《简单随机抽样》参考教学方案
简单随机抽样 说课稿 教案
重点
分析
具体细化内容和确定依据
(1)理解随机抽样的必要性和重要性
(2)学会简单随机抽样的两种方法
(3)对样本随机性的理解
难点
分析
(1)放回与不放回抽样的区别
(2)学生在运用抽样方法时所有个体被抽到的机会相等的保证
解法1:(抽签法)将100件轴编号为1,2,…,100,并做好大小、形状相同的号签,分别写上这100个数,将这些号签放在一起,进行均匀搅拌,接着连续抽取10个号签,然后测量这个10个号签对应的轴的直径。
解法2:(随机数表法)将100件轴编号为00,01,…99,在随机数表中选定一个起始位置,如取第21行第1个数开始,选取10个为68,34,30,13,70,55,74,77,40,44,这10件即为所要抽取的样本。
利用随机数表、随机数骰子或计算机产生的随机数进行抽样,叫随机数表法,这里仅介绍随机数表法。
怎样利用随机数表产生样本呢?下面通过例子来说明,假设我们要考察某公司生产的500克袋装牛奶中是否含有三聚氰胺,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,可以按照下面的步骤进行。
第一步,先将800袋牛奶编号,可以编为000,001,…,799。
【说明】简单随机抽样必须具备下列特点:
(1)简单随机抽样要求被抽取的样本的总体个数N是有限的。
(2)简单随机样本数n小于等于样本总体的个数N。
(3)简单随机样本是从总体中逐个抽取的。
(4)简单随机抽样是一种不放回的抽样。
(5)简单随机抽样的每个个体入样的可能性均为n/N。
பைடு நூலகம்思考?
下列抽样的方式是否属于简单随机抽样?为什么?
简单随机抽样教学设计-高一下学期数学人教A版(2019)必修第二册
9.1.1简单随机抽样一、内容和内容解析内容:简单随机抽样的概念以及如何实施简单随机抽样.内容解析:本节课选自《普通高中课程标准数学教科书-必修第二册》(人教A版)第九章第1节第1课时的内容.本节内容是统计的初步内容——简单随机抽样,是其他抽样方法的基础,也是估计总体结果的前提,同时也是初中频率知识的延伸.数理统计学包括两类问题,一类是如何从总体中抽取样本,另一类是如何根据对样本的整理、计算和分析,对总体的情况作出一种推断.可见,抽样方法是数理统计学中的重要内容.简单随机抽样作为一种简单的抽样方法,又在其中处于一种非常重要的地位.因此它对于学习后面的其它较复杂的抽样方法奠定了基础,同时它强化对概率性质的理解,加深了对概率公式的运用.因此它起到了承上启下的作用,在教材中占有重要地位.二、目标和目标解析目标:(1)正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤.(2)在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本.(3)通过对现实生活和其他学科中统计问题的提出,体会数学知识与现实世界及各学科知识之间的联系,认识数学的重要性.目标解析:(1)简单随机抽样是一种简单且基本的抽样方法,是很多抽样方法的基础,在抽样理论中占有重要低位..(2)抽签法和随机数表法是实现简单随机抽样的两种方法,两种抽样都可以归纳为编号,抽取,成样三个步骤,明确两种方法的优劣,选择合适的方法进行抽取.(3)数学核心素养是数学教学的重要目标,但数学核心素养需要在每一堂课中寻找机会去落实.简单随机抽样的教学中,利用利用抽样方法解决实际问题是进行数学建模教学的好机会.基于上述分析,本节课的教学重点定为:普查与抽查、简单随机抽样、总体平均数与样本平均数.三、教学问题诊断分析1.教学问题一:用样本估计总体或多或少会存在误差,从对总体估计的角度看,误差小的样本是“好”样本,误差大的样本是“坏”样本.如何获得一个好样本是学生理解的一个难点。
《简单随机抽样》教学设计
《简单随机抽样》教学设计一、教学内容与内容解析1.内容:统计,简单随机抽样,抽签法,随机数表法。
2.内容解析:本节课是人教版《高中数学》第三册(选修Ⅱ)的第一章“概率与统计”中的“抽样方法”的第一课时:简单随机抽样.其主要内容是介绍简单随机抽样的概念以及如何实施简单随机抽样.数理统计学包括两类问题,一类是如何从总体中抽取样本,另一类是如何根据对样本的整理、计算和分析,对总体的情况作出一种推断.可见,抽样方法是数理统计学中的重要内容.简单随机抽样作为一种简单的抽样方法,又在其中处于一种非常重要的地位.因此它对于学习后面的其它较复杂的抽样方法奠定了基础,同时它强化对概率性质的理解,加深了对概率公式的运用.因此它起到了承上启下的作用,在教材中占有重要地位.本节课是在学生初中已学习了统计初步知识的基础上,系统学习统计的基本方法,体验统计思想的第一课时.本节课通过结合具体的实际问题情景,使学生认识到随机抽样的必要性和重要性,进而分析得到简单随机抽样的定义、常用实施方法.这些活动的实施就是想引导学生从现实生活或其它学科中提出具有一定价值的统计问题,初步形成运用统计的思想和方法(用数据说话)来思考问题和解决问题的习惯.。
本课题为“简单随机抽样”,主要学习简单随机抽样的理论与方法.从理论上讲,“简单”是指抽取的样本为“简单随机样本”,获取简单随机样本的抽样方法称为简单随机抽样.简单随机抽样要满足以下两个条件:(1)代表性,即要求样本的每个分量X i与所考察的总体X具有相同的概率分布F(X);(2)独立性,X1,X2,…,X n为相互独立的随机变量,也就是说,每个观察结果不影响其它观察结果,也不受其它观察结果的影响.当然在有限总体中,样本的各个观察结果可以是不独立的.在本节课中,要将这些关于随机抽样的理论,用浅显的例子渗透在学生的学习过程中.因此,教学的内容应侧重于如何使抽取的数据能代表总体,即抽取的样本要能反映总体的本质特征.要抓住两个特征展开,要求抽取的样本有代表性,样本的容量要适当,太大没有必要,太小不能反映总体的特征.其次,要体现独立性,在简单随机抽取时,总体中每个个体被抽到的概率是相等的,说明这种抽样的方法是独立的.抽取的样本的分布与总体分布相似度越高,样本的代表就越大.这就为后续学习三种抽样方法的形成与评价提供基础.从知识的应用价值来看,重视数学知识的应用和关注人文内涵是新教材的显著特点.丰富的生活实例为学生用数学的眼光看待生活,体验生活即数学的理念,体验用算法思想解决模式化问题的作用,有助于学生对统计思想和方法的掌握,增加学生的感性认识.。
