八年级数学_正比例函数教案
人教版数学八年级下册19.2.1《正比例函数》教学设计

人教版数学八年级下册19.2.1《正比例函数》教学设计一. 教材分析人教版数学八年级下册19.2.1《正比例函数》是学生在学习了初中数学基础知识后,进一步深入研究函数性质的重要内容。
本节课的主要内容是正比例函数的定义、图像和性质。
教材通过丰富的例题和练习题,帮助学生理解和掌握正比例函数的概念,培养学生解决实际问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了函数的基本概念,具备了一定的函数知识基础。
但是,对于正比例函数的定义和性质,以及如何运用正比例函数解决实际问题,部分学生可能还存在一定的困难。
因此,在教学过程中,需要关注学生的学习情况,针对性地进行引导和讲解。
三. 教学目标1.理解正比例函数的定义,掌握正比例函数的性质。
2.能够根据正比例函数的性质,解决实际问题。
3.培养学生的逻辑思维能力和解决实际问题的能力。
四. 教学重难点1.正比例函数的定义和性质。
2.如何运用正比例函数解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究正比例函数的定义和性质。
2.利用多媒体辅助教学,展示正比例函数的图像,帮助学生直观地理解正比例函数的性质。
3.通过实例分析,让学生学会如何运用正比例函数解决实际问题。
4.小组讨论,培养学生的团队合作意识和沟通能力。
六. 教学准备1.多媒体教学设备。
2.正比例函数的相关教学素材,如PPT、例题、练习题等。
3.学生分组合作的准备。
七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的实例,如速度与时间的关系,引导学生思考这些实例背后的数学规律。
2.呈现(10分钟)介绍正比例函数的定义,引导学生通过观察实例,总结正比例函数的性质。
3.操练(10分钟)分组讨论,让学生通过合作解决问题,进一步理解和掌握正比例函数的性质。
4.巩固(10分钟)针对学生掌握的情况,进行针对性讲解,巩固学生对正比例函数性质的理解。
5.拓展(10分钟)利用正比例函数的性质,解决实际问题。
《正比例》教案

《正比例》教案《正比例》教案1教学目标:1、知道与正比例函数的意义.2、能写出实际问题中正比例关系与关系的解析式.3、渗透数学建模的思想,使学生体会到数学的抽象性和广泛的应用性.4、激发学生学习数学的兴趣,培养学生分析问题、解决问题的能力.教学重点:对于与正比例函数概念的理解.教学难点:根据具体条件求与正比例函数的解析式.教学方法:结构教学法、以学生“再创造”为主的教学方法教学过程:1、复习旧课前面我们学习了函数的相关知识,(教师在黑板上画出__结构并让学生说出前三节的内容)2、引入新课就象以前我们学习方程、一元一次方程;不等式、一元一次不等式的内容时一样,我们在学习了函数这个概念以后,要学习一些具体的函数,今天我们要学习的是.顾名思义,谁能根据这个名字,类比一元一次方程、一元一次不等式的概念能举出一些的例子?(学生完全具备这种类比的能力,所以要快、不要耽误太多时间叫几个同学回答就可以了.教师将学生的正确的例子写在黑板上)这些函数有什么共同特点呢?(注意根据学生情况适当引导,看能否归纳出一般结果.)不难看出函数都是用自变量的一次式表示的,可以写成()的形式.一般地,如果(是常数,)(括号内用红字强调)那么y叫做x的.特别地,当b=0时,就成为(是常数,)3、例题讲解例1、某油管因地震破裂,导致每分钟漏出原油30公升(1)如果x 分钟共漏出y 公升,写出y与x之间的函数关系式(2)破裂3.5小時后,共漏出原油多少公升《正比例》教案2正比例和反比例是在同学学习了比和比例的基础上进行教学的,主要让同学结合实际情境认识成正比例和反比例的量。
知识与技能方面的教学目标是:经历从具体实例中认识成正比例和反比例的量的过程,理解正比例、反比例的意义,学会判断两种相关联的量是否成正比例或反比例。
正比例、反比例都是表示两个相关联的变量之间关系的一种数学模型,都是在一定的条件下,一种量随着另一种量的变化而变化。
本单元的教材分“成正比例的量”和“咸反比例的量”两个局部,先教学正比例的认识,再教学反比例的认识。
《正比例函数》教案(优秀6篇)

《正比例函数》教案(优秀6篇)在教学工作者开展教学活动前,就不得不需要编写教案,借助教案可以让教学工作更科学化。
那么应当如何写教案呢?以下内容是为您带来的6篇《《正比例函数》教案》,如果对您有一些参考与帮助,请分享给最好的朋友。
《正比例》优秀教学反思篇一刚刚上完正比例的教学内容,有以下几点心得:1、比例是建立在比的关系的基础上的,所以必须让学生回顾明确什么是是比。
两个数相除叫做这两个数的比。
比有两种写法,一种是比号写法,另一种是用分数写法。
2、单刀直入(其实学生已经预习知道)主题,告诉学生什么叫做正比例:两个量发生变化后(可以变大爷可以变小),他们的比值不变我们就说这两个量成正比例。
老师例子说明,并且请学生互动找例子。
3、现在这个环节是比较重要的,我不认同书本上就靠表格天数据来认知正比例。
首先强调这两个量都可以作为比的前项后后项,但是最好是写出有意义的比;其次,要求学生针对每一对数据表格都要写出一个比,并且求出比值,从而加深对正比例的意义的理解,也强化了正比例的计算方法。
我觉得这个环节是非常非常重要的,比起空洞地填写表格要实在的多,学生通过这个活动基本上掌握了正比例的意义,能准确地判断正比例。
4、运用以上的知识和方法,请学生完成书上的作业。
检查结果基本上没有错误。
注意点:让学生自己找生活中的例子可能不是很准确;表达阐述正比例的关系中,有些例子需要加入前提,如直径和半径成正比例的前提是同圆或等圆。
《正比例》优秀教学反思篇二正比例这一内≮≮容是在学生学习了比和比例知识的基础上进行教学的,着重使学生理解正比例的意义。
从内容上看,正比例在整个小学阶段是一个较抽象的概念,学生不仅要理解其意义,还要学会判断两种量是否是成正比例的量,同时还要学会用含有字母的式子来表示正比例关系。
教师要渗透给学生一些函数的思想,为他们以后的初中学习打下基础。
在教学图象的同时,我密切联系学生已有的生活经验和学习经验,给学生提供了有利于探索和理解两个量之间变化规律的材料,使学生理解正比例关系图象的特征,并掌握其画法。
人教版正比例函数教案

