二车间调10人到第一车间,那么第一车间的人数就是第二车间人数的,求原来每个车间的人数?4、甲班有54人,乙班有48人,要使甲班人数是乙班人数的2倍,则应从乙班调往甲班多少人?四、行程问题(一)相遇问题和追及问题1、已知A、B两地相距100千米,甲以16千米/小时的速度从A地出发,乙以9千米/小时的速度从B地出发。
北师大七年级数学(上册)一元一次方程应用题
七年级数学上一元一次方程应用题练习1.某校学生列队以8千米/时的速度前进,在队尾,校长让一名学生跑步到队伍的最前面找带队老师传达一个指示,然后立即返回队尾,这位学生的速度为12千米/时,从队尾出发赶到排头又回到队尾共用了7.2分钟,问学生队伍的长是多少米?2.甲,乙二人在400米的环形跑道上跑步,已知甲的速度比乙快,如果二人在同一地方出发,同向跑,则3分20秒,相遇一次,若反向跑,则40秒相遇,求甲跑步的速度每秒跑多少米?3.从甲地到乙地,公共汽车原需行驶7个小时,开通高速公路后,车速平均每时增加了20千米,只需5个小时即可到达,求甲、乙两地的路程.4.一队学生去校外进行训练,他们以5千米/时的速度行进,走了18分的时候,学校要将一个紧急通知传给队长,通讯员从学校出发,骑自行车以14千米/时的速度按原路追上去,通讯员需多少时间可以追上学生队伍?5.在高速公路上,一辆长5m,速度为110km/h的轿车准备超越一辆长为15m,速度为100km/h的大车,轿车能超过大车吗?若能,用多长时间?6.A、B两地相距64千米,甲从A地出发,每小时行14千米,乙从B地出发,每小时行18千米,(1)若两人同时出发相向而行,则需经过几小时两人相遇?(2)若两人同时出发相向而行,则需几小时两人相距16千米?(3)若甲在前,乙在后,两人同时同向而行,则几小时后乙超过甲10千米?7.休息日弟弟和妈妈从家里出发一同去外婆家,他们走了1小时后,哥哥发现带给外婆的礼品忘在家里,便立刻带上礼品以每小时6千米的速度去追,如果弟弟和妈妈每小时行2千米,他们从家里到外婆家需要1小时45分钟,问哥哥能在弟弟和妈妈到外婆家之前追上他们吗?8.某人骑车以每小时10千米的速度从甲地到乙地,返回时因事绕道而行,比去时多走8千米,虽然速度增加到了每小时12千米,但比去时还多用了10分钟,求甲、乙两地的距离。
9.某储蓄所去年储户存款为4600万元,今年与去年相比,定期存款增加20%,而活期存款减少25%,但总存款增加15%,问今年定期,活期存款各是多少?10.爸爸为小明存了一个3年期的教育储蓄(3年期的年利率为2.7﹪),3年后能取5405元,那么刚开始他存入了多少元?11.小丽的爸爸前年存了年利率为2.25%的二年期定储蓄,今年到期后,扣除利息的20%作为利息税,所得利息正好为小丽买了一只价值36元的计算器,问小丽爸爸前年存了多少元钱?12.某商店选用两种价格分别为每千克28元和每千克20元的糖果混合成杂拌糖果后出售,为使这种杂拌糖果的售价是每千克25元,要配置这种杂拌糖过100千克,问要用这两种糖果多少千克?13.某种商品进货后,零售价定为每件900元,为了适应市场竞争,商店按零售价的九折降价,并让利40元销售,仍可获利10%(相对于进价),问这种商品的进价为多少元?14.商店对某种商品进行调价,按标价的8折出售,此时商品的利润率是10%,此商品进价是1600元,求商品的标价是多少元?15.某人在广州以每件15元的价格购进某种商品10件,后来又从深圳以每件12.5元的价格购进同种商品40件。
北师大版七年级列一元一次方程解应用题专项练习
七年级数学上--列一元一次方程解应用题专项练习一、数字问题。
1、一个两位数十位上的数字与个位上的数字之和是6,把这个两位数加上18后,正好等于这个两位数的十位数字与个位数字对调后的两位数,请问这个两位数是多少?2、、有一个三位数,其各位数字之和为16.,十位数字是个位数字与百位数字的和,若把百位与个位数字对调,那么新数比原数大594,求原数。
二、日历中的方程(掌握日历或卡片中的规律)日历中的规律:横行相邻两数相差____ ;竖行相邻两数相差__ _。
1、礼堂第一排有a个座位,后面每一排比前一排多一个座位,则第n排的座位是()A n+1B a+(n+1)C a+nD a+(n-1)2、如果今天是星期三,那么一年(365天)以后的今天是星期________3、若今天是星期一,问过2017年后是星期____________.4、将1~7七个自然数分别填入下图锥中的各圆圈内,使三条线段上的三数之和、两圆周上的三数之和都等于12(如右图)5、在日历表中,用一个正方形任意圈出2*2个数,则它们的和一定能被_______整除。
A 3B 4C 5D 66、如果某一年的5月份中,有5个星期五,且它们的日期之和为80,那么这个月的4号是星期几?7、表2是从表1中截取的一部分,则a=_______表1 表28、将连续的自然数1~1001按如图的方式排列成一个长方形阵列1 2 3 4 5 6 7 (1)用一个长方形任意圈出3行2列6个数, 8 9 10 11 12 13 14 如果圈出的6个数之和为57,这6个15 16 17 18 19 20 21 数分别是多少?22 23 24 25 26 27 28 (2)用一个正方形框出16个数,要使…… …… 这16个数之和分别等于○11988;○22080 995 996 997 998 999 1000 1001三、等积变形问题。
常用等量关系为: ①形状面积变了,周长没变; ②原料体积=成品体积。
北师大版(2024)七年级数学上册 第五章 习题课件 第9课 一元一次方程的应用(3)——行程问题
4. (BS七上P151改编)一天早晨,乐乐以80米/分的速度 上学,5分钟后乐乐的爸爸发现他忘了带数学书,爸 爸立即骑自行车以280米/分的速度去追乐乐,并且 在途中追上了他,请解决以下问题: (1)爸爸追上乐乐用了多长时间?
解:(1)设爸爸追上乐乐用了x分钟,则此时乐乐出门
(x+5)分钟.依题意,得280x=80(x+5),解得x=2.
答:爸爸追上乐乐用了2分钟.
(2) 爸爸追上乐乐后,乐乐搭爸爸的自行车回到学校,
结果提前了10分钟到校,若爸爸搭上乐乐后的骑行
速度为240米/分,求乐乐家离学校有多远. 解:(2)设爸爸搭上乐乐到学校共骑行了s米. 依题意,得 s s 10 ,解得s=1 200.
3 答:11张用A方法裁剪,8张用B方法裁剪,可使裁剪出 的侧面和底面恰好全部用完,能做20个盒子.
300 m的隧道需要20 s的时间.隧道的顶上有一盏灯,
垂直向下发光,灯泡照在火车上的时间是10 s. 求这
列火车的长度. 解:设这列火车的长度为x m.依题意,得 300 x x ,解得x=300.
20 10
答:这列火车的长度为300 m.
7.用长方形硬纸板做三棱柱盒子,每个盒子由3个矩形 侧面和2个正三角形底面组成,硬纸板可以按如图两 种方法进行裁剪.(裁剪后边角料不再利用)
第五章 一元一次方程 第9课 一元一次方程的应用(3)——
行程问题
1. 甲、乙两人从相距18千米的两地同时出发相向而行, 若甲的平均速度是4千米/时,乙的平均速度是5千米/ 时,则两人骑__2__小时后相遇.
2. 一辆慢车的速度为80千米/时,一辆快车的速度为100 千米/时,慢车在前,快车在后,两车之间的距离为 60千米,快车几小时追上慢车?
北师大版七年级数学上册第五章一元一次方程 之应用:销售打折类专项训练(含答案)
北师大版七年级数学上册第五章一元一次方程之应用:销售打折类专项训练1.学校要购入两种记录本,预计花费460元,其中A种记录本每本3元,B种记录本每本2元,且购买A种记录本的数量比B种记录本的2倍还多20本.(1)求购买A和B两种记录本的数量;(2)某商店搞促销活动,A种记录本按8折销售,B种记录本按9折销售,则学校此次可以节省多少钱?2.在“元旦”期间,某超市推出如下购物优惠方案:①一次性购物在100元(不含100元)以内时不享受优惠;②一次性购物在100元(含100元)以上,300元(不含300元)时,一律享受9折优惠;③一次性购物在300元(含300元)以上时,一律享受8折优惠.小杨在本超市购物分别付款80元,261元,如果小杨改在本超市一次性购买与上两次相同的商品,应付款多少元?3.某体育用品商场用32000元购进了一批运动服,上市后很快销售一空.商场又用68000元紧急购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该商场两次共购进这种运动服多少套?(2)若两批运动服每套的售价相同,第二批售完后获利比第一批售完后获利多12000元,则每套运动服的售价是 元.4.学校准备购买一些足球,原计划订购50个,每个80元,店方表示:如果多购,可以优惠,结果校方实际订购了60个,每个减价5元,但商店获得了同样多的利润,求每个足球的成本价.5.重百超市对出售A、B两种商品开展春节促销活动,活动方案有如下两种:(同一种商品不可同时参与两种活动)商品A B标价(单位:元)120150方案一每件商品出售价格按标价降价30%按标价降价a%方案二若所购商品达到或超过101件(不同商品可累计)时,每件商品按标价降价20%后出售(1)某单位购买A商品50件,B商品40件,共花费9600元,试求a的值;(2)在(1)的条件下,若某单位购买A商品x件(x为正整数),购买B商品的件数比A商品件数的2倍还多一件,请问该单位该如何选择才能获得最大优惠?请说明理由.6.已知A、B两件服装的成本共1000元,某服装店老板分别以30%和20%的利润率定价后进行销售,该服装店共获利260元,问A、B两件服装的成本各是多少元?7.一件商品按进价提高40%后标价,然后打八折卖出,结果仍能获利18元,问这件商品的进价是多少元?8.2019年某商场于元旦之际开展优惠促销活动回馈新老客户,由顾客抽奖决定折扣.某顾客购买甲、乙两种商品,分别抽到六折(按原价的60%支付)和八折(按原价的80%支付),共支付408元,其中甲种商品原价400元.(1)请问乙种商品原价是多少元?(2)在本次买卖中,甲种商品最终亏损m%,乙种商品最终盈利2m%,但商场不盈不亏,请问甲种商品的成本是多少元?亏损多少元?9.某商店将某种皮鞋按成本加价40元作为标价,又以标价的8折优惠卖出,结果每双皮鞋仍可获利24元,问这种皮鞋的成本价为多少元?10.某市两超市在元旦节期间分别推出如下促销方式:甲超市:全场均按八八折优惠;乙超市:购物不超过200元,不给于优惠;超过了200元而不超过500元一律打九折;超过500元时,其中的500元优惠10%,超过500元的部分打八折;已知两家超市相同商品的标价都一样.(1)当一次性购物总额是400元时,甲、乙两家超市实付款分别是多少?(2)当购物总额是多少时,甲、乙两家超市实付款相同?(3)某顾客在乙超市购物实际付款482元,试问该顾客的选择划算吗?试说明理由.11.某社区惠民水果店第一次用615元从龙泉水果批发市场购进甲、乙两种不同品种的苹果,其中甲品种苹果重量比乙品种苹果重量的2倍多15千克,甲、乙两种苹果的进价和售价如下表:(注:获利=售价﹣进价)甲乙进价(元/千克)58售价(元/千克)1015(1)惠民水果店第一次购进的甲、乙两种苹果各多少千克?(2)惠民水果店第二次以第一次的进价又购进甲、乙两种苹果.其中甲苹果的重量不变,乙苹果的重量是第一次的3倍;甲苹果按原价销售,乙苹果打折销售.第二次甲、乙两种苹果都销售完以后获得的总利润为735元,求第二次乙苹果按原价打几折销售?(3)惠民水果店发现乙苹果特别好卖,准备再购买一定量乙苹果.并发现相同品质的乙苹果,驷马桥水果批发市场的价格比龙泉水果批发市场的价格便宜,就决定去驷马桥水果批发市场购买,乙苹果价格如下表:购买苹果(千克)不超过20千克20千克以上但不超过40千克40千克以上每千克的价格6元5元4元惠民水果店分两次从驷马桥水果批发市场共购买乙苹果80千克,第二次购买的数量多于第一次购买的数量,且两次购买每千克苹果的单价不相同,共付出352元,请问惠民水果店第一次,第二次分别从驷马桥水果批发市场购买乙苹果多少千克?12.若甲、乙两种商品的单价之和为500元,因为季节变化,甲商品降价10%,乙商品提价5%,调价后,甲、乙两商品的单价之和比原单价之和提高2%,求甲、乙两种商品的原来单价?13.小明去文具店购买2B铅笔,店主说:“如果多买一些,给你打8.5折”.小明测算了一下,如果买100支,比按原价购买可以便宜27元,求每支铅笔的原价是多少?14.乐清市某服装店在国庆期间对顾客实行优惠,规定如下:一次性购物标价总和优惠办法低于200元不予优惠全部九折优惠低于500元但不低于200元500元或超过500元全部八折优惠(1)王老师一次性购物标价总和为600元,他实际付款 元(直接写出答案).(2)若顾客在该超市一次性购物实际付款360元,问此顾客一次性购物标价总和为多少元?15.某商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?参考答案1.解:(1)设购买B种记录本x本,则购买A种记录表(2x+20)本,依题意,得:3(2x+20)+2x=460,解得:x=50,∴2x+20=120.答:购买A种记录本120本,B种记录本50本.(2)460﹣3×120×0.8﹣2×50×0.9=82(元).答:学校此次可以节省82元钱.2.解:设小杨改在本超市一次性购买与上两次相同的商品,应付款x元.根据题意,得①∵80+261/90%=370,370>300,∴x=(80+290)×80%=296②∵80+261÷0.8=406.25∴x=(80+362.25)×0.8=325答:小杨改在本超市一次性购买与上两次相同的商品,应付款296元或325元.3.解:(1)设商场第一次购进x套运动服,由题意得:.解这个方程,得x=200.经检验,x=200是所列方程的根.2x+x=2×200+200=600.答:商场两次共购进这种运动服600套.(2)第一批运动服的进价为=160(元),第二批运动服的进价为=170(元),设每套运动服的售价是x元,由题意得:400(x﹣170)﹣200(x﹣160)=12000,解得:x=240故答案为:240.4.