七年级数学二元一次方程组应用题及答案(汇编)

合集下载

初中数学:二元一次方程组应用题专题训练附详解(精)

初中数学:二元一次方程组应用题专题训练附详解(精)
(2)设甲施工队单独完成工程需要a天,乙施工队单独完成工程需要b天,根据题意列方程组求出两施工队单独完成工程的天数,根据总费用=每天需支付的费用×工作时间,可分别求出单独请甲施工队和单独请乙施工队施工所需费用,分单独请甲施工队施工、单独请乙施工队施工和请甲、乙两施工队合做施工三种情况考虑,分别求出三种情况下损失的钱数,比较后即可得出结论.
(1)求该轮船在静水中的速度和水流速度;
(2)若在甲、乙两地之间的丙地新建一个码头,使该轮船从甲地到丙地和从乙地到丙地所用的航行时间相同,问甲、丙两地相距多少千米?
7.永辉超市计划购进甲、乙两种体育器材,若购进甲器材3件,乙器材6件,需要480元,购进甲器材2件,乙器材3件,需要280元,销售每件甲器材的利润率为37.5%,销售每件乙器材的利润率为30%.
3.(1)甲施工队工作一天饭店应付400元,乙施工队工作一天饭店应付250元.
(2)安排甲、乙两个装修施工队同时施工更有利于饭店
【分析】
(1)设甲施工队工作一天饭店应付x元,乙施工队工作一天饭店应付y元,根据“若先请甲施工队单独做3天、再请乙施工队单独做24天,可完成施工,风味美饭店老板应付两队工钱共7200元.若先请甲施工队单独做9天、再请乙施工队单独做16天,可完成施工,风味美饭店老板应付两队工钱共7600元”,即可得出关于x,y的二元一次方程施工队,解之即可得出结论;
品种
高档
中档
低档
价格/元
20
15
10
9.甲、乙两公司全体员工踊跃参与“携手防疫,共渡难关”捐款活动,甲公司人均捐款120元,乙公司人均捐款100元.如图是甲、乙两公司员工的一段对话.
(1)甲、乙两公司各有多少人?
(2)现甲、乙两公司共同使用这笔捐款购买 、 两种防疫物资, 种防疫物资每箱1500元, 种防疫物资每箱1200元.若购买 种防疫物资不少于20箱,并恰好将捐款用完,有几种购买方案?请设计出来(注:A、B两种防疫物资均需购买,并按整箱配送).

初一数学二元一次方程组试题答案及解析

初一数学二元一次方程组试题答案及解析

初一数学二元一次方程组试题答案及解析1.二元一次方程x+y=5有( )个解A.1B.2C.3D.无数【答案】D.【解析】二元一次方程x+y=5的解有无数个.故选D.【考点】解二元一次方程.2.已知关于x,y的方程组,其中-3≤a≤1,给出下列结论:①当a=1时,方程组的解也是方程x+y=4-a的解;②当a=-2时,x、y的值互为相反数;③若x≤1,则1≤y≤4;④是方程组的解,其中正确的是A.①②B.③④C.①②③D.①②③④【答案】C.【解析】解:解方程组,得,∵-3≤a≤1,∴-5≤x≤3,0≤y≤4,①当a=1时,x+y=2+a=3,4-a=3,方程x+y=4-a两边相等,结论正确;②当a=-2时,x=1+2a=-3,y=1-a=3,x,y的值互为相反数,结论正确;③当x≤1时,1+2a≤1,解得a≤0,故当x≤1时,且-3≤a≤1,∴-3≤a≤0∴1≤1-a≤4∴1≤y≤4结论正确,④不符合-5≤x≤3,0≤y≤4,结论错误;【考点】1.二元一次方程组的解;2.解一元一次不等式组.3.若关于x,y的二元一次方程组的解满足x+y <2.(1)求a的取值范围;(2)若a=1,方程组的解是等腰三角形的两条边的长,求此等腰三角形的周长.【答案】(1)a<4;(2)【解析】(1)把a当作常数,把两个方程相加求得x+y的值,代入到x+y <2求得a的取值范围;(2)把a=1代入到方程组中求解x、y的值即可求得周长;试题解析:(1)把方程组①+②得:4(x+y)=4+a,即;又∵x+y <2∴,解得a<4;(2)把a=1代入原方程组得,解得:x=,y=,当x为三角形的腰时,三角形不成立,所以取腰为,则等腰三角形的周长为++=.【考点】1.解二元一次方程组;2.解一元一次不等式;3.三角形的三边关系4.如图,周长为34cm的长方形ABCD被分成7个形状大小完全相同的小长方形,则长方形ABCD的面积为()A.49cm2B.68cm2C.70cm2D.74cm2【答案】C【解析】从图中可找到两个相等关系是“周长为34cm”和“小长方形的5个宽等于2个长”.可以设小长方形的长为ycm,宽为xcm,则有,求得x=2,y=5,即长方形ABCD的面积为7×10=70.【考点】二元一次方程组的应用5.解下列方程组:【答案】【解析】可把第一个方程乘以2,再与第二个方程相加,利用加减消元法消去y,求得,再把x的值代入第一个或第二个方程可求解y=1.试题解析:解:①×2+②得③,把③代入到②中,得y=1,即方程组的解为.【考点】解二元一次方程组6.已知方程组的解是,那么m、n的值为 ( )A.B.C.D.【答案】C【解析】由题意可知把方程组的解代入方程组,解关于m、n的方程组,,解得即为所求.【考点】二元一次方程(组).7.某镇水库的可用水量为12000万m3,假设年降水量不变,能维持该镇16万人20年的用水量.为实施城镇化建设,新迁入了4万人后,水库只能够维持居民15年的用水量.(1)问:年降水量为多少万m3?每人年平均用水量多少m3?(2)政府号召节约用水,希望将水库的使用年限提高到25年.则该镇居民人均每年需节约多少m 3水才能实现目标?【答案】(1) 200万立方米,50立方米; (2) 16立方米.【解析】(1)设年降水量为x 万立方米,每人每年平均用水量为y 立方米,根据储水量+降水量=总用水量建立方程求出其解就可以了;(2)设该城镇居民年平均用水量为z 立方米才能实现目标,同样由储水量+25年降水量=25年20万人的用水量为等量关系建立方程求出其解即可.试题解析:(1)设年降水量为x 万立方米,每人每年平均用水量为y 立方米,由题意,得, 解得:答:年降水量为200万立方米,每人年平均用水量为50立方米.(2)设该城镇居民年平均用水量为z 立方米才能实现目标,由题意,得 12000+25×200=20×25z , 解得:z=34则50-34=16(立方米).答:该城镇居民人均每年需要节约16立方米的水才能实现目标. 【考点】1.二元一次方程组的应用;2.一元一次方程的应用.8. 如下图,在长方形ABCD 中,放入六个形状、大小相同的长方形,所标尺寸如图所示,则图中阴影部分的面积是 .【答案】44cm 2.【解析】设小长方形的长、宽分别为xcm ,ycm , 依题意得,解之得,∴小长方形的长、宽分别为8cm ,2cm ,∴S 阴影部分=S 四边形ABCD ﹣6×S 小长方形=14×10﹣6×2×8=44cm 2. 故答案是44cm 2.【考点】二元一次方程组的应用.9. 解方程组【答案】.【解析】利用加减消元法解题即可. ②×2得:2x+4y=8③, ③-①得:7y=7, ∴y=1,将y=1代入②得:x=2, ∴原方程组的解是:.【考点】解方程组.10. 二元一次方程组的解是 .【答案】.【解析】先用代入法求出x的值,再用代入消元法求出y的值即可:.【考点】解二元一次方程组.11.已知二元一次方程,若用含的代数式表示,则有=__________。

初中数学二元一次方程组经典练习题(含答案)

初中数学二元一次方程组经典练习题(含答案)

初中数学二元一次方程组经典练习题(含答案)解下列二元一次方程组:1. {x +y = 2 3x +7y =10;2.{x +3y = 810x −y =18;3.{3x +2y =1364x −3y =1;4.{ x+52+y−43=2x+20.3−y+70.4= −10 ;5.{ 4x −3y =−1 x 5=y 7 ;6. {3(x +2)=2(y +3)4(x −2)=3(y −3);7.{ x 5+y 7=10 x 3−y 4=3;8.{x 2+y 3=42x +7y =50 ;9.{12(x +3)+13(y −4)=52(x −3)+5(y +4)=70 ;10.{0.2x +0.5y =9x+22+y+105=15 ;11.{4(x −1) +3(y +1) =320%(x +1)+80%(y −1)=−3;12.{x+2y 2 +x−2y 3 = 113(x +2y )−4(x −2y )=30 ;参考答案1. {x +y = 23x +7y =10 ;解: {x +y = 2−−−−−−①3x +7y =10−−−−②①×3,得3x+3y=6-------③②-③,得4y=4,即y=1将y=1代入①,解得x=1故原方程组的解是: {x =1y =12.{x +3y = 810x −y =18; 解:{x +3y = 8−−−−−−−①10x −y =18−−−−−−②②×3,得 30x-3y=54----③①+③,得31x=62,即x=2将x=2代入①,得2+3y=8,y=2故原方程组的解是: {x =2y =23.{3x +2y =1364x −3y =1; 解:{3x +2y =136−−−−−−①4x −3y =1−−−−−−② ①×3,得9x+6y= 132------③ ②×2,得8x-6y=2-----④③+④,得17x= 172 ,x= 12 将x= 12代入②,2-3y=1,y= 13 故原方程组的解是: {x = 12y = 134.{ x+52+y−43=2 x+20.3−y+70.4= −10; 解:{ x+52+y−43=2 −−−−−−−① x+20.3−y+70.4= −10−−−−−−②①等号两边同时乘以6,得3(x+5)+2(y-4)=123x+15+2y-8=12整理,得3x+2y=5----------③②等号两边同时乘以0.3×0.4,得0.4(x+2)-0.3(y+7)=-1.2两边同时乘以10,得4(x+2)-3(y+7)=-124x+8-3y-21=-12整理,得4x-3y=1--------④③×3,得9x+6y=15------⑤④×2,得8x-6y=2-------⑥⑤+⑥,得17x=17,即x=1将x=1代入③,得3+2y=5,y=1故原方程组的解是: {x =1y =15.{ 4x −3y =−1 x 5=y 7 ; 解:{ 4x −3y =−1 −−−−−−−−−−−① x 5=y 7−−−−−−−−−−−−−−−② ②变化为x= 57 y--------------③ 将③代入①,得4×57y -3y=-1 20−217 y =-1,整理得y=7将y=7代入③,得x= 57 ×7,x=5 故原方程组的解是: {x =5y =76. {3(x +2)=2(y +3)4(x −2)=3(y −3); 解:{3(x +2)=2(y +3)4(x −2)=3(y −3)方程组去括号,得{3x +6=2y +64x −8=3y −9整理得{3x −2y =0−−−−①4x −3y +1=0−−②①×3,得9x-6y=0--------③②×2, 得8x-6y+2=0------④③-④,得x-2=0,即x=2将x=2代入①,得6-2y=0,y=3故原方程组的解是: {x =2y =37.{ x 5+y 7=10 x 3−y 4=3; 解:{ x 5+y 7=10 x 3−y 4=3 方程组去分母,得{ 7x +5y =350−−−−−−①4x −3y =36−−−−−−−②①×3,得21x+15y=1050---③②×5,得20x-15y=180----④③+④,得41x=1230,即x=30将x=30代入①,得210+5y=350,y=28故原方程组的解是: {x =30y =288.{x 2+y 3=4 2x +7y =50; 解:{x 2+y 3=4 2x +7y =50方程组去分母,得{3x +2y =24−−−−−−−① 2x +7y =50−−−−−−−②①×2,得6x+4y=48-----③②×3,得6x+21y=150---④④-③,得17y=102,即y=6将y=6代入① ,得3x+12=24,x=4故原方程组的解是: {x =4y =69.{12(x +3)+13(y −4)=52(x −3)+5(y +4)=70 ; 解:{12(x +3)+13(y −4)=5−−−−① 2(x −3)+5(y +4)=70−−−②①去分母,得3(x+3)+2(y-4)=30去括号,得3x+9+2y-8=30整理,得3x+2y-29=0-----------③②去括号,得2x-6+5y+20=70整理,得2x+5y-56=0-----------④③×2,得6x+4y-58=0------------⑤④×3,得6x+15y-168=0----------⑥⑥-⑤,得11y-110=0,即y=10将y=10代入③,得3x+20-29=0,x=3故原方程组的解是:{x=3 y=1010.{0.2x+0.5y=9x+2 2+y+105=15 ;解:{0.2x+0.5y=9−−−−−①x+22+y+105=15−−−−−−②①等号两边同时乘以10,得2x+5y=90------------------③②去分母,得5(x+2)+2(y+10)=150去括号,整理得5x+2y=120---④③×5,得10x+25y=450------⑤④×2,得10x+4y=240-------⑥⑤-⑥,得21y=210,即y=10将y=10代入③,得2x+50=90,x=20故原方程组的解是:{x=20 y=1011.{4(x −1) +3(y +1) =320%(x +1)+80%(y −1)=−3; 解:{4(x −1) +3(y +1) =3−−−−−−−−−①20%(x +1)+80%(y −1)=−3−−−−−−② ①去括号,得4x-4+3y+3=3,整理得4x+3y=4-----③ ②去百分号,得0.2(x+1)+0.8(y-1)=-3等号两边同时乘以10,得2(x+1)+8(y-1)=-30 去括号,得2x+2+8y-8=-30,整理得x+4y=-12----④ ④×4,得4x+16y=-48------------------------⑤ ⑤-③,得13y=-52,即y=-4将y=-4代入④,得x-16=-12,x=4故原方程组的解是: {x =4y =−412.{x+2y 2 +x−2y 3 = 11 3(x +2y )−4(x −2y )=30; 解:{x+2y 2 +x−2y 3 = 11 −−−−−−−−−−−−−−① 3(x +2y )−4(x −2y )=30−−−−−−② ①×6,得3(x+2y )+2(x-2y )=66----------------③③-②,得6(x-2y )=36,即x-2y= 6 -------④①×12,得6(x+2y )+4(x-2y )=132---------------⑤⑤+②,得9(x+2y)=162,即x+2y=18---⑥④+⑥,得2x=24,即x=12④-⑥,得-4y=-12,即y=3故原方程组的解是:{x=12 y=3。