学生回答,教师总结
y= 8.54x (0≤x ≤12.88)
[活动二].导入新课 一、(1)下列问题中变量之间的对应规律可用怎样的函数来
表示? 1.圆的周长 L 与半径 r 的函数关系. 2.正方形的周长 C 与边长 x 的函数关系
3.每个练习本的厚度为 0.5cm.一些练习本摞在一起的总厚
度 h(cm)随这些练习本的本数 n 的变化而变化.
补 救 措 施 教 后 反 思
(二)能力目标 1.经历思考、探究过程、发展总结归纳能力,能有条理地、清晰地阐
述自己的观点. 2.体验数形之间联系,逐步学会利用数形结合思想分析解决有关问题.
(三)情感态度 1.积极参与数学活动,对其产生好奇心和求知欲. 2.形成合作交流、独立思考的学习习惯.
1.理解正比例函数意义及解析式特点. 2.掌握正比例函数图象的性质特点. 3.能根据要求完成转化,解决问题.
4.冷冻一个 0℃的物体,使它每分钟下降 2℃.物体的温度
T(℃)随冷冻时间 x(分)的变化而变化.
学生独立思考后回答。
(2)认真观察以上出现的四个函数解析式,分别说出哪些是常
数、自变量和函数.这些函数有什么共同点?
函数解析式
常数 自变量 函数
(1)l=2πr
(2)c=4x
(3)hn
(4)T= -2t
述.
学生活动:利用描点法正确地画出函数图象,在教师的引导下
完成函数变化规律的探究过程,并能准确地表达出,从而加深对规
律的理解与认识.
(2)尝试练习: 在同一坐标系中,画出下列函数的图象,并对它
们进行比较.
1.y= 1 x 2.y= 1图像的形状
思考
教学难点 正比例函数图象性质特点的掌握.
初中数学《正比例函数的图象》教案

初中数学《正比例函数的图象》教案一、教学目标1. 知识目标:理解正比例函数的定义及其性质;掌握正比例函数的变化规律及其应用;能够绘制正比例函数的图象。
2. 能力目标:通过对正比例函数的学习,提高学生的抽象思维能力和图像思维能力;培养学生探索问题、解决问题的能力,在实际问题中运用正比例函数。
3. 情感目标:从正比例函数的实际应用中感受数学的实用性和重要性;培养学生对数学的兴趣和热爱,激发学生学习数学的积极性。
二、教学内容正比例函数的图象。
三、教学重难点1. 教学重点:掌握正比例函数的定义及其性质;掌握正比例函数的变化规律及其应用;能够绘制正比例函数的图象。
2. 教学难点:理解正比例函数的定义及其性质;掌握绘制正比例函数的图象的方法。
四、教学方法讲授法、示范法、探究法、实践法。
五、教学过程1. 前置知识导入(5分钟)通过积累生活中与正比例函数有关的问题,引发学生对正比例函数的兴趣。
例如:一个人跑完1000米要用10分钟,那么这个人每分跑多少米?2. 新课教学(35分钟)(1) 正比例函数的定义及其性质。
1. 如果y与x成正比例关系,且比例系数为k,则y=kx 。
2. 通常称这种函数为正比例函数,其中k称为比例系数。
(2) 正比例函数的图象。
1. 当x>0时,y=kx表示的是以原点为起点、斜率为k的直线。
2. 当k>0时,y=kx表示的是一条从左下到右上的直线。
3. 当k<0时,y=kx表示的是一条从左上到右下的直线。
(3) 正比例函数的变化规律及其应用。
1. 如果两个量x和y成正比例关系,那么当x增加一定比例时,y也按照同样的比例增加。
2. 在实际生活中,有很多问题涉及到正比例函数,例如:工人能够完成一定的工作量需要一定的时间,那么能够完成的工作量与时间成正比例关系。
3. 在实际生活中,我们可以通过正比例函数的性质,解决很多实际问题。
(4) 绘制正比例函数的图象。
1. 绘制正比例函数的图象,可以通过确定两个点来确定这条函数的图象。
人教版八年级数学下册19.2.1正比例函数优秀教学案例

1.小组讨论:组织学生进行小组讨论,让学生分享自己的观点和思考,通过交流和互动,促进学生共同进步。
2.小组探究:组织学生进行小组探究,让学生通过合作、实验、观察等方式,共同发现正比例函数的图象和性质,培养学生的合作能力和团队精神。
3.小组展示:组织学生进行小组展示,让学生通过讲解、展示等方式,展示自己的学习和探究成果,提高学生的表达能力和自信心。
4.通过本节课的学习,让学生能够运用所学的正比例函数知识,对生活中的实际问题进行分析和解决,提高学生的应用能力。
(二)过程与方法
1.采用自主学习、合作探究、交流分享的教学方法,引导学生主动参与课堂,培养学生独立思考和合作交流的能力。
2.通过情境创设、问题引导,激发学生的学习兴趣,引导学生主动探究正比例函数的定义、图象和性质。
1.布置作业:布置一些与正比例函数相关的练习题,让学Biblioteka 巩固所学知识,提高学生的应用能力。
四、教学内容与过程
(一)导入新课
1.生活实例导入:以购物场景为例,展示商品价格与数量之间的关系,引导学生观察和思考这种关系是否可以用数学模型来描述。
2.问题引导:提出问题:“商品的价格与数量之间存在怎样的关系?这种关系可以用数学符号如何表示?”引发学生的思考,激发学生的学习兴趣。
3.情境体验:让学生举例说明生活中存在的其他类似关系,如速度与路程的关系,引导学生体会正比例函数在生活中的广泛应用。
(三)学生小组讨论
1.小组合作:将学生分成小组,让学生通过合作、讨论的方式,探讨正比例函数的图象和性质,促进学生之间的交流和合作。
2.问题解决:让学生分组解决一些与正比例函数相关的问题,如根据函数的性质推断图象的变化,提高学生解决问题的能力。
正比例函数》教案