解:设每个足球的成本价是x元,根据题意得50(80﹣x)=60(80﹣5﹣x)解得x=50答:每个足球成本为50元.5.解:(1)由题意有,50×120×0.7+40×150×(1﹣a%)=9600整理得,42+60(1﹣a%)=96则(1﹣a%)=0.9,所以a=10(2)根据题意得:x+2x+1=100得:x=33当总数不足101时,即,只能选择方案一得最大优惠;当总数达到或超过101,即x>33时,方案一需付款:120×0.7x+150×0.9(2x+1)=84x+270x+135=354x+135方案二需付款:[120x+150(2x+1)]×0.8=336x+120∵(354x+135)﹣(336x+120)=18x+15>0∴选方案二优惠更大综上所述:当时,只能选择方案一最大优惠方式;当x>33时,采用方案二更加优惠,此时需付款336x+120(元)6.解:设A服装成本为x元/件,B服装成本(1000﹣x)元/件,由题意,得30%x+20%(1000﹣x)=260解得x=600则1000﹣x=1000﹣600=400(元)答:A服装成本为600元/件,B服装成本400元/件.7.解:设这件商品的进价是x元,由题意得:(1+40%)x×80%=x+18,解得:x=150,答:这件商品的进价是150元.8.解:(1)设乙商品原价为x元,由题意,得400×0.6+0.8x=408解得:x=210答:原价为210元;(2)设甲商品的成本是y元,则乙商品的成本是(408﹣y)元.由题意,得m%y=2m%(408﹣y)解得:y=272272﹣240=32(元)答:甲商品的成本是272元,亏损32元.9.解:设这种皮鞋的成本价为x元.根据题意得:0.8×(x+40)=x+24,解得:x=40.原方程的解是x=40.答:这种皮鞋的成本价为40元.10.解:(1)由题意可知,一次性购物总额是400元时:甲超市实付款:400×0.88=352元,乙超市实付款:400×0.9=360元故甲、乙两家超市实付款分别352元和360元.(2)设购物总额是x元,由题意知x>500,列方程得:0.88x=500×(1﹣0.1)+0.8(x﹣500)解得x=625故当购物总额是625元时,甲、乙两家超市实付款相同.(3)∵500×0.9=450<482,∴该顾客购物实际金额多于500.设该顾客购物金额为y,由题意得:500×(1﹣0.1)+0.8(y﹣500)=482解得y=540若顾客在甲超市购物,则实际付款金额为:540×0.88=475.2元475.2元<482元故该顾客的选择不划算.11.解:(1)设第一次购进乙种苹果x千克,则甲的件数为(2x+15)千克,根据题意得:8x+5×(2x+15)=615.解得:x=30∴2x+15=75答:第一次购进乙种苹果30千克,甲种苹果75千克.(2)设第二次乙苹果售价为每千克15y元,根据题意得:(10﹣5)×75+(15y﹣8)×30×3=735解得:y=0.8答:第二次乙种苹果是按原价打8折销售.(3)设第一次购买a千克苹果,第二次购买(80﹣a)千克苹果.分三种情况考虑:①当第一次购买苹果不超过20千克,第二次苹果超过20千克以上但不超过40千克的时候,显然不够80千克,不成立.②当第一次购买苹果不超过20千克,第二次购买苹果超过40千克,得:6a+4(80﹣a)=352解得:a=16∴80﹣a=80﹣16=64③第一次苹果20千克以上但不超过40千克,第二次购买的苹果超过40千克,得:5a+4(80﹣a)=352解得:a=32∴80﹣a=80﹣32=48答:第一次购买16千克苹果,第二次购买64千克苹果;或者第一次购买32千克苹果,第二次购买48千克苹果.12.解:设甲商品的原单价为x元,则乙商品的原单价为(500﹣x)元,依题意,得:(1﹣10%)x+(1+5%)(500﹣x)=500×(1+2%),解得:x=100,∴500﹣x=400.答:甲商品的原单价为100元,乙商品的原单价为400元.13.解:设每支铅笔的原价是x元,根据题意得:100x﹣100×0.85x=27,解得:x=1.8.答:每支铅笔的原价是1.8元.14.解:(1)600×0.8=480(元).故答案为:480.(2)设此顾客一次性购物标价总和为x元,∵500×0.8=400>360∴200<x<500.依题意,得:0.9x=360,解得:x=400.答:顾客一次性购物标价总和为400元.15.解:设盈利的衣服的进价为x元,亏损的衣服的进价为y元,依题意,得:120﹣x=20%x,120﹣y=﹣20%y,解得:x=100,y=150,∴120+120﹣x﹣y=﹣10(元).答:卖这两件衣服总的是亏损,亏损了10元钱.。
北师大版2024新版七年级数学上册第五章考点例析3:一元一次方程的应用-相遇问题、追及问题、工程问题
考点三 一元一次方程的应用
例1.A,B两站间的路程为448千米,一列慢车从A站出发,每小时行驶60千米,一列快车 从B站出发,每小时行驶80千米,问: (2)两车同时开出,同向而行,如果慢车在前,出发后多少小时快车追上慢车?
慢车
快车(2)解:设两车同时开出,同向而行,如果慢车在前,
快车的路程 - 慢车的路程 = AB两站间的路程
出发后x小时快车追上慢车.
设经过x小时快车追上慢车,
60x
根据题意得,80x-60x=448,
慢车的路程 解得x=22.4 .
80x-60x=448
解方程得x=22.4 答:两车同时开出,同向而行,如果慢车在前,出发
经检验, x=22.4是该实际问题的解.
C
A 后22.4小时快车追上慢车.B 快车的路程
列方程为( B )
A.
x 5
+
x+1 8
=1
B.
x 5
+
x-1 8ຫໍສະໝຸດ =1C.x 5
-
x+1 8
=1
D.
x 5
-
x-1 8
=1
甲的工作效率为
1 5
工作1总量
=
工作效率
×
工作乙时的间工作效率为
1 8
1天
甲
甲做了x天 乙做了(x-1)天 甲的工作总51量x+乙81 的(x工-1作) 总量= 1
乙
工作总量=工作效率 × 工作时间
出发后22.4小时,快车追上慢车.
80x
考点三 一元一次方程的应用
例1.A,B两站间的路程为448千米,一列慢车从A站出发,每小时行驶60 千米,一列快车从B站出发,每小时行驶80千米,问: (1)两车同时开出,相向而行,出发后多少小时相遇? (2)两车同时开出,同向而行,如果慢车在前,出发后多少小时快车追上慢车?
北师大版七年级上册数学第五章一元一次方程应用题专项练习(附答案)
一、解答题
1.某人计划骑车以每小时 12 千米的速度由 A 地到 B 地,这样便可以在规定的时间到达 B 地,但他因有事将原计划 出发的时间推迟了 20 分钟,便只好以每小时 15 千米的速度前进,结果比规定时间早 4 分钟到达 B 地,求 A、B 两 地间的距离.(列方程解应用题)
(2)如果小聪行走的速度是 4 千米/小时,那么到几时几分,小明与小聪相距 3 千米?
21.列方程解应用题 为了迎接比赛,七年级学生准备买一些器材,现了解情况如下:甲乙两家商店出售同样品牌的乒乓球和球拍,乒乓 球拍每副定价 20 元,乒乓球每盒定价 5 元,经洽谈后,甲店:每买一副球拍赠一盒乒乓球;乙店按定价的九折优惠, 该班需购买球拍 4 副,乒乓球若干盒(不少于 4 盒).若你是负责人,你会决定到哪家商店购买?说明理由.
16.某行军纵队以 7 千米/时的速度行进,队尾的通讯员以 11 千米/时的速度赶到队伍前送一封信,送到后又立即返回 队尾,共用 13.2 分钟,求这支队伍的长度.
23.已知线段 AB,延长 AB 到点 C,使 ﳀ
ﳀ,D 为 AC 的中点,若 BD=3cm,求线段 AB 的长.
17.列方程解应用题:登山运动是最简单易行的健身运动,在秀美的景色中进行有氧运动,特别是山脉中森林覆盖率 高,负氧离子多,真正达到了身心愉悦的进行体育锻炼。张老师和李老师登一座山,张老师每分钟登高 10 米,并且 先出发 30 分钟,李老师每分钟登高 15 米,两人同时登上山顶,求这座山的高度。
7.一个角的余角比这个角的补角的一半还少 40°,求这个角的度数.
8.从甲地到乙地,公共汽车原需行驶 7 个小时,开通高速公路后,车速平均每小时增加了 20 千米,只需 5 个小时即 可到达,求甲、乙两地的路程.
北师大一元一次方程应用题分类练习
北师大版一元一次方程应用题分类练习————————————————————————————————作者:————————————————————————————————日期:一元一次方程应用题分类练习一路程方程总结相遇问题;1:甲速度×时间+乙速度×时间= 总路程-甲乙中间相隔的距离或甲提前走了路程例1 甲、乙两地相距189千米,一列快车从甲地开往乙地每小时行72千米,一列慢车从乙地去甲每小时行54千米。
若两车同时发车,几小时后两车相距31.5千米例2甲、乙两地相距300千米,甲车从A地出发24千米后,乙车才从B地相向而行。
已知甲车每小时行40千米,乙车每小时行52千米,若甲车是上午8时出发,两车相遇时是几时几分?例3. 甲、乙两车分别从A、B两地同时出发,相向而行,甲每小时行50千米,乙每小时行40千米甲比乙早1小时到达中点。
甲几小时到达中点?例4. 一条环形跑道长400米,甲每分钟行80米,乙每分钟行驶的速度是甲的1.5倍米.甲乙两人同时同地反向出发,多少分钟后他们相遇?例5 两列火车分别长.甲火车长258米,乙火车长182米,甲火车的速度是80千米每小时,乙火车的速度是90千米每小时,问两列火车从车头相遇,到车尾离开,总需几秒种?追及问题;1:甲速度×时间-乙速度×时间= 总路程-甲乙中间相隔的距离或甲提前走了路程.例1 已知甲,乙两地相距290千米,现有一汽车以每小时40千米的速度从甲地开往乙地,出发30分钟后,另有一辆摩托车以每小时50千米的速度从乙地开往甲地.问摩托车出发后几小时与汽车相遇?例2 甲、乙两人分别从A、B两地同时出发,相向而行,2小时相遇。
如果甲从A地,乙从B地同时出发,同向而行,那么4小时后甲追上乙。
已知甲速度是15千米/时,求乙的速度。
例3 .一条环形跑道长400米,甲每分钟行80米,乙每分钟行120米.甲乙两人同时同地通向出发,多少分钟后他们第一次相遇?例4 甲、乙两人同时从A地出发,以每小时4千米的速度向B地前进,在行驶了30分钟后,甲忘了东西需要回A地去拿,甲以每小时8千米的速度返回,返回后马上又以同样的速度追赶乙,刚好在乙到达终点B时,追到,问A B 两地相距多远?顺水逆水(顺风逆风)例1、一架飞机在两城之间飞行,风速为24千米 /小时,顺风飞行需2小时50分,逆风飞行需要3小时。
北师大版初一上册数学一元一次方程的应用练习题(经典)
一元一次方程的应用【考纲要求】本节课重点复习一元一次方程的应用,树立初步的方程思想.一元一次方程的应用非常广泛,不是人为分类固定模式,而是学会分析简单问题中的数量关系,建立方程解决问题;认识到利用方程解决问题的关键是寻找等量关系.主要利用:等积变形、行程、调配、销售以及与图表、图形等有关问题,达到提高我们能力的目的.要学习、解决这些问题,首先需把握以下几个基本量及基本数量关系:行程问题:(1)基本量:路程、时间、速度(2)基本数量关系: .销售问题:(1)基本量:商品进价、商品售价或标价、商品利润、商品利润率(2)基本数量关系:① .② .【教学重难点】等量关系发找方程解决应用题【本讲命题方向】填空题、选择题和应用题约3~5%【典型题例精讲】(一)等积问题造成一个底面边长为3米的正方形的长方体,求锻造后长方体的高为多少米?2.桌面上有甲、乙、丙三个圆柱形的杯子,杯深均为15公分,各装有10公分高的水,且表记录了甲、乙、丙三个杯子的底面积.今小明将甲、乙两杯内一些水倒入丙杯,过程中水没溢出,使得甲、乙、丙三杯内水的高度比变为3︰4︰5.若不计杯子厚度,则甲杯内水的高度变为多少公分?( )A.5.4 B.5.7 C.7.2 D.7.5【反思与小结】列方程解应用题的关键步骤是找出相等关系,在解决等积变形问题时利用的相等关系是 .(二)调配问题【例2】1.(2016•哈尔滨)某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x2.用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成。
硬纸板以如图所示两种方法剪裁。
北师大版(2024)数学七年级上册 5.3.3 一元一次方程应用--行程问题 (共23张PPT)
复习引入
小明和小华相距 100 米,他们同时出发,相向而行, 小明每秒走 3 米,小华每秒走 4 米,他们能相遇吗? 几秒钟可以相遇?
等量关系: 小明走的路程 + 小华走的路程 = 相距的路程
所用公式:路程 = 速度×时间
复习引入
这道题是小学做过的一种很常见的应用题:行程问题, 用到的数量关系主要有:
分析:本题等量关系:小明所走路程+爸爸所走路 程=全路程,但要注意小明比爸爸多走了 5 分钟, 所以小明所走的时间为(x+5)分钟,另外也要注意本 题单位的统一,2.9公里=2900米.
解:设小明爸爸出发 x 分钟后接到小明,如 图所示.
由题意,得200x+60(x+5)=2900, 解得 x=10. 答:小明爸爸从家出发 10 分钟后接到小明.
甲先跑 10 秒,乙开始跑,设乙 x 秒后追上甲,依题意列
方程得 ( B )
A. 6x = 4x
B. 6x = 4x + 40
C. 6x = 4x-40
D. 4x + 10 = 6x
课堂练习
2. 甲车在乙车前 500 千米,同时出发,速度分别为每
小时 40 千米和每小时 60 千米,多少小时后,乙车追
例 小明和小华两人在400m的环形跑道上练习长跑,小明每分 钟跑260m,小华每分钟跑300m,两人起跑时站在跑道同一位置。 (2)如果小明起跑后1min小华开始反向跑,那么小华起跑后多 长时间两人首次相遇?
