汽车柴油机涡轮增压与排放控制

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

汽车柴油机涡轮增压与排放控制

汽车柴油机涡轮增压与排放控制

newmaker

1.前言柴油机废气涡轮增压技术自问世以来已有90余年历史。早期废气涡轮增压的主要目的是改善发动机的动力性。至今,废气涡轮增压仍是提高柴油机功率、减轻单位功率质量、减小外形尺寸、降低燃油消耗和强化现有非增压柴油机的最有效的措施之一。经过不断的改进和提高,先进的涡轮增压器以其优良的性能和较低的价格愈来愈被广泛应用。涡轮增压器已广泛用于轿车;轻、中、重型汽车;工程机械;农业机械;工业和航空等领域。近二十年来,随着人们环境保护意识的增强,对汽车尾气排放的限制越来越严。为满足不断加严的排放法规的要求,许多新的发动机技术被采用。然而,废气涡轮增压技术在降低柴油机排放方面又发挥了十分重要的作用。涡轮增压中冷技术既是减少柴油机排放的有效措施,又可消除某些排放控制技术对动力性和经济性产生的负面影响。废气涡轮增压是汽车柴油机的一项重要技术,它促进了柴油技术的发展,并将为汽车柴油机的发展开拓更加广阔的前景。

2.汽车柴油机涡轮增压技术的发展由于柴油机优良的动力性和经济性,目前,国内外重型汽车全部采用柴油机作为动力,并且绝大多数采用了涡轮增压技术或涡轮增压中冷技术;原来以汽油机动力为主的轻型汽车和轿车也有明显的柴油化趋势。在欧洲,柴油轿车市场的发展迅速。据预测,到2000年,欧洲柴油轿车销售量占整个轿车销售量的30%;采用涡轮增压的柴油轿车将超过300万辆,约占柴油轿车的83%。促进重型汽车柴油机发展的主要因素有功率密度、燃油经济性和环境保护。涡轮增压进气中冷技术能显著提高功率密度、降低排放和改善燃油消耗率。与1980年以前的机型相比,现今的重型汽车柴油机的功率密度提高了100%,燃油消耗率改善了16%,NOX和微粒物的排放分别降低了80%和90%。图1为重型汽车柴油机功率密度、燃油消耗率和降

低排放的发展趋势。

促进轿车柴油机发展的主要因素是排放、功率密度、性能、噪声和燃油经济性。图2为轿车柴油机功率密

度、燃油经济性能的发展趋势。

轿车柴油机技术发展已趋成熟,其功率密度和转矩已与轿车汽油机相当;柴油机的动力性和环境性(排放和噪声)与汽油机的性能也不差上下。例如,最近大众汽车公司推出的3升路波TDI轿车柴油机,采用了涡轮增压、进气中冷、直接喷射、泵喷嘴、可变喷嘴涡轮等先进技术,燃油经济性可以达到100km燃油消耗2.99L;该车还采用了初级催化、主催化和废气再循环等技术,其排放指标可以达到欧洲Ⅳ标准;该机是目前世界上唯一能达到这两项指标的轿车发动机。 3.涡轮增压与排放控制技术具有代表性的国际三大排放体系(欧洲、美国、日本)分别制定了分阶段的汽车柴油机的排放限值。虽然三个排放法规体系采用了各自的测试方法和阶段限值,但不断加严的趋势是一致的。为满足越来越严的排放法规要求,必须提高燃料质量和采用先进的发动机技术。要达到各阶段排放限值需有相应的发动机技术作保证。图3和图4分别为满足欧洲轿车、重型汽车不同阶段排放限值的技术措施的实例。由图可知,对于各型柴油车,既要稳定达到高于欧洲Ⅰ的排放标准,又要保证汽车柴油机优良的动力和燃油经济性,必须采用废气涡轮增压及中冷技术。对应于不同的排放限值阶段,除了采用其他先进技术,诸如高压喷射、多气门技术、泵喷嘴、EGR、

预喷射、电控喷射、De-NOX催化器等技术外,各阶段都对应一定的增压技术的改进和提高。

4.涡轮增压及中冷技术对排放的影响柴油机增压时,空气被压缩,温度与压力同时提高,如果不采用中冷,

进入气缸的空气密度为:

式中:ηa d,k--压气机绝热效率;π=Pk/P1--增压压比。增压加中冷时,空气的密度为:

由以上两式可见,未采用中冷时,进气密度受压气机绝热效率的限制;当柴油机高增压时,增压压比大,应同时采用中冷技术,以提高进气密度。汽车柴油机的排放污染物主要有CO、HC、NOX和微粒物,此外,由于温室效应引起全球变暖的问题,CO2的排放量也受到限制。a)一氧化碳(CO)。柴油机中CO是燃料不完全燃烧的产物,主要是在局部缺氧或低温下形成的。由于柴油机在过量空气系数α>1下燃烧的特点,汽车柴油机的CO排放较低。采用涡轮增压后,可供燃烧的空气增多,并且增压发动机大多数工况负荷较大,发动机的缸内温度能保证燃料更充分燃烧,CO排放可进一步降低。b)碳氢化合物(HC)。柴油机排气中的HC是由原始燃料分子、分解的燃料分子以及再化合的中间化合物所组成;小部分HC是由润滑油生成的。增压时,由于进气密度增加,可以改善油束的形成、提高燃油雾化质量,减少沉积于燃烧室壁面上的燃油,HC减少;增压还使柴油机燃烧整个循环的平均介质温度升高,氧化反应速率大,未燃HC 排放降低。c)氮氧化物(NOX)。柴油机中氮氧化物的主要成分NO的生成取决于氧的浓度、温度及反应时间等。降低NO的措施是以降低火焰温度、氧浓度及高温下停留时间为目标。对于现有的自然吸气柴油机,如果只简单采用增压措施,可能会因为过量空气系数增大和燃烧温度的升高而导致NOX增加。实际应用中,柴油机增压时采用减小压缩比、推迟喷油定时等措施来减小热负荷、降低最高燃烧温度。压缩比的减小可以降低压缩终了的介质温度从而降低燃烧火焰温度;推迟喷油定时,可以缩短滞燃期,减少油束稀薄火焰区的燃料蒸发和混合,降低最高燃烧温度。为减少喷油定时导致的后燃期过长的问题,须增大供油速率,缩短喷油时间,以加快燃烧速率,缩短燃烧时间。废气再循环EGR是降低NOX排放的一种有效措施。引入热容量较高的废气成分与新气混合,可以降低最高燃烧温度;同时,废气对新鲜混合气的稀释作用,减小了氧的浓度,达到降低NOX的目的。根据柴油机燃烧理论,降低NOX的生成浓度的措施将会影响燃烧效率、增加燃油消耗、降低动力性能。增压柴油机在燃油经济性和动力性能上的改善,可以使汽车柴油机在降低NO2的同时,保持良好的燃油经济性和动力性。采用进气中冷技术降低进气温度,可降低增压柴油机NOX排放;特别采用先进的空--空中冷后,可进一步降低进气充量的温度。进气充量温度降低,燃烧温度可以得到有效控制,有利于NOX的减少。如图5所示,随着中冷后的进气温度的降低,NOX和

燃油消耗率都有所改善。

相关文档
最新文档