正比例函数》教案19.2.1正比例函数》教案一、教材分析:正比例函数是八年级下册数学中非常重要的内容,它是刻画和研究现实世界变化规律的重要模型之一。
正比例函数是一次函数的特例,也是初中数学中最简单、最基本的函数之一。
掌握好正比例函数对后面研究一次函数打下基础。
函数思想是一种重要的数学思想,它体现了运动变化和对立统一的观点,体现了数学的建模思想和数形结合思想。
因此,在教学中通过生活实际,引导学生观察探索,让学生在研究过程中感悟函数思想,从而激发学生研究函数的信心和兴趣。
二、学情分析:学生在小学已经研究了比例的意义与性质,在这个基础上,学生能很容易接受正比例概念。
然而,从正比例关系到正比例函数,这个年龄段的学生以感性认识为主,加上本节课内容的概念性和理论性较强,并向理性认知过渡,学生可能缺乏研究兴趣。
因此,本节课的设计是通过学生所熟悉的问题情境出发,让学生的自主探索贯穿课堂全过程。
同时,注意教师与学生的互动,加强教师的引导和示范,在对比和分组讨论中让学生在“做中学”,提高学生利用已学知识去主动获取新知识的能力。
三、教学目标:1)知识目标:掌握正比例函数的概念,理解正比例函数解析式的特点,根据正比例函数的意义,判断两个相关联的量是否成正比例。
2)能力目标:经历思考、探究过程,发展总结归纳能力,体验数形之间联系,逐步学会利用数形结合思想分析解决有关问题。
3)情感态度:积极参与数学活动,对其产生好奇心和求知欲,形成合作交流的研究惯。
四、教学重、难点:教学重点:理解正比例函数的概念及形式。
教学难点:利用正比例函数解决相关问题。
五、教法学法:本节课的重点是理解正比例函数的概念,利用正比例函数解决生活实际问题。
在教学过程中,抓住学生已有的知识点,在学生主动参与和教师引导下充分调动学生的研究积极性和主动性,使学生在自主探索的过程中掌握新知识。
教师的主导作用与学生主体地位达到了相互统一。
为了提高课堂效果,适当辅以多媒体技术,使学生获得直观的印象,激发学生的研究兴趣,增强对知识点的理解。
八年级数学上册《正比例函数》教案、教学设计

3.设计具有梯度的问题,引导学生逐步深入理解正比例函数。从简单的判断题、选择题到综合应用题,让学生在解决问题的过程中,掌握正比例函数的知识。
4.创设小组合作交流的机会,让学生在讨论中互相启发,共同进步。教师适时给予指导,帮助学生突破难点。
-目的:培养学生团队协作、共同解决问题的能力,提高学生的沟通表达能力。
5.课后反思:要求学生撰写ቤተ መጻሕፍቲ ባይዱ后反思,总结自己在学习正比例函数过程中的收获和不足。
-反思内容:可以包括对本节课知识点的理解、解题方法的掌握、学习过程中的困惑等。
6.家长参与:鼓励家长参与学生的作业过程,了解学生的学习情况,为学生提供必要的帮助和支持。
-提问:“那么,我们如何用数学公式来表示这种关系呢?”
(二)讲授新知
1.正比例函数的定义:教师给出正比例函数的定义,并解释相关概念。
-解释:“正比例函数是指一个函数,当自变量x的值增大或减小时,其对应的函数值y也按照相同的比例增大或减小。”
2.正比例函数的表达式:引导学生根据定义推导正比例函数的表达式y=kx(k≠0)。
-提示:在解决提高题时,鼓励学生运用图像分析、逻辑推理等方法,提高问题解决能力。
3.创新实践:设计具有挑战性的创新题目,要求学生结合生活实际,运用正比例函数模型解决实际问题。
-要求:学生需将问题解决过程和结果以书面形式呈现,注重解题思路和方法的创新。
4.小组合作:布置小组合作作业,让学生在组内共同探讨、解决一个综合性的正比例函数问题。
-提问:“根据正比例函数的定义,我们可以得出什么样的数学表达式?”
八年级数学正比例函数说课(附教案)

八年级数学正比例函数说课(附教案)一、教学目标:1. 让学生理解正比例函数的定义,掌握正比例函数的性质。
2. 培养学生运用正比例函数解决实际问题的能力。
3. 提高学生的数学思维能力和团队协作能力。
二、教学内容:1. 正比例函数的定义2. 正比例函数的性质3. 正比例函数在实际问题中的应用三、教学重点与难点:1. 重点:正比例函数的定义和性质。
2. 难点:正比例函数在实际问题中的应用。
四、教学方法:1. 采用自主学习、合作学习、探究学习相结合的方法。
2. 利用多媒体课件辅助教学,提高学生的学习兴趣。
3. 通过实例分析,引导学生运用正比例函数解决实际问题。
五、教学过程:1. 引入新课:通过生活实例,引导学生思考正比例关系。
2. 讲解正比例函数的定义:引导学生通过自主学习,理解正比例函数的定义。
3. 讲解正比例函数的性质:通过合作学习,让学生掌握正比例函数的性质。
4. 应用练习:让学生运用正比例函数解决实际问题,巩固所学知识。
教案内容待完善,请根据实际教学需求进行调整。
六、教学评价1. 通过课堂提问、作业批改和课堂表现,评价学生对正比例函数定义和性质的理解程度。
2. 通过课后练习和实际问题解决,评价学生运用正比例函数的能力。
3. 通过小组讨论和课堂互动,评价学生的团队协作和数学思维能力。
七、教学资源1. 多媒体课件:用于展示正比例函数的图像和实际问题情境。
2. 练习题集:用于巩固学生对正比例函数的理解和应用。
3. 实际问题案例:用于引导学生将数学知识应用于实际情境中。
八、教学进度安排1. 第一课时:介绍正比例函数的定义和性质。
2. 第二课时:讲解正比例函数在实际问题中的应用。
3. 第三课时:进行实际问题解决练习和课堂小结。
九、课后作业2. 完成练习题集,巩固对正比例函数的理解。
十、教学反思1. 反思教学过程中的有效性和学生的参与度,考虑如何改进教学方法以提高教学效果。
2. 分析学生的学习反馈,了解学生在正比例函数学习中的难点和问题,调整教学策略。
八年级数学19.2.1 正比例函数教案