设小华起跑后xmin两人首次相遇, 根据等量关系,可列出方程: 260x+300x=400-260。 解这个方程,得 x=0.25。 因此,小华起跑后0.25min两人首次相遇。
追击问题:快车路程-慢车路程=路程差
北师大版七年级数学上册第五章《一元一次方程》 应用:行程类专项训练(含答案)
北师大版七年级数学上册第五章《一元一次方程》应用:行程类专项训练(含答案)1.已知某铁路桥长1000米,现有一列火车匀速从桥上通过,火车从车头上桥到车尾离桥共用了1分钟,整列火车完全在桥上的时间为40秒,求火车的长度及其行驶速度.2.A、B两地相距1000千米,甲列车从A地开往B地;2小时后,乙列车从B地开往A地,经过4小时与甲列车相遇.已知甲列车比乙列车每小时多行50千米.甲列车每小时行多少千米?3.一只汽艇从A码头顺流航行到B码头用2小时,从B码头返回到A码头,用了2.5小时,如果水流速度是3千米/时,求:(1)汽艇在静水中的速度;(2)A、B两地之间的距离.4.甲、乙两车从相距360千米的A、B两地匀速相向而行,甲车从A地出发,乙车从B地出发.(1)若甲车比乙车先出发1小时,则两车在乙车出发后经2小时相遇;若乙车比甲车先出发2.5小时,则两车在甲车出发后经1.5小时相遇.问甲、乙两车每小时各行驶多少千米?(2)若甲车先出发,3小时后乙车也出发.甲车到达B地后立即返回(忽略掉头等时间),结果与乙车同时到达A地.已知甲车速度是乙车速度的1.25倍,问乙车出发后多少时间两车第一次相遇?5.甲、乙两汽车从A市出发,丙汽车从B市出发,甲车每小时行驶40千米,乙车每小时行驶45千米,丙车每小时行驶50千米.如果三辆汽车同时相向而行,丙车遇到乙车后10分钟才能遇到甲车,问何时甲丙两车相距15千米?6.A、B两地相距360km,甲、乙两车分别沿同一条路线从A地出发驶往B地,已知甲车的速度为60km/h,乙车的速度为90km/h,甲车先出发1h后乙车再出发,乙车到达B地后在原地等甲车.(1)求乙车出发多长时间追上甲车?(2)求乙车出发多长时间与甲车相距50km?7.甲、乙两人骑自行车分别从相距36km的两地匀速同向而行,如果甲比乙先出发半小时,那么他们在乙出发后经3小时甲追上乙;如果乙比甲先出发1小时,那么他们在甲出发后经5小时甲才能追上乙.请问:甲、乙两人骑自行车每小时各行多少千米?8.列方程解应用题:如图,现有两条乡村公路AB、BC,AB长为1200米,BC长为1600,一个人骑摩托车从A处以20m/s的速度匀速沿公路AB、BC向C处行驶;另一人骑自行车从B处以5m/s的速度从B向C行驶,并且两人同时出发.(1)求经过多少秒摩托车追上自行车?(2)求两人均在行驶途中时,经过多少秒两人在行进路线上相距150米?9.列方程解应用题:甲列车从A地开往B地,每小时行驶60千米,乙列车同时从B地开往A地,每小时行驶90千米.已知A,B两地相距200km.(1)经过多长时间两车相遇;(2)两车相遇的地方离A地多远?10.列方程解应用题:某校全校学生从学校步行去烈士陵园扫墓,他们排成长为250米的队伍,以50米/分钟的平均速度行进,当排头出发20分钟后,学校有一份文件要送给带队领导,一名教师骑自行车以150米/分钟的平均速度按原路追赶学生队伍,学校离烈士陵园2千米.(1)教师能否在排头队伍到达烈士陵园前送到在排头前带队领导手里?(2)送信教师和带队领导停下来交谈了一分钟,交谈过程中队伍继续前进,然后领导要求送信老师马上赶到队尾,防止有意外情况发生,他按追赶时的平均速度需要多少时间就可以赶到队尾;(3)送信教师赶到队尾后,和最后的同学一起走,送信老师还需要多少时间可到达烈士陵园.11.钱塘江江面宽阔,水流速度也有很大不同.在江面的中间,水的速度是每小时45里,沿岸的地方水的速度是每小时25里.今有一汽船顺江的中间往下游行驶,4小时行驶了440里,问从沿岸返回原处需几小时?12.从甲地到乙地的长途汽车原行驶7小时可以到达,开通高速公路后,路程缩短10千米,车速平均每小时增加50千米,结果只需4小时即可到达.求汽车在高速公路上平均每小时可以行驶多少千米?13.已知从河中A地到海口60千米,如船顺流而下,4小时可到海口,已知水速为每小时6千米,船返回已航行4小时后,因河水涨潮,由海向河的水速为每小时3千米,此船回到原地,还需再行多少小时?14.小刘开着小桥车,其平均速度为100km/h,小张开着大货车,都从A地去B地,小刘比小张晚出发1小时,最后两车同时到达B地,已知:小轿车的平均速度是大货车的平均速度的2倍.(1)A地到B地的路程是多少?(列方程解答)(2)当小刘出发时,求小张离B地还有多远?15.“今有善行者行一百步,不善行者行六十步.”(出自《九章算术》)意思是:同样时间段内,走路快的人能走100步,走路慢的人只能走60步.假定两者步长相等,据此回答以下问题:(1)今不善行者先行一百步,善行者追之,不善行者再行六百步,问孰至于前,两者几何步隔之?即:走路慢的人先走100步,走路快的人开始追赶,当走路慢的人再走600步时,请问谁在前面,两人相隔多少步?(2)今不善行者先行两百步,善行者追之,问几何步及之?即:走路慢的人先走200步,请问走路快的人走多少步才能追上走路慢的人?参考答案1.解:方法一:设火车行驶速度为x米/秒,由题意得:60x﹣1000=1000﹣40x,解得:x=20,火车的长为=200(米).方法二:设火车的速度为x米/秒,火车长为y米,则,解得:.答:火车的长度为200米,速度为20米/秒.2.解:设甲列车每小时行x千米,可得:4(x﹣50+x)+2x=1000.4x﹣200+4x+2x=1000,10x=1200,x=120.答:甲车每小时行120千米3.解:(1)设汽艇在静水中的速度为xkm/h.由题意,得2(x+3)=2.5(x﹣3)﹣0.5x=﹣13.5x=27.答:汽艇在静水中的平均速度是27千米/小时;(2)由题意,得2(x+3)=2(27+3)=60(千米)答:A、B两地之间的距离是60千米.4.解:(1)设甲车每小时行驶x千米,乙车每小时行驶y千米,由题意得:解得:答:甲车每小时行驶80千米,乙车每小时行驶60千米.(2)设乙车每小时行驶m千米,则甲车每小时行驶1.25m千米,由题意得:=∴720﹣3.75m=360×1.25解得:m=72经检验,m=72是原方程的解∴1.25m=1.25×72=90360﹣90×3=90(km)∴90÷(90+72)=(小时)答:乙车出发后小时两车第一次相遇.5.【解答】解:设t小时后乙、丙两汽车相遇,则(50+45)t=(40+50)(t+),解得t=3.故(50+45)t=95×3=285(千米).即:A、B两市的距离是285千米.设x小时甲、丙两车相距15千米.①当甲、丙两车相遇前相距15千米,由题意,得(40+50)x=285﹣15解得x=3.②当甲、丙两车相遇后相距15千米,由题意,得(40+50)x=285+15解得x=.综上所述,3或小时后,甲丙两车相距15千米.6.解:(1)设乙车出发x小时追上甲车,由题意得:60+60x=90x解得x=2故乙车出发2小时追上甲车.(2)乙车出发后t小时与甲车相距50km,存在以下三种情况:①乙车出发后在追上甲车之前,两车相距50km,则有:60+60t=90t+50 解得t=;②乙车超过甲车且未到B地之前,两车相拒50km,则有:60+60x+50=90t解得t=;③乙车到达B地而甲车未到B地,两车相距50km,则有:60+60t+50=360 解得t=.故乙车出发小时、小时或小时与甲车相距50km.7.解:设甲骑自行车每小时行x千米,乙骑自行车每小时行(x﹣12)千米,依题意得:5x﹣(5+1)(x﹣12)=36,解得:x=18,x﹣12=21﹣12=9.答:甲骑自行车每小时行18千米,乙骑自行车每小时行9千米.8.解:(1)设经过x秒摩托车追上自行车,20x=5x+1200,解得x=80.答:经过80秒摩托车追上自行车.(2)设经过y秒两人相距150米,第一种情况:摩托车还差150米追上自行车时,20y﹣1200=5y﹣150解得y=70.第二种情况:摩托车超过自行车150米时,20y=150+5y+1200解得y=90.答:经过70秒或90秒两人在行进路线上相距150米.9.解:(1)设经过x小时两车相遇,根据题意得:(60+90)x=200,解得:x=,答:经过小时两车相遇;(2)根据题意得:60×=80(千米),答:两车相遇的地方离A地80千米.10.解:(1)2000÷50=40(分钟),2000÷150+20=(分钟),∵40>,∴教师能在排头队伍到达烈士陵园前送到在排头前带队领导手里.(2)设送信教师按追赶时的平均速度需要x分钟就可以赶到队尾,根据题意得:(150+50)x=250﹣50×1,解得:x=1.答:他按追赶时的平均速度需要1分钟就可以赶到队尾.(3)设送信教师需要y分钟可追上带队领导,根据题意得:(150﹣50)y=50×20,解得:y=10,∴(2000+250)÷50﹣20﹣y﹣2=13.答:送信老师还需要13分钟可到达烈士陵园.11.解:设从沿岸返回原处需x小时,由题意得:(440÷4﹣45﹣25)x=440∴(110﹣70)x=440∴40x=440∴x=11答:从沿岸返回原处需11小时.12.解:设汽车原来平均每小时可以行驶x千米.根据题意,有7x﹣10=4(x+50).解得,x=70.∴x+50=120.答:汽车在高速公路上平均每小时可以行驶120千米.13.解:船的速度为:60÷4﹣6=9(千米/时),设此船回到原地,还需再行x小时,60﹣4×(9﹣6)=(9+3)x,解得,x=4,答:此船回到原地,还需再行4小时.14.解:(1)设小张时间为xh,由题意得:100(x﹣1)=(100÷2)x,解得:x=2,100×(2﹣1)=100(km),答:娄A地到B地的路程是100km;(2)100﹣100÷2×1=50(km),答:当小刘出发时,小张离长沙还有50km.15.解:(1)设当走路慢的人再走600步时,走路快的人的走x步,由题意得x:600=100:60∴x=1000∴1000﹣600﹣100=300答:当走路慢的人再走600步时,走路快的人在前面,两人相隔300步.(2)设走路快的人走y步才能追上走路慢的人,由题意得y=200+y∴y=500答:走路快的人走500步才能追上走路慢的人.。
2024年北师大版七年级上册数学复习专项突破练11 一元一次方程的解法
于 y 的方程:
从而解得
6 y -2 y =3 y +5
x =2
;
1
2
3
,通过先求 y 的值,
(2)利用上述方法解方程:
3(x-1)- (x-1)=2(x-1)- (x+1).
解:设 x -1= y ,
则原方程可化为3 y - y =2 y - (y+2),
解得 y =- .
=2,可将绝对值符号内的 x -1看成一个整体,则可得 x
-1=2或 x -1=-2,分别解方程可得 x =3或 x =-1.利
用上面的知识,解下列方程:
1
2
3
(1)| x +4|=5;
解:因为| x +4|=5,
所以 x +4=-5或 x +4=5,
解得 x =-9或 x =1.
(2)|2 x -10|=7.
−
−
=x-
;
解: x =-
1
2
3
(5)
+
+
=5 x ;
解: x =1
−
+
(6)
-
=3.
.
.