人教版七年级下数学8.2解二元一次方程组50题配完整版解析

人教版七年级下数学8.2解二元一次方程组50题配完整版解析

解方程组50题配完整解析1.解下列方程组.(1)(2).【解答】解:(1)方程组整理得:,②﹣①×2得:y=8,把y=8代入①得:x=17,则方程组的解为;(2)方程组整理得:,①×3﹣②×2得:5y=5,即y=1,把y=1代入①得:x=8,则方程组的解为.2.解方程组:①;②.【解答】解:①,①×3+②×2得:13x=52,解得:x=4,则y=3,故方程组的解为:;②,①+12×②得:x=3,则3+4y=14,解得:y=,故方程组的解为:.3.解方程组.(1).(2).【解答】解:(1),②﹣①得:x=1,把x=1代入①得:y=9,∴原方程组的解为:;(2),①×3得:6a+9b=6③,②+③得:10a=5,a=,把a=代入①得:b=,∴方程组的解为:.4.计算:(1)(2)【解答】解:(1),①×2﹣②得:5x=5,解得:x=1,把x=1代入②得:y=﹣2,所以方程组的解为:;(2),①﹣②×2得:y=1,把y=1代入①得:x=﹣3,所以方程组的解为:.5.解下列方程组:(1)(2).【解答】解:(1),①×5,得15x﹣20y=50,③②×3,得15x+18y=126,④④﹣③,得38y=76,解得y=2.把y=2代入①,得3x﹣4×2=10,x=6.所以原方程组的解为(2)原方程组变形为,由②,得x=9y﹣2,③把③代入①,得5(9y﹣2)+y=6,所以y=.把y=代入③,得x=9×﹣2=.所以原方程组的解是6.解方程组:【解答】解:由①得﹣x+7y=6 ③,由②得2x+y=3 ④,③×2+④,得:14y+y=15,解得:y=1,把y=1代入④,得:﹣x+7=6,解得:x=1,所以方程组的解为.7.解方程组:.【解答】解:原方程组可化为,①+②得:y=,把y的值代入①得:x=.所以此方程组的解是.或解:①代入②得到,2(5x+2)=2x+8,解得x=,把x=代入①可得y=,∴.8.解方程组:(1)(2)【解答】解:(1)①代入②,得:2(2y+7)+5y=﹣4,解得:y=﹣2,将y=﹣2代入①,得:x=﹣4+7=3,所以方程组的解为;(2)①×2+②,得:11x=11,解得:x=1,将x=1代入②,得:5+4y=3,解得:y=﹣,所以方程组的解为.9.解方程组(1)(2).【解答】解:(1),②﹣①得:8y=﹣8,解得:y=﹣1,把y=﹣1代入①得:x=1,则方程组的解为;(2)方程组整理得:,①﹣②得:4y=26,解得:y=,把y=代入①得:x=,则方程组的解为.10.计算:(1)(2).【解答】解:(1),把①代入②得:5x+4x﹣10=8,解得:x=2,把x=2代入①得:y=﹣1,则方程组的解为;(2),②×2﹣①得:7y=21,解得:y=3,把y=3代入②得:x=﹣14,则方程组的解为.11.解方程组:【解答】解:方程组整理得:,①×4﹣②×3得:7x=42,解得:x=6,把x=6代入①得:y=4,则方程组的解为.12.解方程组:(1)(2)【解答】解:(1),①代入②,得:5x﹣3(2x﹣1)=7,解得:x=﹣4,将x=﹣4代入②,得:y=﹣8﹣1=﹣9,所以方程组的解为;(2),①×2+②,得:15x=3,解得:x=,将x=代入②,得:+6y=13,解得:y=,所以方程组的解为.13.解方程组(1)(2)【解答】解:(1),①+②,得:3x=3,解得:x=1,将x=1代入①,得:1+y=2,解得:y=1,则方程组的解为;(2),①×8﹣②,得:y=17,解得:y=3,将y=3代入②,得:4x﹣9=﹣1,解得:x=2,则方程组的解为.14.解方程组(1)(2)【解答】解:(1),①×3+②得:10x=25,解得:x=2.5,把x=2.5代入②得:y=0.5,则方程组的解为;(2)方程组整理得:,①×4+②×11得:42x=15,解得:x=,把x=代入②得:y=﹣,则方程组的解为.15.解方程组:【解答】解:①+②得:9x﹣33=0x=把x=代入①,得y=∴方程组的解是16.解方程组【解答】解:方程组整理得:,①×3﹣②×2得:x=1,把x=1代入①得:y=﹣2,则方程组的解为.17.用适当方法解下列方程组.(1)(2)【解答】解:(1),①×2,得:6s﹣2t=10 ③,②+③,得:11s=22,解得:s=2,将s=2代入②,得:10+2t=12,解得:t=1,则方程组的解为;(2)原方程组整理可得,①×2,得:8x﹣2y=10 ③,②+③,得:11x=22,解得:x=2,将x=2代入②,得:6+2y=12,解得:y=3,则方程组的解为.18.解方程组:(1)(2)【解答】解:(1),②﹣①,得:3y=6,解得:y=2,将y=2代入①,得:x﹣2=﹣2,解得:x=0,则方程组的解为;(2)方程组整理可得,①+②,得:6x=18,解得:x=3,将x=3代入②,得:9+2y=10,解得:y=,则方程组的解为.19.解方程组:【解答】解:方程组整理成一般式可得:,①+②,得:﹣3x=3,解得:x=﹣1,将x=﹣1代入①,得:﹣5+y=0,解得:y=5,所以方程组的解为.20.用适当的方法解下列方程组:(1)(2)【解答】解:(1),①代入②,得:7x﹣6x=2,解得:x=2,将x=2代入①,得:y=6,所以方程组的解为;(2)方程组整理可得,②﹣①,得:y=2,将y=2代入①,得:3x﹣4=2,解得:x=2,所以方程组的解为.21.解二元一次方程组:(1)(2)【解答】解:(1),②×3﹣①,得:13y=﹣13,解得:y=﹣1,将y=﹣1代入①,得:3x+4=10,解得:x=2,∴方程组的解为;(2)原方程组整理可得,①﹣②,得:y=10,将y=10代入①,得:3x﹣10=8,解得:x=6,∴方程组的解为.22.解方程组:(1)(2)【解答】解:(1),①×2+②得:7x=14,解得:x=2,把x=2代入①得:y=﹣1,则方程组的解为;(2)方程组整理得:,①+②得:3x=7,解得:x=,把x=代入①得:y=﹣,则方程组的解为.23.解下列方程组:(1)(2)【解答】解:(1)整理,得:,②﹣①×6,得:19y=114,解得:y=6,将y=6代入①,得:x﹣12=﹣19,解得:x=﹣7,所以方程组的解为;(2)方程整理为,②×4﹣①×3,得:11y=﹣33,解得:y=﹣3,将y=﹣3代入①,得:4x﹣9=3,解得:x=3,所以方程组的解为.24.解方程组(1)(2)【解答】解:(1),①×2,得:2x﹣4y=2 ③,②﹣③,得:7y=14,解得:y=2,将y=2代入①,得:x﹣4=1,解得:x=5,所以方程组的解为;(2)方程组整理可得,②×4,得:24x+4y=60 ③,③﹣①,得:23x=46,解得:x=2,将x=2代入②,得:12+y=15,解得:y=3,所以方程组的解为.25.(1)(2)【解答】解:(1)方程组整理得:,①×2﹣②×3得:﹣m=﹣162,解得:m=162,把m=162代入①得:n=204,则方程组的解为;(2)方程组整理得:,①﹣②×6得:﹣11x=﹣55,解得:x=5,把x=5代入①得:y=1,则方程组的解为.26.解方程(1)(代入法)(2)【解答】解:(1),由②,得:y=3x+1 ③,将③代入①,得:x+2(3x+1)=9,解得:x=1,将x=1代入②,得:y=4,所以方程组的解为;(2)原方程组整理可得,①+②,得:4x=12,解得:x=3,将x=3代入①,得:3+4y=14,解得:y=,则方程组的解为.27.解方程:(1)(2)【解答】解:(1),①×2,得:2x+4y=0 ③,②﹣③,得:x=6,将x=6代入①,得:6+2y=0,解得:y=﹣3,所以方程组的解为;(2)方程组整理可得,①+②,得:10x=30,解得:x=3,①﹣②,得:6y=0,解得:y=0,则方程组的解为.28.解下列二元一次方程组(1)(2)【解答】解:(1),①+②得:5x=10,解得:x=2,把x=2代入①得:y=3,则方程组的解为;(2),①×3+②得:10a=5,解得:a=,把a=代入①得:b=,则方程组的解为.29.解下列方程组:(1)(2)【解答】解:(1),由②得:x=y+4③代入①得3(y+4)+4y=19,解得:y=1,把y=1代入③得x=5,则方程组的解为;(2)方程组整理得:,①+②×4得:﹣37y=74,解得:y=﹣2,把y=﹣2代入①得:x=﹣,则方程组的解为.30.解下列方程组:(1)用代入消元法解;(2)用加减消元法解.【解答】解:(1),由①,得:a=b+1 ③,把③代入②,得:3(b+1)+2b=8,解得:b=1,则a=b+1=2,∴方程组的解为;(2),①×3,得:9m+12n=48 ③,②×2,得:10m﹣12n=66 ④,③+④,得:19m=114,解得:m=6,将m=6代入①,得:18+4n=16,解得:n=﹣,所以方程组的解为.31.解方程组:.【解答】解:方程组整理得:,①+②得:8x=24,解得:x=3,把x=3代入②得:y=﹣5,则方程组的解为.32.解下列方程组①;②.【解答】解:①化简方程组得:,(1)×3﹣(2)×2得:11m=55,m=5.将m=5代入(1)式得:25﹣2n=11,n=7.故方程组的解为;②化简方程组得:,(1)×4+(2)化简得:30y=22,y=.将y=代入第一个方程中得:﹣x+7×=4,x=.故方程组的解为.33.解下列方程组:(1);(2);(3);(4).【解答】解:(1)由①得x=y③,把③代入②,得y﹣3y=1,解得y=3,把y=3代入③,得x=5.即方程组的解为;(2)把①代入②,得4(y﹣1)+y﹣1=5,解得y=2,把y=2代入①,得x=4.即方程组的解为;(3)原方程组整理得,把②代入①,得x=,把x=代入②,得y=,即方程组的解为;(4)原方程组整理得,把①代入②,得﹣14n﹣6﹣5n=13,解得n=﹣1,把n=﹣1代入①,得m=4.即方程组的解为.34.用合适的方法解下列方程组(1)(2)(3)(4)==4.【解答】解:(1)把①代入②得,3x+2(40﹣2x)=22,解得x=58,把x=58代入①得,y=40﹣2×58=﹣76,故原方程组的解为;(2)①×2﹣②得,8y=9,解得y=,把y=代入①得,2x+3×=5,解得,x=,故原方程组的解为;(3)①+②×5得,21x=0,解得,x=0,把x=0代入①得,5y=15,解得y=3,故原方程组的解为;(4)原方程可化成方程组,①+②×3得,﹣7y=56,解得,y=﹣8,把y=﹣8代入②得,﹣x+24=12,解得,x=12.故原方程组的解为.35.计算解下列方程组(1)(2)(3).【解答】解:(1)①×2﹣②,得3y=15,解得y=5,将y=5代入①,得x=0.5,故原方程组的解是;(2)化简①,得﹣4x+3y=5③②+③,得﹣2x=6,得x=﹣3,将x=﹣3代入②,得y=﹣,故原方程组的解是;(3)将③代入①,得5y+z=12④将③代入②,得6y+5z=22⑤④×5﹣⑤,得19y=38,解得,y=2,将y=2代入③,得x=8,将x=8,y=2代入①,得z=2,故原方程组的解是.36.解下列方程组(1)(2)(3)【解答】解:(1),由①得:x=﹣2y③,将③代入②,得:3(﹣2y)+4y=6,解得:y=﹣3,将y=﹣3代入③得:x=6.所以方程组的解为;(2),①×2得:2x﹣4y=10③,②﹣③得:7y=﹣14.解得:y=﹣2,把y=﹣2代入①,得x+4=5,解得:x=1.所以原方程组的解是;(3),①+②得2y=16,即y=8,①+③得2x=12,即x=6,②+③得2z=6,即z=3.故原方程组的解为.37.解方程组:(1)(2).【解答】解:(1)把①代入②得:3(3+2y)﹣8y=13,解得:y=﹣2,把y=﹣2代入①得:x=3﹣4=﹣1,所以原方程组的解为;(2)①+②得:2x+3y=21④,③﹣①得:2x﹣2y=﹣2⑤,由④和⑤组成一元二元一次方程组,解得:,把代入①得:++z=12,解得:z=,所以原方程组的解为.38.解下列方程组:(1);(2);(3);(4).【解答】解:(1)将①代入②,得5x+2x﹣3=11解得,x=2将x=2代入②,得y=1故原方程组的解是;(2)②×3﹣①,得11y=22解得,y=2将y=2代入①,得x=1故原方程组的解是;(3)整理,得①+②×5,得14y=14解得,y=1将y=1代入②,得x=2故原方程组的解是;(4)①+②×2,得3x+8y=13④①×2+②,得4x+3y=25⑤④×4﹣⑤×3,得23y=﹣23解得,y=﹣1将y=﹣1代入④,得x=7将x=7,y=﹣1代入①,得z=3故原方程组的解是.39.解方程(1)(2)(3)(4).【解答】解:(1),①﹣②得y=1,把y=1代入②得x+2=1,解得x=﹣1.故方程组的解为.(2),①×4+②×3得17x=34,解得x=2,把x=2代入②得6+4y=2,解得y=﹣1.故方程组的解为.(3),②﹣①得x=2,把x=2代入②得12+0.25y=13,解得y=4.故方程组的解为.(4),①+②+③得2(x+y+z)=38,解得x+y+z=19④,④﹣①得z=3,④﹣②得x=7,④﹣③得y=9.故方程组的解为.40.解下列方程组:(1)(2)(3)(4).【解答】解:(1)可化为①﹣②得3y=4,y=;代入①得﹣y=4,y=;∴方程组的解为:;(2)方程组可化为,①×3﹣②×2得m=18,代入①得3×18+2n=78,n=12;方程组的解为:;(3)方程组可化为,把①变形代入②得9(36﹣5x)﹣x=2,x=7;代入①得35+y=36,y=1;方程组的解为:;(4)原方程组可化为,①﹣②得﹣6y=3,y=﹣;③﹣①×2得﹣6y﹣7z=﹣4,即﹣6×(﹣)﹣7z=﹣4,z=1;代入①得x+2×(﹣)+1=2,x=2.方程组的解为:.41.解方程组:(1)(2)(3).【解答】解:(1)由得,①﹣②得2x=4,∴x=2,把x=2代入①得,3×2﹣2y=0,∴y=3,∴;(2),原方程组可化为,①×6﹣②×2得,4y=8,∴y=2,把y=2代入①得,8x+9×2=6,∴x=﹣,∴;(3),①+②得,4x+y=16④,②×2+③得,3x+5y=29⑤,④×5﹣⑤得,17x=51,∴x=3,把x=3代入④得,y=4,把x=3和y=4代入①得,3×3﹣4+z=10,∴z=5,∴.42.解方程组(1)(2)(3).【解答】解:(1),由①得:x=3y+5③,把③代入②得:6y+10+5y=21,即y=1,把y=1代入③得:x=8,则方程组的解为;(2),①×3+②×2得:13x=52,即x=4,把x=4代入①得:y=3,则方程组的解为;(3),由①得:x=1,②+③得:x+2z=﹣1,把x=1代入得:z=﹣1,把x=1,z=﹣1代入③得:y=2,则方程组的解为.43.解方程组:(1)(2)(3).【解答】解:(1),由②得:x=2y+4③,将③代入①得:11y=﹣11,解得:y=﹣1,将y=﹣1代入③得:x=2,则原方程组的解是;(2),②﹣①×2得:13y=65,即y=5,将y=5代入①得:x=2,则原方程组的解是;(3),将①代入②得:4x﹣y=5④,将①代入③得:y=3,将y=3代入④得:x=2,将x=2,y=3代入①得:z=5,则原方程组的解是.44.解方程组:(1)(2)(3)(4).【解答】解:(1)①+②得:3x=3,解得:x=1,把x=1代入①得:1﹣y=1,解得:y=0,所以原方程组的解为:;(2)①×3+②×2得:13x=52,解得:x=4,把x=4代入①得:12﹣2y=6,解得:y=3,所以原方程组的解为:;(3)整理得:①﹣②得:﹣7y=﹣7,解得:y=1,把y=1代入①得:3x﹣2=﹣8,解得:x=﹣2,所以原方程组的解为:;(4)①+②得:3x+3y=15,x+y=5④,③﹣②得:x+3y=9⑤,由④和⑤组成一个二元一次方程组,解得:x=3,y=2,把x=3,y=2代入①得:z=1,所以原方程组的解为:.45.解方程组:(1);(2);(3).【解答】解:(1)①+②得:3x=9解得:x=3把x=3代入①得:y=﹣1所以;(2)原方程可化为①×4﹣②×3得:7x=42解得:x=6把x=6代入①得:y=4所以;(3)把③变为z=2﹣x把z代入上两式得:两式相加得:2y=4解得:y=2把y=2代入①得:x=﹣1,z=3所以.46.用合适的方法解下列方程组:(1)(2)(3)(4)(5)【解答】解:(1)把①代入②得,3x+2(40﹣2x)=22,解得x=58,把x=58代入①得,y=40﹣2×58=﹣76,故原方程组的解为;(2)①×2﹣②得,8y=9,解得y=,把y=代入①得,2x+3×=5,解得,x=,故原方程组的解为;(3)①+②×5得,21x=0,解得,x=0,把x=0代入①得,5y=15,解得y=3,故原方程组的解为;(4)原方程可化成方程组,①+②×3得,﹣7y=56,解得,y=﹣8,把y=﹣8代入②得,﹣x+24=12,解得,x=12.故原方程组的解为;(5)把②代入③得,5x+3(12x﹣10)+2z=17,即41x+2z=47…④,①+④×2得,85x=85,解得,x=1,把x=1代入①得,3﹣4z=﹣9,解得,z=3,把x=1代入②得,y=12﹣10=2,故原方程组的解为.47.解方程组:(1)(2)(3)(4).【解答】解:(1),①×3﹣②得:﹣16y=﹣160,解得:y=10,把y=10代入①得:x=10,则原方程组的解是:;(2),①+②得;x+y=③,①﹣③得:2008x=,解得:x=,把x=代入③得:y=,则原方程组的解是:;(3)①4x﹣6y=13③,②﹣③得:3y=﹣6,解得:y=﹣2,把y=﹣2代入②得:x=,则原方程组的解为:;(4)由①得,y=1﹣x把y=1﹣x代入②得,1﹣x+z=6④④+③得2z=10,解得z=5,把z=5代入②得,y=1,把y=1代入②得,x=0,则原方程组的解为.48.解下列方程组:(1)(2)(3)(4).【解答】解:(1)②﹣①×2,得3x=6,解得,x=2,将x=2代入①,得y=﹣1,故原方程组的解是;(2)①×9+②,得x=9,将x=9代入①,得y=6,故原方程组的解是;(3)②﹣①,得y=1,将y=1代入①,得x=1故原方程组的解是;(4)②+③×3,得5x﹣7y=19④①×5﹣④,得y=﹣2,将y=﹣2代入①,得x=1,将x=1,y=﹣2代入③,得z=﹣1故原方程组的解是.49.(1);(2);(3);(4).【解答】解:(1)把①变形后代入②得:5(3x﹣7)﹣x=7,x=3;代入①得:y=2;即方程组的解为;(2)原方程化简为①×5﹣②得:y=﹣988代入①得:x﹣988=600,x=1588.原方程组的解为;(3)在中,把两方程去分母、去括号得:①+②×5得:14y﹣28=0,y=2;代入②得:x=﹣2.原方程组的解为;(4)在③×3﹣②得:7x﹣y=35,代入①得:5x+3(7x﹣35)=25,x=5;代入①得:25+3y=25,y=0;代入②得:2×5﹣3z=19,z=﹣3.原方程组的解为.50.解方程组:①;②;③.【解答】解:①方程组整理得:,①+②×5得:7x=﹣7,解得:x=﹣1,把x=﹣1代入②得:y=3,则方程组的解为;②方程组整理得:得,①×6+②得:19y=114,解得:y=6,把y=6代入①得:x=﹣7,则方程组的解为;③,①+②得:x+z=1④,③+④得:2x=5,解得:x=2.5,把x=2.5代入④得:z=﹣1.5,把x=2.5,z=﹣1.5代入①得:y=1,则方程组的解为.。