§19.2.1 正比例函数教学目标1.认识正比例函数的意义.2.掌握正比例函数解析式特点.3.理解正比例函数图象性质及特点.4.能利用所学知识解决相关实际问题.教学重点1.理解正比例函数意义及解析式特点.2.掌握正比例函数图象的性质特点.3.能根据要求完成转化,解决问题.教学难点:正比例函数图象性质特点的掌握.教学过程:Ⅰ.提出问题,创设情境一九九六年,鸟类研究者在芬兰给一只燕鸥(候鸟)套上标志环.4个月零1周后人们在2.56万千米外的澳大利亚发现了它.1.这只百余克重的小鸟大约平均每天飞行多少千米(精确到10千米)?2.这只燕鸥的行程y(千米)与飞行时间x(天)之间有什么关系?3.这只燕鸥飞行1个半月的行程大约是多少千米?我们来共同分析:一个月按30天计算,这只燕鸥平均每天飞行的路程不少于:25600÷(30×4+7)≈200(km)若设这只燕鸥每天飞行的路程为200km,那么它的行程y(千米)就是飞行时间x(天)的函数.函数解析式为:y=200x(0≤x≤127)这只燕鸥飞行1个半月的行程,大约是x=45时函数y=200x的值.即y=200×45=9000(km)以上我们用y=200x对燕鸥在4个月零1周的飞行路程问题进行了刻画.尽管这只是近似的,但它可以作为反映燕鸥的行程与时间的对应规律的一个模型.类似于y=200x这种形式的函数在现实世界中还有很多.它们都具备什么样的特征呢?我们这节课就来学习.Ⅱ.导入新课首先我们来思考这样一些问题,看看变量之间的对应规律可用怎样的函数来表示?这些函数有什么共同特点?1.圆的周长L随半径r的大小变化而变化.2.铁的密度为7.8g/cm3.铁块的质量m(g)随它的体积V(cm3)的大小变化而变化.3.每个练习本的厚度为0.5cm.一些练习本摞在一些的总厚度h(cm)随这些练习本的本数n的变化而变化.4.冷冻一个0℃的物体,使它每分钟下降2℃.物体的温度T(℃)随冷冻时间t(分)的变化而变化.答:1.根据圆的周长公式可得:L=2 r.2.依据密度公式p=mV可得:m=7.8V.3.据题意可知: h=0.5n.4.据题意可知:T=-2t.我们观察这些函数关系式,不难发现这些函数都是常数与自变量乘积的形式,和y=200x 的形式一样.一般地,•形如y=•kx•(k•是常数,•k•≠0•)的函数,•叫做正比例函数(proportional func-tion ),其中k 叫做比例系数.我们现在已经知道了正比例函数关系式的特点,那么它的图象有什么特征呢? [活动一]画出下列正比例函数的图象,并进行比较,寻找两个函数图象的相同点与不同点,考虑两个函数的变化规律.1.y=2x 2.y=-2x结论:1.函数y=2x 中自变量x 可以是任意实数.列表表示几组对应值:画出图象如图(1).2.y=-2x 的自变量取值范围可以是全体实数,列表表示几组对应值:x -3 -2 -1 0 1 2 3 y642-2-4-6画出图象如图(2).3.两个图象的共同点:都是经过原点的直线. 不同点:函数y=2x 的图象从左向右呈上升状态,即随着x 的增大y 也增大;经过第一、三象限.函数y=-2x 的图象从左向右呈下降状态,即随x 增大y 反而减小;•经过第二、四象限.让学生在完成上述练习的基础上总结归纳出正比例函数解析式与图象特征之间的规律:正比例函数y=kx (k 是常数,k ≠0)的图象是一条经过原点的直线.•当x>0时,图象经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k<0时,•图象经过二、四象限,从左向右下降,即随x 增大y 反而减小.正是由于正比例函数y=kx (k 是常数,k ≠0)的图象是一条直线,•我们可以称它为直线y=kx . [活动二]经过原点与点(1,k )的直线是哪个函数的图象?画正比例函数的图象时,•怎样画最简单?为什么?经过原点与点(1,k )的直线是函数y=kx 的图象.画正比例函数图象时,只需在原点外再确定一个点,即找出一组满足函数关系式的对应数值即可,如(1,k ).因为两点可以确定一条直线.Ⅲ.随堂练习用你认为最简单的方法画出下列函数图象:1.y=32x 2.y=-3xⅣ.课时小结本节课我们通过实例了解了正比例函数解析式的形式及图象的特征,并掌握图象特征与关系式的联系规律,经过思考、尝试,知道了正比例函数不同表现形式的转化方法,及图象的简单画法,为以后学习一次函数奠定了基础.x -3 -2 -1 0 1 2 3y -6 -4 -2 0 2 4 6§19.2.2 一次函数(一)教学目标:1、掌握一次函数解析式的特点及意义2、知道一次函数与正比例函数的关系3、理解一次函数图象特点与解析式的联系规律教学重点:一次函数解析式特点 2.一次函数图象特征与解析式的联系规律 教学难点1、一次函数与正比例函数关系 2、根据已知信息写出一次函数的表达式。
人教版数学八年级下册19.2.1《正比例函数教案

人教版数学八年级下册19.2.1《正比例函数教案一. 教材分析人教版数学八年级下册19.2.1节讲述了正比例函数的概念、性质及其在实际问题中的应用。
本节内容是学生学习函数的基础,对于培养学生的逻辑思维能力和解决问题的能力具有重要意义。
教材通过具体的例子引入正比例函数,使学生能够直观地理解概念,并通过大量的练习题让学生熟练掌握正比例函数的性质和运用。
二. 学情分析学生在八年级上学期已经学习了代数基础知识,对变量、常量、方程等概念有了一定的理解。
但正比例函数作为一种特殊的函数,学生可能对其概念和性质认识不足,需要通过本节课的学习来进一步掌握。
此外,学生可能对于实际问题中如何运用正比例函数解决有一定困难,需要通过实例分析和练习来提高。
三. 教学目标1.了解正比例函数的概念,掌握正比例函数的性质。
2.能够运用正比例函数解决实际问题,提高解决问题的能力。
3.培养学生的逻辑思维能力和团队协作能力。
四. 教学重难点1.正比例函数的概念和性质。
2.正比例函数在实际问题中的应用。
五. 教学方法采用讲授法、案例分析法、练习法、小组讨论法等教学方法。
通过具体的例子引入正比例函数,让学生在实际问题中感受正比例函数的应用,通过练习题让学生巩固所学知识,通过小组讨论培养学生的团队协作能力和逻辑思维能力。
六. 教学准备1.准备相关的例子和练习题,用于课堂讲解和练习。
2.准备多媒体教学设备,用于展示例子和讲解。
七. 教学过程1.导入(5分钟)通过一个实际问题引入正比例函数的概念,如“一辆汽车以60公里/小时的速度行驶,行驶1小时后,行驶的路程是多少?”让学生思考并回答,引出正比例函数的概念。
2.呈现(10分钟)讲解正比例函数的定义和性质,通过多媒体展示相关的图片和实例,让学生直观地理解正比例函数的概念。
同时,给出正比例函数的一般形式y=kx(k为常数,k≠0),并讲解其性质。
3.操练(10分钟)让学生进行一些有关正比例函数的练习题,巩固所学知识。
八年级数学北师大版上册 第4章《4.2 一次函数与正比例函数》教学设计 教案