解: x =20
1
2
3
题型2
分类讨论法解含绝对值的方程
2. 【2024汉中月考】因为|2|=2,|-2|=2,所以
当| x |=2时,可得 x =2或 x =-2.若解方程| x -1|
北师陕西 七年级上册
第五章
一元一次方程
专项突破练11 一元一次方程的解法
北师大版七年级数学上册第五章列一元一次方程解应用题专题练习题(含答案)
北师大版七年级数学上册第五章列一元一次方程解应用题专题练习题1、某校七年级社会实践小组去某商场调查商品的销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.(1)每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?(2)在(1)的条件下,某公司给员工发福利,在该商场促销钱购买了20件该品牌的衬衫发给员工,后因为有新员工加入,又要购买5件该衬衫,购买这5件衬衫时恰好赶上该商场进行促销活动,求该公司购买这25件衬衫的平均价格.2、采摘茶叶是茶农一项很繁重的劳动,利用单人便携式采茶机能大大提高生产效率.实践证明,一台采茶机每天可采茶60公斤,是人手工采摘的5倍,购买一台采茶机需2400元.茶园雇人采摘茶叶,按每采摘1公斤茶叶m元的标准支付雇工工资,一个雇工手工采摘茶叶20天获得的全部工钱正好购买一台采茶机.(1)求m的值;(2)有两家茶叶种植户王家和顾家均雇人采摘茶叶,王家雇用的人数是顾家的2倍.王家所雇的人中有的人自带采茶机采摘,的人手工采摘,顾家所雇的人全部自带采茶机采摘.某一天,王家付给雇工的工资总额比顾家付给雇工的工资总额少600元.问顾家当天采摘了多少公斤茶叶?3、某市城市居民用电收费方式有以下两种:(甲)普通电价:全天0.53元/度;(乙)峰谷电价:峰时(早8:00﹣晚21:00)0.56元/度;谷时(晚21:00﹣早8:00)0.36元/度.估计小明家下月总用电量为200度.(1)若其中峰时电量为50度,则小明家按照哪种方式付电费比较合适?能省多少元?(2)到下月付费时,小明发现那月总用电量为200度,用峰谷电费付费方式比普通电价付费方式省了14元,求那月的峰时电量为多少度?4、在手工制作课上,老师组织七年级2班的学生用硬纸制作圆柱形茶叶筒.七年级2班共有学生50人,其中男生人数比女生人数少2人,并且每名学生每小时剪筒身40个或剪筒底120个.(1)七年级2班有男生、女生各多少人?(2)原计划男生负责剪筒底,女生负责剪筒身,要求一个筒身配两个筒底,那么每小时剪出的筒身与筒底能配套吗?如果不配套,那么男生应向女生支援多少人时,才能使每小时剪出的筒身与筒底相同.5、盈盈超市第一次用6000元购进甲,乙两种商品,其中乙商品的件数比甲商品件数的多15件,甲,乙两种商品的进价和零售价如下表(注:获利=售价﹣进价):甲乙进价(件/元)2230售价(件/元)2940(1)第一次进货时甲,乙两种商品各购进多少件?(2)该超市第二次以第一次的进价又购进甲,乙两种商品,其中甲种商品的件数不变,乙种商品的件数是第一次的3倍,甲商品按原价销售,乙商品打折销售.第二次两种商品都销售完后盈利2130元,求第二次乙种商品是按原价打几折销售的.6、国庆期间,某公园门票规定如下表:购票人数1﹣50张51~100张100张以上每人门票价13元11元9元某校七年级(1)(2)两个班共104人去游园,如果以班为单位购票,共付1240元,其中(1)班人数大于40人小于50人,试问:(1)这两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?(3)如果七年级(1)班单独组织去游园,作为组织者的你如何购票最省钱?7、某租赁公司拥有100辆轿车,当每辆轿车的月租金为3000元时,可全部租出,当每辆轿车的月租金每增加50元时,未租出的轿车将会增加一辆,租出的轿车每辆每月公司需要保养费150元,未租出的轿车每辆每月公司需要保养费50元.(1)已知10月份每辆轿车的月租金为3600元时,能租出多少辆轿车?(2)已知11月份的保养费开支为12900元,问该月租出了多少辆轿车?(3)比较10、11两月的月收益,哪个月的月收益多?多多少?8、为了进行资源的再利用,学校准备针对库存的桌椅进行维修,现有甲、乙两木工组,甲每天修桌凳14套,乙每天比甲多7套,甲单独修完这些桌凳比乙单独修完多用20天.学校每天付甲组80元修理费,付乙组120元修理费.(1)请问学校库存多少套桌凳?(2)在修理过程中,学校要派一名工人进行质量监督,学校负担他每天10元生活补助费,现有三种修理方案:①由甲单独修理;②由乙单独修理;③甲、乙合作同时修理.你选哪种方案,为什么?9、请根据图中提供的信息,回答下列问题:(1)一个暖瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的暖瓶和水杯.为了迎接新年,两家商场都在搞促销活动.甲商场规定:这两种商品都打九折;乙商场规定:买一个暖瓶赠送一个水杯.若某单位想要买4个暖瓶和15个水杯,请问选择哪家商场购买更合算,并说明理由.10、某校计划添置20张办公桌和一批椅子(椅子不少于20把),现从A、B两家家具公司了解到:同一款式的产品价格相同,办公桌每张210元,椅子每把70元.A公司的优惠政策为:每买一张办公桌赠送一把椅子;B公司的优惠政策为:办公桌和椅子都实行八折优惠.(1)若到A公司买办公桌的同时买m把椅子,则应付多少钱?(2)若规定只能选择一家公司购买桌椅,什么情况下到任意一家公司购买付款一样多?(3)如果添置的20张办公桌和30把椅子,可到一家公司购买或A、B公司分开购买,请你设计一种购买方案,使所付款额最少,最少付款额是多少?(可不说明理由)11、现在,某商场进行元旦促销活动,出售一种优惠购物卡(注:此卡只作为购物优惠凭证不能顶替货款),花300元买这种卡后,凭卡可在这家商场按标价的8折购物.(1)顾客购买多少元金额的商品时,买卡与不买卡花钱相等?(2)小张要买一台标价为3500元的冰箱,如何购买合算?小张能节省多少元钱?(3)小张按合算的方案,把这台冰箱买下,如果该商场还能盈利25%,那么这台冰箱的进价是多少元?12、某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.(1)求该店有客房多少间?房客多少人?(2)假设店主李三公将客房进行改造后,房间数大大增加.每间客房收费20钱,且每间客房最多入住4人,一次性定客房18间以上(含18间),房费按8折优惠.若诗中“众客”再次一起入住,他们如何订房更合算?请写出你作出这种决策的理由.13、一队学生从学校出发去骑行,整个队伍以30千米/时的速度前进.(1)骑行了半小时,突然发现有东西遗忘在学校,一名队员马上以50千米/时的速度返回学校,取到东西后仍以50千米/时的速度追赶队伍,求这名队员从掉头返校到追上队伍,经过了多长时间?(取东西的时间忽略不计)(2)突然前方有事需要接应,派出一名队员前往,如果这名队员以40千米/时的速度独自行进7千米,接应后掉转车头,仍以40千米/时的速度往回骑,直到与其他队员会合.问这名队员从离队开始到与队员重新会合,经过了多长时间?(接应时间忽略不计).解:设这名队员从离队开始到与队员重新会合,经过了x小时,根据题意,可得方程.(本小题只需要列出方程,不用解)14、某公司要把240吨白砂糖运往A、B两地,用大、小两种货车共20辆,恰好一次可以运完.已知大、小货车的载重量分别为15吨/辆和10吨/辆,运往A 地的运费为大货车630元/辆,小货车420元/辆,运往B地的运费为大货车750元/辆,小货车550元/辆.(1)求两种货车各用多少辆;(2)如果安排10辆货车前往A地,剩下的货车前往B地,那么当前往A地的大货车有多少辆时,总运费为11350元.15、为赴某地考察学习,小颖的爸爸在元旦节的早晨7点自驾一辆轿车(平均速度为60千米/小时)从家里出发赶往距家45千米的某机场,此时距规定到达机场的时间仅剩90分钟,7点30分小颖发现爸爸忘了带身份证,急忙通知爸爸返回,同时她乘坐出租车以40千米/小时的平均速度直奔机场,与此同时,爸爸接到通知后继续往机场方向行驶了5分钟后返回,结果不到30分钟就遇上小颖(打电话,拿身份证及上出租车的时间忽略不计),并立即按原速赶往机场,请问:(1)设小颖从7点30分出发经过x小时与爸爸相遇,则与爸爸相遇时小颖行驶了千米,爸爸返回了千米(均用含x的代数式表示);(2)求小颖从7点30分出发经过多少时间与爸爸相遇;(3)小颖的爸爸能否在规定的时间内赶到机场?16、某中学举行数学竞赛,计划用A,B两台复印机复印试卷.如果单独用A机器需要90分钟印完,如果单独用B机器需要60分钟印完,为了保密的需要,不能过早复印试卷,学校决定在考试前由两台复印机同时复印.(1)两台复印机同时复印,共需多少分钟才能印完?(2)若两台复印机同时复印30分钟后,B机出了故障,暂时不能复印,此时离发卷还有13分钟.请你算一下,如果由A机单独完成剩下的复印任务,会不会影响按时发卷考试?(3)在(2)的问题中,B机经过紧急抢修,9分钟后修好恢复正常使用,请你再计算一下,学校能否按时发卷考试?17、A、B两城相距600千米,一辆客车从A城开往B城,车速为每小时80千米,同时一辆出租车从B城开往A城,车速为毎小时100千米,设客车出时间为t.探究若客车、出租车距B城的距离分别为y1、y2,写出y1、y2关于t的函数关系式,并计算当y1=200千米时y2的値.发现设点C是A城与B城的中点,(1)哪个车会先到达C?该车到达C后再经过多少小时,另一个车会到达C?(2)若两车扣相距100千米时,求时间t.决策己知客车和出租车正好在A,B之间的服务站D处相遇,此时出租车乘客小王突然接到开会通知,需要立即返回,此时小王有两种选择返回B城的方案:方案一:继续乘坐出租车,到达A城后立刻返回B城(设出租车调头时间忽略不计);方案二:乘坐客车返回城.试通过计算,分析小王选择哪种方式能更快到达B城?35.甲、乙两地的路程为600km,一辆客车从甲地开往乙地.从甲地到乙地的最高速度是每小时120km,最低速度是每小时60km.(1)这辆客车从甲地开往乙地的最短时间是h,最长时间是h.(2)一辆货车从乙地出发前往甲地,与客车同时出发,客车比货车平均每小时多行驶20km,3h两车相遇,相遇后两车继续行驶,各自到达目的地停止.求两车各自的平均速度.(3)在(2)的条件下,甲、乙两地间有两个加油站A、B,加油站A、B相距200km,当客车进入B加油站时,货车恰好进入A加油站(两车加油的时间忽略不计),求甲地与加油站B的路程.参考答案1、某校七年级社会实践小组去某商场调查商品的销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.(1)每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?(2)在(1)的条件下,某公司给员工发福利,在该商场促销钱购买了20件该品牌的衬衫发给员工,后因为有新员工加入,又要购买5件该衬衫,购买这5件衬衫时恰好赶上该商场进行促销活动,求该公司购买这25件衬衫的平均价格.【解答】解:(1)设每件衬衫降价x元,根据题意可得:(120﹣80)×400+(500﹣400)(120﹣x﹣80)=80×500×45%,解得:x=20,答:每件衬衫降价20元时,销售完这批衬衫正好达到盈利45%的预期目标;(2)由题意可得:[20×120+5×(120﹣20)]÷25=116(元),答:该公司购买这25件衬衫的平均价格是116元.2、采摘茶叶是茶农一项很繁重的劳动,利用单人便携式采茶机能大大提高生产效率.实践证明,一台采茶机每天可采茶60公斤,是人手工采摘的5倍,购买一台采茶机需2400元.茶园雇人采摘茶叶,按每采摘1公斤茶叶m元的标准支付雇工工资,一个雇工手工采摘茶叶20天获得的全部工钱正好购买一台采茶机.(1)求m的值;(2)有两家茶叶种植户王家和顾家均雇人采摘茶叶,王家雇用的人数是顾家的2倍.王家所雇的人中有的人自带采茶机采摘,的人手工采摘,顾家所雇的人全部自带采茶机采摘.某一天,王家付给雇工的工资总额比顾家付给雇工的工资总额少600元.问顾家当天采摘了多少公斤茶叶?【解答】解:(1)由题意:×20×m=2400,解得:m=10;(2)设顾家雇了x人,则王家雇了2x人,其中:人自带采茶机采摘,人人手工采摘,由题意得:60x×10=×x×10+60×x×10+600解得:x=15 (人)所以,顾家当天采摘了共采摘了15×60=900(公斤),答:顾家当天采摘了900公斤茶叶.3、某市城市居民用电收费方式有以下两种:(甲)普通电价:全天0.53元/度;(乙)峰谷电价:峰时(早8:00﹣晚21:00)0.56元/度;谷时(晚21:00﹣早8:00)0.36元/度.估计小明家下月总用电量为200度.(1)若其中峰时电量为50度,则小明家按照哪种方式付电费比较合适?能省多少元?(2)到下月付费时,小明发现那月总用电量为200度,用峰谷电费付费方式比普通电价付费方式省了14元,求那月的峰时电量为多少度?【解答】解:(1)按普通电价付费:200×0.53=106元,按峰谷电价付费:50×0.56+150×0.36=82元.所以按峰谷电价付电费合算,能省106﹣82=24元;(2)设那月的峰时电量为x度,根据题意得:0.53×200﹣[0.56x+0.36(200﹣x)]=14,解得x=100.答:那月的峰时电量为100度.4、在手工制作课上,老师组织七年级2班的学生用硬纸制作圆柱形茶叶筒.七年级2班共有学生50人,其中男生人数比女生人数少2人,并且每名学生每小时剪筒身40个或剪筒底120个.(1)七年级2班有男生、女生各多少人?(2)原计划男生负责剪筒底,女生负责剪筒身,要求一个筒身配两个筒底,那么每小时剪出的筒身与筒底能配套吗?如果不配套,那么男生应向女生支援多少人时,才能使每小时剪出的筒身与筒底相同.【解答】解:(1)设七年级2班有男生有x人,则女生有(x+2)人,由题意得:x+x+2=50,解得:x=24,女生:24+2=26(人),答:七年级2班有男生有24人,则女生有26人;(2)男生剪筒底的数量:24×120=2880(个),女生剪筒身的数量:26×40=1040(个),因为一个筒身配两个筒底,1880:1040≠2:1,所以原计划男生负责箭筒底,女生负责剪筒身,每小时剪出的筒身与筒底不能配套,设男生应向女生支援y人,由题意得:120(24﹣y)=(26+y)×40×2,解得:y=4,答:男生应向女生支援4人时,才能使每小时剪出的筒身与筒底相同.5、盈盈超市第一次用6000元购进甲,乙两种商品,其中乙商品的件数比甲商品件数的多15件,甲,乙两种商品的进价和零售价如下表(注:获利=售价﹣进价):甲乙进价(件/元)2230售价(件/元)2940(1)第一次进货时甲,乙两种商品各购进多少件?(2)该超市第二次以第一次的进价又购进甲,乙两种商品,其中甲种商品的件数不变,乙种商品的件数是第一次的3倍,甲商品按原价销售,乙商品打折销售.第二次两种商品都销售完后盈利2130元,求第二次乙种商品是按原价打几折销售的.【解答】解:(1)设第一次甲种商品购进x件,依题意:22x+30(x+15)=6000,解此方程:x=150;(x+15)=90,答:第一次甲,乙两种商品分别购进150件和90件;(2)设第二次乙种商品按打y折销售,依题意:(29﹣22)×150+(40×﹣30)×90×3=2130,解此方程:y=8.5,答:第二次乙种商品是按原价打8.5折销售的.6、国庆期间,某公园门票规定如下表:购票人数1﹣50张51~100张100张以上每人门票价13元11元9元某校七年级(1)(2)两个班共104人去游园,如果以班为单位购票,共付1240元,其中(1)班人数大于40人小于50人,试问:(1)这两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?(3)如果七年级(1)班单独组织去游园,作为组织者的你如何购票最省钱?