七年级数学二元一次方程组练习题及答案

七年级数学二元一次方程组练习题及答案

题目一:解方程组1.3x+2y=72.x-y=3解答:将第二个方程两边同时乘以2,得到2x-2y=6然后将第一个方程与新得到的方程相加,得到(3x+2y)+(2x-2y)=7+65x=13x=13/5将x的值代入第二个方程,求得y的值:x-y=313/5-y=3y=-2/5所以方程组的解为x=13/5,y=-2/5题目二:解方程组1.5x-2y=92.3x+4y=12解答:将第一个方程乘以2,得到10x-4y=18然后将第二个方程与新得到的方程相加,得到(3x+4y)+(10x-4y)=12+1813x=30x=30/13将x的值代入第一个方程,求得y的值:5x-2y=95(30/13)-2y=9-10/13-2y=9-2y=9+10/13-2y=127/13y=-127/26所以方程组的解为x=30/13,y=-127/26题目三:解方程组1.2x-3y=82.x+4y=7解答:将第一个方程乘以4,得到8x-12y=32然后将第二个方程与新得到的方程相加,得到(x+4y)+(8x-12y)=7+329x-8y=39将第一个方程乘以3,得到6x-9y=24然后将上式与新得到的方程相加,得到(6x-9y)+(9x-8y)=24+3915x-17y=63解得15x-17y=639x-8y=39联立解得x=207/103,y=-255/103题目四:解方程组1.4x-y=72.2x+3y=1解答:将第一个方程乘以3,得到12x-3y=21然后将第二个方程与新得到的方程相加,得到(2x+3y)+(12x-3y)=1+2114x=22x=22/14将x的值代入第一个方程,求得y的值:4x-y=74(22/14)-y=788/14-y=7-y=7-88/14-y=-38/14y=38/14所以方程组的解为x=11/7,y=19/7题目五:解方程组1.3x+2y=82.4x-3y=2解答:将第一个方程乘以4,得到12x+8y=32然后将第二个方程与新得到的方程相加,得到(4x-3y)+(12x+8y)=2+3216x+5y=34将第一个方程乘以5,得到15x+10y=40然后将上式与新得到的方程相加,得到(15x+10y)+(16x+5y)=40+3431x+15y=74解得31x+15y=7416x+5y=34联立解得x=16/11,y=58/33题目六:解方程组1.2x+y=52.3x-y=7解答:将第一个方程乘以3,得到6x+3y=15然后将第二个方程与新得到的方程相加,得到(3x-y)+(6x+3y)=7+159x=22x=22/9将x的值代入第一个方程,求得y的值:2x+y=52(22/9)+y=544/9+y=5y=5-44/9y=1/9所以方程组的解为x=22/9,y=1/9题目七:解方程组1.5x-2y=72.x+6y=3解答:将第一个方程乘以6,得到30x-12y=42然后将第二个方程与新得到的方程相加,得到(x+6y)+(30x-12y)=3+4231x-6y=45将第一个方程乘以3,得到15x-6y=21然后将上式与新得到的方程相加,得到(15x-6y)+(31x-6y)=21+4546x-12y=66解得46x-12y=6631x-6y=45联立解得x=21/17,y=-15/17题目八:解方程组1.2x-3y=52.x+2y=4解答:将第一个方程乘以2,得到4x-6y=10然后将第二个方程与新得到的方程相加,得到(x+2y)+(4x-6y)=4+105x-4y=14将第一个方程乘以4,得到8x-12y=20然后将上式与新得到的方程相加,得到(8x-12y)+(5x-4y)=20+1413x-16y=34解得13x-16y=345x-4y=14联立解得x=82/89,y=-79/89题目九:解方程组1.3x-4y=62.2x+5y=1解答:将第一个方程乘以2,得到6x-8y=12然后将第二个方程与新得到的方程相加,得到(2x+5y)+(6x-8y)=1+128x-3y=13将第一个方程乘以3,得到9x-12y=18然后将上式与新得到的方程相加,得到(9x-12y)+(8x-3y)=18+1317x-15y=31解得17x-15y=318x-3y=13联立解得x=218/229,y=-125/229题目十:解方程组1.4x-y=62.x+3y=4解答:将第一个方程乘以3,得到12x-3y=18然后将第二个方程与新得到的方程相加,得到(x+3y)+(12x-3y)=4+1813x=22x=22/13将x的值代入第一个方程,求得y的值:4x-y=64(22/13)-y=688/13-y=6-y=6-88/13-y=-70/13y=70/13所以方程组的解为x=22/13,y=70/13。

完整版)二元一次方程组应用题经典题及答案

完整版)二元一次方程组应用题经典题及答案

完整版)二元一次方程组应用题经典题及答案实际问题与二元一次方程组题型归纳(练题答案)类型一:列二元一次方程组解决——行程问题变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?解:设甲、乙速度分别为x、y千米/时,依题意得:2.5+2)x+2.5y=363x+(3+2)y=36解得:x=6,y=3.6答:甲的速度是6千米/每小时,乙的速度是3.6千米/每小时。

变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。

解:设这艘轮船在静水中的速度x千米/小时,则水流速度y千米/小时,有:20(x-y)=28014(x+y)=280解得:x=17,y=3答:这艘轮船在静水中的速度17千米/小时、水流速度3千米/小时。

类型二:列二元一次方程组解决——工程问题变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元。

若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由。

解:设甲、乙公司每周的工钱分别为x、y万元,依题意得:6(x+y)=5.24x+9y=4.8解得:x=0.8,y=0.4若只选一个公司单独完成,小明家应选择乙公司,因为乙公司每周工钱更少,从节约开支的角度考虑更优。

类型三:列二元一次方程组解决——商品销售利润问题变式1】(2011湖南衡阳)李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?解:设甲、乙两种蔬菜各种植了x、y亩,依题意得:①x+y=10②2000x+1500y=解得:x=6,y=4答:李大叔去年甲、乙两种蔬菜各种植了6亩、4亩。

(完整版)七年级下二元一次方程组应用题含答案

(完整版)七年级下二元一次方程组应用题含答案

新人教版数学七年级下册 8. 3 实际问题与二元一次方程组课时练习、选择题1.成渝路内江至成都全长 170 千米,一辆小汽车和一辆客车同时从内江、成都两地相向开出,经过 1 小时 10 分钟相遇. 相遇时, 小汽车比小客车多行驶 20 千米. 设小汽车和客车的平均速度分别为x千米 /时和 y 千米 /时,则下列方程组正确的是()答案: B知识点: 二元一次方程组的应用 解析:解答:先找出题目中的两个相等关系: 程=170 千米, 1小时 10 分钟小汽车走的路程- 1小时 10分钟小客车走的路程 =20 千米,再列出方 程组.分析:列二元一次方程组解应用题的关键是通过审题确定题目中的相等关系,再利用相等关系列出 方程组.2.为了丰富同学们的课余生活,体育委员小强到体育用品商店购羽毛球拍和乒乓球拍,若购 1 副羽毛球拍和 1 副乒乓球拍共需 50 元,小强一共用 320 元购买了 6 副同样的羽毛球拍和 10 副同样的乒 乓球拍,若设每副羽毛球拍为 x 元,每副乒乓球拍为 y 元,列二元一次方程组得( )答案: B知识点: 二元一次方程组的应用 解析:解答:先找出题目中的两个相等关系:购 同样的羽毛球拍和 10 副同样的乒乓球拍,再列出方程组.分析:列二元一次方程组解应用题的关键是通过审题确定题目中的相等关系,再利用相等关系列出方程组.B .C .D .1 小时 10 分钟小汽车走的路程 +1 小时 10 分钟小客车走的路1 副羽毛球拍和 1 副乒乓球拍共需 50 元,320 元购买 6 副3.现有 190 张铁皮做盒子,每张铁皮可做 8 个盒身或 22 个盒底,一个盒身与两个盒底配成一个完答案: D知识点: 二元一次方程组的应用解析: 套,得方程 2 8x 22y ,故选 D . 分析:列二元一次方程组解应用题的关键是通过审题确定题目中的相等关系,再利用相等关系列出 方程组.4.把一根长 100cm 的木棍锯成两段,使其中一段的长比另一段的 2 倍少 5cm, 则锯出的木棍的长不 可能为( ) A . 70cmB . 65cmC .35cmD . 35cm 或 65cm答案: A知识点: 二元一次方程组的应用 解析:解答:不妨设其中一段的长为 x ,另一段的长为 y ,根据题意有,解这个二元一次方程组得 ,因为这两段没有顺序,所以锯出的木棍的长可能为 65cm 或 35cm ,不可能为 70cm , 故选 A . 分析:列二元一次方程组解应用题的关键是通过审题确定题目中的相等关系,再利用相等关系列出 方程组.5.一套《少儿百科全书》总价为 270 元,张老师只用 20 元和 50 元两种面值的人民币正好全额付 清了书款,则他可能的付款方式一共有( )A .5 种B .4 种C .3 种D .2种答案: C 知识点: 二元一次方程组的应用 解析:解答:设 20元面值的为 x 张,50 元面值的为 y 张,可列方程 20x +50 y =270 .因为 x 、y 均为正整数, x 1 x 6 x11所以满足条件的解为 , , ,所以可能的付款方式一共有 3 种,故选 C .y 5 y 3 y 1分析:列二元一次方程组解应用题的关键是通过审题确定题目中的相等关系,再利用相等关系列出整的盒子,设用 x 张铁皮做盒身,y 张铁皮做盒底,则可列方程组为(A .x 2y 190 2×8x 22y B . 2y x 190 C.8x 22yx y 190 2 22y 8x D .x y 190 2 8x 22y解答:根据共有 190 张铁皮,得方程 x y 190 ;根据做的盒底数等于盒身数的2 倍时才能正好配方程组.各有多少?( )A . 150,350B .250,200 答案: D知识点: 二元一次方程组的应用 解析:x y 400 ,解这个二元1000x 1200 y 45x 150次方程组得 x y 125500,所以甲乙债券分别有 150 元与 250 元,故选 D .分析:列二元一次方程组解应用题的关键是通过审题确定题目中的相等关系,再利用相等关系列出 方程组.7.一种饮料大小包装有 3 种,1 个中瓶比 2 小瓶便宜 2 角,1 个大瓶比 1个中瓶加 1 个小瓶贵 4 角, 大、中、小各买 1 瓶,需 9 元 6 角,若设小瓶单价为 x 角,大瓶为 y 角,可列方程为()3xy983xy982xy983x y 98 A .B .C .D .y3x 2y3x 2y3x 42xy4答案: A知识点: 二元一次方程组的应用 解析:解答:根据 1 个中瓶比 2 小瓶便宜 2 角可知中瓶价格为 (2x - 2)角,大、中、小各买 1 瓶,需 9 元 6 角可列方程x +(2 x - 2)+ y =96 即得 3x + y =98 ,根据 1 个大瓶比 1 个中瓶加 1 个小瓶贵 4 角可列方程 y - (2x - 2+ x )=4 即 y -3x =2 ,联立后选 A .分析:可以设大、中、小瓶中的任意两个为未知数,另一个用其中一个未知数表示出来,根据题目 中的相等关系列出方程组并整理得.8.某品牌服装店一次同时售出两件上衣, 每件售价都是 135 元,若按成本计算, 其中一件盈利 2500 ,另一件亏损 2500 ,则这家商店在这次销售过程中()A .盈利为 0B .盈利为 9 元C .亏损为 8 元答案: D知识点: 二元一次方程组的应用 解析: 解答:设盈利的上衣售价为 x 元,亏损的上衣为 y 元,根据题意有 ((11 2255%%))x y 113355,解这个二元 (1 25%)y 135x 108次方程组得 ,所以这两件的利润为 135×2- (108+180)= - 18,所以亏损 18 元. y 180 分析:售价 =进价 +利润,亏损即利润为负.9.某校体操队和篮球队的人数之比是 5:6,篮球队的人数与体操队的人数的 3 倍的和等于 42 人,若设体操队的人数是 x 人,篮球队的人数为 y 人,则可列方程组为()6.有甲乙两种债券,年利率分别是10%与 12%,现有 400 元债券,一年后获利 45 元,问甲乙债券C . 350,150D .150,250解答:不妨设甲乙债券分别有多少x 元与 y 元,根据题意有 D .亏损为 18 元5x6y 6x5y5x6y6x5y A.B.C.D.3x y 42 3x y 42x y 423x y 42答案:B知识点:二元一次方程组的应用解析:解答:根据题目中的相等关系:体操队和篮球队的人数之比是5:6,篮球队的人数与体操队的人数的3 倍的和等于42 人,可列方程组为B.分析:列二元一次方程组解应用题的关键是通过审题确定题目中的相等关系,再利用相等关系列出方程组.10.李勇购买80 分与100 分的邮票共16 枚,花了14 元6 角,购买80 分与100 分的邮票的枚数分别是( ) A.6,10 B.8,8 C.7,9 D.9,7答案:C知识点:二元一次方程组的应用解析:x y 16解答:设李勇购买80 分与100 分的邮票的枚数分别是x 与y,根据题意有,解这个0.8x y 14.6x7二元一次方程组得,所以李勇购买80 分与100 分的邮票的枚数分别是7 与9.y9分析:本题目中的相等关系是:购买的邮票共16枚,花了14 元6角,再利用相等关系列出方程组;注意单位要统一.11.已知甲、乙两种商品的原价和为200 元,因市场变化,甲商品降价10%,乙商品提高10%,调价后甲、乙两种商品的单价和比原单价和提高了5%,求甲、乙两种商品的原单价分别是( ) A.50 元,150 元B.150 元,50 元C.80 元,120 元D.120 元,80 元答案:A知识点:二元一次方程组的应用解析:x y 200解答:设甲、乙两种商品的原单价分别是x元与y元,则有(x1 1y0%2)0x0(1 10%)y 200 (1 5%)x 50解这个二元一次方程组得x y 15500,所以甲、乙两种商品的原单价分别是 50 元与 150 元.分析:本题目中的相等关系是:甲、乙两种商品的原价和为 200 元,调价后甲、乙两种商品的单价 和比原单价和提高了5%,再利用相等关系列出方程组.12. 2辆大卡车和 5辆小卡车工作 2小时可运送垃圾 36吨,3 辆大卡车和 2 辆小卡车工作 5小时可 运输垃圾 80吨,那么 1辆大卡车和 1 辆小卡每小时分别运 x 吨与 y 吨垃圾,则可列方程组( )A.2x 5y36B.2 2x5y 363x 2y805 3x 2y 80C.2 2x 25y 36D.2x 2 5y 365 3x 52y 803x 5 2y 80答案: C知识点: 二元一次方程组的应用 解析:解答:根据题目中的相等关系: 2 辆大卡车和 5 辆小卡车工作 2 小时可运送垃圾 36 吨, 3 辆大卡车 和 2 辆小卡车工作 5 小时可运输垃圾 80 吨,可列方程组为 C .分析:列二元一次方程组解应用题的关键是通过审题确定题目中的相等关系,再利用相等关系列出 方程组.xy 50xy 50 C .D .xy90xy90答案: D知识点: 二 元一 次方程组的应用解析:解答:根据题目中的相等关系: ∠1 的度数比 ∠2 的度数大 50°,从图中可知 ∠1与∠2 的和为 90°, 可列方程组为D .13.一副三角板按如图摆放,且∠1的度数比 ∠2的度数大 50°,若设 1=x o,2=y o ,则可得到x y 50x y 180 x y 180分析:列二元一次方程组解应用题的关键是通过审题确定题目中的相等关系,再利用相等关系列出 方程组.14.某公司向银行申请了甲、乙两种贷款共计 68 万元,每年需付出 8.42 万元利息,已知甲种贷款每年的利率为 12%,乙种贷款每年的利率为 13%,则该公司甲、乙两种贷款的数额分别为()A .26 万元, 42 万元B .40 万元, 28 万元C .28 万元, 40 万元D .42 万元, 26 万元答案: D知识点: 二元一次方程组的应用 解析:x y 68解答:设该公司甲、乙两种贷款的数额分别为x 万元与 y 万元,则有 ,解这个12%x 13%y 8.42x 42元一次方程组得y x 4226,所以该公司甲、乙两种贷款的数额分别为 42 万元与 26 万元.分析:本题目中的相等关系是:甲、乙两种贷款共计 68 万元,每年需付出 8.42 万元利息,再利用 相等关系列出方程组.15.甲、乙二人按 2:5 的比例投资开办了一家公司,约定除去各项开支外,所得利润按投资比例分 成.若第一年所得利润为 14000 元,那么甲、乙二人分别应分得( )A . 2000 元, 5000 元B .4000 元, 10000 元C .5000 元, 2000 元D .10000 元, 4000 元 答案: B 知识点: 二元一次方程组的应用 解析:5x 2yx 元与 y 元,则有 x y 14000,解这个二元一次方程组得所以甲、乙二人分别应分得 4000 元与 14000 元. 分析:本题目中的相等关系是:所得利润按投资比例分成,第一年所得利润为 等关系列出方程组. 二、填空题1.在一次知识竞赛中,学校为获得一等奖和二等奖共 30名学生购买奖品,共花费 528 元,其中一等奖奖品每件 20 元,二等奖奖品每件 16 元,求获得一等奖和二等奖的学生各有多少名?设获得一 等奖的学生有 x 名,二等奖的学生有 y 名,根据题意可列方程组为 . 答案: 知识点: 二元一次方程组的应用 解析:x y 30 解答:解:设获得一等奖的学生有 x 名,二等奖的学生有 y 名,由题意得 2x 0x y 163y 0 528 故答案x 4000 y 10000解答:设甲、乙二人分别应分得 14000 元,再利用相为x y 3020x 16y 528分析:设获得一等奖的学生有 x 名,二等奖的学生有 y 名,根据 “一等奖和二等奖共 30 名学生,一 等奖和二等奖共花费 528 元”列出方程组即可.2.一只船在 A 、 B 两码头间航行,从 A 到 B 顺流航行需 2 小时,从 B 到 A 逆流航行需 3 小时,那么 一只救生圈从 A 顺流漂到 B 需要 小时. 答案: 12知识点: 二元一次方程组的应用 解析:a ,船在静水中的速度为 x ,水流的速度为 y ,根据航行问题的数a 1 a 12 (小时).12与计算.3.某公园 “六 ·一 ”期间举行特优读书游园活动,成人票和儿童票均有较大折扣.张凯、李利都随他 们的家人参加了本次活动.王斌也想去,就去打听张凯、李利买门票花了多少钱.张凯说他家去了3 个大人和4 个小孩,共花了 38 元钱;李利说他家去了 4 个大人和 2 个小孩,共花了 44 元钱,王 斌家计划去 3 个大人和 2 个小孩,请你帮他计算一下,需准备 元钱买门票. 答案: 34知识点: 二元一次方程组的应用解析: 解答:设大人门票为 x 元,小孩门票为 y 元,由题意,得 3x 4y 38 ,解得4x 2y 44即王斌家计划去 3个大人和 2 个小孩,需要 34 元的门票.分析:设大人门票为 x 元,小孩门票为 y 元,根据题目给出的等量关系建立方程组,然后解出x 、y的值,再代入计算即可.4.如图所示的两架天平保持平衡,且每块巧克力的质量相等,每个果冻的质量也相等,则一块巧克 力的质量为 .g解答:设 A 、 B 两码头间的距离为 量关系建立方程组2(x 3(x y) y)解得5a 1212,所以一只救生圈从 A 顺流漂到 B 需要1a 12分析: ① 一只救生圈从 A顺流漂到 B 即求水流速度, ② 很多时候解实际问题可以借助一个字母参x 10x y 120,则 3x 2y34答案: 20知识点: 二元一次方程组的应用 解析:答案: 6 秒知识点: 二元一次方程组的应用 解析:巧克力果冻解答:设每块巧克力的质量是 x g ,每个果冻的质量是 y g ,则 3x 2y,解得x y 50x 20 y 30分析:设每块巧克力的质量是 x g ,每个果冻的质量是 yg ,根据题目给出的等量关系建立方程组,然后解出 x 、y 的值,再代入计算即可.5.如下图所示,高速公路上,一辆长为 4 米,速度为 110 千米/时的轿车准备超越一辆长为 12 米,速度为 100 千米 / 时的卡车, 则轿车从开始追赶到超越卡车, 需要花费的时间约是 秒(结果保留整数)知识点: 二元 次方程组的应用解析:解答:设整个超越过程历时x 小时,在这一过程中卡车行驶了 y 千米,则轿车行驶了( y +0.012 +100x 0.004)千米,则 110100x xyy 0.012 0.004,解得 x =0.0016(小时),0.0016 小时=5.76秒≈6秒.分析:列二元一次方程组解应用题的关键是通过审题确定题目中的相等关系,再利用相等关系列出 方程组. 三、解答题 1.为表彰在某活动中表现积极的同学, 老师决定购买文具盒与钢笔作为奖品.已知 5 个文具盒、 2支钢笔共需 100 元;3 个文具盒、 1 支钢笔共需 57 元.那么每个文具盒、每支钢笔各多少元?答案: 每个文具盒 14 元,每支钢笔15 元50g 砝码解答:解:设每个文具盒 x 元,每支钢笔 y 元,则 5x 2y 100,解得 x 14 ,所以每个文具盒3x y 57 y 1514 元,每支钢笔 15 元.分析:设每个文具盒 x 元,每支钢笔 y 元,然后根据花费 100 元与 57元分别列出方程组,解二元一 次方程组即可.2.小林在某店购买 A 、B 商品共三次,只有一次购买时,商品A 、B 同时打折,其余两次均按标价购买,三次购买商品 A 、B 的数量和费用如下表:( 1)小林以折扣价购买商品 A 、B 是第 次购物;(2)求出商品 A 、B 的标价;( 3)若商品 A 、B 的折扣相同,问商店是打几折出售这两种商品的? 答案:(1)三;(2)商品 A 的标价为 90元,商品 B 的标价为 120 元;(3)6折 知识点: 二元一次方程组的应用 解析:解答:解:( 1)因为第三次购物较多但是价格较便宜,所以小林以折扣价购买商品A 、B 是第三次购物;6x5y 1140 x 90( 2)设商品 A 的标价为 x 元,商品 B 的标价为 y 元,根据题意,得,解得3x 7y 1110y120答:商品 A 的标价为 90 元,商品 B 的标价为 120 元;(3)设商店是打 a 折出售这两种商品,由题意得, 9 90 8 120a 1062 ,解得 a 6.10答:商店是打 6 折出售这两种商品的. 分析:列二元一次方程组解应用题的关键是通过审题确定题目中的相等关系,再利用相等关系列出 方程组.3.已知该公司每天能精加工蔬菜6 吨或粗加工蔬菜 16 吨(两种加工不能同时进行) ,某蔬菜公司收 购蔬菜进行销售的获利情况如下表所示:(1)现在该公司收购了 吨蔬菜,如果要求在 天内全部销售完这 吨蔬菜,请完成下列表格:( )如果先进行精加工,然后进行粗加工,要求天刚好加工完 吨蔬菜,则应如何分配加工时间?答案:(1)依次填:14000,35000,518000;(2)10 天进行精加工,5 天进行粗加工知识点:二元一次方程组的应用解析:解答:解:(1)当全部直接销售时140 ×100=14000 (元);当全部粗加工后销售时250×140=35000(元);当尽量精加工,剩余部分直接销售时18 6 450 140 18 6 100 51800 (元);所以)依次填:14000,35000,518000 ;x y 15 x 10(2)设应安排x 天进行精加工,y天进行粗加工,根据题意得:,解得:,6x 16y 140 y 5答:应安排10 天进行精加工,5 天进行粗加工.分析:(1)按已知把已知表中的数据1和2都乘以140 完成表格;而3中18天只能精加工6×18=108(吨),所以为108 450 140 108 100 51800(元);(2)由题意列二元一次方程组求解.4.“下乡”活动期间,凡购买指定家用电器的农村居民均可得到该商品售价13%的财政补贴.村民小李购买了一台A型洗衣机,小王购买了一台B型洗衣机,两人一共得到财政补贴351 元,又知B型洗衣机售价比A 型洗衣机售价多500 元.求:(1)A 型洗衣机和B 型洗衣机的售价各是多少元?(2)小李和小王购买洗衣机除财政补贴外实际各付款多少元?答案:(1)A型与B型洗衣机的售价分别为1100 元与1600 元;(2)实际各付款957元和1392 元知识点:二元一次方程组的应用解析:解答:解:(1)设A 型洗衣机的售价为x元,B型洗衣机的售价为y 元;根据题意可列方程组:解得:答:A型洗衣机的售价为1100 元,B型洗衣机的售价为1600 元.(2 )小李实际付款为:1100×(1-13%)=957 (元);小王实际付款为:1600 ×(1-13%)=1392 (元).答:小李和小王购买洗衣机各实际付款957 元和1392 元.分析:(1)可根据:“两人一共得到财政补贴351 元;又知B型洗衣机售价比A 型洗衣机售价多500元”来列出方程组求解;(2)根据(1)得出的A,B 洗衣机的售价根据补贴的规定来求出两人实际的付款额.5.为弘扬中华民族传统文化,某校举办了“古诗文大赛”,并为获奖同学购买签字笔和笔记本作为奖品.1 支签字笔和2 个笔记本共8.5 元,2 支签字笔和3 个笔记本共13.5 元.(1)求签字笔和笔记本的单价分别是多少元?(2)为了激发学生的学习热情,学校决定给每名获奖同学再购买一本文学类且定价为15 元的图书.书店出台如下促销方案:购买图书总数超过50 本可以享受8 折优惠,学校如果多买12 本,则可以享受优惠且所花钱数与原来相同,问学校获奖的同学有多少人?答案:(1)签字笔和笔记本的单价分别是 1.5 元与3.5元;(2)学校获奖的同学有48 人知识点:二元一次方程组的应用;一元一次方程的应用解析:x 2y 8.5解答:解:(1)设签字笔和笔记本的单价分别是x 元与y 元,由题意可得,解得2x 3y 13.5x 1.5y 3.5 答:签字笔和笔记本的单价分别是1.5元与3.5 元(2)设学校获奖的同学有z 人,由题意可得15 0.8 z 12 15z解得z 48 答:学校获奖的同学有48 人.分析:(1)可根据“1支签字笔和2个笔记本共8.5元,2 支签字笔和3 个笔记本共13.5 元”列方程组并解方程组;(2)可根据“购买图书总数超过50本可以享受8 折优惠,学校如果多买12本,则可以享受优惠且所花钱数与原来相同”列一元一次方程,并解方程即可.。