《8.4.1简单随机抽样》教学设计教学反思-2023-2024学年中职数学高教版2021基础模块下册
《简单随机抽样》教学设计方案(第一课时)一、教学目标1. 理解简单随机抽样的概念和特点。
2. 掌握简单随机抽样的随机数表法。
3. 能够在实际问题中应用简单随机抽样。
二、教学重难点1. 教学重点:理解简单随机抽样的概念和特点,掌握随机数表法。
2. 教学难点:如何根据实际问题设计简单随机抽样方案。
三、教学准备1. 准备教学用具:黑板、白板、笔、随机数表卡片。
2. 准备教学材料:与课程相关的实际问题案例。
3. 安排教学时间:约90分钟。
4. 设计的教学流程:1. 导入:通过案例引入课程主题,让学生对课程有初步了解。
2. 讲解:深入分析问题案例,解释相关概念和原理。
3. 讨论:组织学生分组讨论,鼓励他们提出自己的见解和解决方案。
4. 总结:回顾课程内容,强调重点和难点。
5. 布置作业:针对课程主题,布置相关问题案例,让学生在家中继续思考和实践。
结尾:期待每位同学都能积极参与,通过本次课程的学习,能够更好地理解和应用相关知识和技能。
同时,也欢迎同学们随时与我交流,共同探讨更多相关问题。
四、教学过程:(一)导入新课1. 简单随机抽样概念介绍。
2. 简单随机抽样在实际生活中的应用。
(二)新课教学1. 创设情境,导入新知展示一些关于抽样的图片或视频,让学生了解抽样在实际生活中的应用,激发学生学习兴趣。
2. 简单随机抽样概念教学(1)随机性:抛一枚硬币,正面朝上还是反面朝上?但是当我们做很多次试验时,正面朝上的次数会多于反面朝上的次数。
这就是简单随机抽样的第一个特点——等可能性。
(2)简单随机抽样:从总体N个对象中用一种确定的、不动的方法抽取n个对象,组成一个样本。
(3)举例:从全班50个同学中抽取10个同学组成一个样本,这种抽样方法就是简单随机抽样。
(4)简单随机抽样特点:总体中每一个个体被抽到的可能性相同且等可能。
3. 简单随机抽样方法教学(1)产生随机数法:使用抽签法或计算机软件如Excel中的随机数发生器产生随机数,抽取样本。
4.2《简单随机抽样》参考教案2
4.2 简单随机抽样【学习目标】1.正确理解随机选取样本并适当确定样本容量的必要性。
2.学会用简单随机抽样的方法从总体中抽取样本。
3.体会数学知识与现实世界及各学科知识之间的联系,认识数学的重要性【学习重难点】1、简单的随机抽样及应用2、正确理解样本的随机性,合理选择随机抽样与分层抽样【学习过程】一、学习准备:如果你在潍坊市的市长办公室工作,因政策需要,市长要了解全市的家庭月平均收入情况。
甲提议:组织人员到全市所有的家庭中调查;乙提议:到市区调查100户人家。
〔1〕你认为它们的方案合理吗?为什么?〔2〕请你也设计一个收集数据的方案,〔其中要说明你调查的方式和家庭数量〕你有信心完成这个任务吗?〔3〕指出问题中你刚刚所设计的方案属于哪种调查方式?总体与个体分别是什么?如果是抽样调查,样本是什么,样本容量是多少?二、自主探究自学课本P87-89完成以下问题1、课本上列举的4种方法反映全校学生暑期间参加体育活动的情况,原因分别是:方法1:方法2:方法3:方法4:诊断:2、什么是简单随机抽样?3、常用的简单随机抽样的方法是什么?精讲点拨:4、某高中学生900人,校医务室想对全校高中学生身高情况作一次调查,为了不影响正常的教学活动,准备抽取50名学生作为调查对象,你能帮校医务室设计一个抽取方案吗?上题中某校高中学生900人的身高是,每个学生的身高是,抽取的学生身高是,50是。
系统总结:&抽签法的步骤:&抽签法的优点:。
缺点:当总体的容量非常大时,。
归纳简单随机抽样的特点:〔1〕它要求被抽取的总体的个体有限,这样便于通过随机抽取的样本对总体进展分析。
〔2〕它是从总体中逐个地进展抽取。
这样便于在抽样实践中进展操作。
〔3〕它是一种不放回抽样,由于抽样实践中多采取不放回抽样,使其具有较广泛的应用性,而且由于所抽取的样本中没有被重复抽取的个体,便于进展有关的分析和计算。
例题、李大伯为了估计一袋大豆种子中大豆的粒数,先从袋中取出50粒,做上记号,然后放回袋中,将豆粒搅匀,再从袋中取出100粒,,从这100粒中,找出带记号的大豆,如果带记号的大豆有两粒,便可以估计出袋中所有大豆的粒数,你知道他是怎样估计的吗?三、课堂小结:本节课的收获是随堂训练1.某校的黑板报上登载了一篇题为?大局部学生不吃早餐?的报道,文章说。
《简单随机抽样》教案
《简单随机抽样》教案教学目标一、知识与技能1•通过生活中的实例,体会不同的抽样方法会得到不同的调查结果;2•了解简单随机抽样的意义;二、过程与方法1•通过实验与探究的方法,让学生进一步感受在随机抽样中,结果的随机性和只有样本容量足够便可推断总体;2•通过探究进一步了解、掌握简单随机抽样的特点;三、情感态度和价值观1•使学生认识到数学和日常生活息息相关,从而增进学习数学的乐趣,在活动中培养学生的合作竞争意识和解决问题的能力;2•通过分组讨论学习,体会合作学习的兴趣;教学重点简单随机抽样的意义;教学难点获取数据时,会判断调查方式是否合适;教学方法引导发现法、启发猜想、讲练结合法课前准备教师准备课件、多媒体;学生准备三角板,练习本;课时安排1课时教学过程一、导入新课为了了解本校学生暑假期间参加体育活动的情况,学校准备抽取一部分学生进行调查,你认为按下面的调查方法取得的结果能反映全校学生的一般情况吗?如果不能反映,应当如何改进调查方法?二、新课学习方法1:调查学校田径队的30名同学选取的样本是田径队的同学,他们暑假中体育活动多方法2:调查每个班的男同学只调查男同学,没调查女同学方法3:从每班抽取1名学生进行调查选取的样本容量太小,不能客观的反映全校学生方法4:选取每个班级中的一半学生进行调查选取的容量太大,需要花费较多的时间和人力对于上面所提出的问题,我们只要得到一部分样本数据就可以对于总体情况进行估计。