【解答】解:(1)设(1)班有x人,则(1)班有(104﹣x)人,根据题意得13x+11(104﹣x)=1240,解得x=48,104﹣x=104﹣48=56.答:(1)班有48人,(2)班有56人;(2)104×9=936(元),1240﹣936=304(元).答:两班联合起来,作为一个团体购票,可省304元;(3)13×48=624(元),11×51=561(元).答:(1)班买51张票最省钱.7、某租赁公司拥有100辆轿车,当每辆轿车的月租金为3000元时,可全部租出,当每辆轿车的月租金每增加50元时,未租出的轿车将会增加一辆,租出的轿车每辆每月公司需要保养费150元,未租出的轿车每辆每月公司需要保养费50元.(1)已知10月份每辆轿车的月租金为3600元时,能租出多少辆轿车?(2)已知11月份的保养费开支为12900元,问该月租出了多少辆轿车?(3)比较10、11两月的月收益,哪个月的月收益多?多多少?【解答】解:(1)设10月份未租出x辆轿车,依题意得,50x=3600﹣3000,解得x=12.所以,租出的轿车为100﹣12=88(辆).答:10月份能租出88辆轿车;(2)设11月份租出y辆轿车,依题意得:150y+50(100﹣y)=12900解得y=79.答:11月份租出79辆轿车;(3)10月份收益:(3600﹣150)×88﹣50×12=303000(元).11月份收益:[3000+50(100﹣79)]×79﹣12900=307050(元).因为307050﹣303000=4050(元),所以11月份收益多,多4050元.8、为了进行资源的再利用,学校准备针对库存的桌椅进行维修,现有甲、乙两木工组,甲每天修桌凳14套,乙每天比甲多7套,甲单独修完这些桌凳比乙单独修完多用20天.学校每天付甲组80元修理费,付乙组120元修理费.(1)请问学校库存多少套桌凳?(2)在修理过程中,学校要派一名工人进行质量监督,学校负担他每天10元生活补助费,现有三种修理方案:①由甲单独修理;②由乙单独修理;③甲、乙合作同时修理.你选哪种方案,为什么?【解答】解:(1)设乙单独做需要x天完成,则甲单独做需要(x+20)天,由题意可得:14(x+20)=21x,解得:x=40,总数:21×40=840(套),答:乙单独做需要40天完成,甲单独做需要60天,一共有840套桌椅;(2)方案一:甲单独完成:60×80+60×10=5400(元),方案二:乙单独完成:40×120+40×10=5200(元),方案三:甲、乙合作完成:840÷(14+21)=24(天),则一共需要:24×(120+80)+24×10=5040(元),故选择方案三合算.9、请根据图中提供的信息,回答下列问题:(1)一个暖瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的暖瓶和水杯.为了迎接新年,两家商场都在搞促销活动.甲商场规定:这两种商品都打九折;乙商场规定:买一个暖瓶赠送一个水杯.若某单位想要买4个暖瓶和15个水杯,请问选择哪家商场购买更合算,并说明理由.【解答】解:(1)设一个暖瓶x元,则一个水杯(38﹣x)元,根据题意得:2x+3(38﹣x)=84.解得:x=30.一个水杯=38﹣30=8.故一个暖瓶30元,一个水杯8元;(2)若到甲商场购买,则所需的钱数为:(4×30+15×8)×90%=216元.若到乙商场购买,则所需的钱数为:4×30+(15﹣4)×8=208元.因为208<216.所以到乙家商场购买更合算.10、某校计划添置20张办公桌和一批椅子(椅子不少于20把),现从A、B两家家具公司了解到:同一款式的产品价格相同,办公桌每张210元,椅子每把70元.A公司的优惠政策为:每买一张办公桌赠送一把椅子;B公司的优惠政策为:办公桌和椅子都实行八折优惠.(1)若到A公司买办公桌的同时买m把椅子,则应付多少钱?(2)若规定只能选择一家公司购买桌椅,什么情况下到任意一家公司购买付款一样多?(3)如果添置的20张办公桌和30把椅子,可到一家公司购买或A、B公司分开购买,请你设计一种购买方案,使所付款额最少,最少付款额是多少?(可不说明理由)【解答】解:(1)210×20+70×(m﹣20)=70m+2800(元).答:若到A公司买办公桌的同时买m把椅子,则应付(70m+2800)元钱.(2)设买x把椅子,到任意一家公司购买付款一样多,根据题意得:210×20+70(x﹣20)=80%(210×20+70x),解得:x=40.答:买40把椅子时,到任意一家公司购买付款一样多.(3)购买方案为:到A公司购买20张办公桌,A公司赠送20把椅子,再到B 公司购买10把椅子.最少付款额为210×20+80%×70×10=4760元.11、现在,某商场进行元旦促销活动,出售一种优惠购物卡(注:此卡只作为购物优惠凭证不能顶替货款),花300元买这种卡后,凭卡可在这家商场按标价的8折购物.(1)顾客购买多少元金额的商品时,买卡与不买卡花钱相等?(2)小张要买一台标价为3500元的冰箱,如何购买合算?小张能节省多少元钱?(3)小张按合算的方案,把这台冰箱买下,如果该商场还能盈利25%,那么这台冰箱的进价是多少元?【解答】解:设顾客购买x元金额的商品时,买卡与不买卡花钱相等.根据题意,得300+0.8x=x,解得x=1500,所以,顾客购买1500元金额的商品时,买卡与不买卡花钱相等;(2)小张买卡合算,3500﹣(300+3500×0.8)=400,所以,小张能节省400元钱;(3)设进价为y元,根据题意,得(300+3500×0.8)﹣y=25%y,解得y=2480答:这台冰箱的进价是2480元.12、某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.(1)求该店有客房多少间?房客多少人?(2)假设店主李三公将客房进行改造后,房间数大大增加.每间客房收费20钱,且每间客房最多入住4人,一次性定客房18间以上(含18间),房费按8折优惠.若诗中“众客”再次一起入住,他们如何订房更合算?请写出你作出这种决策的理由.【解答】解:(1)设客房有x间,则根据题意可得:7x+7=9x﹣9,解得x=8;即客人有7×8+7=63(人);答:客人有63人.(2)如果每4人一个房间,需要63÷4=15,需要16间客房,总费用为16×20=320(钱),如果定18间,其中有四个人一起住,有三个人一起住,则总费用=18×20×0.8=288(钱)<320钱,所以他们再次入住定18间房时更合算.答:他们再次入住定18间房时更合算.13、一队学生从学校出发去骑行,整个队伍以30千米/时的速度前进.(1)骑行了半小时,突然发现有东西遗忘在学校,一名队员马上以50千米/时的速度返回学校,取到东西后仍以50千米/时的速度追赶队伍,求这名队员从掉头返校到追上队伍,经过了多长时间?(取东西的时间忽略不计)(2)突然前方有事需要接应,派出一名队员前往,如果这名队员以40千米/时的速度独自行进7千米,接应后掉转车头,仍以40千米/时的速度往回骑,直到与其他队员会合.问这名队员从离队开始到与队员重新会合,经过了多长时间?(接应时间忽略不计).解:设这名队员从离队开始到与队员重新会合,经过了x小时,根据题意,可得方程40x+30x=7×2.(本小题只需要列出方程,不用解)【解答】解:(1)设这名队员从掉头返校到追上队伍,经过了y小时,根据题意得:50y﹣30y=30××2,解得:y=1.5.答:这名队员从掉头返校到追上队伍,经过了1.5小时.(2)设这名队员从离队开始到与队员重新会合,经过了x小时,根据题意得:40x+30x=7×2.故答案为:40x+30x=7×2.14、某公司要把240吨白砂糖运往A、B两地,用大、小两种货车共20辆,恰好一次可以运完.已知大、小货车的载重量分别为15吨/辆和10吨/辆,运往A 地的运费为大货车630元/辆,小货车420元/辆,运往B地的运费为大货车750元/辆,小货车550元/辆.(1)求两种货车各用多少辆;(2)如果安排10辆货车前往A地,剩下的货车前往B地,那么当前往A地的大货车有多少辆时,总运费为11350元.【解答】解:(1)设大货车用x辆,则小货车用(20﹣x)辆,根据题意得:15x+10(20﹣x)=240,解得:x=8,∴20﹣x=20﹣8=12.答:大货车用8辆.小货车用12辆.(2)设前往A地的大货车有a辆,那么到A地的小货车有(10﹣a)辆,到B 地的大货车(8﹣a)辆,到B的小货车有12﹣(10﹣a)=a+2辆,根据题意得:630a+420(10﹣a)+750(8﹣a)+550(2+a)=11350,即10a+11300=11350,解得:a=5.答:当前往A地的大货车有5辆时,总运费为11350元.15、为赴某地考察学习,小颖的爸爸在元旦节的早晨7点自驾一辆轿车(平均速度为60千米/小时)从家里出发赶往距家45千米的某机场,此时距规定到达机。
第04讲 应用一元一次方程(7类热点题型讲练)(原卷版)--初中数学北师大版7年级上册
第04讲应用一元一次方程(7类热点题型讲练)1.掌握一元一次方程的应用的一般步骤;2.掌握各类应用题的列方程的方法.知识点必备公式或关系式题型01一元一次方程的应用--古代问题例题:(2023春·江苏连云港·九年级校考阶段练习)中国人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题,原文:今有三人共车,二车空;二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问共有多少人,多少辆车?【变式训练】1.(2023春·陕西咸阳·九年级统考期中)《算法统宗》是中国古代重要的数学著作,其中记载:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.其大意为:今有若干人住店,若每间住7人,则余下7人无房可住;若每间住9人,则余下一间无人住,求店中共有多少间房?2.(2023·安徽马鞍山·校考一模)《孙子算经》是中国传统数学的重要著作之一,其中记载的“荡杯问题”很有趣:“今有妇人河上荡杯.津吏问曰:‘杯何以多?’妇人曰:‘家有客.’津吏曰:‘客几何?’妇人曰:‘二人共饭,三人共羹,四人共肉,凡用杯七十八.’问客几何?”译文:“2人同吃一碗饭,3人同吃一碗羹,4人同吃一碗肉,共用78个碗,问有多少客人?”题型02一元一次方程的应用--销售问题例题:(2023秋·甘肃兰州·七年级校考期末)小张自主创业开了一家服装店,因为进货时没有进行市场调查,在换季时积压了一批服装。
为了缓解资金压力,小张决定打折销售.若每件服装按标价的6折出售将亏10元,而按标价的8折出售将赚40元.(1)请计算每件服装标价多少元?每件服装成本多少元?(用一元一次方程求解)(2)为尽快减少库存,又要保证不亏本,请问小张最多能打几折?【变式训练】题型03一元一次方程的应用--方案问题例题:(2023春·河南周口·七年级校考期中)“太行分一脉,缥缈入云台”.某单位计划“五一”节组织员工到焦作云台山旅游,已知甲、乙两旅行社都提供去云台山的方案,都是每人400元.几经洽谈,甲旅行社表示给予每位旅客8.5折优惠,乙旅行社表示能免去一位旅客的费用,其余9折.(1)若参加旅游的人数为x,则选择甲旅行社的费用为______元,选择乙旅行社的费用为______元(都用含x 的式子表示).(2)若经过计算可知甲,乙两家旅行社的费用相同,则该单位有员工多少人?【变式训练】题型04一元一次方程的应用--配套问题例题:(2023秋·江苏·七年级专题练习)工业园区某机械厂的一个车间主要负责生产螺丝和螺母,该车间有工人44人,其中女生人数比男生人数的2倍少10人,每个工人平均每天可以生产螺丝50个或者螺母120个.(1)该车间有男生、女生各多少人?(2)已知一个螺丝与两个螺母配套,为了使每天生产的螺丝螺母恰好配套,应该分配多少工人负责生产螺丝,多少工人负责生产螺母?【变式训练】1.(2023秋·全国·七年级课堂例题)服装厂计划生产一批某种型号的学生服装,已知每3米长的某种布料可做2件上衣或3条裤子,一件上衣和一条裤子为一套,现仓库内存有这样的布料600米,若全部用来做这种型号的学生服装,应分别用多少布料做上衣和裤子,才能恰好配套?2.(2023秋·全国·七年级课堂例题)一张方桌是由一个桌面和四条桌腿组成的,如果1立方米木料可制作方桌的桌面50个,或制作桌腿300条,现在要用5立方米木料制作方桌,请你设计一下,用多少木料制作桌面,用多少木料制作桌腿,恰好配成方桌多少张?题型05一元一次方程的应用--工程问题例题:(2023秋·黑龙江哈尔滨·八年级哈尔滨市第四十七中学校考阶段练习)修一条公路,甲工程队单独承包要40天完成,乙工程队单独承包要60天完成.(1)现在由两个工程队合作承包,几天可以完成?(2)如果甲、乙两工程队合作12天后,因甲工程队另有任务,剩下的工作由乙工程队完成,则修好这条路共需要几天?【变式训练】1.(2022秋·安徽淮北·七年级统考期末)柳孜隋唐大运河遗址是我市的一张文化名片,为打造古运河风光带,现有一段长为280米的河道整治任务由A、B两个工程队先后接力完成.A工程队每天整治12米,B工程队每天整治10米,两个工程队共用时25天.求A工程队整治河道多少米?2.(2023秋·全国·七年级课堂例题)某童装工厂甲组的3名工人1天完成的总工作量比日人均定额的3倍多60件,乙组的4名工人1天完成的总工作量比日人均定额的5倍少20件.(1)如果两组工人实际完成的日人均工作量相同,那么日人均定额是多少件?(2)如果甲组工人实际完成的日人均工作量比乙组多10件,那么日人均定额是多少件?(3)如果乙组工人实际完成的日人均工作量比甲组多10件,那么日人均定额是多少件?题型06一元一次方程的应用--行程问题-,点B表示的有理数为6.点例题:(2023秋·湖北·七年级校考周测)如图,在数轴上点A表示的有理数为6→→运动,同时,点Q从点B出发以每秒1个单位长度P从点A出发以每秒2个单位长度的速度由A B A→运动,当点Q到达点A时,P Q两点停止运动,设运动时间为t(单位:秒).的速度由B A(1)求点P与点Q第一次重合时的t=________(2)当t=________,点P表示的有理数与点Q表示的有理数距离是3个单位长度.【变式训练】(1)A B、两点间的距离是___________;(2)现在有一只电子蚂蚁P从点B出发时,题型07一元一次方程的应用--电费和水费问题例题:(2023秋·安徽六安·七年级阶段练习)电信公司推出两种移动电话计费方法:方法A:免收月租费,按每分钟0.5元收通话费;方法B:每月收取月租费30元,再按每分钟0.2元收通话费.现在设通话时间是x分钟.(1)请分别用含x的代数式表示计费方法A、B的通话费用.(2)用计费方法A的用户一个月累计通话150分钟所需的话费,若改用计费方法B,则可通话多少分钟?(3)当通话多少分钟时,两种计费方法产生的费用相差15元?【变式训练】A.60人B.61人5.(2023秋·黑龙江哈尔滨·七年级校考阶段练习)一个蓄水池装有甲、乙两个进水管和丙一个出水管,单独开放甲管3小时可注满一池水,三、解答题11.(2023春·河北·九年级专题练习)某电视台组织知识竞赛,共设了3位参赛者的得分情况:16.(2023秋·重庆大渡口·八年级校考阶段练习)平价商场经销甲、乙两种商品,甲种商品每件进价(1)填空:=a、b=、c=、d=;(2)若线段AB以3个单位/秒的速度向右匀速运动,同时线段、两点都运动在CD上(不与时间为t秒,A B(3)在(2)的条件下,线段AB,线段CD继续运动,当点=?若存在,求t得值;若不存在,说明理由.3BC AD。
2023学年北师大版七年级数学上册第五章【一元一次方程】应用题训练卷附答案解析