初中数学二元一次方程组的应用题型分类汇编——工程问题1(附答案)

初中数学二元一次方程组的应用题型分类汇编——工程问题1(附答案)
15.某工程队承包了某标段全长1755米的过江隧道施工任务,甲、乙两个班组分别从东、西两端同时掘进.已知甲组比乙组平均每天多掘进0.6米,经过5天施工,两组共掘进了45米.
(1)求甲、乙两个班组平均每天各掘进多少米?
(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进0.2米,乙组平均每天能比原来多掘进0.3米.按此旄工进度,能够比原来少用多少天完成任务?
初中数学二元一次方程组的应用题型分类汇编——工程问题1(附答案)
1.在一块a公顷的稻田上插秧,如果10个人插秧,要用m天完成;如果一台插秧机工作,要比10个人插秧提前3天完成,一台插秧机的工作效率是一个人工作效率的( )倍.
A. B. C. D.
2.现有一段长为180米的河道整治任务,由 、 两个工程小组先后接力完成, 工程小组每天整治12米, 工程小组每天整治8米,共用时20天,设 工程小组整治河道 天, 工程小组整治河道 天,依题意可列方程组()
12.某地准备对一段长120m的河道进行清淤疏通.若甲工程队先单独工作4天,则余下的任务由乙工程队单独完成需要9天;若甲工程队先单独工作8天,则余下的任务由乙工程队单独完成需要3天.设甲工程队平均每天疏通河道xm,乙工程队平均每天疏通河道ym,则x+y的值为________.
13.某电信局现有300部已申请装机的电话等待装机.假设每天新申请装机的电话部数相同,该电信局每个电话装机小组每天装的电话部数也相同,那么安排3个装机小组,恰好30天可将需要装机的电话全部装完;如果安排5个装机小组,则恰好10天可将需要装机的电话全部装完.试求每个电话装机小组每天装机_____部?每天有_____部新申请装机的电话?
5.29
【解析】
【分析】

完整版初中数学专项练习《二元一次方程组》100道解答题包含答案

完整版初中数学专项练习《二元一次方程组》100道解答题包含答案

初中数学专项练习《二元一次方程组》100道解答题包含答案一、解答题(共100题)1、南山植物园以其优美独特的自然植物景观,现已成为重庆市民春游踏青、赏四季花卉、观山城夜景的重要旅游景区.若该植物园中现有A、B两个园区,已知A园区为矩形,长为(x+y)米,宽为(x﹣y)米;B园区为正方形,边长为(x+3y)米.(1)请用代数式表示A、B两园区的面积之和并化简;(2)现根据实际需要对A园区进行整改,长增加(11x﹣y)米,宽减少(x﹣2y)米,整改后A区的长比宽多350米,且整改后两园区的周长之和为980米.若A园区全部种植C种花,B园区全部种植D种花,且C、D两种花投入的费用与吸引游客的收益如下表:C D投入(元/平方米)13 16收益(元/平方米)18 26求整改后A、B两园区旅游的净收益之和.(净收益=收益﹣投入)2、某一天,蔬菜经营户花90元从蔬菜批发市场批发了黄瓜和茄子共,到菜市场去卖,黄瓜和茄子当天的批发价与零售价如下表所示:品名黄瓜茄子批发价/(元2.4 2)零售价/(元3.6 2.8)他当天卖完这些黄瓜和茄子可赚多少元钱?3、已知方程组的解满足x+y=-1,求k的值。

4、解方程组:5、甲、乙两人同求方程ax﹣by=7的整数解,甲求出一组解为,而乙把ax﹣by=7中的7错看成1,求得一组解为,试求a、b的值.6、已知方程组,王芳看错了方程(1)中的a,得到的方程组的解为,李明看错了方程(2)中的b,得到的方程组的解为,求原方程组的解.7、为了净化空气,美化环境,我县城兴华小区计划投资1.8万元种玉兰树和松柏树共80棵,已知某苗圃负责种活以上两种树苗的价格分别为:300元/棵,200元/棵,问可种玉兰树和松柏树各多少棵?8、敦煌莫高窟是世界上现存最完好的石窟艺术宝库,是重要的爱国主义教育基地,某校组织八年级540名学生去莫高窟研学参观,现租用大、小两种客车共10辆,恰好能一次性运完全部学生.已知这两种车的限载人数分别为40人和60人,求这两种客车各租用多少辆?9、请阅读求绝对值不等式和的解集过程.对于绝对值不等式,从图1的数轴上看:大于-3而小于3的绝对值是是小于3的,所以的解集为;对于绝对值不等式,从图2的数轴上看:小于-3而大于3的绝对值是是大于3的,所以的解集为或.已知关于x、y的二元一次方程组的解满足,其中m是负整数,求m的值.10、已知2a-1的算术平方根是3,3a+b-1的立方根是2,求a-2b的平方根。

初一数学二元一次方程组33道典型必做题(含答案和解析及相关考点)

初一数学二元一次方程组33道典型必做题(含答案和解析及相关考点)