如果得到的样本能够客观地反映问题,那么对总体的估计就会准确一些,否则估计就会差一些,为此,我们总是希望寻找一个抽取样本的好方法。
简单随机抽样的含义:为了获取能够客观反映问题的结果,通常按照总体中每个个体都有相同的被抽取机会的原则抽取样本,这种抽取样本的方法叫做简单随机抽样。
注:随机抽样并不是随意或随便抽取,因为随意或随便抽取都会带有主观或客观的影响因素。
在学校门口随机询问,或者利用学号,抽取一定数量的学生进行调查。
简单随机抽样--优质获奖精品教案 (19)
2.1 随机抽样【教学目标】1.理解随机抽样的必要性和重要性.2.会用简单随机抽样方法从总体中抽取样本,了解分层抽样和系统抽样方法.【教法指导】本节重点是能从现实生活或其他学中提出具有一定价值的统计问题及学会简单随机抽样方法,了解分层和系统抽样方法;难点是对样本随机性的理解;本节知识的主要学习方法是动手与观察,思考与交流,归纳与总结.加强新旧知识之间的联系,培养自己分析问题、解决问题的能力,从而获得学习数学的方法.【教学过程】课本导读一、总体、个体、样本在统计里,把所考察对象的某一数值指标的全体构成的集合看成总体,其中构成总体的每一个考察的对象为个体.从总体中随机抽取若干个个体构成的集合叫做总体的一个样本,样本中包含的个体数目叫做样本容量.二、随机抽样抽样时保持每一个个体都可能被抽到,每一个个体被抽到的机会是均等的,满足这样条件的抽样是随机抽样.三、简单随机抽样1.定义设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.2.最常用的简单随机抽样的方法抽签法和随机数法.四、系统抽样1.定义当总体中的个体数目较多时,可将总体分成均衡的几个部分,然后按照事先定出的规则,从每一部分抽取1个个体得到所需要的样本,这种抽样方法叫做系统抽样.五、分层抽样1.定义在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样的方法就叫做分层抽样.2.分层抽样的操作步骤第一步,确定样本容量与总体个数的比;第二步,计算出各层需抽取的个体数;第三步,采用简单随机抽样或系统抽样在各层中抽取个体;第四步,将各层中抽取的个体合在一起,就是所要抽取的样本.六、三种抽样方法的区别与联系适用范围总体中个体数较少总体中个体数较多总体由差异明显的几部分组成疑难辨析1.简单随机抽样(1)在简单随机抽样中,某一个个体被抽到的可能性与第几次抽取有关,第一次抽到的可能性最大.( )[ 学 ](2)从20个零件中用简单随机抽样一次性抽取3个进行质量检测.( )(3)从100件玩具随机拿出一件,放回后再拿出一件,连续拿5次,是简单随机抽样.( )2.系统抽样(1)当总体中个体数较多时,应采取系统抽样法.( )(2)要从1 002个学生中用系统抽样的方法选取一个容量为20的样本,需要剔除2个学生,这样对被剔除者不公平.( )3.分层抽样(1)分层抽样中,每个个体被抽到的可能性与层数及分层有关.( )(2)某地区教育部门要调查中小学生的近视情况及形成原因,要抽取1 的学生进行调查,可用分层抽样进行.( )[ 学 ]4.三种抽样方法的比较(1)某班有45人,现抽取5人参加一项社会活动,则可以用简单随机抽样法抽取.( )(2)某校即将召开学生代表大会,现要从高一、高二、高三共抽取60名代表,则可用分层抽样方法抽取.( )(3)三种抽样方法,不论是哪一种,总体中每一个个体被抽到的机会均等.( )(3)根据三种抽样方法的规则可知,每个个体被抽到的机会均等.题型一简单随机抽样例1第十二届全运会将于2013年8月31日至9月12日在辽宁省沈阳市举行,沈阳某大学为了支持大运会,从报名的30名大三学生中选8人组成志愿小组,请用抽签法和随机数表法设计抽样方案.探究一通过本例题让学生了解利用简单随机抽样抽取样本时条件及步骤.1.条件(1)总体的个数较少,利用随机数表法或抽签法可容易获得样本;2.步骤(1)随机数表法的操作步骤 编号、选起始数、读数、获取样本;(2)抽签法的操作步骤 编号、制签、搅匀、抽取.学思考题一1、下列问题中,最适合用简单随机抽样方法抽样的是 ( )A .某电影院有32排座位,每排有40个座位,座位号是1~40,有一次报告会坐满了听众,报告会结束后为听取意见,要留下32名听众进行座谈B .从10台冰箱中抽出3台进行质量检查C .某学校有在编人员160人,其中行政人员16人,教师112人,后勤人员32人,教育部门为了解在编人员对学校机构改革的意见,要从中抽取一个容量为20的样本D .某乡农田有 山地800公顷,丘陵1 200公顷,平地2 400公顷,洼地400公顷,现抽取农田48公顷估计全乡农田平均每公顷产量 答案 B解析 A 的总体容量较大,用简单随机抽样法比较麻烦;B 的总体容量较少,用简单随机抽样法比较方便;C 由于学校各类人员对这一问题的看法可能差异很大,不宜采用简单随机抽样法;D 总体容量大,且各类田地的差别很大,也不宜采用简单随机抽样法.2.利用抽签法,从n 个个体中抽取一个容量为10的样本.若第二次抽取时,余下的每个个体被抽到的概率为13,则在整个抽样过程中,每个个体被抽到的概率为( )A.13B.514C.14D.10273.用随机数表进行抽样有以下几个步骤①将总体中的个体编号;②获取样本号码;③选定开始的数字,这些步骤的先后顺序应为( )A.