2023学年七年级数学上册第五章【一元一次方程】应用题训练卷一、解答题1.《孙子算经》是中国古代重要的数学著作之一.其中记载的“百鹿入城”问题很有趣.原文如下:今有百鹿入城,家取一鹿不尽,又三家共一鹿适尽,问城中家几何?大意为:现在有100头鹿进城,每家领取一头后还有剩余,剩下的鹿每三家分一头,则恰好取完.问城中共有多少户人家?2.饺子源于古代的角子,饺子原名“娇耳”,一个饺子皮加馅就可以做一个饺子.中国北方还流行一种面食—合子,含有团团圆圆的美好寓意,在两层饺子皮中间加一层馅,就可以包成一个合子.“元旦”这天,妈妈走进书房对正在学习的小刚说;“妈妈刚才在厨房包饺子,结果面和多了,做了106个饺子皮,最后包的饺子和合子一共是98个.”小刚说:“妈妈,我能用学过的数学知识列一元一次方程,求出妈妈包的饺子和合子分别是多少.”请你写出小刚的解答过程.3.将连续的奇数1,3,5,7,9……排成如下的数表:(1)十字框中的5个数的和与中间的数23有什么关系?若将十字框上下左右平移,可框住另外5个数,这5个数还有这种规律吗?(2)设十字框中中间的数为a,用含a的式子表示十字框中的其他四个数;(3)十字框中的5个数的和能等于2019吗?若能,请写出这5个数;若不能,说明理由.4.中国移动公司现推出两种移动电话计费方式:方式一:免月租费,本地通话费每分钟0.39元;方式二:月租费18元,本地通话费每分钟0.15元.(1)若某用户选择方式一,本地通话时间为120分钟,则他应支付话费多少元?(2)本地通话时间在什么范围时,选择方式二更合算?5.元旦期间,某商场开展优惠促销活动,将甲种商品打六折出售,乙种商品打八折出售,已知甲、乙两种商品的原销售单价之和为1400元,某顾客参加活动购买甲、乙两种商品各一件,共付款1000元.(1)甲、乙两种商品原销售单价各是多少元?(2)商场在这次促销活动中共销售甲种商品800件,乙种商品1500件,共获利99000元,已知在促销活动中,每件甲种商品的利润比每件乙种商品的利润低20元,那么甲、乙两种商品每件的进价分别是多少元?6.“双减”政策实施以后学生有了更多的体验生活、学习其它知识的时间.今年为了丰富学生的课外生活,某学校计划购入A、B两种课外书,其中A种课外书每本20元,B种课外书每本30元,且购买A种课外书的数量比B种课外书的2倍还多10本,总花费为1950元.(1)求购买A、B种课外书的数量;(2)某商店搞促销活动,A种课外书按8折销售,B种课外书按9折销售,则学校此次可以节省多少钱?7.平价商场经销的甲、乙两种商品,甲种商品每件进价70元,售价98元;乙种商品每件进价80元,售价128元.(1)若该商场同时购进甲、乙两种商品共50件,恰好总进价为3800元,求购进甲、乙两种商品各多少件?(2)在“元旦”期间,该商场只对乙种商品进行如下的优惠促销活动:按下表优惠条件,打折前一次性购物总金额优惠措施少于等于480元不优惠超过480元,但不超过680元其中480元不打折,超过480元的部分给予6折优惠超过680元按购物总额给予7.5折优惠若小华一次性购买乙种商品实际付款576元,求小华在该商场购买乙种商品多少件?8.某商场经销的甲、乙两种商品,甲种商品每件售价60元,盈利20元;乙种商品每件进价50元,售价80元.(1)甲种商品每件的进价为_________元.(2)该商场同时购进甲、乙两种商品共50件,若全部销售完获得总利润为1200元,求购进甲种商品多少件?(3)在“元旦”期间,该商场对甲乙两种商品进行如下图优惠促销活动:按原价一次性购物总金额优惠措施少于等于450元不优惠超过450元,但不超过600元按原价的九折超过600元其中600元部分仍按九折优惠,超过600元的部分打八折优惠按上述优惠条件,若小华第一次购买甲商品花了352元,第二次购买乙商品花了682元,请你帮忙计算如果甲、乙两种商品合起来一次性购买,是否更节省?若更节省请算一算节省多少钱?若不节省,请说明理由.9.某社区超市用1131元钱从批发商处购进了甲、乙两种商品共100千克,甲、乙这天每千克的批发价与零售价如下表所示:商品名甲乙批发价(元/千克)10.512零售价(元/千克)1520(1)该社区超市这天批发甲商品和乙商品各多少千克?(2)该社区超市当天卖完这两种商品一共可以获得多少元的利润?(3)如果当天两种商品总数卖去一半后,剩下的按各自的零售价打八折出售,最终当天全部卖完后共获得450元利润,求打折后卖出的甲商品和乙商品各有多少千克?10.某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同类型的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场用9万元同时购进甲、乙两种不同型号的电视机共50台,求应购进甲、乙两种电视机各多少台?(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.试问:同时购进两种不同型号电视机的方案可以有几种(每种方案必须刚好用完9万元)?为使销售时获利最多,应选择哪种进货方案?并说明理由.11.为了鼓励同学们加强体育锻炼,某校准备举行冬季长跑比赛,为奖励长跑优胜者,学校需要购买一些冬奥会吉祥物冰墩墩、雪容融水杯和徽章.了解到某商店水杯的单价比徽章的单价多11元,若买2个水杯和3个徽章共需67元.(1)水杯和徽章的单价各是多少元?(2)该商店推出两种优惠方案,方案一:消费金额超过200元的部分打八折;方案二:全店商品打九折.若学校需要购买10个水杯和30个徽章,选择哪种方案更优惠?12.为庆祝元旦活动,某中学组织大合唱比赛,甲、乙两个班级共92人(其中甲班51人以上,不足55人)准备统一购买服装参加演出,下面是某服装厂给出的演出服装的价格表为:购买服装的套数1套至50套51套至90套91套及以上每套服装的价格50元40元30元(1)甲、乙两个班级共92人合起来统一购买服装共需付款____________元;(2)如果两个班级分别单独购买服装一共应付4080元,甲、乙两个班级各有多少学生准备参加演出?(3)如果甲班有8名同学抽调去参加书法绘画比赛不能参加演出,请你为两个班级设计一种最省钱的购买服装方案.13.我们学校七年级同学参加“研学”活动,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座位车,则多出一辆,且其余客车恰好坐满,已知45座客车租金200元,60座客车租金300元,问:(1)七年级同学多少人?原计划租车45座的客车多少辆?(2)若你是七年级组长,要使每个同学都有座位,应如何租车最划算?花钱多少元?14.冬季到来,为了能让老百姓吃上新鲜的水果,哈达水果市场到合作的苹果生产基地收购苹果,去年在苹果基地收购20吨(1吨1000 千克)苹果,收购价为每千克1.2元,今年收购苹果的数量提高了25%,收购价降低了16.(1)今年苹果生产基地将苹果销售给哈达水果市场,收入比去年提高了多少元?(2)从产地到哈达水果市场的距离是400千米,今年有甲、乙两种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均可以满载,且只能选一种车型)车型甲乙汽车运载量(吨/辆)810汽车运费(元/辆·千米) 2.53选哪种车型来运输水果,才能保证运费较低?(3)在(2)的条件下,今年采用运费较低的运输方式,如果在运输及销售过程中苹果的损耗为10%,今年销售这批苹果要获得2900元的利润,哈达市场苹果的销售价是每千克多少元?15.列方程解应用题:一商场经销A 、B 两种商品,A 种商品每件进价为40元,利润率为50%;B 种商品每件进价为50元,售价为80元.(1)A 种商品每件售价为___________元,每件B 种商品利润率为____________;(2)若该商场同时购进A 、B 两种商品共50件,恰好总进价为2100元,求购进A 种商品多少件?(3)在“春节”期间,该商场只对A 、B 两种商品进行如下的优惠促销活动:打折前一次性购物总金额优惠措施少于等于450元不优惠超过450元,但不超过600元按总售价打九折超过600元其中600元部分八折优惠,超过600元的部分七折优惠按上述优惠措施,小华一次性购买A 、B 两种商品实际付款522元,求若没有优惠促销,则小华在该商场购买同样的商品要付多少元?16.随着互联网的普及和城市交通的多样化,人们的出行方式有了更多的选择.下图是某市两种网约车的收费标准,例:乘车里程为30公里:若选乘出租车,费用为:14 2.2(303)1(3010)93.4+⨯-+⨯-=(元);若选乘曹操出行(快选),费用为:3010 2.4300.8(3010)0.46011640+⨯+⨯-+⨯⨯=(元).请回答以下问题:(1)周末小明有事外出,要选乘网约车,如果乘车费用预算为25元,他的行车里程数最大是多少公里?(2)元旦期间,小明外出游玩,约车时发现曹操出行(快选)有优惠活动;总费用打八折.于是小明决定选乘曹操出行(快选).付费后,细心的小明发现:相同的里程,享受优惠活动后的曹操出行(优先)的费用还比租车多了1.8元,求小明乘车的里程数.17.育才学校组织七、八年级老师到省内参加研讨会,需要租用大巴车接送老师往返学校和参会地,现租赁公司有25座和45座两种型号的大巴车可供选择.(1)已知25座大巴车每辆每天的租金比45座大巴车的租金便宜80元,学校第一天租用2辆45座和5辆25座大巴车,共付租金1140元,则学校租用25座和45座大巴车每辆每天的租金各是多少元?(2)因为第二天学习内容主要针对七年级的老师,所以八年级的老师不用参加,因此要重新确定租车方案.现有如下两种选择:方案一:全部租用25座的大巴车,则有一辆车空出15个座位;方案二:全部租用45座的大巴车,刚好坐满且比只租用25座的大巴车少租3辆.请分别计算出使用两种方案所需要的租金,并说明哪种方案更省钱.18.某校七年级组织各班同学参观科技馆.由各班班长负责买票,每班人数都多于40人,票价每张30元,一班班长问售票员买团体票是否可以优惠,售票员说:40人以上的团体票有两种优惠方案可选择:方案一:全体人员打九折;方案二:先购买一张150元年卡,凭年卡购买团体票每人可享八折优惠.(1)若一班有x (40x >)人,则方案一需付___________元钱,方案二需付___________元钱(用含x 的代数式表示);(2)若二班有45名学生,则二班选择哪个方案更优惠?(3)一班班长思考一会儿说,我们班无论选择哪种方案要付的钱是一样的,你知道一班有多少人吗?TAXI起步费:14元超3公里费:超过的部分2.2元/公里远途费:超过10公里后,1元/公里曹操出行(快选)起步费:10元里程费:2.4元/公里远途费:超过10公里后,0.8元/公里时长费:0.4元/分钟(速度:40公里/时)19.为倡导节约用水,某市采用阶梯价格调控手段达到节水目的,价目标准如下(水费按月缴纳):第一梯度:月用水量不超过12吨的部分,每吨2元.第二梯度:月用水量超过12吨但不超过20吨的部分,每吨3元.第三梯度:月用水量超过20吨的部分,每吨5元.若甲用户月用水量为()20m m>吨,则用含m的式子表示甲用户当月应缴纳的水费为______元.(2)若乙用户6,7两个月共用水42吨(其中6月份用水量超过12吨,7月份用水量超过22吨),一共缴纳的水费为110元,问乙用户6,7月份各用水多少吨?20.甲,乙两地相距162千米,甲地有一辆货车,速度为每小时48千米,乙地有一辆客车,速度为每小时60千米,求:(1)若两车同时相向而行,货车在路上耽误了半小时,多长时间可以相遇?(2)若两车相向而行,同时出发,多长时间两车相距54千米?21.为实施乡村振兴战略,解决某山区老百姓出行难的问题,当地政府决定修建一条高速公路.其中一段长为146米的山体隧道贯穿工程由甲乙两个工程队负责施工.甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米.已知甲工程队每天比乙工程队多掘进2米.(1)求甲工程队每天掘进多少米(2)按此速度完成这项隧道贯穿工程,甲乙两个工程队还需联合工作多少天.22.如图,某链条每节长为2.8cm,每两节链条相连接部分重叠的圆的直径为1cm,按这种连接方式,完成下面各题.(1)2节链条的总长度为______cm;3节链条的总长度为______cm;4节链条的总长度为______cm;(2)根据上述规律,n节链条的总长度为多少cm;(用含n的式子表示,不用说理)(3)一根链条的总长度能否为73cm若能,请求出该链条由几节组成;若不能,请说明理由.23.粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标,某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降40%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆.24.“十一”长假期间,小张和小李决定骑自行车外出旅游,两人相约一早从各自家中出发,已知两家相距10千米,行程中小张必经过小李家.(1)若两人同时出发,小张车速为18千米每小时,小李车速为12千米每小时,经过多少小时两人能相遇?(2)若小李的车速为10千米/时,小张提前20分钟出发,两人商定小李出发后半小时二人相遇,则小张的车速应为多少?参考答案:1解:设城中共有x 户人家,依题意得:x +3x=100,解得:x =75,答:城中有75户人家.2.解:设妈妈包了x 个饺子,则合子为()98x -个根据题意得:()298106x x +-=∴90x =∴9898908x -=-=∴妈妈包的饺子和合子分别是90个和8个.3.解:(1)721232539115235++++==⨯,所以十字框中的5个数的和为中间的数23的5倍,无论十字框如何平移,框住的5个数的和均为中间数的5倍,故这5个数还有这种规律;(2)根据题意可得,另外4个数分别为16a -,2a -,2a +,16a +;(3)不能,理由如下:设中间的数为x ,根据题意,得52019x =,解得20195x =,因为20195不是整数,所以十字框中的5个数的和不能等于2019.4.(1)由题意得,话费为:120×0.39=46.8(元).答:他应支付话费46.8元;(2)设本地通话时间是x 分钟,由题意得,0.39x >18+0.15x ,解得:x >75.答:本地通话时间大于75分钟,选择方式二更合算.5(1)解:设甲种商品原销售单价是x 元,乙种商品原销售单价是()1400x -元,则()0.60.814001000x x +-=解得600x =,∴14001400600800x -=-=,答:甲种商品原销售单价是600元,乙种商品原销售单价是800元;(2)设每件甲种商品的利润为a 元,则每件乙种商品的利润为()20a +元,则()80015002099000a a ++=解得30a =,∴2050a +=,∴甲种商品每件的进价是6000.630330⨯-=元;乙种商品每件的进价是8000.850590⨯-=元;∴甲、乙两种商品每件的进价分别是330元、590元.6.(1)解:设B 种课外书x 本,则A 种课外书()210x +本.()20210301950x x ++=,解得2521060x x =+=,,答:购买A 种课外书60本,B 种课外书25本.(2)896020253016351010⨯⨯+⨯⨯=(元),19501635315-=(元),答:学校此次可以节省315元.7.(1)解:设购进甲种商品x 件,则乙种商品()50x -件,由题意得:()70+80503800x x -=,解得:20x =,则50502030x -=-=(件),答:购进甲种商品20件、购进乙种商品30件;(2)解:设小华在该商场购买乙种商品x 件,∵小华实际付款为576元,576>480,∴小华享受了优惠措施,∵乙种商品的售价为128元,∴小华应付款为128x 元,假如小华享受的是第二种优惠措施,由题意得:()480+1284800.6576x -⨯=解得:5x =,∴小华应付款为1285640⨯=(元),符合第二种优惠条件;假如小华享受的是第三优惠措施,由题意得:1280.75576x ⨯=,解得:6x =,∴小华应付款为1286768⨯=(元),符合第三种优惠条件;答:小华在商场购买乙种商品5件或6件.8.