初一数学二元一次方程组33道典型必做题(含答案和解析及相关考点)1、方程mx-3y=3x+ny-1是关于x,y的二元一次方程,则m,n的取值范围是 .答案:m≠3,n≠-3.解析:mx-3y=3x+ny-1可整理为(m-3)x-(3+n)y=-1.∵mx-3y=3x+ny-1是关于x,y的二元一次方程.∴m-3≠0且n+3≠0.解得:m≠3,n≠-3.考点:方程与不等式——二元一次方程组——二元一次方程(组)的定义.2、若x4-3︱m︱+y3︱n︱=2009是关于x,y 的二元一次方程,且mn<0,0<m+n≤3,则m-n的值是( ).B.2C.4D.-2A.43答案:A.解析:根据二元一次方程的定义,x和y的次数必须都为1.所以4-3︱m︱=1,且3︱n︱=1.解得m=±1,n=±1.3又∵mn<0,0<m+n≤3.∴m=1,n=-1.3.∴m-n=43考点:方程与不等式——二元一次方程组——二元一次方程(组)的定义.3、若x=a,y=b是方程2x+y=0的一个解,且a≠0,则ab的符号是( ).A. 正号B. 负号C. 可能是正号也可能是负号D. 既不是正号也不是负号答案: B.解析:∵x=a,y=b是方程2x+y=0的一个解.∴2a+b=0.即b=-2a. 又a ≠0. ∴a,b 异号. ∴ab 为负数.考点:方程与不等式——二元一次方程组——二元一次方程(组)的解.4、求方程5x-3y=-7的正整数解. 答案:{x =1−3ty =4−5t (t 为非整数) .解析:x=3y−75经观察:x 0=1,y 0=4为方程的一组解.原方程的通解为{x =1−3ty =4−5t(t 为非整数).考点:方程与不等式——二元一次方程组——二元一次方程(组)的解.5、如果方程x-y=3与下面方程中的一个组成的方程组的解为{x =4y =1,那么这个方程可以是( )A.3x-4y=16B. 14x +2y =5 C.12x +3y =8 D.2(x-y)=6y 答案:D.解析:x-y=3可得x=3+y.代入各选项计算只有D 选项的解为:{x =4y =1.考点:方程与不等式——二元一次方程组——二元一次方程(组)的定义.6、若x+3y=3x+2y=7,则x= ,y= . 答案:x=1,y=2.解析:根据题意得:{x +3y =7 ①3x +2y =7 ②.①×3-②得7y=14. 解得:y=2. 将y=2代入①得x=1.考点:方程与不等式——二元一次方程组——解二元一次方程组.7、对于有理数,规定新运算:x*y=ax+by+xy,其中a,b 是常数,等式右边是通常的加法和乘法运算,已知2*1=7,(-3)*3=3,求13*6的值.答案:2539.解析:由题意得{2a +b +2=7−3a +3b −9=3.解得{a =13b =133.∴x*y=13x+133y+xy. ∴13*6 = 13×13+133×6+13×6=2539.考点:式——探究规律——定义新运算.方程与不等式——二元一次方程组——解二元一次方程组.8、已知方程组{ax +by =−16cx +20=−4 的解应为{x =8 y =−10 ,小明解题时把c 抄错了,因此得到的解是{x =12 y =−13,则a 2+b 2+c 2的值为 . 答案:34.解析:把相应的解恰当地代入原方程组,先求出a 、d 、c 的值.a=3,b=4,c=-3,a 2+b 2+c 2=34.考点:方程与不等式——二元一次方程组——解二元一次方程组.9、已知等式(2A-7B)x+(3A-8B)=13x+17对一切实数x 都成立,求A 、B 的值. 答案:{A =3B =−1.解析:因为两个多项式相等且对一切实数x 都成立,所以等式两边的对应项系数相等.即{2A −7B =13 3A −8B =17.解方程组得{A =3B =−1.考点:方程与不等式——二元一次方程组——解二元一次方程组.10、根据要求,解答下列问题:(1) 解下列方程组(直接写出方程组的解即可)① {x +2y =3 2x +y =3的解为 .② {3x +2y =10 2x +3y =10 的解为 .③ {2x −y =4 −x +2y =4的解为 .(2) 以上每个方程组的解中,x 值与y 值的大小关系为 . (3) 请你构造一个具有以上外形特征的方程组,并直接写出它的解. 答案:(1)① {x =1 y =1 ② {x =2 y =2 ③ {x =4y =4.(2) x=y.(3){3x +2y =25 2x +3y =25,解得{x =5y =5.解析:(1)略.(2)以上每个方程组的解中,x 值与y 值的大小关系为x=y. (3){3x +2y =25 2x +3y =25,解得{x =5y =5.考点:方程与不等式——二元一次方程组——解二元一次方程组.11、解下列关于x,y 的方程组:{361x +463y =−102 ①463x +361y =102 ②.答案:{x =1y =−1.解析:①+②得824x+824y=0.∴x+y=0.将x=-y 代入①得-361y+463y=-102. 解得:y=-1. ∴x=1.方程组的解为{x =1y =−1.考点:方程与不等式——二元一次方程组——解二元一次方程组.12、若方程组{2a −3b =13 3a +5b =30.9的解是{a =8.3b =1.2,则方程{2(x +2)−3(y −1)=13 3(x +2)+5(y −1)=30.9的解为 . 答案:{x =6.3y =2.2.解析:将x+2和y-1分别看作a 和b,比较两个方程组可得{x +2=8.3y −1=1.2.解得{x =6.3 y =2.2.考点:方程与不等式——二元一次方程组——解二元一次方程组——加减消元法.13、解方程组:{2(x−y)3−(x+y)4=−1123(x +y )−2(2x −y)=3.答案:{x =2y =1.解析:方程组可化为:{5x −11y =−1 ①–x +5y =3 ②.由②得 x=5y-3 ③.③代入①得 5(5y-3)-11y=-1. 解得 y=1.把y=1代入③得 x=5-3=2. ∴方程组的解为{x =2y =1.考点:方程与不等式——二元一次方程组——解二元一次方程组.14、解下列关于x,y 的方程组:{x+3a2+y−2b 3=a2 ①x+3a2−y−2b 3=a2 ②.答案:{x =−2ay =2b.解析:①+②得:x+3a=a,∴x=-2a. ①-②得:y-2b=0,∴y=2b.∴{x =−2a y =2b.考点:方程与不等式——二元一次方程组——解二元一次方程组.15、若二元一次方程3x-y=7,2x+3y=1,y=kx-9有公共解,则k 的取值为( ).A.3B.-3C.-4D.4 答案:D.解析:解 {3x −y =7 2x +3y =1得 {x =2y =−1.代入y=kx-9得-1=2k-9. 解得:k=4.考点:方程与不等式——二元一次方程组——解二元一次方程组.16、若关于x,y 的方程组{3x +2y =8 ax +by =10 与 {4x +2y =10bx +ay =14的解相同,则a+b= .答案:8.解析:由题意,得{3x +2y =8 4x +2y =10,解得{x =2y =1.∴{2a +b =102b +a =14,两式相加,得a+b=8. 考点:方程与不等式——二元一次方程组——含字母参数的二元一次方程组.17、已知关于x 、y 的二元一次方程组{3x −4y =mx +2y =2m +3的解x 、y 是一对相反数,试求m 的值.答案:m 的值为−75 .解析:由题意可知x=−y,代入方程式可得 {−3y −4y =m−y +2y =2m +3.整理可得 {m =−7yy =2m +3.把y=2m+3代入m=-7y 可得m=-14m-21. 解得m=−75.考点:数——有理数——相反数.方程与不等式——二元一次方程组——含字母参数的二元一次方程组.18、m 为正整数,已知二元一次方程组 {mx +2y =10 3x −2y =0有整数解,则m 2= .答案:4.解析:{x =10m+3y =15m+3.若x 为正整数,m=2,7. 若y 为正整数,m=2,12. 则方程组为整数解得m=2.考点:方程与不等式——二元一次方程组——含字母参数的二元一次方程组.19、已知m 是整数,方程组{4x −3y =66x +my =26有整数解,求m 的值.答案:m=-4,-5,4,-13 . 解析:整理得 {x =3m+392m+9y =342m+9 .满足x 为整数,则m=-4,-5 ,4 ,-13. 同时满足y 为整数,则m=-4,-5 ,4 ,-13.考点:方程与不等式——二元一次方程组——含字母参数的二元一次方程组.20、已知关于x,y 的方程组{ax −y =ax −y =1. (1) 当a ≠1时,解这个方程组. (2) 若a=1,方程组的解得情况怎样?(3) 若a=1,方程组{ax −y =ax −y =2的解得情况怎样? 答案:(1){x =1y =0.(2)方程组有无数多个解. (3)原方程组无解.解析:(1)两式相减,整理得(a-1)x=a-1.∵a ≠1,∴x=1,y=0. ∴方程组的解为{x =1y =0.(2)当a=1时,方程(a-1)x=a-1的解为一切实数,方程组有无数多个解. (3)方程组整理得(a-1)x=a-2,当a=1时,0=-1.∴原方程组无解.考点:方程与不等式——二元一次方程组——含字母参数的二元一次方程组.21、如果关于x,y 的方程组{ax +3y =92x −y =1无解,则a= .A.6B.-6C.5D.-5 答案:B.解析:用换元法变为含参一元一次方程,或通过特殊值法.考点:方程与不等式——二元一次方程组——含字母参数的二元一次方程组.22、如图所示的两架天平保持平衡,且每块巧克力的质量相等,每个椭圆形果冻的质量也相等,则每一块巧克力的质量是 g .答案:20.解析:设每块巧克力的重量为 克,每块果冻的重量为y 克.由题意得{3x =2y x +y =50,解得{x =20y =50.考点:方程与不等式——二元一次方程组——二元一次方程组的应用.23、如图所示, 块相同的长方形墙砖拼成一个矩形,设长方形墙砖的长和宽分别为x 厘米和y厘米,则依据题意列方程组正确的是( ).A. {x +2y =75 y =3xB. {x +2y =75 x =3yC. {2x −y =75 y =3xD. {2x +y =75x =3y答案:B.解析:有题意可列方程组为 {x +2y =75x =3y..考点:方程与不等式——二元一次方程组——二元一次方程组的应用.24、《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,它的代数成就主要包括开放术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就. 《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”设每头牛值金x 两,每只羊值金y 两,可列方程组为 . 答案:{5x +2y =10 2x +5y =8.解析:依题可知:{5x +2y =102x +5y =8.考点:方程与不等式——二元一次方程组——二元一次方程组的应用.25、现有190张铁皮,每张铁皮可做8个盒身或22个盒底,一个盒身与两个盒底配成一个完整的盒子,那么用多少张铁皮制盒身,多少张铁皮制盒底,可以正好制成一批完整的盒子? 答案:110张制盒身, 80张制盒底,可以正好制成一批完整的盒子. 解析:设x 张铁皮制盒身,y 张铁皮制盒底.根据题意得{x +y =1902×8x =22y .解得{x =110 y =80.答: 110张制盒身, 80张制盒底,可以正好制成一批完整的盒子. 考点:方程与不等式——二元一次方程组——二元一次方程组的应用.26、某纸品加工厂利用边角料裁出正方形和长方形两种硬纸片,长方形的宽与正方形的边长相等(如图 2),再将它们制作成甲乙两种无盖的长方体小盒(如图1 ).现将300张长方形硬纸片和150张正方形硬纸片全部用于制作这两种小盒,可以做成甲乙两种小盒各多少个?(注:图1中向上的一面无盖)答案:可以做成甲种小盒30个、乙种小盒60个. 解析:设可以做成甲、乙两种小盒各x 、y 个.根据题意可列方程组:{4x +3y =300 x +2y =150,解得{x =30y =60.考点:方程与不等式——二元一次方程组——二元一次方程组的应用.27、“五一”节日期间,某超市进行积分兑换活动,具体兑换方法见下表.爸爸拿出自己的积分卡,对小华说:“这里积有8200分,你去给咱家兑换礼品吧”.小华兑换了两种礼品,共10件,还剩下了200分,请问她兑换了哪两种礼品,各多少件?答案:小华兑换了2个保温杯和8支牙膏.解析:因为积分卡中只有8200分,要兑换10件礼品,所以不能选择兑换电茶壶.设小华兑换了x 个保温杯和y 支牙膏. 依题意,得{x +y =102000x +500y =8200−200.解得{x =2 y =8.答:小华兑换了2个保温杯和8支牙膏.考点:方程与不等式——二元一次方程组——二元一次方程组的应用.28、在边长为1的小正方形组成的方格纸中,若多边形的各顶点都在方格纸的格点(横竖格子线的交错点)上,这样的多边形称为格点多边形.记格点多边形内的格点数为a,边界上的格点数为b,则格点多边形的面积可表示为s=ma+nb-1,其中m,n 为常数.(1)在下面的方格纸中各画出一个面积为6的格点多边形,依次为三角形、平行四边形(非菱形)、菱形.(2) 利用(1)中的格点多边形确定m,n 的值.答案: (1)画图见解析.(2) {m =1n =12.解析: (1)图如下:(2)三角形:a=4,b=6,S=6.平行四边形(非菱形):a=3,b=8,S=6.菱形:a=5,b=4,S=6.任选两组代入S=ma+nb-1.如:{6=4m +6n −1 6=3m +8n −1 ,解得{m =1n =12. 考点:式——探究规律——定义新运算.方程与不等式——二元一次方程组——解二元一次方程组.三角形——三角形基础——三角形面积及等积变换.四边形——四边形基础——四边形面积.29、已知方程2(n -3)x 2︱m ︱-︱n ︱+3(m-2)y 3︱n ︱-4︱m ︱=2是关于x,y 的二元一次方程,求m,n 的值.A.m=-2,n=-3B. m=2,n=-3C. m=-2,n=3D. m=2,n=3答案:A.解析:略.考点:方程与不等式——二元一次方程组——二元一次方程(组)的定义.30、解方程组{ax +by =2 cx −7y =8时,一学生把c 看错而得{x =−2 y =2 ,而正确的解是{x =3 y =−2 ,那么a,b,c 的值是( ).A. a=4,b=7,c=2B. a=4,b=5,c=-2C.a,b 不能确定,c=-2D.不能确定答案:B.解析:把{x =−2 y =2和{x =3 y =−2分别代入ax +by =2得{3a −2b =2 ① –2a +2b =2 ②. ①+②得a=4,代入①得b=5.把{x =3 y =−2代入cx −7y =8得3c+14=8. ∴c=-2.考点:方程与不等式——二元一次方程组——解二元一次方程组.31、小华不小心将墨水溅在同桌小丽的作业本上,结果二元一次方程组{3x +△y =11△x +2y =−2中第一个方程y 的系数和第二个方程x 的系数看不到了,现在已知小丽的运算结果是{x =1 y =2,你能由此求出原来的方程组吗?答案:{3x +4y =11−6x +2y =−2. 解析:设第一个方程中y 的系数为a,第二个方程中x 的系数为b.则原方程组可写为{3x +ay =11bx +2y =−2. 将{x =1 y =2代入二元一次方程组{3x +ay =11bx +2y =−2,解得{a =4 b =−6. ∴原方程组为{3x +4y =11−6x +2y =−2. 考点:方程与不等式——二元一次方程组——二元一次方程(组)解.32、《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1、图2,图中各行从左到右列出的算筹数分别表示未知数x,y 的系数与相应的常数项.把图所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是{3x +2y =19x +4y =23. 类似地,图2所示的算筹图我们可以表述为( ).A. {2x +y =114x +3y =27B. {2x +y =114x +3y =22C. {3x +2y =19x +4y =23D. {2x +y =64x +3y =27答案:A.解析:图2所示的算筹图我们可以表述为{2x +y =114x +3y =27. 考点:方程与不等式——二元一次方程组——二元一次方程(组)的应用.33、尼泊尔当地时间4月25日14时11分,发生8.1级地震,我国迅速做出反应,国航、东航、南航和川航等航空公司克服困难,安全接回近6000名在尼滞留的我国公民.我国红十字会以最快的速度准备了第一批救援物资,其中甲、乙两种帐篷共2000顶,甲种帐篷每顶安置6人,乙种帐篷每顶安置4人,总共可以安置11000人.求甲、乙两种帐篷各准备多少顶?答案:准备甲种帐篷1500顶,乙种帐篷500顶.解析:设准备甲种帐篷x 顶,乙种帐篷y 顶.依题意,得{x +y =20006x +4y =11000. 解得{x =1500 y =500. 答:准备甲种帐篷1500顶,乙种帐篷500顶.考点:方程与不等式——二元一次方程组——二元一次方程(组)的应用.。

二元一次方程组练习题84道含答案初一下

二元一次方程组练习题84道含答案初一下

二元一次方程组练习题100道(卷一)(范围:代数: 二元一次方程组)一、判断1、⎪⎩⎪⎨⎧-==312y x 是方程组⎪⎪⎩⎪⎪⎨⎧=-=-910326523y x y x 的解 …………( ) 2、方程组⎩⎨⎧=+-=5231y x x y 的解是方程3x -2y =13的一个解( ) 3、由两个二元一次方程组成方程组一定是二元一次方程组( )4、方程组⎪⎪⎩⎪⎪⎨⎧=-++=+++25323473523y x y x ,可以转化为⎩⎨⎧-=--=+27651223y x y x ( ) 5、若(a 2-1)x 2+(a -1)x +(2a -3)y =0是二元一次方程,则a 的值为±1( )6、若x +y =0,且|x |=2,则y 的值为2 …………( )7、方程组⎩⎨⎧=+-=+81043y x x m my mx 有唯一的解,那么m 的值为m ≠-5 …………( ) 8、方程组⎪⎩⎪⎨⎧=+=+623131y x y x 有无数多个解 …………( ) 9、x +y =5且x ,y 的绝对值都小于5的整数解共有5组 …………( )10、方程组⎩⎨⎧=+=-3513y x y x 的解是方程x +5y =3的解,反过来方程x +5y =3的解也是方程组⎩⎨⎧=+=-3513y x y x 的解 ………( ) 11、若|a +5|=5,a +b =1则32-的值为b a ………( )12、在方程4x -3y =7里,如果用x 的代数式表示y ,则437y x +=( ) 二、选择:13、任何一个二元一次方程都有( )(A )一个解; (B )两个解;(C )三个解; (D )无数多个解;14、一个两位数,它的个位数字与十位数字之和为6,那么符合条件的两位数的个数有( )(A )5个 (B )6个 (C )7个 (D )8个15、如果⎩⎨⎧=+=-423y x a y x 的解都是正数,那么a 的取值范围是( )(A )a <2; (B )34->a ; (C )342<<-a ; (D )34-<a ; 16、关于x 、y 的方程组⎩⎨⎧=-=+m y x m y x 932的解是方程3x +2y =34的一组解,那么m 的值是( )(A )2; (B )-1; (C )1; (D )-2;17、在下列方程中,只有一个解的是( )(A )⎩⎨⎧=+=+0331y x y x (B )⎩⎨⎧-=+=+2330y x y x(C )⎩⎨⎧=-=+4331y x y x (D )⎩⎨⎧=+=+3331y x y x18、与已知二元一次方程5x -y =2组成的方程组有无数多个解的方程是() (A )15x -3y =6 (B )4x -y =7 (C )10x +2y =4 (D )20x -4y =319、下列方程组中,是二元一次方程组的是( )(A )⎪⎩⎪⎨⎧=+=+9114y x y x (B )⎩⎨⎧=+=+75z y y x(C )⎩⎨⎧=-=6231y x x (D )⎩⎨⎧=-=-1y x xyy x20、已知方程组⎩⎨⎧-=+=-135b y ax y x 有无数多个解,则a 、b 的值等于()(A )a =-3,b =-14 (B )a =3,b =-7(C )a =-1,b =9 (D )a =-3,b =1421、若5x -6y =0,且xy ≠0,则y x yx 3545--的值等于( )(A )32(B )23(C )1 (D )-122、若x 、y 均为非负数,则方程6x =-7y 的解的情况是( )(A )无解 (B )有唯一一个解(C )有无数多个解 (D )不能确定23、若|3x +y +5|+|2x -2y -2|=0,则2x 2-3xy 的值是( )(A )14 (B )-4 (C )-12 (D )1224、已知⎩⎨⎧-==24y x 与⎩⎨⎧-=-=52y x 都是方程y =kx +b 的解,则k 与b 的值为( )(A )21=k ,b =-4 (B )21-=k ,b =4(C )21=k ,b =4 (D )21-=k ,b =-4□x +5y =13 ①4x -□y =-2 ②25、在方程3x +4y =16中,当x =3时,y =________,当y =-2时,x =_______若x 、y 都是正整数,那么这个方程的解为___________;26、方程2x +3y =10中,当3x -6=0时,y =_________;27、如果0.4x -0.5y =1.2,那么用含有y 的代数式表示的代数式是_____________;28、若⎩⎨⎧-==11y x 是方程组⎩⎨⎧-=-=+1242a y x b y ax 的解,则⎩⎨⎧==______________b a ; 29、方程|a |+|b |=2的自然数解是_____________; 30、如果x =1,y =2满足方程141=+y ax ,那么a =____________; 31、已知方程组⎩⎨⎧-=+=+m y x ay x 26432有无数多解,则a =______,m =______; 32、若方程x -2y +3z =0,且当x =1时,y =2,则z =______;33、若4x +3y +5=0,则3(8y -x )-5(x +6y -2)的值等于_________;34、若x +y =a ,x -y =1同时成立,且x 、y 都是正整数,则a 的值为________;35、从方程组)0(030334≠⎩⎨⎧=+-=--xyz z y x z y x 中可以知道,x :z =_______;y :z =________; 36、已知a -3b =2a +b -15=1,则代数式a 2-4ab +b 2+3的值为__________;四、解方程组37、⎪⎪⎩⎪⎪⎨⎧=-=-1332343n m n m ; 38、)(6441125为已知数a a y x a y x ⎩⎨⎧=-=+; 39、⎪⎪⎩⎪⎪⎨⎧=++=+125432y x y x y x ; 40、⎪⎩⎪⎨⎧=--+=-++0)1(2)1()1(2x y x x x y y x ; 41、⎪⎪⎩⎪⎪⎨⎧++=++=+=+6253)23(22)32(32523233y x y x y x y x ; 42、⎪⎪⎩⎪⎪⎨⎧=-++=-++1213222132y x y x ; 43、⎪⎩⎪⎨⎧=-+-=-+=-+3113y x z x z y z y x ; 44、⎪⎩⎪⎨⎧=+=+=+101216x z z y y x ;45、⎪⎩⎪⎨⎧=-+=+-=-+35351343z y x z y x z y x ; 46、⎪⎩⎪⎨⎧=+-==30325:3:7:4:z y x z x y x ;47、甲、乙两人在解方程组 时,甲看错了①式中的x 的系数,解得⎪⎪⎩⎪⎪⎨⎧==475847107y x ;乙看错了方程②中的y 的系数,解得⎪⎪⎩⎪⎪⎨⎧==19177681y x ,若两人的计算都准确无误,请写出这个方程组,并求出此方程组的解;48、使x +4y =|a |成立的x 、y 的值,满足(2x +y -1)2+|3y -x |=0,又|a |+a =0,求a 的值;49、代数式ax 2+bx +c 中,当x =1时的值是0,在x =2时的值是3,在x =3时的值是28,试求出这个代数式;50、要使下列三个方程组成的方程组有解,求常数a 的值。