①②③ B.①③②C.③②① D.③①②4.学校举办元旦晚会,需要从每班选10名男生,8名女生参加合唱节目,某班有男生32名,女生28名,试用抽签法确定该班参加合唱的同5.现有120台机器,请用随机数表法抽取10台机器,写出抽样过程.【分析】已知N=120,n=10,用随机数表法抽样时编号000,001,002,…,119,抽取10个编号(都是三位数),对应的机器组成样本.【解析】第一步,先将120台机器编号,可以编为000,001,002, (119)第二步,在随机数表中任选一个数作为开始,任选一个方向作为读数方向,例如选出第9行第7列的数3,向右读;第三步,从选定的数3开始向右读,每次读取三位,凡不在000~119中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到074,100,094,052,080, 003,105,107,083,092;第四步,以上这10个号码074,100,094,052,080,003,105,107,083,092所对应的10台机器就是要抽取的对象.题型二 系统抽样例2、 1、某初级中学领导采用系统抽样方法,从该校预备年级全体800名学生中抽50名学生做牙齿健康检查.现将800名学生从1到800进行编号,求得间隔数 =80050=16,即每16人抽取一人.在1~16中随机抽取一个数,如果抽到的是7,则从33~48这16个数中应取的数是________.【解析】 (1)因为采用系统抽样方法,每16人抽取一人,1~16中随机抽取一个数抽到的是7,所以在第 组抽到的是7+16( -1),所以从33~48这16个数中应取的数是7+16×2=39.【答案】392、某装订厂平均每小时大约装订图书360册,要求检验员每小时抽取40册图书,检验其质量状况,请你设计一个抽样方案.3.某校高中三年级的295名学生已经编号为1,2,…,295,为了了解学生的学习情况,要按1∶5的比例抽取一个样本,请用系统抽样的方法进行抽取,并写出过程.【分析】 按1∶5的比例确定样本容量,再按系统抽样的步骤进行,关键是确定第1段的编号.【解析】 按照1∶5的比例抽取样本,则样本容量为15×295=59.抽样步骤是(1)编号按现有的号码;(2)确定分段间隔=5,把295名同学分成59组,每组5人,第1组是编号为1~5的5名学生,第2组是编号为6~10的5名学生,依次下去,第59组是编号为291~295的5名学生;(3)采用简单随机抽样的方法,从第一组5名学生中抽出一名学生,不妨设编号为l(1≤l≤5);(4)那么抽取的学生编号为l+5(=0,1,2,...,58),得到59个个体作为样本,如当l=3时的样本编号为3,8,13, (288)293.[ 学 ]探究二通过本例题让学生理解系统抽样的特点及步骤.(1)通过例2的(1)(2)让学生理解系统抽样的特点是等距离抽样,若第一组抽取号码a,然后以d为间距依次等距离抽取后面的编号,抽出的所有号码为a+d ( =0,1,2,…,n-1),其中n是组数.(2)通过例2的(3)让学生理解系统抽样的步骤第一步,将总体的N个个体编号.第二步,确定分段间隔,对编号进行分段.第三步,在第1段用简单随机抽样确定起始个体编号l.第四步,按照一定的规则抽取样本.思考题二(1)一个总体中有100个个体,随机编号为0,1,2,…,99,依编号顺序平均分成10组,组号依次为1,2,3,…,10,现用系统抽样抽取一个容量为10的样本,并规定如果在第一组随机抽取的号码为m,那么在第(=2,3,…,10)组中抽取的号码的个位数字与m +的个位数字相同.若m=6,则该样本的全部号码是__________________.(2)将某班的60名学生编号 01,02,…,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为04,则剩下的四个号码依次是________.题型三、分层抽样例3、(1)(2013·湖南卷)某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是( )A.抽签法 B.随机数法C.系统抽样法 D.分层抽样法(2)[2012·江苏卷] 某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.(3)[2012·天津卷] 某地区有小学150所,中学75所,大学25所,现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取________所学校,中学中抽取________所学校.(4)某高中共有900人,其中高一年级300人,高二年级200人,高三年级400人,现采用分层抽样抽取容量为45的样本,那么高一、高二、高三各年级抽取的人数分别为( )A.15,5,25 B.15,15,15C.10,5,30 D.15,10,20(5)某城市有210家百货商店,其中大型商店20家、中型商店40家、小型商店150家,为了掌握各商店的营业情况,计划抽取一个容量为21的样本,按照分层抽样方法抽取时,各种百货商店分别要抽取多少家?并写出抽样过程.探究三通过本例题让学生理解分成抽样的特点及步骤,各部分之间有明显的差异是分层抽样的依据,至于各层内用什么方法抽样是灵活的.分层抽样中,个体被抽中的机会均等,体现了抽样的公平性.(1)通过例3(1)让学生了解什么情况采用分层抽样;(2)通过例3(2)(3)(4)让学生理解分层抽样的抽样比如何计算;(3)通过例3(5)让学生理解分层抽样的步骤.