(1)解:甲种商品每件的进价为:602040-=(元),故答案为:40.(2)解:设购进甲种商品x 件,则购进乙种商品()50x -件,根据题意得:()()208050501200x x +--=,解得:30x =,503020-=(件),答:购进甲种商品30件,则购进乙种商品20件.(3)解:小华第一次购买甲商品花了352元,45090%405⨯=,∵352405<,∴第一次购买的甲商品没有优惠,价格为352元,∵小华第二次购买乙商品花了682元,且682600>,∴第二次购买乙商品的价格一定超过了600元,设第二次购买乙商品的价格为y 元,根据题意得:()6009060080682%%y ⨯+-⨯=,解得:777.5y =,两种商品的总价格为352777511295..+=(元),甲、乙两种商品合起来一次性购买花费为:()600903527775600809636%.%.⨯++-⨯=(元),∵112959636..<,∴甲、乙两种商品合起来一次性购买更节省,1129596361659...-=(元),答:甲、乙两种商品合起来一次性购买更节省,能够节省165.9元.9.(1)解:设批发甲商品x 千克,由题意可得:()10.5121001131x x +-=,解得:46x =,∴1004654-=,∴批发甲商品46千克,乙商品54千克;(2)()()1510.546201254639-⨯+-⨯=元,∴一共可以获得639元的利润;(3)100250÷=(千克),设打折后卖出的甲商品m 千克,则乙商品()50m -千克,由题意可得:()()()()()()()1510.54620125450150.810.5200.81250450m m m m --+---+⨯-+⨯--=⎡⎤⎣⎦,解得:11m =,∴501139-=(千克).∴打折后卖出的甲商品11千克,乙商品39千克.10.(1)设购甲种电视机x 台,乙种电视机()50x -台.列方程得,()150021005090000x x +-=,解得25x =,50502525x -=-=,∴购甲种电视机25台,乙种电视机25台;(2)分三种情况计算:①只购买甲、乙两种电视机,根据(1)可知,购甲种电视机25台,乙种电视机25台;②设购甲种电视机y 台,丙种电视机()50y -台.则()150025005090000y y +-=,解得:35y =,50503515y -=-=∴购甲种电视机35台,丙种电视机15台;③设购乙种电视机z 台,丙种电视机()50z -台.则()210025005090000z z +-=解得:87.5z =,5087.537.5<0-=-(不合题意,舍去);即进货方案有两种,方案一:购甲种电视机25台,乙种电视机25台;方案二:购甲种电视机35台,丙种电视机15台;方案一:25150252008750⨯+⨯=.方案二:35150152509000⨯+⨯=元.∵8750<9000,∴购买甲种电视机35台,丙种电视机15台获利最多.11.(1)解:(1)设水杯的单价是x 元,则徽章的单价是()11x -元,根据题意,得:()231167x x +-=,解得20x =,徽章:1120119x -=-=.答:水杯的单价是20元,徽章的单价是9元;(2)方案一:1020930470⨯+⨯=(元),()4702000.8216-⨯=(元),200216416+=(元),方案二:()10209300.9423⨯+⨯⨯=(元),∵416423<,∴选择方案一更优惠.12.(1)解:30922760⨯=(元),∴甲、乙两个班级合起来统一购买服装共需付款2760元.故答案为:2760.(2)解:设甲班有x 名学生准备参加演出,∵甲、乙两个班级共92人,其中甲班51人以上,不足55人,∴乙班少于50人,根据题意得()4050924080x x +-=,解得52x =,∴925240-=(名).答:甲、乙两个班级分别有52名学生和40名学生准备参加演出.(3)解: 两班联合购买91套服装的费用:91302730⨯=(元)两班联合购买84套服装的费用:()928403360-⨯=(元)甲、乙单独购买的总费用:405044504200⨯+⨯=(元)∵2730元<3360元<4200元,∴甲、乙两班联合购买91套演出服装比最省钱.13.(1)解:设原计划租用45座客车x 辆,依题意得:()4515601x x +=-,解得:5x =,则学生人数为:45515240⨯+=(人),答:七年级同学240人,原计划租车45座的客车5辆;(2)由(1)可知:只租45座的客车需6辆,费用为:62001200⨯=;只租60座的客车需4辆,费用为:43001200⨯=;租45座的客车4辆,60座的客车1辆,费用为:420013001100⨯+⨯=;1100<1200,答:应租45座的客车4辆、60座的客车1辆最划算,费用为1100元.14.(1)解:20吨20000=千克,去年的收入为20000 1.224000⨯=元,今年的收入为()120000125% 1.21250006⎛⎫⨯+⨯⨯-= ⎪⎝⎭元,则今年收入比去年提高了25000240001000-=元.(2)解:今年收购苹果量为()20125%25⨯+=吨,125838÷=,1251022÷=,若选甲车型,则需要4辆,费用为4400 2.54000⨯⨯=元;若选乙车型,则需要3辆,费用为340033600⨯⨯=元36004000< ∴选乙车运费较低.(3)解:设哈达市场苹果的销售价是每千克x 元,()25000110%2900360025000x ⨯-=++解得 1.4x =答:哈达市场苹果的销售价是每千克1.4元.15(1)解:由题意可得,A 种商品每件售价为:40(150%)60⨯+=,B 种商品利润率为:8050100%60%50-⨯=,故答案为:60,60%;(2)解:设购进A 种商品x 件,则购进B 种商品()50x -件,根据题意,得4050(50)2100x x +-=解得40x =,答:购进A 种商品40件;(3)解:设费用为y 元,∵522450>,∴小华在该商场购买的商品一定打折,①打折前购物金额超过450元,但不超过600元时,根据题意,得0.9522y =,解得580y =;②打折前购物金额超过600元时,根据题意,得(6000.80.)7600522y ⨯+-=,解得660y =,综上,若没有优惠促销,则小华在该商场购买同样的商品要付580元或660元.16.(1)解:10公里出租车收费:()14 2.21031415.429.4+⨯-=+=(元),10公里曹操出行收费:1010 2.4100.460102464040+⨯+⨯⨯=++=(元),设他的行车里程数为x 公里,∵2529.4<,2540<,∴10x <.出租车:()14 2.2325x +⨯-=,解得:8x =.曹操出行:10 2.40.4602540x x ++⨯⨯=,解得:5x =.∵85>,∴小明行车路程数最大是8公里.(2)设小明乘车的里程数为y 公里.①3y ≤时,10 2.40.4600.814 1.840y y ⎡⎤++⨯⨯⨯-=⎢⎥⎣⎦,解得: 3.253y =>(舍去).②310y <≤时,[]10 2.40.4600.814 2.2(3) 1.840y y y ⎡⎤++⨯⨯⨯-+⨯-=⎢⎥⎣⎦,解得:6y =.③10y >时,()()()10 2.40.8100.4600.814 2.2310 1.840yy y y y ⎡⎤⎡⎤++⨯-+⨯⨯⨯-+⨯-+-=⎣⎦⎢⎥⎣⎦,解得:15y =.综上所述,小明乘车里程数为6公里或15公里.17.(1)解:设25座的客车每辆每天的租金为x 元,则45座的客车每辆每天的租金为()80x +元,则:()28051140x x ++=,解得:140x =,80220x ∴+=,答:25座的客车每辆每天的租金为140元,45座的客车每辆每天的租金为220元;(2)解:设这个学校七年级老师共有y 名,则1532545y y+=+,解得:135y =,租45座客车数量:方案一的费用:()1351525140840+÷⨯=(元),方案二的费用:135********÷⨯=(元),840660> ,答:方案二更省钱.18.(1)解:由题意得:方案一需付9302710x x ⨯=元;方案二需付()8150302415010x x +⨯=+元,故答案为:27x ,()24150x +;(2)解:方案一需付27451215⨯=元;方案二需付150********+⨯=元,∵12151230<,∴二班选择方案一更优惠;(3)解:由题意得,2415027x x +=,解得50x =,∴一班有50人,答:一班有50人.19.(1)若甲用户月用水量为()20m m >吨,则用含m 的式子表示甲用户当月应缴纳的水费为()()()12220123205552m m ⨯+-⨯+-⨯=-元,故答案为:552m -;(2)解:设乙用户6月份用水x 吨,则7月份用水()42x -吨,依题意,6月用水量符合第二梯度,7月份用水量符合第三梯度,()()12212354252110x x ⨯+-⨯+--=解得18x =,421824-=(吨).答:乙用户6月份用水18吨,7月份用水24吨.20.(1)解:设经过x 小时可以相遇,()480.560162x x ⨯-+=,解得:3118x =,答:经过3118小时可以相遇.(2)解:设经过y 小时两车相距54千米,486016254y y ⨯+=-,解得:1y =,答:经过1小时两车相距54千米.21.(1)解:设甲工程队每天掘进x 米,则乙工程队每天掘进()2x -米,由题意得,()2++2=26x x x -,解得=7x ,所以甲工程队每天掘进7米.(2)解:146261075-=+(天);∴甲乙两个工程队还需联合工作10天.22.(1)解:由题意得:1节链条的长度 2.8cm =,2节链条的总长度[2.8(2.81)] 4.6cm =+-=,3节链条的总长度[2.8(2.81)2] 6.4cm =⨯=+-,4节链条的总长度[2.8(2.81)3]8.2cm =⨯=+-,故答案为:4.6;6.4;8.2;(2)根据(1)可得,n 节链条的总长度为()()()2.8 2.811 1.81cm n n +--=+;(3)一根链条的总长度可以为73cm ,设该链条由x 节组成,根据题意得1.8173x +=,解得40x =,∴总长度为73cm 的链条由40节组成.23.(1)50(150%)25⨯-=(万元).故明年每辆无人驾驶出租车的预计改装费用是25万元;(2)设明年改装的无人驾驶出租车是x 辆,则今年改装的无人驾驶出租车是(260)x -辆,依题意有50(260)259000x x -+=,解得160x =.故明年改装的无人驾驶出租车是160辆.24.(1)设经过t 小时两人能相遇,由题意可得:181210t t -=,解得:53t =.所以两人经过53小时两人能相遇;(2)设小张的车速为x 千米/小时,则相遇时小张所走的路程为(11)23x x +千米,小李走的路程为:11052⨯=(千米),∴1151023x x +=+,解得18x =.答:小张的车速为每小时18千米.。
北师大版七上第五章一元一次方程 之应用:工程类类专项训练(含解析答案)
一元一次方程之应用:工程类类专项训练1.为庆祝建国七十周年,南岗区准备对某道路工程进行改造,若请甲工程队单独做此工程需4个月完成,若请乙工程队单独做此工程需6个月完成,若甲、乙两队合作2个月后,甲工程队到期撤离,则乙工程队再单独需几个月能完成?2.由于地铁施工,需要拆除我校图书馆,七年级同学主动承担图书馆整理图书的任务,如果由一个人单独做要用30小时完成,现先安排一部分人用1小时整理,随后又增加6人和他们一起又做了2小时,恰好完成整理工作,假设每个人的工作效率相同,那么先按排整理的人员有多少?3.一项工程,甲工程队单独做要10天完成,乙工程队单独做要15天完成,甲乙两工程队先合作若干天后,再由乙工程队单独做了5天,此时还有三分之一的工程没有完成,求甲乙两工程队先合作了几天?4.某公司有甲、乙两个装修队,共同承担生产一种零件的任务,甲、乙两队共60人,甲队平均每人每天生产零件25个,乙队平均每人每天生产零件15个,甲队每天生产总数与乙队每天生产总数之和为1100(1)求甲、乙两队各多少人?(2)公司改进技术,在甲、乙两队总人数不变的情況下,从乙队调出一部分人到甲队,调整后甲队平均每人每天生产30个零件,乙队平均每人每天生产20个零件,若甲队每天生产零件总数与乙车间每天生产零件总数之和为1450个,求从乙队调出多少人到甲队?5.要铺设一条长650米的地下管道,由甲乙两个工程队从两端相向施工,甲队每天铺设48米,乙队比甲队每天多铺设22米,如果乙队比甲队晚开工1天,那么乙队开工多少天,两队能完成整个铺设的80%?(必须列一元一次方程)6.某厂接到长沙市一所中学的冬季校服订做任务,计划用A、B两台大型设备进行加工.如果单独用A型设备需要90天做完,如果单独用B型设各需要60天做完,为了同学们能及时领到冬季校服,工厂决定由两台设备同时赶制.(1)两台设备同时加工,共需多少天才能完成?(2)若两台设备同时加工30天后,B型设备出了故障,暂时不能工作,此时离发冬季校服时间还有13天.如果由A型设备单独完成剩下的任务,会不会影响学校发校服的时间?请通过计算说明理由.7.甲乙丙三人合做一批零件,完工时甲做的零件数是乙丙两人所做零件总数的,乙做了这批零件的多100个,乙和丙所做零件个数的比是5:4.这批零件共有多少个?8.某林场有一批造林任务,原计划由30人在一定时间内完成,实际造林时更换了劳动工具,使每个人的劳动效率都提高了1倍.现只派20人去工作,结果还提前2天完成任务,原计划多少天完成任务?9.一项工程,甲单独做要8天完成,乙单独做要24天完成,两人合做3天后,剩下的部分由乙单独做,还需要几天完成.10.一项筑路工程,甲队单独完成需要80天,乙队单独完成需要120天.(1)求甲,乙两队每天的工作量之比;(2)若甲队每天比乙队多筑路50米,求这项工程共需筑路多少米?(3)在(2)的条件下,甲,乙两队合作12天;12天后,乙队引进先进设备提高了筑路速度,甲队因部分工人另有任务,筑路速度为原来的,当两队合作完成此项工程的时,甲队比乙队少筑路,求提速后的乙队每天比甲队原来每天多筑路百分之几?11.为实施乡村振兴战略,解决某山区老百姓出行难的问题,当地政府决定修建一条高速公路.其中一段长为146米的山体隧道贯穿工程由甲乙两个工程队负责施工.甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米.已知甲工程队每天比乙工程队多掘进2米,按此速度完成这项隧道贯穿工程,甲乙两个工程队还需联合工作多少天?12.一项工程,甲单独完成要9天,乙单独完成要12天,丙单独完成要15天.若甲、丙先做3天后,甲因故离开,由乙接替甲的工作,问:还要多少天能完成这项工程的?13.某中学库存若干套桌凳,准备修理后支援贫困山区学校,现有甲、乙两木工组,甲每天修桌凳16套,乙每天修桌凳比甲多8套,甲单独修完这些桌凳比乙单独修完多用20天,学校每天付甲组80元修理费,付乙组120元修理费.(1)问该中学库存多少套桌凳?(2)在修理过程中,学校要派一名工人进行质量监督,学校负担他每天10元生活补助费,现有三种修理方案:①由甲单独修理;②由乙单独修理;③甲、乙合作同时修理.你认为哪种方案省时又省钱,为什么?14.甲组的4名工人3月份完成的总工作量比此月人均定额的4倍多20件,乙组的5名工人3月份完成的总工作量比此月人均定额的6倍少20件.(1)如果两组工人实际完成的此月人均工作量相等,那么此月人均定额是多少件?(2)如果甲组工人实际完成的此月人均工作量比乙组的多2件,则此月人均定额是多少件?(3)如果甲组工人实际完成的此月人均工作量比乙组的少2件,则此月人均定额是多少件?15.整理一批图书,如果由一个人单独做要花60小时.