二元一次方程组应用题训练题(含答案)

二元一次方程组应用题训练题(含答案)

二元一次方程组应用题训练题(含答案)1.一家工厂需要进行两道工序来生产产品。

第一道工序每人每天可以完成900件,第二道工序每人每天可以完成1200件。

现在有7位工人参与这两道工序,应该如何分配人力,才能使每天第一道工序和第二道工序所完成的件数相等?2.垃圾对环境的影响越来越严重,因此垃圾分类回收成为了一个重要的话题。

一所中学准备购买两种型号的垃圾分类回收箱,共20个,放置在校园中各个合适的位置。

其中型号一有14个,型号二有6个,总共需要4240元。

如果购买型号一8个,型号二12个,需要4480元。

请问型号一和型号二的单价分别是多少?3.某农场去年生产了大豆和小麦共计300吨。

今年采用新技术后,总产量为350吨,其中大豆超产10%,小麦超产20%。

请问今年该农场实际生产了多少吨大豆和多少吨小麦?4.有两块试验田,原本每块田都可以产生470千克的花生。

改用良种后,两块试验田共产生了532千克的花生。

已知第一块田的产量比原来增加了16%,第二块田的产量比原来增加了10%。

请问这两块试验田改用良种后,各增产了多少千克的花生?5.一家书店有两个下属书店,共有某种图书5000册。

如果将甲书店的400册该种图书调出给乙书店,那么乙书店的该种图书数量仍然比甲书店的数量少400册的一半。

请问这两个书店原来各有多少册这种图书?6.甲种电影票每张20元,乙种电影票每张15元。

如果购买甲、乙两种电影票共40张,恰好用去720元,请问甲、乙两种电影票各买了多少张?7.XXX和XXX一起去超市购买矿泉水和面包。

XXX买了3瓶矿泉水和3个面包,共花费21元;XXX买了4瓶矿泉水和5个面包,共花费32.5元。

请问这种矿泉水和面包的单价分别是多少?8.一家旅馆有三人间和两人间两种客房,其中三人间每人每天需要支付25元,两人间每人每天需要支付35元。

一个50人的旅游团到该旅馆住宿,租住了若干个客房,每个客房都被住满,一天总共花费1510元。

初中数学二元一次方程组的应用题型分类汇编——行程问题1(附答案)

初中数学二元一次方程组的应用题型分类汇编——行程问题1(附答案)

初中数学二元一次方程组的应用题型分类汇编——行程问题1(附答案)1.小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路,她去学校共用了16分钟,假设小颖上坡路的平均速度是3千米/小时,下坡路的平均速度是5千米/小时,若设小颖上坡用了min x ,下坡用了min y ,根据题意可列方程组( )A .35120016x y x y +=⎧⎨+=⎩B .35 1.2606016x y x y ⎧+=⎪⎨⎪+=⎩ C .35 1.216x y x y +=⎧⎨+=⎩D .351200606016x y x y ⎧+=⎪⎨⎪+=⎩ 2.小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路.她去学校共用了16分钟.假设小颖上坡路的平均速度是3千米/时,下坡路的平均速度是5千米/时.若设小颖上坡用了x 分钟,下坡用了y 分钟,根据题意可列方程组为( )A .3x 5y 1200x y 16+=⎧+=⎨⎩B .35x y 1.26060x y 16⎧+=⎪⎨⎪+=⎩C .3x 5y 1.2x y 16+=⎧+=⎨⎩D .35x y 12006060x y 16⎧+=⎪⎨⎪+=⎩ 3.甲、乙两人练习跑步.如果乙先跑10米,则甲跑5秒就可追上乙;如果乙先跑2秒,则甲跑4秒就可追上乙.若设甲的速度为x 米/秒,乙的速度为y 米/秒,则下列方程组中正确的是( )A .5510,442x y x y y =+⎧⎨=+⎩B .5510,424x y x x y -=⎧⎨-=⎩C .5105,442x y x y +=⎧⎨-=⎩D .5510,424x y x y -=⎧⎨-=⎩4.小刚去距县城28千米的旅游点游玩,先乘车,后步行.全程共用了1小时,已知汽车速度为每小时36千米,步行的速度每小时4千米,则小刚乘车路程和步行路程分别是( )A .26千米,2千米B .27千米,1千米C .25千米,3千米D .24千米,4千米5.一辆汽车在公路上行驶,看到里程表上是一个两位数,1小时后其里程表还是一个两位数,且刚好它的十位数字与个位数字与第一次看到的两位数的十位数字与个位数字颠倒了位置,又过了1小时后看到里程表是一个三位数,它是第一次看到的两位数中间加一个0,则汽车的速度是( )千米/小时.A .35B .40C .45D .506.甲乙两人在一环形跑道上同时从A 点匀速跑步,已知甲的速度比乙的速度快,若两人同向出发,则两人在6分钟时第1次相遇;若两人背向出发,两人在3分钟时第1次相遇,则甲的速度是乙的速度的( )倍. A .2B .3C .4D .57.李明同学早上骑自行车上学,中途因道路施工需步行一段路,到学校共用时15分钟.他骑自行车的速度是250米/分钟,步行的速度是80米/分钟.他家离学校的距离是2900米.若他骑车和步行的时间分别为x 分钟和y 分钟,则列出的方程组是( )A .1{4250802900x y x y +=+= B .15{802502900x y x y +=+= C .15{250802900x y x y +=+=D .1{4802502900x y x y +=+= 8.甲、乙两人练习跑步,如果甲让乙先跑10米,那么甲跑5秒就能追上乙;如果甲让乙先跑2秒,那么甲跑4秒就能追上乙.若甲、乙每秒分别跑x y 、米,则列出方程组应是( )A .5105442x y x y +=⎧⎨-=⎩B .5510424x y x y =+⎧⎨-=⎩C .()551042x y x y y -=⎧⎨-=⎩D .()()51042x y x y ⎧-=⎪⎨-=⎪⎩9.甲.乙二人从同一地点出发,同向而行,甲骑车乙步行,若乙先行12千米,那么甲1小时追上乙;如果乙先走1小时,甲只用12小时追上乙,则乙的速度是( ) A .6千米/时B .12千米/时C .18千米/时D .36千米/时10.一艘船从甲码头到乙码头顺流行驶,用了2小时,从乙码头返回到甲码头逆流行驶,用了2.5小时.已知水流的速度是3千米/时,船在静水中的速度为千米/时,则可列方程为( ) A .B .C .D .11.一艘轮船顺流从重庆到上海需5天,而逆流从上海到重庆要7天,那么有一木排从重庆顺流漂到上海要________天.12.A 、B 、C 三地在同一直线上,甲、乙两车分别从A ,B 两地相向匀速行驶,甲车先出发2小时,甲车到达B地后立即调头,并将速度提高10%后与乙车同向行驶,乙车到达A地后,继续保持原速向远离B的方向行驶,经过一段时间后两车同时到达C地,设两车之间的距离为y(千米),甲行驶的时间x(小时).y与x的关系如图所示,则B、C两地相距_____千米.13.A、B两地相距20千米,甲乙两人分别从A、B两地相向而行,2小时后在途中相遇,然后甲立即返回A地,乙继续向A地走,当甲回到A地时,乙距离A地还有2千米,则甲的速度为____千米/时,乙的速度为_____千米/时.14.A、B两地相距80千米,一艘船从A地出发顺水航行4小时到达B地,而它从B 地出发逆水航行5小时才能到达A地.已知船顺水航行、逆水航行的速度分别为船在静水中的速度与水流速度的和与差,则船在静水中的速度是________,水流速度是________.15.某体育场的环行跑道长400米,甲、乙同时从同一起点分别以一定的速度练习长跑和骑自行车.如果反向而行,那么他们每隔30秒相遇一次.如果同向而行,那么每隔80秒乙就追上甲一次.甲、乙的速度分别是多少?设甲的速度是x米/秒,乙的速度是y米/秒.则列出的方程组是_____.16.在一条笔直的公路上有A、B两地,甲、乙两车均从A地匀速驶向B地,甲车比乙车早出发2小时,出发后,甲车出现了故障停下来维修,半小时后继续以原速向B地行驶.当乙车到达B地后立刻提速50%返回,在返回途中第二次与甲车相遇.下图表示甲乙两车之间的距离y(千米)与甲车行驶的时间x(小时)之间的函数关系.则当乙车第二次与甲车相遇时,甲车距离B地_____千米.17.已知A、B两地之间的距离为20千米,甲步行,乙骑车,两人沿着相同路线,由A地到B地匀速前行,甲、乙行进的路程s与x(小时)的函数图象如图所示.(1)乙比甲晚出发___小时;(2)在整个运动过程中,甲、乙两人之间的距离随x的增大而增大时,x的取值范围是___.18.小蒲家与学校之间是一条笔直的公路,小蒲从家步行前往学校的途中发现忘带作业本,便向路人借了手机打给妈妈,妈妈接到电话后,带上作业本马上赶往学校,同时小蒲沿原路返回,两人相遇后,小蒲立即赶往学校,妈妈沿原路返回家,小蒲到达学校刚好比妈妈到家晩了2分钟.若小蒲步行的速度始终不变,打电话和交接作业本的时间忽略不计,小蒲和妈妈之间的距离y米与小蒲打完电话后步行的时间x分钟之间的函数关系如图所示;则相遇后妈妈返回家的速度是每分钟_____米.19.一辆汽车要在规定的时间内从甲地赶往乙地,如果每小时行驶45千米,就要迟到0.5小时;如果每小时行驶50千米,就会早0.5小时.若设甲、乙两地间的距离为x千米,规定的时间为y小时,则可列方程组为________.20.已知铁路桥长500米,现有一列火车从桥上通过测得火车从开始上桥到完全离开桥共用30秒,而整列火车在桥上的时间为20秒,则火车的长度________.21.甲、乙两人同时绕400米的环形跑道行走,如果他们同时从同一起点背向而行,2.5分钟可以相遇;如果他们同时从同一点同向而行,12.5分钟甲能追上乙.求甲、乙每人每分钟各走多少米?22.一条船顺流航行,每小时行20千米;逆流航行,每小时行16千米.求船在静水中的速度与水流的速度.23.从甲地到乙地有一段下坡路与一段平路,如果保持下坡路每小时走5千米,平路每小时走4千米,上坡路每小时走3千米,那么从甲地到乙地需要36分钟,从乙地返回甲地需要48分钟.求甲地到乙地的全程是多少?24.某学校组织学生乘汽车去自然保护区野营,先以60km/h的速度走平路,后又以30km/h的速度爬坡,共用了6.5h;原路返回时,汽车以40km/h的速度下坡,又以50km/h 的速度走平路,共用了6 h.问平路和坡路各有多远?25.小华从家里到学校的路是一段平路和一段下坡路.假设他始终保持平路每分钟走60米,下坡路每分钟走80米,上坡路每分钟走40米,从家里到学校需10分钟,从学校到家里需15分钟.请问小华家离学校多远?26.小明从家里到学校先是走一段平路然后走一段下坡路,假设他始终保持平路每分钟走80m,下坡路每分钟走90m,上坡路每分钟走60m,则他从家里到学校需20min,从学校到家里需25min.问:从小明家到学校有多远?27.“滴滴出行”改变了传统打车方式,最大化节省了司机与乘客双方的资源与时间.该打车方式的总费用由里程费和耗时费组成,其中里程费按x元/公里计算,耗时费按y元/分钟计算.甲、乙两乘客用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与平均车速等信息如下表:平均速度(公里/时)里程数(公里)车费(元)甲乘客60812乙乘客501016(1)求x,y的值;(2)如果你采用“滴滴出行”的打车方式,保持平均车速45公里/时,行驶了9公里,那么你是否能够计算出打车的总费用?如果能,总费用为多少元?如果不能,请说明理由.28.小李骑电动自行车,预计用相同的时间往返于甲、乙两地,去时电动自行车的车速是18km/h,结果早到20min;返回时,以每小时15km的速度行进,结果晚到4min.求甲、乙两地间的距离和预计时间.29.“铁路建设助推经济发展”,近年来我国政府十分重视铁路建设.渝利铁路通车后,从重庆到上海比原铁路全程缩短了320千米,列车设计运行时速比原铁路设计运行时速提高了120千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用16小时.(1)渝利铁路通车后,重庆到上海的列车设计运行里程是多少千米?(2)专家建议:从安全的角度考虑,实际运行时速要比设计时速减少m%,以便于有充分时间应对突发事件,这样,从重庆到上海的实际运行时间将增加110m 小时,求m 的值.30.从A 地到B 地全程290千米,前一路段为国道,其余路段为高速公路.已知汽车在国道上行驶的速度为60/km h ,在高速公路上行驶的速度为100/km h ,一辆客车从A 地开往B 地一共行驶了3.5h .求A 、B 两地间国道和高速公路各多少千米.(列方程组,解应用题)参考答案1.B 【解析】 【分析】根据路程=时间乘以速度得到方程35 1.26060x y +=,再根据总时间是16分钟即可列出方程组. 【详解】∵她去学校共用了16分钟, ∴x+y=16,∵小颖家离学校1200米, ∴351.26060x y +=, ∴35 1.2606016x y x y ⎧+=⎪⎨⎪+=⎩, 故选:B. 【点睛】此题考查二元一次方程组的实际应用,正确理解题意列出方程组,注意时间单位,这是解题中容易出现错误的地方. 2.B 【解析】 【分析】两个等量关系为:上坡用的时间+下坡用的时间=16;上坡用的时间×上坡的速度+下坡用的时间×下坡速度=1200,把相关数值代入即可求解. 【详解】小颖上坡用了x 分钟,下坡用了y 分钟,根据题意得35x y 1.26060x y 16⎧+=⎪⎨⎪+=⎩, 故选B . 【点睛】本题考查了二元一次方程组的应用,弄清题意,找准合适的等量关系列出方程组是解题的关键. 3.A 【解析】 【分析】根据甲跑的路程等于相同时间乙跑的路程加上乙先跑的路程即可解答. 【详解】设甲的速度为x 米/秒,乙的速度为y 米/秒,根据题意得:5510442x y x y y =+⎧⎨=+⎩故选:A 【点睛】此题主要考查了由实际问题抽象出二元一次方程组,此题是追及问题,注意:无论是哪一个等量关系中,总是甲跑的路程=乙跑的路程. 4.B 【解析】 【详解】试题分析:利用方程的思想进行求解,设乘车的路程为x 千米,则步行的路程为(28-x)千米,根据时间=路程÷时间求出乘车的时间和步行的时间,根据两个时间之和为1小时列出方程进行求解.设乘车的路程为x 千米,则步行的路程为(28-x)千米,281364x y x y +=⎧⎪⎨+=⎪⎩ 解得:x=27,y=1 故选:B 5.C 【解析】 【分析】设第一次他看到的两位数的个位数为x ,十位数为y ,汽车行驶速度为v ,第一次看到的两位数为10y+x ,行驶一小时后看到的两位数为10x+y ,第三次看到的三位数为100y+x ,由汽车均速行驶可得三段时间的路程相等,即可列出两个方程求解即可.由速度=总里程时间,求得答案. 【详解】设第一次他看到的两位数的个位数为x ,十位数为y ,汽车行驶速度为v ,根据题意得:()()10101100101x y y x v y x x y v ⎧+-+=⨯⎪⎨+-+=⨯⎪⎩, 解得:6x y =, ∵xy 为1-9内的自然数, ∴61x y =⎧⎨=⎩;即两位数为16.即:第一次看到的两位数是16. 第二次看到的两位数是61. 第三次看到的两位数是106. 则汽车的速度是:10616452-=(千米/小时). 故选:C. 【点睛】本题考查了二元一次方程组的应用,解题关键是弄清题意,合适的等量关系,列出方程组.本题涉及一个常识问题:两位数=10×十位数字+个位数字,并且在求两位数或三位数时,一般是不能直接设这个两位数或三位数的,而是设它各个数位上的数字为未知数. 6.B 【解析】 【分析】设乙的速度为x 米/分钟,甲的速度为y 米/分钟,根据同向出发相遇和背向出发相遇列出方程组求解即可. 【详解】设乙的速度为x 米/分钟,甲的速度为y 米/分钟,根据题意得:1613y x y x⎧=⎪-⎪⎨⎪=⎪+⎩ 解方程得:3yx=,即甲的速度是乙的速度的3倍. 故选:B 【点睛】本题考查了列二元一次方程组解环形问题的运用,二元一次方程组的解法的运用,解答时运用环形问题的数量关系建立方程是关键. 7.C 【解析】 【分析】根据关键语句“到学校共用时15分钟”可得方程:x+y=15,根据“骑自行车的平均速度是250米/分钟,步行的平均速度是80米/分钟.他家离学校的距离是2900米”可得方程:250x+80y=2900,两个方程组合可得方程组. 【详解】设骑车和步行的时间分别为x 分钟,y 分钟,由题意得:15{250802900x y x y +=+=, 故选C. 【点睛】本题考查了二元一次方程组的应用,根据题意找到等量关系式是解题的关键. 8.C 【解析】 【分析】等量关系:(1)乙先跑10米,甲跑5秒就追上乙;(2)如果让乙先跑2秒,那么甲跑4秒就追上乙,可以列出方程组. 【详解】设甲、乙每秒分别跑x 米,y 米,由题意知:()551042x y x y y -=⎧⎨-=⎩. 故选:C. 【点睛】此题考查由实际问题抽象出二元一次方程组,解题关键在于理解题意列出方程., 9.A 【解析】 【分析】这里给了两个信息,我们可以设两个未知数,列两个等式,给出二元一次方程组,只需求解二元一次方程组即可. 【详解】解:设甲的速度为每小时x 千米,乙的速度为每小时y 千米121122x y x y y -=⎧⎪⎨-=⎪⎩ ,解得186x y =⎧⎨=⎩, 故选A 【点睛】本题考查了二元一次方程组的应用,学会利用题目给的信息列等量关系式是关键. 10.B 【解析】 【分析】顺水行船的路程=逆水行船的路程,再根据流水行船问题的公式求出顺水路程以及逆水路程,即可得到答案. 【详解】∵顺水路程=顺水速度×顺水时间=2(x+3) 逆水路程=逆水速度×逆水时间=2.5(x-3) 又顺水路程=逆水路程∴2.5(x-3)=2(x+3),因此答案选择B. 【点睛】本题主要考查的是一元一次方程的应用,需要熟悉流水行船问题的公式.11.35 【解析】 【分析】设重庆到上海的路程为单位“1”,根据1V V V 5=+=顺流船水以及1=7V V V =-逆流船水 ,即可求出水流的速度,从而求出木排从重庆顺流漂到上海的天数. 【详解】解:设船的速度为V 船,顺流的速度为V 顺流,逆流速度为V 逆流,水流速度为V 水,则1=51=7V V V V V V ⎧=+⎪⎪⎨⎪=-⎪⎩顺流船水逆流船水①②, 由①-②得:1122=5735V -=水 ∴1=35V 水, ∴有一木排从重庆顺流漂到上海要35天 故答案为:35 【点睛】本题考查了方程组的实际应用,当一些必须的量没有时,应设为未知数,在计算过程中消除即可. 12.1320. 【解析】 【分析】根据题意和函数图象中的数据,可以求得甲乙两车的速度,再根据“路程=速度×时间”,即可解答本题. 【详解】解:设甲车的速度为a 千米/小时,乙车的速度为b 千米/小时,(62)()560(62)(96)a b b a -⨯+=⎧⎨-=-⎩,解得8060a b =⎧⎨=⎩,∴A 、B 两地的距离为:80×9=720千米, 设乙车从B 地到C 地用的时间为x 小时, 60x =80(1+10%)(x+2﹣9), 解得,x =22,则B 、C 两地相距:60×22=1320(千米) 故答案为:1320. 【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答. 13.5.5 4.5 【解析】 【分析】设甲的速度为x km/h ,乙的速度为y km/h ,根据行程问题的数量关系建立方程解出方程即可. 【详解】解:设甲的速度为x km/h ,乙的速度为y km/h ,由题意得:2()20222x y x y +=⎧⎨-=⎩ ,解得: 5.54.5x y =⎧⎨=⎩ 故甲的速度为5.5千米/时,乙的速度为4.5千米/时. 【点睛】本题考查了列二元一次方程组解决实际问题的运用,二元一次方程组的解法的运用,相遇问题和追及问题的数量关系,解答时由行程问题的数量关系建立方程组是关键. 14.18千米/时 2千米/时 【解析】 【分析】设船在静水中的速度为x 千米/时,水流速度为y 千米/时,根据题意列出二元一次方程组即可求解. 【详解】设船在静水中的速度为x 千米/时,水流速度为y 千米/时. 根据题意,得4()805()80x y x y +=⎧⎨-=⎩,解得182x y =⎧⎨=⎩.即船在静水中的速度为18千米/时,水流速度为2千米/时.【点睛】此题主要考查二元一次方程组的应用,解题的关键根据题意找到等量关系列方程求解.15.30()400 80()400x yy x+=⎧⎨-=⎩【解析】【分析】此题中的等量关系有反向而行,则两人30秒共走400米;②同向而行,则80秒乙比甲多跑400米【详解】解:①根据反向而行,得方程为30(x+y)=400;②根据同向而行,得方程为80(y﹣x)=400.那么列方程组30()400 80()400x yy x+=⎧⎨-=⎩.【点睛】此题考查由实际问题抽象出二元一次方程组,解题关键在于列出方程组16.90【解析】【分析】设甲的速度a千米/时,乙的速度b千米/时,由图象可列方程组,求出甲,乙速度,即可求解.【详解】解:设甲的速度a千米/时,乙的速度b千米/时,由图象可知,甲,乙第一次相遇是甲出发3.5小时时,乙到达B地是甲出发6.5小时时,∴3 1.5 6120 4.5a ba b=⎧⎨+=⎩,解得:4080 ab=⎧⎨=⎩,∴甲的速度40千米/时,乙的速度80千米/时,∴A、B两地距离=80×4.5=360千米,∴从B地返回到相遇时间=12034080(150%)4=+⨯+小时,∴当乙车第二次与甲车相遇时,甲车距离B地=120﹣40×34=90千米,故答案为:90.【点睛】本题考查了一次函数的应用,以及二元一次方程组,理解图象,正确进行求解是本题的关键.17.1,0≤x≤1或43≤x≤2.【解析】【分析】(1)由图象直接可得答案;(2)根据图象求出甲乙的函数解析式,再求出方程组的解集即可解答【详解】(1)由函数图象可知,乙比甲晚出发1小时.故答案为1.(2)在整个运动过程中,甲、乙两人之间的距离随x的增大而增大时,有两种情况:一是甲出发,乙还未出发时:此时0≤x≤1;二是乙追上甲后,直至乙到达终点时:设甲的函数解析式为:y=kx,由图象可知,(4,20)在函数图象上,代入得:20=4k,∴k=5,∴甲的函数解析式为:y=5x①设乙的函数解析式为:y=k′x+b,将坐标(1,0),(2,20)代入得:202k bk b=+⎧⎨=+⎩,解得2020kb=⎧⎨=-⎩,∴乙的函数解析式为:y=20x﹣20 ②由①②得52020y xy x=⎧⎨=-⎩,∴43203xy⎧=⎪⎪⎨⎪=⎪⎩,故43≤x≤2符合题意.故答案为0≤x≤1或43≤x≤2.【点睛】此题考查函数的图象和二元一次方程组的解,解题关键在于看懂图中数据18.50.【解析】【分析】由图像得出相向而行和背向而行行走的路程和时间,然后列出方程组,即可求解.【详解】解:设相遇后妈妈返回家的速度是每分钟x米,小蒲的速度为每分钟y米,由题意得:16+10y=2000 16+18y=2960xx⎧⎨⎩解得:x=50 y=120⎧⎨⎩∴相遇后妈妈返回家的速度是每分钟50米.【点睛】本题考查了函数图象的识别,二元一次方程组的应用,列出方程组解题的关键.19.0.5450.550x yx y⎧+=⎪⎪⎨⎪-=⎪⎩【解析】【分析】设规定时间是y小时,甲、乙两地相距x千米,根据45×(规定时间+0.5)=两地距离;50×(规定时间-0.5)=两地距离,列出方程组即可.【详解】设甲、乙两地间的距离为x千米,规定的时间为y小时,由题意得0.5450.550x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩. 故答案为:0.5450.550x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩.【点睛】此题考查了二元一次方程组的运用,解答此题的关键是读懂题意,找出之间的等量关系,列出方程组. 20.100米. 【解析】 【分析】设火车长为x,火车速度为y ,根据题意得方程:500+x=30y 和500-x=20y ,根据等式性质求解. 【详解】解: 设火车长为x,火车速度为y根据题意得方程: 500+x=30y 和500-x=20y 解得 x=100,y=20所以火车的速度是20米/秒,火车的长度是100米. 故答案为:100米. 【点睛】考核知识点:列方程解应用题.理解题意列出方程,根据等式性质求解是关键. 21.甲每分钟走96米,乙每分钟走64米. 【解析】 【分析】设甲每分钟x 米,乙每分钟y 米 ,根据题目中相遇问题和追及问题的等量关系可得: ,解方程组即可. 【详解】设甲每分钟x 米,乙每分钟y 米 ,根据题意可得:2.540012.5400x y x y +=⎧⎨-=⎩()(), 解得:9664x y =⎧⎨=⎩.答:甲每分钟走96米,乙每分钟走64米. 【点睛】本题主要考查列二元一次方程组解决行程问题,解决本题的关键是要熟练掌握行程问题中追及和相遇问题的等量关系. 22.18/km h ,2/km h 【解析】 【分析】直接根据题意结合静水速度+水速度=顺水速度,静水速度-水速度=逆水速度,进而列出方程组,求出答案. 【详解】解:设船在静水中的速度为/xkm h ,水流的速度为/ykm h .根据题意可得:2016x y x y +=⎧⎨-=⎩, 解得:182x y =⎧⎨=⎩答:船在静水中的速度为18/km h ,水流的速度为2/km h . 【点睛】此题主要考查了二元一次方程组在路程问题中的应用,根据题意正确得出等量关系是解题关键.23.甲地到乙地的全程是2.7千米. 【解析】 【分析】设从甲地到乙地的下坡路为xkm ,平路为ykm ,根据保持下坡每小时走5km ,平路每小时走4km ,上坡每小时走3km ,然后根据从甲地到乙地用36分钟,从乙地返回甲地用48分钟列出方程组进行求解即可.设从甲地到乙地的下坡路为xkm ,平路为ykm ,由题意得:365460483460x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,解得: 1.51.2x y =⎧⎨=⎩,所以:x+y=2.7千米答:甲地到乙地的全程是2.7千米. 【点睛】本题考查了二元一次方程组的应用,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组. 24.平路有150 km ,坡路有120 km . 【解析】 【分析】设平路有x km ,坡路有y km ,根据题意列出方程组求解即可. 【详解】解:设平路有x km ,坡路有y km ,根据题意,得x y+=6.56030{x y +=65040, 解得x=150{y=120. 答:平路有150 km ,坡路有120 km . 【点睛】本题考查了二元一次方程组的应用(行程问题).方程(组)的应用解题关键是找出等量关系,列出方程求解. 25.小华家离学校700米. 【解析】设出平路和坡路的路程,由题意从家里到学校需10分钟,从学校到家里需15分钟,列方程即可得出答案. 【详解】设平路有x 米,坡路有y 米,根据题意列方程得,106080{156040x y x y +=+=, 解这个方程组,得300{400x y ==,所以x +y =700.所以小华家离学校700米. 【点睛】本题考查二元一次方程的应用,此题主要利用时间、速度、路程三者之间的关系进行解答,注意来回坡路的变化是解题的关键. 26.1700m 【解析】 【分析】设出平路和坡路的路程,从家里到学校走平路和下坡路一共用10分钟,从学校到家里走上坡路和平路一共用15分钟,利用这两个关系式列出方程组解答即可. 【详解】解:设平路有x 米,坡路有y 米,根据题意列方程得,208090258060x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ 解得:800900x y =⎧⎨=⎩总路程:8009001700m += 答:小明家到学校有1700m .【点睛】此题考查二元一次方程组的应用,主要利用时间、速度、路程三者之间的关系解答,解答时注意来回坡路的变化,由此找出关系式,列方程组解决问题.27.(1)112xy=⎧⎪⎨=⎪⎩;(2)能,总费用是15元.【解析】【分析】(1)由表中数据可列出二元一次方程组,求解即可得到x,y的值;(2)设平均车速为a公里/时,行驶时间为b分钟,车费为w元,则w=a+12b,将a=45,b=945代入,即可得总费用.【详解】解:(1)由题意得886012601010601650x yx y⎧+⨯=⎪⎪⎨⎪+⨯=⎪⎩.解得112 xy=⎧⎪⎨=⎪⎩(2)能.设平均车速为a公里/时,行驶时间为b分钟,车费为w元,则w=a+12 b,将a=45,b=945代入,可得总费用w=91916015452⨯+⨯⨯=(元)答:总费用是15元.【点睛】本题考查二元一次方程组和一次函数的应用,灵活运用一次函数解决问题是解题的关键.28.36km,7 3 h【解析】【分析】设预计时间为t h,甲、乙两地间的距离为s km,根据时间=路程÷速度,即用去时的时间加上早到的20min (即13h )等于t ,返回的时间减去晚到的4min (115h )等于t ,即可列方程组解答.【详解】 解:设预计的时间为t h ,甲、乙两地间的距离为s km , 据题意得118311515s t s t ⎧+=⎪⎪⎨⎪-=⎪⎩,解得7336t s ⎧=⎪⎨⎪=⎩.答:甲、乙两地间的距离为36km ,预计时间为73h . 【点睛】本题考查二元一次方程组的实际应用,解答此题的关键是明白去时所用的时间加上早到的时间与返回时所用的时间减去迟到的时间相等;二是时间的单位换算.29.(1)1600;(2)20.【解析】【分析】(1)利用“从重庆到上海比原铁路全程缩短了320千米,列车设计运行时速比原铁路设计运行时速提高了l20千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用16小时”,分别得出等式组成方程组求出即可;(2)根据题意得出:1(80120)(1%)(8)160010m m +-+=进而求出即可. 【详解】 试题解析:(1)设原时速为xkm/h ,通车后里程为ykm ,则有:8(120){(816)320x y x y+=+=+, 解得:80{1600x y ==,答:渝利铁路通车后,重庆到上海的列车设计运行里程是1600千米;(2)由题意可得出:1(80120)(1%)(8)160010m m +-+=, 解得:120=m ,20m =(不合题意舍去),答:m 的值为20.考点:1.一元二次方程的应用;二元一次方程组的应用.30.A、B两地国道为90千米,高速公路为200千米.【解析】【分析】首先设A、B两地间国道和高速公路分别是x、y千米,根据题意可得等量关系:国道路程+高速路程=290,在国道上行驶的时间+在高速公路上行驶的时间=3.5,根据等量关系列出方程组,再解即可.【详解】解:设A、B两地国道为x千米,高速公路为y千米.则方程组为:2903.5 60100x yx y+=⎧⎪⎨+=⎪⎩,解得:90200 xy=⎧⎨=⎩,答:A、B两地间国道和高速公路分别是90、200千米.【点睛】此题考查了二元一次方程组的应用,关键是设出未知数,表示出每段行驶所花费的时间,得出方程组,难度一般.。