《一次函数与正比例函数》教案一、教材分析(一)教材的地位和作用《一次函数与正比例函数》八年级上册第四章第二节的内容,一次函数是初中阶段研究的较为简单、应用较为广泛的函数,它的研究方法具有一般性和代表性,为后面的二次函数、反比例函数的学习都奠定了基础。
同时,在整个初中阶段,一元一次方程、一元一次不等式都存在于一次函数中。
三者相互依存,紧密联系,也为方程、不等式、函数解法的补充提供了新的途径。
(二)教学目标知识与技能目标:(1)理解一次函数和正比例函数的概念;(2)能根据所给条件写出简单的一次函数表达式.过程与方法目标:(1)经历一次函数概念的抽象过程,体会模型思想,从实际问题中得到函数关系式,并感受它们之间的一种依存关系。
(2)能根据所给的实际生活背景,列出简单的一次函数关系式。
情感态度与价值观目标:通过具体问题的解决,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣.在探索过程中体验成功的喜悦,树立学习的自信心.教学重点、难点:重点:从具体情境中列出相应的一次函数表达式,从而抽象出一次函数的概念。
难点:根据具体情境所给的信息确定一次函数的表达式二、教法与学法:在本节课的教学中我准备采用的教学方法主要是引导——自学交流的方式。
根据学生的理解能力和生理特征,一方面运用现实生活实例,引发学生的兴趣,使他们的注意力集中到解决现实生活问题上,另一方面通过学生小组合作交流、展示,尽可能充分发挥学生的主动性。
通过本节课的学习,使学生学会在独立思考的基础上与同伴进行交流、讨论,培养学生的合作意识,感受数学源于生活有应用于生活。
三、教学过程设计下面是我说课的重点,也就是教学过程的设计,整节课我共设为六个环节:第一个环节是复习回顾:1、什么叫函数:在某个变化过程中,有两个 x和y,如果给定一个x值,相应地就确定一个y值,那么我们称y是x的函数,其中x是 ,y是 .2、函数的三种表达方式有:、、。
3、已知一个长方形的面积为y,长为5,宽为x,则长方形的面积表示为y= . 设计意图:复习函数的概念及其表达方式。
《正比例函数》人教版八年级数学教案

《正比例函数》人教版八年级数学教案正比例函数是本章的重点内容,是学生在初中阶段第一次接触的函数,这部分内容的学习是在学生已经学习了变量和函数的概念及图像的基础之上进行的。
下面由我为大家整理了关于《正比例函数》人教版八年级数学教案,供大家参考。
《正比例函数》人教版八年级数学教案1教学目标:1、认识目标(1)通过对不同背景下函数模型的比较,接受正比例函数的概念。
(2)在用描点法画正比例函数图象的过程中发现正比例函数的性质。
2、能力目标(1)利用发现的性质简便地画出正比例函数的图象,培养学生的动手能力。
(2)通过结合函数图象揭示性质的教学,培养学生观察、比较、抽象、概括能力。
3、情感、态度与价值观(1)通过正比例函数概念的形成过程,培养学生的探索精神和创新意识。
(2)在画正比例函数图象的活动中获得成功的体验,培养学生积极思考和动手学习的良好习惯,激发学习数学的热情。
教学重点:正确理解正比例函数的概念。
教学难点:体验研究函数的一般思路与方法。
教学方法:1、教法:本节教材实例取自生活实际,通过引导学生对身边事物的观察,让学生认识到大量活生生的正比例函数模型就在我们身边,从而让他们感受到数学贴近于现实生活,通过创设问题情景,精心设问,适时适度运用激励性语言,采用引导讨论法,让学生主动、愉快的参与到学习的全过程中来。
2、学法:倡导学生参与,师生互动,充分调动学生思考与探究的积极性,使学生成为学习的主体,让学生在学习过程中体验“观察、思考、探索、归纳”整个思维过程。
教学手段:运用多媒体,实现现代化教学手段,重现生活中事物变化过程,将教材中的静态画面转变为动态画面,从视觉、听觉吸引学生观察、体验,从而进一步思考、探究,得出结论,以提高课堂教学效率。
教学过程:一、创设情境,设疑激思1、实物情境:春天到了,燕子又飞回来了。
请同学们观察图片(多媒体展示燕欧飞行图片),1966年,鸟类研究者在芬兰给一只燕欧(候鸟)套上标志杆;4个月零1周后,人们在2.56万千米外的澳大利亚发现了它。
正比例函数说课稿3篇

正比例函数说课稿3篇(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如演讲稿、工作总结、工作计划、心得体会、教学总结、事迹材料、优秀作文、教学设计、合同范文、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of practical materials for everyone, such as speeches, work summaries, work plans, experiences, teaching summaries, deeds materials, excellent essays, teaching designs, contract samples, and other materials. If you want to learn about different data formats and writing methods, please pay attention!正比例函数说课稿3篇正比例函数说课稿1一、教材分析1、教材的地位与作用《正比例函数》是九年制义务教育新课程标准八年级第一学期第二十一章的内容。
人教版数学八年级下册《19.2.1 正比例函数》教学设计