思考题三、(1)[2012·南阳一模] 某地为了调查职业满意度,决定用分层抽样的方法从公务员、教师、自由职业者三个群体的相关人员中抽取若干人组成调查小组,相关数据见下表 相关人员数[ ] 抽取人数 公务员35 b 教师a 3 自由职业者28 4则调查小组的总人数为( )A .84B .12C .81D .14(2)[2012·江西重点中学一模] 在100个零件中,有一级品20个,二级品30个,三级品50个,从中抽取20个作为样本 ①采用随机抽样法,将零件编号为00,01,02,…,99,抽出20个;②采用系统抽样法,将所有零件分成20组,每组5个,然后每组中随机抽取1个;③采用分层抽样法,随机从一级品中抽取4个,二级品中抽取6个,三级品中抽取10个.则( )A .不论采取哪种抽样方法,这100个零件中每个被抽到的概率都是15B .①②两种抽样方法,这100个零件中每个被抽到的概率都是15,③并非如此C .①③两种抽样方法,这100个零件中每个被抽到的概率都是15,②并非如此D.采用不同的抽样方法,这100个零件中每个被抽到的概率各不相同(3)[2012·吉林一模] 从总数为N的一群学生中抽取一个容量为100的样本,若每个学生被抽取的概率为14,则N的值为( )A.25 B.75 C.400 D.5004.某公司有三个部门,第一个部门800个员工,第二个部门604个员工,第三个部门500个员工,现在用按部门分层抽样的方法抽取一个容量为380名员工的样本,求应该剔除几个人,每个部门应该抽取多少名员工?随堂测评1.现要完成下列3项抽样调查①从10盒酸奶中抽取3盒进行食品卫生检查.②技报告厅有32排,每排有40个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取听众意见,需要请32位听众进行座谈.③东方中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的意义,拟抽取一个容量为20的样本.较为合理的抽样方法是( )A.①简单随机抽样,②系统抽样,③分层抽样B.①简单随机抽样,②分层抽样,③系统抽样C.①系统抽样,②简单随机抽样,③分层抽样D.①分层抽样,②系统抽样,③简单随机抽样[2012·漳州三校二联] 某学校为了调查高二年级的80名文学生和高三年级的120名文学生完成课后作业所需时间,采取了两种抽样调查的方式第一种由学生会的同学随机抽取高二年级8名和高三年级12名同学进行调查;第二种由教务处对该年级的文学生进行编号,从001到200,抽取学号最后一位为2的同学进行调查,则这两种抽样的方法依次为( )A.分层抽样,简单随机抽样B.抽签法,随机数表法C.分层抽样,系统抽样D.简单随机抽样,系统抽样3.[2013·南通中学联考] 某地有居民2万户,从中随机抽取200户,调查是否已安装安全救助报警系统,调查结果如下表所示[ ] 外户原住户已安装60 35未安装45 604.某商场想通过检查发票及销售记录的 2 快速估计每月的销售总额.采取如下方法从某本发票的存根中随机抽一张,如15号,然后按序往后将65号,115号,165号,…,发票上的销售额组成一个调查样本.这种抽取样本的方法是( )A.抽签法 B.随机数表法C.系统抽样法 D.其他方式的抽样5.为了考察某校的教学水平,将抽查这个学校高三年级部分学生的本学年考试成绩进行考察.为了全面地反映实际情况,采取以下三种方式进行(已知该校高三年级共有14个教学班,并且每个班内的学生都已经按随机方式编好了学号,假定该校每班人数都相同).①从全年级14个班中任意抽取一个班,再从该班中任意抽取14人,考察他们的学习成绩;②每个班都抽取1人,共计14人,考察14个学生的成绩;③把学校高三年级的学生按成绩分成优秀、良好、普通三个级别,从中抽取100名学生进行考察(已知若按成绩分,该校高三学生中优秀学生有105名,良好学生有420名,普通学生有175名).根据上面的叙述,试回答下列问题(1)上面三种抽取方式中,其总体、个体、样本分别指什么?每一种抽取方式抽取的样本中,其样本容量分别是什么?(2)上面三种抽取方式各自采用何种抽取样本的方法?(3)试分别写出上面三种抽取方式各自抽取样本的步骤.。
《8.4.1 简单随机抽样》学历案-中职数学高教版21基础模块下册
《简单随机抽样》学历案(第一课时)一、学习主题本节课的学习主题是《简单随机抽样》。
简单随机抽样是统计学中基础且重要的概念,在数据分析和实际生活中具有广泛的应用。
本课时将通过学习简单随机抽样的基本概念、特点、方法及其在实际问题中的应用,使学生能够理解并掌握这一重要统计方法。
二、学习目标1. 知识与技能:学生能够理解并掌握简单随机抽样的基本概念、特点和抽样方法,并能够通过具体案例应用抽样方法进行数据收集与分析。
2. 过程与方法:学生将通过小组合作与交流,探索和体验抽样的过程,学习使用统计学工具和方法。
3. 情感态度与价值观:通过本节课的学习,培养学生科学严谨的统计思维,以及运用数学知识解决实际问题的能力。
三、评价任务1. 概念理解评价:通过课堂提问和小组讨论,评价学生对简单随机抽样基本概念的理解程度。
2. 方法掌握评价:通过学生实际操作练习,评价学生对简单随机抽样方法的掌握情况。
3. 应用能力评价:通过完成课后作业,评价学生运用简单随机抽样方法解决实际问题的能力。
四、学习过程1. 导入新课:通过生活中常见的抽样现象(如抽奖、问卷调查等)引入简单随机抽样的概念,激发学生兴趣。
2. 新课学习:讲解简单随机抽样的基本概念、特点和抽样方法,强调其科学性和代表性。
3. 案例分析:通过具体案例分析,让学生了解简单随机抽样的实际应用,加深对概念和方法的理解。
4. 小组合作:学生分组进行实际操作练习,运用简单随机抽样方法进行数据收集与分析。
5. 交流分享:小组代表汇报操作过程和结果,其他小组进行评价和补充。
6. 总结归纳:教师总结本节课的重点和难点,强调学习过程中的注意事项。
五、检测与作业1. 课堂检测:通过课堂小测验,检测学生对简单随机抽样基本概念的掌握情况。
2. 课后作业:布置相关练习题,让学生运用所学知识解决实际问题,如设计一份调查问卷并进行简单随机抽样分析。