(完整版)初一数学二元一次方程组试题和答案.doc

(完整版)初一数学二元一次方程组试题和答案.doc

..初一数学《二元一次方程组》试题8.1二元一次方程组一、填空题1 、二元一次方程 4x-3y=12 ,当 x=0 , 1, 2,3 时, y=____2 、在 x+3y=3 中,若用 x 表示 y,则 y= ,用 y 表示 x,则 x=3 、已知方程 (k 2-1)x 2+(k+1)x+(k-7)y=k+2 ,当 k=______ 时,方程为一元一次方程;当k=______ 时,方程为二元一次方程。

4 、对二元一次方程 2(5-x)-3(y-2)=10 ,当 x=0 时,则 y=____ ;当 y=0 时,则 x=____ 。

5 、方程 2x+y=5 的正整数解是 ______。

6 、若 (4x-3) 2+|2y+1|=0 ,则 x+2= 。

7 、方程组x y a x 2。

xy的一个解为y,那么这个方程组的另一个解是b 38 、若x 1时,关于 x、 y 的二元一次方程组ax2 y 1的解互为倒数,则2 x by 2a 2b 。

二、选择题1 、方程2x-3y=5,xy=3,x 3 3 ,3x-y+2z=0, x2 y 6 中是y二元一次方程的有()个。

A、1B、2C、3D、42 、方程 2x+y=9 在正整数范围内的解有()A 、 1 个B、 2 个 C 、 3 个D、 4 个3 、与已知二元一次方程5x-y=2 组成的方程组有无数多个解的方程是()A 、 10x+2y=4 B、4x-y=7 C 、20x-4y=3 D、 15x-3y=64 、若是 5x 2 y m与 4x n m 1 y2 n 2同类项,则 m 2 n 的值为()A 、 1 B、- 1 C 、- 3 D 、以上答案都不对5 、在方程 (k 2-4)x 2+(2-3k)x+(k+1)y+3k=0 中,若此方程为二元一次方程,则k 值为. .( )A 、2B 、 -2C 、 2 或-2D 、以上答案都不对.x 2 )6、若是二元一次方程组的解,则这个方程组是(y1A 、x 3 y 5 B 、y x 3 2x y 5D 、x 2 y 2 x y 5y 2 x 5C 、x 3y 1x y 17、在方程 2( x y)3( yx) 3 中,用含 x 的代数式表示 y ,则 ()A 、 y 5x 3B 、 y x 3C 、 y 5x 3D 、 y5x 38、已知x=3-k,y=k+2,则y与x的关系是()A、x+y=5 B、x+y=1C、x-y=1D、y=x-19、下列说法正确的是()A、二元一次方程只有一个解 B、二元一次方程组有无数个解C、二元一次方程组的解必是它所含的二元一次方程的解 D、三元一次方程组一定由三个三元一次方程组成3x 5 y 6=10 的解,则k的值是( = )10 、若方程组15 y 16 的解也是方程3x+ky6 xA、k=6= B、k=10C、k=9D、k=110三、解答题1、解关于 x 的方程 (a1)( a 4) x a 2( x 1)x y 72、已知方程组,试确定 a 、 c 的值,使方程组:ax 2y c( 1)有一个解;(2 )有无数解;( 3)没有解3、关于 x 、 y 的方程 3kx2 y 6k 3,对于任何 k 的值都有相同的解,试求它的解。

初中数学二元一次方程组的应用题型分类汇编——古代算术问题3(附答案)

初中数学二元一次方程组的应用题型分类汇编——古代算术问题3(附答案)