人教版数学八年级下册《19.2.1 正比例函数》教学设计一. 教材分析人教版数学八年级下册《19.2.1 正比例函数》是学生在学习了初中数学基础知识后,进一步深入研究函数的性质和应用。
本节内容主要包括正比例函数的定义、图象和性质,以及正比例函数在实际生活中的应用。
通过本节的学习,使学生能够理解正比例函数的概念,掌握正比例函数的图象和性质,并能运用正比例函数解决实际问题。
二. 学情分析学生在学习本节内容前,已经掌握了初中数学的基本知识,对函数有一定的了解。
但学生对正比例函数的概念和性质的认识还不够深入,需要通过本节课的学习来进一步理解和掌握。
同时,学生对于正比例函数在实际生活中的应用还不够熟悉,需要通过实例来引导学生理解和运用。
三. 教学目标1.理解正比例函数的概念,掌握正比例函数的图象和性质。
2.能够运用正比例函数解决实际问题,提高学生的应用能力。
3.培养学生的逻辑思维能力和团队合作能力。
四. 教学重难点1.正比例函数的概念和性质。
2.正比例函数在实际生活中的应用。
五. 教学方法1.采用问题驱动法,引导学生主动探究正比例函数的性质和应用。
2.利用数形结合法,通过图象来直观展示正比例函数的性质。
3.采用实例教学法,让学生通过实际问题来理解和运用正比例函数。
六. 教学准备1.教学PPT,包括正比例函数的定义、图象和性质等内容。
2.实例题库,用于巩固和拓展学生的知识。
3.板书设计,包括正比例函数的定义、图象和性质等重要内容。
七. 教学过程1.导入(5分钟)通过一个实际问题引入正比例函数的概念,例如:一辆汽车以每小时60公里的速度行驶,行驶3小时后,行驶的路程是多少?引导学生思考速度、时间和路程之间的关系,从而引出正比例函数的概念。
2.呈现(10分钟)利用PPT呈现正比例函数的定义、图象和性质。
引导学生通过观察图象来理解正比例函数的性质,如过原点、斜率为正等。
同时,给出正比例函数的数学表达式y=kx(k为常数,k≠0)。
北师大版八年级上册第4.2一次函数与正比例函数(教案)

最后,课后我会对今天的课堂教学进行总结,找出不足之处,不断优化教学方法,以提高教学效果。同时,我也会关注学生们的反馈,了解他们在学习过程中的需求和困难,以便更好地调整教学内容和进度。
5.情感与价值观:通过数学知识在实际生活中的应用,让学生体会数学的价值,增强学习数学的兴趣和信心,培养积极向上的学习态度。
三、教学难点与重点
1.教学重点
-函数概念的理解:强调一次函数y=kx+b(k≠0)中,k和b的含义及其对图像的影响,确保学生理解函数表达式中每个参数的核心作用。
-图像与性质的关联:通过分析一次函数的图像,让学生掌握斜率k的正负与图像走势的关系,以及截距b在图像上的表现。
-正比例函数的特殊性:明确正比例函数是一次函数的特殊情况,即b=0的情况,理解其图像始终通过原点的特点。
-函数应用能力的培养:通过实际问题的引入,让学生学会将现实问题抽象为一次函数模型,并运用函数性质解决问题。
举例:讲解一次函数的应用时,可以引用实际案例,如“小明骑自行车旅行,速度恒定,时间为t小时,行程为s公里,建立s与t的函数关系”。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。比如,用尺子和直角坐标系,让学生们手动绘制一次函数的图像。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“一次函数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
3.重点难点解析:在讲授过程中,我会特别强调一次函数的斜率k和截距b这两个重点。对于难点部分,我会通过案例和图像来帮助大家理解,比如斜率k如何影响图像的斜率和y值的变化。
八年级数学下册正比例函数教案

《正比例函数》教学设计【教学目标】知识与技能:1.理解正比例函数的概念及解析式的特征2.能够判断两个变量是否成正比例函数关系3.会用正比例函数解决简单的实际问题情感态度与价值观:1.让学生认识到生活实例中有大量的函数模型,激发学生学习数学的兴趣.2.培养学生热爱自然、热爱生活的优秀品质.【教学重点】正比例函数的概念及解析式的特征.【教学难点】正比例函数的应用【教学过程】一、回顾旧知,引入新知复习回顾什么是自变量?什么是函数?二、观察思考、归纳概念列问题中,变量之间的对应关系是函数关系吗?如果是,请写出函数解析式?1.圆的周长L随半径r的变化而变化?2.铁的密度为7.8g/cm3,铁块的质量m(单位;g)随它的体积V的变化而变化。
3.每个练习本的厚度为0.5cm,一些练习本摞在一起的总厚度h(单位:cm)随联系标的本数n的变化而变化.4.冷冻一个0°C的物体,使它每分下降2°C,物体的温度T(单位:°C)随冷冻时间t(单位:min)的变化而变化.师生活动:教师多媒体呈现上述四个实际问题.学生独立解答,解答后小组交流,出代表进行反馈.教师要重点关注:(1)题中学生易将写成.(4)题中每分钟下降2℃应记为“-2℃”,避免学生将写为.关注学生能否准确找出中的常量.函数解析式常数自变量函数(1)l=2πr 2πr l(2)S=30t 30 t S(3)h=0.5n 0.5 n h(4)T= -2t -2 t T设计意图:通过指出常数、自变量、自变量的函数,对函数的概念进行回顾,从而为后续环节找正比例函数的共同点建立生长点. 通过对实际问题讨论,使学生体验从具体到抽象的认识过程.问题2:将上表中的前四个函数与第五个函数进行比较,思考:前四个函数有什么共同特点?师生活动:学生观察、思考.小组交流,分析、归纳共同特点,出代表反馈.教师要根据学生的具体表现,通过引导、点拨,使学生比较、观察得出共同点.教师根据学生的表述板书:共同点:常数×自变量.教师板书:y=kx概念:一般地,形如y=kx(k是常数,k ≠0)的函数,叫做正比例函数,其中k叫做比例系数.教师追问:这里为什么强调k是常数,k≠0呢?学生交流、讨论,互相补充.设计意图:通过将前四个函数与第五个函数进行比较,是学生通过比较、观察、分析、概括出正比例函数的共同特点,使学生明白正比例函数的特征,从而归纳出正比例函数的概念.有效地克服了因没有对比直接观察使学生出现的不适性、盲目性.培养学生的观察、分析、归纳、概括等思维能力.三、练习运用,内化概念。
人教版数学八年级下册19.2第1课时正比例函数优秀教学案例