现先由一部分人用一小时整理,随后增加15人和他们一起又做了两小时,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少人?参考答案1.解:设乙工程队再单独需x个月能完成,由题意,得2×++x=1.解得x=1.答:乙工程队再单独需1个月能完成.2.解:设先安排整理的人员有x人,根据题意得: x+×2(x+6)=1,解得:x=6.答:先安排整理的人员有6人.3.解:设甲乙两工程队先合作了x天,由题意,得+=1﹣.解得x=2.答:甲乙两工程队先合作了2天.4.解:(1)设甲队有x人,则乙队有(60﹣x)人,25x+15(60﹣x)=1100,解得,x=20,∴60﹣x=40,答:甲队有20人,乙队有40人;(2)设从乙队调出a人到甲队,30(20+a)+20(40﹣a)=1450,解得,a=5,答:从乙队调5人到甲队.5.解:设乙队开工x天两队能完成整个铺设任务的80%,由题意得,甲队每天铺设48米,乙队每天铺设70米,则48(x+1)+70x=650×80%,解得:x=4.答:乙队开工4天两队能完成整个铺设任务的80%.6.解:(1)设共需x天才能完成,根据题意得:(+)x=1,解得x=36,答:两台设备同时加工,共需36天才能完成;(2)由A型设备单独完成剩下的任务需要y天才能完成,依题意得:(+)×30+=1,解得y=15>13答:会影响学校发校服的时间.7.解:∵乙和丙所做零件个数的比是5:4,∴设乙做了5x个,丙做了4x个,甲做了(5x+4x)=x个,由题意得:(5x+4x+)+100=5x,∴×x+100=5x,∴x=128,∴这批零件共有:128×5+128×4+×128=1440(个),答:这批零件共有1440个.8.解:设原计划x天完成任务,则实际(x﹣2)天完成任务,依题意,得:30x=20×2(x﹣2),解得:x=8.答:原计划8天完成任务9.解:设还需要x天完成,由题意得3×(+)+=1,解得x=12.答:还需要12天完成.10.解:(1)甲,乙两队的筑路时间之比为80:120=2:3.所以甲,乙两队每天筑路工作量之比3:2;(2)设乙队每天修x米路,则甲每天修(x+50)米路,依题意得:80(x+50)=120x解得:x=100.故120x=12 000(米).这项工程共需筑路12 000米;(3)由(2)知,甲队每天筑路150米,乙队每天筑路100米.两队合作完成此项工作的时,乙队完成(12000×)÷(1+1﹣)=3600(米)两队合作完成此项工作的时,甲队完成12000×﹣3600=2400(米)甲队部分工人完成另外任务到两队合作完成此项工作的一半甲队筑路(2400﹣12×150)÷(150×)=10(天)乙队提速后每天筑路(3600﹣12×100)÷10=240(米)提速后的乙队每天比甲队原来每天多筑路(240﹣150)÷150=60%.提速后的乙队每天比甲队原来每天多筑路60%.11.解:设甲工程队每天掘进x米,则乙工程队每天掘进(x﹣2)米,由题意,得2x+(x+x﹣2)=26,解得x=7,所以乙工程队每天掘进5米,(天)答:甲乙两个工程队还需联合工作10天.12.解:设还需x天完成这项工程的,根据题意得:,解得:x=2答:还需2天能完成这项工程的.13.解:(1)设该中学库存x套桌凳,甲需要天,乙需要天,由题意得:﹣=20,解方程得:x=960.经检验x=960是所列方程的解,答:该中学库存960套桌凳;(2)设①②③三种修理方案的费用分别为y1、y2、y3元,则y1=(80+10)×=5400y2=(120+10)×=5200y3=(80+120+10)×=5040综上可知,选择方案③更省时省钱.14.解:设此月人均定额为x件,则甲组的总工作量为(4x+20)件,人均为件;乙组的5名工人3月份完成的总工作量比此月人均定额的6倍少20件,乙组的总工作量为(6x﹣20)件,乙组人均为件.(1)∵两组人均工作量相等,∴=,解得:x=45.所以,此月人均定额是45件;(2)∵甲组的人均工作量比乙组多2件,∴,解得:x=35,所以,此月人均定额是35件;(3)∵甲组的人均工作量比乙组少2件,∴=﹣2,解得:x=55,所以,此月人均定额是55件.15.解:设先安排整理的人员有x人,依题意得:.解得:x=10.答:先安排整理的人员有10人.。
北师版数学七年级上册一元一次方程经典例题
一元一次方程教学重点:1、一元一次方程和方程的解的概念;2、理解和应用等式的性质;3、找相等关系列一元一次方程,用合并、移项解一元一次方程;4、去括号法则在解方程中的熟练应用;5、利用“去分母”将方程作变形处理;6、建立方程解决实际问题,会解 “ax +b=c ”类型的一元一次方程。
7、将实际问题抽象为方程,列方程解应用题。
精例精析例1、判断下列各式中,哪些是方程?哪些是一元一次方程?(1)1+2=3 ; (2)1113=-x ; (3) 1522+-x x =0;(4) πR 2; (5)0=x ; (6)623=-y x例2、已知2(3)(3)70k x k x -+-+=是关于x 的一元一次方程,求k 的值.【小结】:正确识别一元一次方程应注意以下几点:(1)只含有一个未知数:(2)未知数的次数是1(若次数不是1的项,其系数必须为0);(3)未知数的系数不为0.例3、解下列一元一次方程:(1)4129x x +=+ (2)8143y y -=+【小结】:(1)合并同类项:合并是指根据分配律,把含x 的几项合并成一个式子.如:24(124)x x x x x +-=+-=- (2)移项:方程中的任何一项,都可以在改变符号后,从方程的一边移到另一边,这类变形叫做移项,这个法则叫做移项法则,利用移项求出方程解的方法叫做移项法.移项的根据是等式的性质.例4、解方程(1) 3(2)1(21)x x x -+=--; (2) 23[4(12)5]10y y y ----=.【小结】:去括号法则:括号外的因数是正数时,去括号后各项的符号与原括号内相应各项的符号相同;括号外的因数是负数时,去括号后各项的符号与原括号内相应各项的符号相反;有多重括号时,要按照由内到外(或由外到内)的顺序依次去括号.例5、解方程(1)1524213-+=-x x ; (2)6.15.032.04=--+x x【小结】:去分母的方法:对于含有分数系数的方程,可以运用等式的性质2,在方程的两边同乘以所有分母的最小公倍数,将方程化为整系数的方程.这种化简的方法叫做去分母.例6、解方程(1)53221--=--x x x ; (2)2.125.125.01=--x x【小结】:(1)在解方程时,应注意观察方程的特点,根据方程的特点,灵活把握求解的方法步骤;(2)求解过程中的步骤并不是固定不变的;(3)通过解方程体验转化思想.例7、学校新进一批教学设备,共由若干个小箱组成,让七(1)班的学生去运,若每人8箱,还余36箱;若每人10箱,还缺少44箱. 问这批设备共有多少箱?这个班有多少人?【小结】:列一元一次方程解实际问题找等量关系是关键,注意抓住基本等量关系:表示同一个量的两个不同的式子相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
列一元一次方程解应用题的类型及练习
一、数字问题。
要正确区分“数”与“数字”两个概念,这类问题通常采用间接设法,常见的解题思路分析是抓住数字间或新数、原数之间的关系寻找等量关系。
列方程的前提还必须正确地表示多位数的代数式,abc=___________。
1、一个两位数十位上的数字与个位上的数字之和是6,把这个两位数加上18后,正好等于这个两位数的十位数字与个位数字对调后的两位数,请问这个两位数是多少?
2、、有一个三位数,其各位数字之和为16.,十位数字是个位数字与百位数字的和,若把百位与个位数字对调,那么新数比原数大594,求原数。
二、日历中的方程(掌握日历或卡片中的规律)
日历中的规律:横行相邻两数相差____竖行相邻两数相差___。
1、礼堂第一排有a个座位,后面每一排比前一排多一个座位,则第n排的座位是()
A n+1
B a+(n+1)
C a+n
D a+(n-1)
2、如果今天是星期三,那么一年(365天)以后的今天是星期___________
3、若今天是星期一,问过2010年后是星期____________.
4、将1~7七个自然数分别填入下图锥中的各圆圈内,使三条线段上的三数之和、两圆周上的三数之和都等于12(如图)
5、在日历表中,用一个正方形任意圈出2x2个数,则它们的和一定能被___________整除。
A 3
B 4
C 5
D 6
6、如果某一年的5月份中,有5个星期五,且它们的日期之和为80,那么这个月的4号是星期几?
7、表2是从表1中截取的一部分,则a=_______
(第四题)
8、将连续的自然数1~1001按如图的方式排列成一个长方形阵列
1 2 3 4 5 6 7 (1)用一个矩形任意圈出3行2列6个数,8 9 10 11 12 13 14 如果圈出的6个数之和为57,这6个15 16 17 18 19 20 21 数分别是多少?
22 23 24 25 26 27 28 (2)用一个正方形框出16个数,要使
…………这16个数之和分别等于○11988;○22080
995 996 997 998 999 1000 1001
三、等积变形问题。
此类问题的关键在“等积”上,是等量关系的所在,必须掌握常见几何图形的面积、体积公式。
“等积变形”是以形状改变而体积不变为前提。
常用等量关系为: ①形状面积变了,周长没变;②原料体积=成品体积。
1、一块正方形铁皮,四角截去4个一样的小正方形,折成底面边长是50cm 的
无盖长方体盒子,容积是450003cm .求原来正方形铁皮的边长。
2、用直径为4cm 的圆钢,锻造一个重0.62kg 的零件毛坯,如果这种钢每立方厘米重7.8g ,
应截圆钢多长?
3、把直径6cm ,长16cm 的圆钢锻造成半径为4cm 的圆钢。
求锻造后的圆钢的
长。
4、用长7.2m 的木料做成如图所示的“日”字形窗框,窗的高比宽多0.6m
(不考虑木料加工时损耗)
5、鱼儿离不开水,用一个底面半径为20厘米,高为45厘米的圆柱形的塑料桶
给一个长方形的玻璃养鱼缸倒水,养鱼缸的长为120厘米、宽为40厘米、高为1米,将满满一桶水倒下去,鱼缸里的水会升高多少?
6、直径为30厘米,高为50厘米的圆柱形瓶里存满了饮料,现把饮料倒入底面直径为10厘米的圆柱形小杯中,刚好倒满20杯,求小杯子的高。
四、利润率问题。
其数量关系是:利润=售价-进价,利润率 = 利润成本
×100%,售价=标价×折扣率,注意打几折销售就是按原价的十分之几出售。
1、丽丽的妈妈到百盛商场给她买一件漂亮毛衣,售货员说:“这毛衣前两天打八折,今天又在八折的基础上降价10%,只卖144元,丽丽很快算出了这件毛衣的原标价,你知道是多少元吗?
2、一种商品,甲提出按原价降低10元后卖掉,用售价的10%作积累;乙提出将原价降低20元卖掉,用售价的20%仍做积累,经测算两种积累一样多.则这种商品的原价是多少?
3、某种商品因换季准备打折出售,如果按定价的七五折出售,将赔25元,而按定价的九折出售,将赚20元,这种商品的定价为多少元?
4、某商品的进价是2000元,标价为3000元,商店要求以利润率不低于5%的售价打折出售,售货员最低可以打几折出售此商品?
5、某服装商店以135元的价格售出两件衣服,按成本计算,第一件盈利25 %,第二件亏损25 %,则该商店卖这两件衣服总体上是赚了,还是亏了?这二件衣
服的成本价会一样吗?算一算
五、调配问题。
从调配后的数量关系中找等量关系,常见是“和、差、倍、分”关系,要注意调配对象流动的方向和数量。
这类问题要搞清人数的变化。
1、某厂一车间有64人,二车间有56人。
现因工作需要,要求第一车间人数是第
二车间人数的一半。
问需从第一车间调多少人到第二车间?
2、甲乙两车间各有工人若干,如果从乙车间调100人到甲车间,那么甲车间的人数是乙车间剩余人数的6倍;如果从甲车间调100人到乙车间,这时两车间的人数相等,求原来甲乙车间的人数。
3、在甲处劳动的有27人,在乙处劳动的有19人.现在另调20人去支援,使在
甲处的人数为在乙处的人数的2倍,应调往甲、乙两处各多少人?
4、学校分配学生住宿,如果每室住8人,还少12个床位,如果每室住9人,则空出两个房间。
求房间的个数和学生的人数。
5 某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少工人生产螺母?
6、某厂生产一批西装,每2米布可以裁上衣3件,或裁裤子4条,现有花呢240米,为了使上衣和裤子配套,裁上衣和裤子应该各用花呢多少米?
六、行程问题。
(行程问题可以采用画示意图的辅助手段来帮助理解题意,并注意两者运动时出发的时间和地点)
要掌握行程中的基本关系:路程=速度×时间。
相遇问题(相向而行),这类问题的相等关系是:甲走的路程+乙走的路程=全路程
追及问题(同向而行),这类问题的等量关系是:
①同时不同地:甲的时间=乙的时间甲走的路程-乙走的路程=原来甲、乙相距的路程
②同地不同时;甲的时间=乙的时间-时间差甲的路程=乙的路程
环形跑道上的相遇和追及问题:同地反向而行的等量关系是两人走的路程和=一圈的路程;同地同向而行的等量关系是两人所走的路程差=一圈的路程。
船(飞机)航行问题:顺水(风)速度=静水(无风)中速度+水(风)流速度;逆
水(风)速度=静水(无风)中速度-水(风)流速度。
车上(离)桥问题:
①车上桥指车头接触桥到车尾接触桥的一段过程,所走路程为一个车长。
②车离桥指车头离开桥到车尾离开桥的一段路程。
所走的路程为一个成长
③车过桥指车头接触桥到车尾离开桥的一段路程,所走路成为一个车长+桥长
④车在桥上指车尾接触桥到车头离开桥的一段路程,所行路成为桥长-车长
1、A、B两地相距150千米。
一辆汽车以每小时50千米的速度从A地出发,另一辆汽车以每小时40千米的速度从B地出发,两车同时出发,相向而行,问经过几小时,两车相距30千米?
2、甲、乙两人练习100米赛跑,甲每秒跑7米,乙每秒跑6.5米,如果甲让乙先跑1秒,那么甲经过几秒可以追上乙?
3、一架飞机飞行在两个城市之间,顺风要2小时45分,逆风要3小时,已知风速是20千米/小时,则两城市间的距离为多少?
4、一列火车以每分钟1千米的速度通过一座长400米的桥,用了半分钟,则火车本身的长度为多少米?
5、火车用26秒的时间通过一个长256米的隧道(即从车头进入入口到车尾离开出口),这列火车又以16秒的时间通过了长96米的隧道,求列车的长度。
七、银行储蓄问题。
注意利率有日利率、月利率和年利率,年利率=月利率×12=日利率×365。
本息和=本金+_____=本金+_____×_____×_____=(1+_____×_____)×本金(不考虑利息税)
本息和=本金+_____=本金+_____×_____×_____×(1-_____)(考虑利息税)
1、张先生于1998年7月8日买入1998年中国工商银行发行的5年期国库券20000元,若在2003年7月8日可获得利息数为2790元,则这种国库券的年利率是多少?
2、小明的爸爸前年存了年利率为2.25%的二年期定期储蓄,今年到期后,扣除利息税,所得利息正好为小明买以一只价值576元的CD机,问小明爸爸前年存了多少钱?
3、教育储蓄年利率为1.98%,免征利息税,某企业发行的债券月利率为2.15‟,但要征收20%的利息税,为获取更大回报,投资者应悬着哪一种储蓄呢?某人存入28000元,一年到期后可以多收益多少元?
4、肖青的妈妈前年买了某公司的二年期债券4500元,今年到期,扣除利息税后,共得本利和约4700元,问这种债券的年利率是多少?(精确到0.01%)
5、某人将20000元钱分成两部分,按两种不同方式存入银行,其中10000元按活期方式存一年,另10000元按定期存一年,一年后共取回21044元,又已知定
期一年存款约利率为0.63%,求活期存款月利率是多少?。