3. 拓展延伸:鼓励学生课后查阅相关资料,了解更多关于统计学的基础知识和应用领域。
《8.4.1简单随机抽样》教学设计教学反思-2023-2024学年中职数学高教版21基础模块下册
《简单随机抽样》教学设计方案(第一课时)一、教学目标1. 理解简单随机抽样的概念及特点。
2. 掌握简单随机抽样的随机数表法。
3. 能够运用简单随机抽样方法解决实际问题。
二、教学重难点1. 教学重点:简单随机抽样的随机数表法。
2. 教学难点:如何设计抽样方案,并合理选择抽样方法。
三、教学准备1. 准备教学用具:黑板、白板、笔、随机数表。
2. 准备案例或实际问题,以便学生实践操作。
3. 提前布置学生预习相关内容,以便更好地理解新知识。
4. 准备与简单随机抽样相关的其他教学资源,如视频、图片等。
四、教学过程:(一)导入新课1. 回顾初中所学抽签法,引出简单随机抽样。
2. 强调本节课的重要性,简单随机抽样是统计学中最基本的抽取方法之一。
(二)目标展示1. 知识目标:掌握简单随机抽样的含义,理解随机数表的使用方法。
2. 能力目标:能够根据实际情况,设计抽样方案,并能够运用随机抽样方法。
3. 情感目标:培养学生实事求是、尊重客观事实的科学态度。
(三)重点难点1. 重点:随机抽样的概念及抽取方法。
2. 难点:抽签法中的顺序问题及随机数表的正确使用。
(四)新课讲解1. 简单随机抽样概念讲解,举例说明(如学号、学生身高、成绩等)。
2. 抽签法讲解及实例操作。
3. 随机数表的使用方法及实例。
4. 讨论:如何从超市货架上快速选取不同商品作为样本?5. 学生代表发言,总结简单随机抽样应用。
6. 教师总结并强调注意事项。
(五)课堂互动1. 提问:生活中有哪些简单随机抽样的例子?2. 学生分组讨论,每组设计一个简单的抽样方案,并进行实际操作。
3. 小组代表发言,展示本组抽样方案及操作过程,教师给予评价和指导。
4. 教师提问,引导学生思考如何保证抽样的随机性及公正性。
(六)实际应用1. 请学生以小组为单位,对校园内某一植物种类进行调查,并选取具有代表性的样本进行测量和记录。
2. 每组提交调查报告,并进行汇报和交流。
3. 教师对各组的调查报告和汇报进行评价和反馈。
《简单随机抽样》教案
《简单随机抽样》教案教学目标一、知识与技能1.通过生活中的实例,体会不同的抽样方法会得到不同的调查结果;2.了解简单随机抽样的意义;二、过程与方法1.通过实验与探究的方法,让学生进一步感受在随机抽样中,结果的随机性和只有样本容量足够便可推断总体;2.通过探究进一步了解、掌握简单随机抽样的特点;三、情感态度和价值观1.使学生认识到数学和日常生活息息相关,从而增进学习数学的乐趣,在活动中培养学生的合作竞争意识和解决问题的能力;2.通过分组讨论学习,体会合作学习的兴趣;教学重点简单随机抽样的意义;教学难点获取数据时,会判断调查方式是否合适;教学方法引导发现法、启发猜想、讲练结合法课前准备教师准备课件、多媒体;学生准备三角板,练习本;课时安排1课时教学过程一、导入新课为了了解本校学生暑假期间参加体育活动的情况,学校准备抽取一部分学生进行调查,你认为按下面的调查方法取得的结果能反映全校学生的一般情况吗?如果不能反映,应当如何改进调查方法?二、新课学习方法1:调查学校田径队的30名同学选取的样本是田径队的同学,他们暑假中体育活动多方法2:调查每个班的男同学只调查男同学,没调查女同学方法3:从每班抽取1名学生进行调查选取的样本容量太小,不能客观的反映全校学生方法4:选取每个班级中的一半学生进行调查选取的容量太大,需要花费较多的时间和人力对于上面所提出的问题,我们只要得到一部分样本数据就可以对于总体情况进行估计。
如果得到的样本能够客观地反映问题,那么对总体的估计就会准确一些,否则估计就会差一些,为此,我们总是希望寻找一个抽取样本的好方法。
简单随机抽样的含义:为了获取能够客观反映问题的结果,通常按照总体中每个个体都有相同的被抽取机会的原则抽取样本,这种抽取样本的方法叫做简单随机抽样。
注:随机抽样并不是随意或随便抽取,因为随意或随便抽取都会带有主观或客观的影响因素。
在学校门口随机询问,或者利用学号,抽取一定数量的学生进行调查。
简单随机抽样教学设计
§2.1.1 简单随机抽样河南省临颍县第二高级中学安俊申一、教学目标:【知识与技能】1.理解随机抽样的必要性和重要性2.理解简单随机抽样的概念3.掌握抽签法、随机数表法的一般步骤【过程与方法】在解决统计问题的过程中,学会用简单随机抽样中的抽签法和随机数表法从总体中抽取样本【情感、态度与价值观】1.让学生感受数学就在我们身边,体验做数学的过程和乐趣,从而激发学生学数学的兴趣,用数学的责任2.通过安排学生游戏试验、分组讨论、,提升学生合作交流、互助提高的团队意识二、教学重点:简单随机抽样的概念,抽签法和随机数表法的一般步骤三、教学难点:合理选择抽签法与随机数法四、教具准备:多媒体辅助教学、游戏道具五、教学流程:创设情境、引入课题动手操作、互动探究变式演练、自主学习归纳概括、形成概念实际应用、巩固升华畅谈收益、课堂延续六、教学过程:教学环节教师活动学生活动设计意图1. 创设情境、展示笑话:笑过后回答问引导学生从统计的引入课题妈妈叫小明去买火柴,嘱题:这则笑话中,角度看问题,回忆咐小明说:“你要挑一挑,小明采用的是什初中学过的统计知千万别买受潮么调查方式?在识,体会抽样的必的。
” ,,,这里这种调查方要性和重要性,引火柴买回来后,小明高兴式好不好?出本节课研究内地说:“妈妈!我买的火容:抽样的方法。
柴每根都能着,真是好极了。
”妈妈问 : “你这么肯定?”小明递过火柴,非常有把握地说:“ 我每根都试过啦。
”2. 师生合作、提出互动探究问题:由生活常识,学共探新知若要从我们班选出 5 名同生很容易想到用学去担任 2010 年上海世抽签法(抓阄博会的志愿者(假设每个法)。
同学都完全符合条件) ,该怎么选 ?培养学生利用常识解决生活中的抽样问题的能力。