一、案例背景
在我国初中数学教育中,正比例函数是学生接触到的第一个具有明显线性特征的函数类型,对于培养他们的数学思维与解决实际问题的能力具有重要意义。本教学案例以人教版数学八年级下册19.2第1课时正比例函数为主题,通过设计丰富多样的教学活动,旨在帮助学生理解正比例函数的概念、图像及性质,并能将其应用于解决生活中的实际问题。
在教学正比例函数这一课时,我将通过创设贴近学生生活的情景,激发他们的学习兴趣。例如,可以引入购买商品时的单价与总价关系、速度与时间关系等实例,让学生在具体情境中感知正比例函数的存在。这样既能帮助学生理解正比例函数的定义,又能使他们体会到数学知识在实际生活中的应用。
(二)问题导向
以问题为导向的教学策略,可以引导学生主动探究、积极思考。在教学中,我将设计一系列具有启发性和挑战性的问题,如“如何表示两个变量的正比例关系?”“正比例函数的图像有什么特点?”等。通过这些问题,让学生在解答过程中掌握正比例函数的知识点,培养他们分析问题和解决问题的能力。
4.反思与评价的有机结合
本案例注重学生的反思与评价,引导他们在学习过程中及时总结经验教训,调整学习策略。同时,教师采用多元化的评价方式,关注学生的全面发展。这种反思与评价的有机结合,有助于提高学生的学习效率,增强他们的自信心。
5.丰富的教学内容与过程设计
本案例在教学内容与过程设计方面,充分考虑了学生的认知规律和教学目标。从导入新课、讲授新知、小组讨论、总结归纳到作业小结,各个环节紧密相连,层层递进。这种设计有助于学生系统、全面地掌握正比例函数的知识,提高他们的数学素养。
3.引导学生运用数形结合的思想,将正比例函数的图像与性质相结合,提高他们解决问题的直观想象和逻辑推理能力。
人教版八年级下册19.2.1正比例函数(教案)

在今天的课堂中,我发现学生们对正比例函数的概念和性质的理解整体上是积极的。他们能够通过实例快速抓住正比例函数的核心,这让我感到很欣慰。不过,我也注意到在图像绘制和实际应用方面,部分学生还存在一些困惑。
首先,正比例函数的图像绘制对于一些学生来说是个挑战。他们知道图像是一条直线,但具体如何根据函数表达式找到合适的点来绘制这条直线,这一点并不是所有人都能马上掌握。我意识到,在这里我需要提供更多的引导和练习,让学生通过实际操作来加深理解。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解正比例函数的基本概念。正比例函数是形如y=kx(k为常数,k≠0)的函数。它在生活中有着广泛的应用,如速度与时间、单价与总价等关系。
2.案例分析:接下来,我们来看一个具体的案例。比如,小明骑自行车的速度是每小时10公里,他骑行了3小时,我们可以通过正比例函数来计算他骑行的总距离。
另一个难点在于如何将正比例函数应用到解决实际问题上。虽然学生们能够理解速度和时间的例子,但当问题变得更加复杂时,他们就显得有些力不从心。我考虑在未来的课程中,引入更多的生活场景,让学生在小组讨论和实验操作中,更直观地感受正比例函数的实际意义。
此外,小组讨论的环节让我看到了学生们的合作精神和解决问题的能力。他们能够在小组内部分工合作,共同探究正比例函数的应用,这非常好。但我也观察到,有些小组在讨论时可能会偏离主题,这在一定程度上影响了讨论的效率。我计划在下次讨论前,提供更明确的讨论指南,帮助学生聚焦关键问题。
-举例:当k=1/2时,如何找到图像上的点,并正确绘制出这条直线。
-正比例函数性质的深入理解:学生可能难以理解为什么k的正负会影响图像所在的象限。
-解释:通过具体例子(如k=2和k=-2时的图像对比),说明k的正负与图像在坐标平面上的位置关系。
人教版初中八年级数学教案