7x 2y 11 0 7x 2y 9 0 A. 2x 8y 9 0 B. 2x 8y 9 0
C.
7x 2x
2y
11 11
0 0
D.
7x 2x
2y 8y
11 0 90
8.“今有鸡兔同笼,上有 24 头,下有 74 足,问鸡兔各几何?”设鸡有 x 只,兔有 y 只,
26.《九章算术》中记载了这样一个问题,原文如下: 今有上禾五秉,损实一斗一升,当下禾七秉;上禾七秉,损实二斗五升,当下禾五秉. 问上、下禾实一秉各几何?
大意是:5 捆上等稻子少结一斗一升,相当于 7 捆下等稻子;7 捆上等稻子少结二斗五 升,相当于 5 捆下等稻子.问上等稻子和下等稻子一捆各能结多少?(十升为一斗)请 解答上述问题. 27.《算法统宗》中有这样一道题,原文如下:一条竿子一条索,索比竿子长一托。折 回索子却量竿,却比竿子短一托。大意为:用一条绳索去量一根竿子,绳索比竿子长 1 托,把这条绳索对折后去量竿子,却比竿子短 1 托.问:绳索、竿子的长各为多少托? 请解答上述问题. 28.《九章算术》是中国古代的一本重要数学著作,其中有一道方程的应用题:“五只雀、 六只燕,共重 16 两,雀重燕轻.互换其中一只,恰好一样重.问每只雀、燕的重量各为多
x y 100
A.
x 3
y 3
100
x y 100
B.
x 3
3y
100
x y 100
C.
3x
y 3
100
D.
x y 100 3x 3y 100
5.据《九章算术》中记载:“鸡兔同笼不知数,三十六头笼中露,看来脚有 100 只,几
多鸡儿几多兔?”,若设鸡 x 只,兔 y 只,则所列方程组是( )

七年级下册数学二元一次方程组的实际运用练习题 含答案

七年级下册数学二元一次方程组的实际运用练习题 含答案

再探实际问题与二元一次方程组(一)学习要求:能对所研究的问题抽象出基本的数量关系,通过列二元一次方程组解实际问题,培养分析问题和解决问题的能力. 一、填空题:1.若载重3吨的卡车有x 辆,载重5吨的卡车比它多4辆,它们一共运货y 吨,用含x 的式子表示y 为______.2.小强有x 张10分邮票,y 张50分邮票,则小强这两种邮票的总面值为______. 3.已知两数和为25,两数差为15,则这两个数为______.4.一个长方形周长是44cm ,长比宽的3倍少10cm ,则这个长方形的面积是______. 二、选择题:5.用4700张纸装订成两种挂历500本,其中甲种每本7张纸,乙种每本13张纸.若甲种挂历有x 本,乙种挂历有y 本,则下面所列方程组正确的是( ).(A)⎩⎨⎧=+=+.4700713,500y x y x(B)⎩⎨⎧=+=+.4700137,500y x y x(C)⎩⎨⎧=-=+.4700713,500y x y x(D)⎩⎨⎧=-=+.4700137,500y x y x6.甲、乙两数和为42,甲数的3倍等于乙数的4倍,求甲、乙两数.设甲数为x ,乙数为y ,则下列方程组正确的是( ).(A)⎩⎨⎧⋅==+y x y x 34,42(B)⎩⎨⎧⋅==+y x y x 43,42(C)⎩⎨⎧==+.43,4234y x y x(D)⎩⎨⎧==+.34,4243y x y x三、列方程组解应用题:7.某单位组织了200人到甲、乙两地旅游,到甲地的人数是到乙地的人数的2倍少10人.到两地参加旅游的人数各是多少?8.一种口服液有大小盒两种包装,3大盒4小盒共108瓶;2大盒3小盒共76瓶,大盒、小盒每盒各装多少瓶?.9.某车间工人举行茶话会,如果每桌12人,还有一桌空着,如果每桌10人,则还差两个桌子,此车间共有工人多少名?(二)综合运用诊断一、填空题:10.式子y =kx +b ,当x =2时,y =11;当x =-2时,y =-17;则k =______,b =______.11.在公式2021at t v s +=中,当t =1时,s =13;当t =2时,s =42.则v 0=______,a =______,并且当t =3时,s =______. 二、选择题:12.出境旅游者问某童:你有几个兄弟、几个姐妹,答:“有几个兄弟就有几个姐妹。

七年级数学二元一次方程组应用题及答案

七年级数学二元一次方程组应用题及答案

二元一次方程组解应用题列方程解应用题的基本关系量:行程问题:速度×时间=路程顺水速度=静水速度—水流速度逆水速度=静水速度—水流速度工程问题:工作效率×工作时间=工作量浓度问题:溶液×浓度=溶质银行利率问题:免税利息=本金×利率×时间二元一次方程组解决实际问题的基本步骤:1、审题,搞清已知量和待求量,分析数量关系. (审题,寻找等量关系)2、考虑如何根据等量关系设元,列出方程组.(设未知数,列方程组)3、列出方程组并求解,得到答案.(解方程组)4、检查和反思解题过程,检验答案的正确性以及是否符合题意.(检验,答)列方程组解应用题的常见题型:和差倍总分问题:较大量=较小量+多余量,总量=倍数×倍量产品配套问题:加工总量成比例速度问题:速度×时间=路程航速问题:此类问题分为水中航速和风中航速两类顺流(风):航速=静水(无风)中的速度+水(风)速逆流(风):航速=静水(无风)中的速度--水(风)速工程问题:工作量=工作效率×工作时间(一般分为两种,一种是一般的工程问题;另一种是工作总量是单位一的工程问题)增长率问题:原量×(1+增长率)=增长后的量原量×(1+减少率)=减少后的量浓度问题:溶液×浓度=溶质银行利率问题:免税利息=本金×利率×时间税后利息=本金×利率×时间—本金×利率×时间×税率利润问题:利润=售价—进价,利润率=(售价—进价)÷进价×100%盈亏问题:关键从盈(过剩)、亏(不足)两个角度把握事物的总量数字问题:首先要正确掌握自然数、奇数偶数等有关的概念、特征及其表示几何问题:必须掌握几何图形的性质、周长、面积等计算公式年龄问题:抓住人与人的岁数是同时增长的一元一次方程方程应用题归类分析1. 和、差、倍、分问题:(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。

初一年级二元一次方程组应用题四套附答案剖析

初一年级二元一次方程组应用题四套附答案剖析

二元一次方程组应用题1、一名学生问老师:“您今年多大?”老师说:“我像你这样大时,你才出生;你到我这么大时,我已经37岁了。

”问:老师、学生今年多大了。

2、某长方形的周长是44cm,若宽的3倍比长多6cm,则该长方形的长和宽各是多少?3、已知梯形的高是7,面积是56cm2,又它的上底比下底的三分之一还多4cm,求该梯形的上底和下底的长度是多少?4、某校初一年级一班、二班共104人到博物馆参观,一班人数不足50人,二班人数超过50人,已知博物馆门票规定如下:1~50人购票,票价为每人13元;51~100人购票为每人11元,100人以上购票为每人9元(1)若分班购票,则共应付1240元,求两班各有多少名学生?((2)请您计算一下,若两班合起来购票,能节省多少元钱?(3)若两班人数均等,您认为是分班购票合算还是集体购票合算?5、某中学组织初一学生春游,原计划租用45座汽车若干辆,但有15人没有座位:若租用同样数量的60座汽车,则多出一辆,且其余客车恰好坐满。

已知45座客车每日租金每辆220元,60座客车每日租金为每辆300元。

(1)初一年级人数是多少?原计划租用45座汽车多少辆?(2)若租用同一种车,要使每个学生都有座位,怎样租用更合算?6、某酒店的客房有三人间和两人间两种,三人间每人每天25元,两人间每人每天 35元,一个50人的旅游团到了该酒店住宿,租了若干间客房,且每间客房恰好住满,一天共花去1510元,求两种客房各租了多少间?7、某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小相同,安全检查中,对4道门进行了测试:当同时开启正门和两道侧门时,2分钟可以通过560名学生,当同时开启一道正门和一道侧门时,4分钟可以通过800名学生。

(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况下时因学生拥挤,出门的效率将降低20%,安全检查规定,在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离,假设这栋教学大楼每间教室最多有45名学生,问通过的这4道门是否符合安全规定?请说明理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二元一次方程组解应用题列方程解应用题的基本关系量:行程问题:速度×时间=路程顺水速度=静水速度—水流速度逆水速度=静水速度—水流速度工程问题:工作效率×工作时间=工作量浓度问题:溶液×浓度=溶质银行利率问题:免税利息=本金×利率×时间二元一次方程组解决实际问题的基本步骤:1、审题,搞清已知量和待求量,分析数量关系. (审题,寻找等量关系)2、考虑如何根据等量关系设元,列出方程组.(设未知数,列方程组)3、列出方程组并求解,得到答案.(解方程组)4、检查和反思解题过程,检验答案的正确性以及是否符合题意.(检验,答)列方程组解应用题的常见题型:和差倍总分问题:较大量=较小量+多余量,总量=倍数×倍量产品配套问题:加工总量成比例速度问题:速度×时间=路程航速问题:此类问题分为水中航速和风中航速两类顺流(风):航速=静水(无风)中的速度+水(风)速逆流(风):航速=静水(无风)中的速度--水(风)速工程问题:工作量=工作效率×工作时间(一般分为两种,一种是一般的工程问题;另一种是工作总量是单位一的工程问题)增长率问题:原量×(1+增长率)=增长后的量原量×(1+减少率)=减少后的量浓度问题:溶液×浓度=溶质银行利率问题:免税利息=本金×利率×时间税后利息=本金×利率×时间—本金×利率×时间×税率利润问题:利润=售价—进价,利润率=(售价—进价)÷进价×100%盈亏问题:关键从盈(过剩)、亏(不足)两个角度把握事物的总量数字问题:首先要正确掌握自然数、奇数偶数等有关的概念、特征及其表示几何问题:必须掌握几何图形的性质、周长、面积等计算公式年龄问题:抓住人与人的岁数是同时增长的一元一次方程方程应用题归类分析1. 和、差、倍、分问题:(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。

(2)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。

例1.根据2001年3月28日新华社公布的第五次人口普查统计数据,截止到2000年11月1日0时,全国每10万人中具有小学文化程度的人口为35701人,比1990年7月1日减少了3.66%,1990年6月底每10万人中约有多少人具有小学文化程度?分析:等量关系为:()1366%9062000111-⨯=.年月底有的人数年月日人数解:设1990年6月底每10万人中约有x人具有小学文化程度(.1366%)35701-=xx≈370572. 等积变形问题:“等积变形”是以形状改变而体积不变为前提。

常用等量关系为:①形状面积变了,周长没变;②原料体积=成品体积。

例2.用直径为90mm的圆柱形玻璃杯(已装满水)向一个由底面积为1251252⨯mm内高为81mm的长方体铁盒倒水时,玻璃杯中的水的高度下降多少mm?(结果保留整数π≈314.)分析:等量关系为:圆柱形玻璃杯体积=长方体铁盒的体积下降的高度就是倒出水的高度解:设玻璃杯中的水高下降xmmπ90212512581 2⎛⎝⎫⎭⎪=⨯⨯·xππxx==≈6256251993. 劳力调配问题:这类问题要搞清人数的变化,常见题型有:(1)既有调入又有调出;(2)只有调入没有调出,调入部分变化,其余不变;(3)只有调出没有调入,调出部分变化,其余不变。

例3. 机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套? 分析:列表法。

每人每天 人数 数量 大齿轮16个 x 人 16x 小齿轮 10个 ()85-x 人 ()1085-x等量关系:小齿轮数量的2倍=大齿轮数量的3倍解:设分别安排x 名、()85-x 名工人加工大、小齿轮31621085()[()]x x =-4817002068170025x xx x =-==∴-=8560x 人4. 比例分配问题: 这类问题的一般思路为:设其中一份为x ,利用已知的比,写出相应的代数式。

常用等量关系:各部分之和=总量。

例4. 三个正整数的比为1:2:4,它们的和是84,那么这三个数中最大的数是几? 解:设一份为x ,则三个数分别为x ,2x ,4x 分析:等量关系:三个数的和是84 x x x x ++==2484125. 数字问题(1)要搞清楚数的表示方法:一个三位数的百位数字为a ,十位数字是b ,个位数字为c (其中a 、b 、c 均为整数,且1≤a ≤9, 0≤b ≤9, 0≤c ≤9)则这个三位数表示为:100a+10b+c 。

(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2N 表示,连续的偶数用2n+2或2n —2表示;奇数用2n+1或2n —1表示。

例5. 一个两位数,个位上的数是十位上的数的2倍,如果把十位与个位上的数对调,那么所得的两位数比原两位数大36,求原来的两位数等量关系:原两位数+36=对调后新两位数 解:设十位上的数字X ,则个位上的数是2x , 10×2x+x=(10x+2x )+36解得x=4,2x=8.6. 工程问题:工程问题中的三个量及其关系为:工作总量=工作效率×工作时间 经常在题目中未给出工作总量时,设工作总量为单位1。

例6. 一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?分析设工程总量为单位1,等量关系为:甲完成工作量+乙完成工作量=工作总量。

解:设乙还需x 天完成全部工程,设工作总量为单位1,由题意得,(115+112)×3+x 12=1, 解这个方程,15+14+x 12=112+15+5x=60 5x=33 ∴ x=335=635答:略. 例7. 甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。

(1)慢车先开出1小时,快车再开。

两车相向而行。

问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。

故可结合图形分析。

(1)分析:相遇问题,画图表示为:甲 乙 等量关系是:慢车走的路程+快车走的路程=480公里。

解:设快车开出x 小时后两车相遇,由题意得,140x+90(x+1)=480 解这个方程,230x=390 ∴ x=11623答:略. 分析:相背而行,画图表示为:600甲 乙等量关系是:两车所走的路程和+480公里=600公里。

解:设x 小时后两车相距600公里,由题意得,(140+90)x+480=600解这个方程,230x=120∴ x=1223 (3)分析:等量关系为:快车所走路程-慢车所走路程+480公里=600公里。

解:设x 小时后两车相距600公里,由题意得,(140-90)x+480=600 50x=120 ∴ x=2.4 答:略. 分析:追及问题,画图表示为:甲 乙等量关系为:快车的路程=慢车走的路程+480公里。

解:设x 小时后快车追上慢车。

由题意得,140x=90x+480 解这个方程,50x=480 ∴ x=9.6答:略.分析:追及问题,等量关系为:快车的路程=慢车走的路程+480公里。

解:设快车开出x 小时后追上慢车。

由题意得,140x=90(x+1)+480 50x=570 解得, x=11.48. 利润赢亏问题(1)销售问题中常出现的量有:进价、售价、标价、利润等(2)有关关系式:商品利润=商品售价—商品进价=商品标价×折扣率—商品进价商品利润率=商品利润/商品进价商品售价=商品标价×折扣率例8. 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?分析:探究题目中隐含的条件是关键,可直接设出成本为X元进价折扣率标价优惠价利润x元8折(1+40%)x元80%(1+40%)x 15元等量关系:(利润=折扣后价格—进价)折扣后价格-进价=15解:设进价为X元,80%X(1+40%)—X=15,X=125 答:略.9. 储蓄问题⑴顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率。

利息的20%付利息税⑵利息=本金×利率×期数本息和=本金+利息利息税=利息×税率(20%)例9. 某同学把250元钱存入银行,整存整取,存期为半年。

半年后共得本息和252.7元,求银行半年期的年利率是多少?(不计利息税)分析:等量关系:本息和=本金×(1+利率)解:设半年期的实际利率为x,250(1+x)=252.7,x=0.0108所以年利率为0.0108×2=0.0216重点题目:1、甲、乙两人分别从相距30千米的A、B两地同时相向而行,经过3小时后相距3千米,再经过2小时,甲到B地所剩路程是乙到A地所剩路程的2倍,求甲、乙两人的速度.解析:设甲、乙的速度分别为x千米/时和y千米/时.第一种情况:甲、乙两人相遇前还相距3千米.根据题意,得第二种情况:甲、乙两人是相遇后相距3千米.根据题意,得答:甲、乙的速度分别为4千米/时和5千米/时;或甲、乙的速度分别为千米/时和千米/时.2、甲乙两人做加法,甲在其中一个数后面多写了一个0,得和为2342,乙在同一个加数后面少写了一个0,得和为65,你能求出原来的两个加数吗?解析:设两个加数分别为x、y.根据题意,得解得所以原来的两个加数分别为230和42.3、一批机器零件共840个,如果甲先做4天,乙加入合做,那么再做8天才能完成;如果乙先做4天,甲加入合做,那么再做9天才能完成,问两人每天各做多少个机器零件?解析:由题意得甲做12天,乙做8天能够完成任务;而甲做9天,乙做13天也能完成任务,由此关系我们可列方程组求解.设甲每天做x个机器零件,乙每天做y个机器零件,根据题意,得答:甲每天做50个机器零件,乙每天做30个机器零件4、师傅对徒弟说“我像你这样大时,你才4岁,将来当你像我这样大时,我已经是52岁的人了”.问这位师傅与徒弟现在的年龄各是多少岁?解析:由“我像你这样大时,你才4岁”可知师傅现在的年龄等于徒弟现在的年龄加上徒弟现在的年龄减4,由“当你像我这样大时,我已经是52岁的人了”可知52等于师傅现在的年龄加上师傅现在的年龄减去徒弟的年龄.由这两个关系可列方程组求解.设现在师傅x 岁,徒弟y岁,根据题意,得答:现在师傅36岁,徒弟20岁.5、有两个长方形,第一个长方形的长与宽之比为5∶4,第二个长方形的长与宽之比为3∶2,第一个长方形的周长比第二个长方形的周长大112cm,第一个长方形的宽比第二个长方形的长的2倍还大6cm,求这两个长方形的面积.解析:设第一个长方形的长与宽分别为5xcm和4xcm,第二个长方形的长与宽分别为3ycm 和2ycm.从而第一个长方形的面积为:5x×4x=20x2=1620(cm2);第二个长方形的面积为:3y×2y=6y2=150(cm2).答:这两个长方形的面积分别为1620cm2和150cm2.6、一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可以完成,需付两组费用共3480元.若只选一个组单独完成,从节约开支角度考虑,这家商店应选择哪个组?解析:由甲乙混做的时间和钱数我们可求出甲乙各自单独做需要的时间和费用,然后再进行比较.解:设甲组单独完成需x天,乙组单独完成需y天,则根据题意,得经检验,符合题意.即甲组单独完成需12天,乙组单独完成需24天.再设甲组工作扬帆教育七数应用题精题练习1、甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。

相关文档
最新文档