①抽签法引导学生规范抽签,保证学生动手制签,公平公正的原则。
学生代表演示抽签,然后思考问题:使用抽签法应注意什么?动手操作,体验做数学的过程和乐趣,从而激发学生学数学的兴趣。
青岛版数学七年级上册《4.2简单随机抽样》说课稿
青岛版数学七年级上册《4.2 简单随机抽样》说课稿一. 教材分析青岛版数学七年级上册《4.2 简单随机抽样》这一节,主要介绍了简单随机抽样的概念和方法。
通过这一节的学习,使学生了解简单随机抽样的特点和应用,学会使用简单随机抽样进行数据收集和分析。
教材从实际生活中的实例引入,让学生感受随机抽样的意义,进而引导学生学习简单随机抽样的方法。
在教材的编写中,注重了理论与实际的结合,使学生在学习过程中能够更好地理解和掌握知识。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于一些基本的数学概念和运算规则有所了解。
但是,对于随机抽样这一概念,学生可能比较陌生。
因此,在教学过程中,需要引导学生从实际生活中理解和掌握随机抽样的概念和方法。
同时,七年级的学生正处于青春期,好奇心强,对于新鲜事物感兴趣。
因此,在教学过程中,可以通过实例引入,激发学生的学习兴趣,引导学生主动探索和思考。
三. 说教学目标1.知识与技能目标:使学生了解简单随机抽样的概念和方法,学会使用简单随机抽样进行数据收集和分析。
2.过程与方法目标:通过实例引入,引导学生从实际生活中理解和掌握随机抽样的概念和方法,培养学生的实际操作能力。
3.情感态度与价值观目标:激发学生对数学学习的兴趣,培养学生的探究精神和合作意识。
四. 说教学重难点1.教学重点:简单随机抽样的概念和方法。
2.教学难点:如何引导学生从实际生活中理解和掌握随机抽样的概念和方法。
五. 说教学方法与手段1.教学方法:采用实例引入,引导学生从实际生活中理解和掌握随机抽样的概念和方法。
在教学过程中,采用问题驱动的教学方法,引导学生主动探索和思考。
2.教学手段:利用多媒体课件进行教学,通过图片、动画等形式,生动形象地展示随机抽样的过程,帮助学生理解和掌握知识。
六. 说教学过程1.导入:通过实例引入,让学生感受随机抽样的意义,激发学生的学习兴趣。
2.新课导入:介绍简单随机抽样的概念和方法,引导学生理解和掌握知识。
《简单随机抽样》教学设计、导学案、同步练习
《9.1.1 简单随机抽样》教学设计【教材分析】本节《普通高中课程标准数学教科书-必修二(人教A版)第九章《9.1.1 简单随机抽样》,本节的主要内容包括:统计问题的特征、统计中的抽样思想、科学抽样的三个必备条件以及简单随机抽样的概念及两种抽样方法,(1)抽签法,(2)随机数法,这两种种方法的操作步骤和注意事项。
从而发展学生的直观想象、逻辑推理、数学建模的核心素养。
【教学目标与核心素养】【教学重点】:理解随机抽样的必要性和重要性,用抽签法和随机数法抽取样本.【教学难点】:抽签法和随机数法的实施步骤.【教学过程】当的统计图表对数据进行整理和描述,在此基础上用各种统计方法对数据进行分析,从样本数据中提取需要的信息,推断总体的情况,进而解决相应的实际问题.名称定义总体所要的全体叫作总体样本从总体中抽取出的组成的集合叫作总体的一个样本个体总体中的每一个考察对象叫作个体样本样本中个体的叫作样本容量容量考察对象;统计的相关概念;若干个个体;数目[讨论] 样本与样本容量有什么区别?解:样本与样本容量是两个不同的概念.样本是从总体中抽取的个体组成的集合,是对象;样本容量是样本中个体的数目,是一个数.人口普查需要花费巨大的财力、物力,因而不宜经常进行,为了及时掌握全国人口变动状况,我国每年还会进行一次人口变动情况的调查.这种调查是抽取一部分居民进行调查,根据抽取的居民情况来推断总体的人口变动情况.像这样,根据一定目的,从总体中抽取一部分个体进行调查,并以此为依据对总体的情况作出估计和推断的调查方法,称为抽样调查.我们把从总体中抽取的那部分个体称为样本,样本中包含的个体数称为样本量.调查样本获得的变量值称为样本的观测数据,简称样本数据.抽样调查的目的是为了了解总体的情况.例如,抽样调查一批待售袋装牛奶的细菌数是否超标,其目的是要了解整批牛奶的细菌含量超标情况,而不只是局限在抽查到的那几袋牛奶的情况.因此,通过抽样调查了解总体的情况,自然希望抽取的样本数据能很好地反映总体的情况,即样本含有和总体基本相同的信息.假设口袋中有红色和白色共1000个小球,除颜色外,小球的大小、质地完全相同,你能通过抽样调查的方法估计带中红球所占的比例吗?这里袋中所有小球是调查的总体,每一个小球是个体,小球的颜色是所关心的变量.我们可以从袋中随机地摸出一个球,记录颜色后放回,摇匀后再摸出一个球,如此重复n次.根据初中的概率知识可知,随着摸球次数的增加,摸到红球的频率会逐渐稳定于摸到红球的概率,即口袋中红球所占的比例,因此,我们可以通过放回摸球,用频率估计出红球的比例. 在有放回地摸球中,同一个小球有可能被摸中多次,极端情况是每次摸到同一个小球,而被重复摸中的小球只能提供同一个小球的颜色信息,如果我们采用不放回摸球,即从袋中摸出一个球后不再放回袋中,每次摸球都在余下的球中随机摸取,这样就可以避免同一个小球被重复摸中.特别地,当样本量n=1000时,不放回摸球已经把袋中的所有球取出,这就完全了解了袋中红球的比例,而有放回摸球一般还不能对袋中红球的比例作出准确的判断.1.概念:一般地,设一个总体含有N个个体,从中地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会,就把这种抽样方法叫作简单随机抽样,这样抽取的样本,叫作简单随机样本.;简单随机抽样;逐个不放回;都相等不同编号个数等于样本所需要的人数.一般说来,在计算器或计算机软件没有特殊设定的情况下,它们生成的随机数,都是可重复的.为了确认你使用的计算器或计算机软件的情况,可以查阅它的说明书,也可以通过测试它能否生成3个整数随机数1或2来进行判断.