人教版初中八年级数学教案一、课程目标1.帮助学生掌握正比例函数的概念、性质和应用;2.培养学生解决实际问题的能力;3.培养学生对数学的兴趣和积极性。
二、教学重点1.正比例函数的性质;2.正比例函数的应用。
三、教学难点1.正比例函数的应用;2.实际问题的解决。
四、教学内容第一课时1. 教学目标1.学习正比例函数的定义、性质;2.进行实例讲解;3.学习实际问题的解决方法。
2. 教学重点1.正比例函数的定义和性质;2.实例讲解与应用。
3. 教学难点1.正比例函数的应用;2.实际问题的解决。
4. 教学方法1.讲授;2.实例演示。
5. 教学内容1.正比例函数的定义和性质;2.实例讲解;3.实际问题的解决。
6. 教学步骤1.引入正比例函数的概念;2.讲解正比例函数的性质;3.进行实例讲解;4.解决实际问题。
7. 教学反思本课时的重点在于学生能够掌握正比例函数的性质和应用。
通过实例讲解和解决实际问题,加深学生对知识点的理解和应用能力。
第二课时1. 教学目标1.学习正比例函数的图像特征;2.实例操作和应用。
2. 教学重点1.正比例函数的图像特征;2.实例操作和应用。
1.正比例函数的图像特征;2.实例操作和应用。
4. 教学方法1.讲授;2.实例操作。
5. 教学内容1.正比例函数的图像特征;2.实例操作和应用。
6. 教学步骤1.引入正比例函数的图像特征;2.进行实例操作;3.解决实际问题。
7. 教学反思本课时的重点在于学生能够掌握正比例函数的图像特征和应用方法。
通过实例操作和解决实际问题,加深学生对知识点的理解和应用能力。
第三课时1. 教学目标1.学习反比例函数的概念和性质;2.能够解决实际问题。
2. 教学重点1.反比例函数的定义和性质;2.实例讲解和应用。
1.反比例函数的应用;2.实际问题的解决。
4. 教学方法1.讲授;2.实例讲解。
5. 教学内容1.反比例函数的定义和性质;2.实例讲解和应用。
6. 教学步骤1.引入反比例函数的概念;2.讲解反比例函数的性质;3.进行实例讲解;4.解决实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正比例函数教案
正比例函数教案
教学目的:
1、理解正比例函数及正比例的意义;
2、根据正比例的意义判定两个变量之间是否成正比例关系;
3、识别正比例函数,根据已知条件求正比例函数的解析式或比例系数。
教学重点:
理解正比例和正比例函数的意义
教学难点:
判定两个变量之间是否存在正比例的关系
教学过程:
一、新课引入:
回答下列问题:
(1)汽车在公路上以每小时100千米的速度行驶,怎样表示它走过的路程S(千米)随行驶时间t(小时)变化的关系?
(2)圆的周长C与半径r之间的关系是什么?
(3)某水厂以每分钟20升的速度向一个空水池放水,怎样表示水池的蓄水量Q(升)与时间t(小时)之间的关系?
解:(1)S = 100t
(2)C=2πr
(3)Q=20t
二、新课讲解:
1、常量、变量,函数的描述性定义
我们研究其中第(1)个问题:
在计算汽车在不同时间内所行驶的路程时,t与S可以取不同的数值,而汽车的速值总是保
如(1)中的速度;(2)中的圆周率;(3)中放水的速度
变量:在某个问题的研究过程中可以取不同数值的量叫做变量
如(1)中的S,t;(2)中的C,r;(3)中的Q,t
函数:在某个问题中,几个变量之间满足一定的对应关系,我们称之为函数。
如:(1)中对于时间t的每一个确定的值,路程都有唯一确定的值与之对应,那么我们说S 是t的函数,其中变量t是自变量,变量S叫做应变量,S与t之间的对应关系可以用数学式子S = 100t来表示,这种表示S和t之间关系的式子称为函数关系式或函数解析式。
学生模仿练习说明(2)(3)中的函数,自变量,应变量,函数关系式分别是什么?
(2)中C是r的函数,r是自变量,C是应变量,函数关系式是C=2πr;
(3)中Q是t的函数,t是自变量,Q是应变量,函数关系式是Q=20t;
2、正比例函数的定义
观察(1)中S与t的不同取值之间有什么共同之处?
(1)中S与t的对应值的比值(s/t)总是一个常数(100)
在速度不变的运动中,路程S与时间t的比值是一定的,我们说S与t成正比例。
学生模仿练习说明(2)(3)有没有成正比例的?
(2)中C与r的比值是2π是一个常量,所以C与r成正比例;
(3)中Q与t的比值是20是一个常量,所以Q与t成正比例;
正比例函数:一般地,如果变量x,y有关系y =-kx(k是一个不等于0的常数),那么变量
k )叫做正比例函数,其中常数k叫做比例系数,自变量x,y成正比例,函数y = kx(0
x的取值范围是一切实数,比例系数不能为零。
学生模仿练习说出(1),(2),(3)中的比例系数
(1)中的比例系数为100;(2)中的比例系数为2π;(3)中的比例系数为20;
三、习题讲解:
例1、判断下列各式中变量x与变量y是否存在正比例函数关系,是,请说出它的比例系数。
(1)y = – 7 不是
(2)y=x/8 是,比例系数是1/8
(3)y=8/x 不是
(4)y = – x 是,比例系数是– 1
(5)y = x+1 不是
(6)y=是,比例系数是√3
(7)y=不是
(8)y=8x²不是
(9)x=5y 是,比例系数是1/5
(10)y/x=6 是,比例系数是6
例2、判断下列关系是否成正比例?为什么?
(1)正方形的周长与它的边长;
(2)圆的面积与它的半径;
(3)要走50公里的路程,车速v(公里/小时)与行走的时间t(小时);
(4)矩形的长为5,它的面积与宽;
(5)矩形的长为5,它的周长与宽;
解:(1)C = 4a ∵C/a=4正方形的周长与它的边长成正比例
(2)S=πr ³∵S/r=πr(不是常量),∴圆的面积与它的半径不成正比例
(3)vt = 50 ∵v/t不是常量,∴车速v,与行走的时间t,不成正比例
(4)S =5b ∵s/b=5,∴矩形的面积与宽成正比例
(5)C=2(5+b)∵C/b不是常量,∴矩形的周长与宽不成正比例
例3、已知y与x成正比例,且当x = 3时,y=18,求y与x之间的关系式。
解:∵y与x成正比例
∴y=kx(k≠0)
把x = 3,y = 18代入得
18 = 3k,k = 6
∴y与x之间的关系式为y = 6x
*要确定一个正比例函数的解析式时,只要确定比例系数k即可,所以求正比例函数的
关系式就是转化成解一元一次方程。
学生练习书P43/1,2,3,4
拓展练习:
(1)已知:函数y=(3+2m)x3-2m是正比例函数,求这个函数的解析式。
(2)已知y与x成正比例,并且当x=1/2时,y = 5,求当x = – 3时,y的值。
(3)已知y+3与x成正比例,且x = 4时,y = – 1,求y与x之间的函数关系式。
(4)已知y与x成正比例,z与y也成正比例,且当x = – 3时,y = 6;当y = 时,z = 3,
求z与x之间的函数关系式。
解:(1)∵函数y=(3+2m)x3-2m是正比例函数
∵3+2m≠0解得:m≠−3/2
3-2m=1 m=1
∴这个函数的解析式为y = 5x
(2)∵y与x成正比例,∴设y=kx(k≠0)
把x=-1/2,y = 5代入得5=k/2,解得k = 10
∴ y = 10x
把x = – 3代入得y =− 30
∴当x = – 3时,y的值是− 30。
(3)∵y+3与x成正比例,∴设y+3=kx(k≠0)
把x = 4,y = – 1代入得− 1+3=4k,解得k =1/2
∴ y+3= x/2
∴y与x之间的函数关系式为y =x/2 – 3。
(4)∵y与x成正比例,z与y也成正比例
∴设y=k1x(k1≠0),z=k2y(k2≠0),则z= k2y= k2k1x(k1k2≠0)
把x = – 3,y = 6代入y=k1x(k1≠0)得6=-3k1,解得:k1=-2;
把y = ,z = 3代入z=k2y(k2≠0)得k2,解得:k2/2;
把,k1=-2 k2代入z= k2y= k2k1x(k1k2≠0)得z=−x
四、小结:
1、常量、变量,函数的意义
2、正比例函数的定义及如何判定两个变量是否成正比例关系
3、正比例函数解析式的确定即为比例系数k的确定,注意k≠0
五、作业:
1、课后随堂练习
2、习题4,2.
正比例函数教后感
今天我们学习了正比例函数这节内容。
同学们对于判断正比例函数掌握的比较好,通过对小学阶段学习的关系式的复习,能够判断对两个变量是否是正比例函数,所以这节课总的来说收获还是比较理想
的。
但是,美中不足的是,同学们对于求正比例函数表达式,掌握的比较生疏,必能很好很自如的求出。
同时书写的也不规范。
所以,我还必须在此处对大家下功夫,对要求,多讲解,使每名学生掌握求表达式的方法与规范的书写。