(1)用随机试验生成随机数(2)用信息技术生成随机数准备10个大小、质地一样的小球,小球上分别写上数字0,1,2, (9)把它们放入一个不透明的袋中,从袋中有放回摸取3次,每次摸取前充分搅拌,并把第一、二、三次摸到的数字分别作为百、十、个位数,这样就生成了一个三位随机数.如果这个三位数在1~712范围内,就代表对应编号的学生被抽中,否则舍弃编号. 这样产生的随机数可能会有重复. 进入计算器的计算模式(不同的计算器型号可能会有不同),调出生成随机数的函数并设置参数,例如RandInt# (1, 712),按“=”键即可生成1~712范围内的整数随机数.重复按“=”键,可以生成多个随机数.这样产生的随机数可能会有重复.①用计算器生成随机数在电子表格软件的任一单元格中,输入“=RANDBETWEEN (1,712)”,即可生成一个1~712范围内的整数随机数.再利用电子表格软件的自动填充功能,可以快速生成大量的随机数(如下图1).这样产生的随机数可能会有重复.②用电子表格软件生成随机数在R软件的控制台中,输入“sample (1: 712, 50, replace=F) ”,按回车键,就可以得到50个1~712范围内的不重复的整数随机数(如下图).③用R统计软件生成随机数R软件是免费的统计软件,该软件具有比较强大数据处理、绘图和分析等统计功能,在统计学研究和学习中被广泛使用.抽签法随机数表法步骤①将总体中的个体编号为1~N;②将所有编号1~N写在形状、大小相同的号签上;③将号签放在一个不透明的容器中,搅拌均匀;④从容器中每次抽取一个号签,并记录其编号,连续抽取n次;⑤从总体中将与抽取到的签的编号相一致的个体取出①将总体中的个体;②在随机数表中数作为开始;③规定一个方向作为从选定的数读取数字的④开始读数字,若不在编号中,则,中,则,依次取下去,直到取满为止只计一次)⑤根据选定的号码抽取样本要点编号、制签、搅匀、抽取、确定样本编号、选起始数、读数、获取样本编号;任选一个;方向;跳过;取出【教学反思】本节从生活中的实际问题出发,引导学生认识统计知识的重要性,理解统计问题的特征、统计中的抽样思想、科学抽样的三个必备条件以及简单随机抽样的概念及两种抽样方法,(1)抽签法,(2)随机数法,这两种种方法的操作步骤和注意事项。
简单随机抽样教学设计
简单随机抽样教学设计教学目标:1.了解简单随机抽样的定义和原则。
2.掌握简单随机抽样的方法和步骤。
3.通过实际操作,能够进行简单随机抽样。
教学过程:一、导入(5分钟)通过提问调动学生的思维,引导他们思考“什么是抽样”和“为什么要进行抽样”。
二、讲解简单随机抽样的定义和原则(10分钟)1.定义:简单随机抽样是指从总体中随机地抽取一些样本,使得每一个样本都有相同被抽取的机会。
2.原则:(1)每个样本都有相同的被抽取机会。
(2)抽取的样本是随机的,不受抽样者的影响。
三、讲解简单随机抽样的方法和步骤(15分钟)1.方法:(1)把每一个样本编上号码。
(2)利用随机数表或随机数发生器,通过抽取数字的方式确定要抽取的样本。
2.步骤:(1)确定样本容量。
(2)编制总体名单,每个样本编上号码。
(3)利用随机数表或随机数发生器,确定要抽取的样本。
(4)按照所确定的号码,抽取样本。
四、实践操作简单随机抽样(30分钟)1.将学生分成小组,每个小组有一份总体名单和一个随机数表。
2.每个小组的成员依次根据随机数表上的数字,确定要抽取的样本。
3.记录每个小组抽取的样本,并进行简单分析。
五、总结(10分钟)1.向学生征集他们的实践感想和体会。
2.提出一些问题,引导学生进行思考和讨论,如“随机数表和随机数发生器有何区别?”、“你们觉得简单随机抽样有什么应用场景?”等。
六、拓展延伸(15分钟)1.介绍其他抽样方法,如系统抽样、分层抽样等。
2.让学生在实际生活中找到应用抽样方法的案例,并进行分享。
七、课堂作业(5分钟)要求学生总结本节课所学的内容,并根据自己的理解写一篇关于简单随机抽样的小文章。
教学评价:1.观察学生在实践操作中的表现,包括参与度、操作准确度等。
2.评价学生在总结小结中对简单随机抽样的理解和应用能力。
教学反思:本节课教学内容相对较为简单,但是实践操作环节需要引导学生进行实际操作,确保学生对简单随机抽样有自主的了解和掌握。
9.1.1.1简单随机抽样+教学设计
9.1 随机抽样9.1.1.1 简单随机抽样教学目标:1.通过阅读课本了解数据的调查方法;2.通过阅读课本了解简单随机抽样;3.通过问题掌握简单随机抽样的常用方法.教学重点:了解简单随机抽样和良种常用方法教学难点:会用抽签法和随机数法进行简单随机抽样教学过程:一、导入新课,板书课题想必大家都听说过人口普查,那么人口普查是如何进行的,面对庞大的数据不方便全面收集的时候,又该如何处理呢,本节课我们就来学习一下简单随机抽样。
【板书:简单随机抽样】二、出示目标,明确任务1.了解调查数据的方法。
2.了解何为简单随机抽样3.掌握简单随机抽样的常用方法三、学生自学,独立思考学生看书,教师巡视,督促学生认真看书下面,阅读课本P173-P177页内容,思考如下问题(4min):1.找出阅读内容中的知识点。
2.找出阅读内容中的重点。
3.找出阅读内容中的困惑点,疑难点。
四、自学指导,紧扣教材1.自学指导1(5min)阅读课本173-175页问题1以上内容,思考并完成如下问题(1)什么是全面调查?人口普查是否为全面调查?(2)什么是总体?什么是个体?(3)什么是抽样调查?何为样本,何为样本容量?(4)抽样调查的目的是什么?(5)放回和不放回简单抽样分别是什么?统称为什么?自学指导2(5min)阅读课本175-177页,思考并完成以下问题(1)简单随机抽样常用的两种方法有?(2)抽签法如何操作,优点是什么?(3)随机数法如何操作,优点是什么?(4)用简单随机抽样方法抽取样本,样本量是否越大越好?五、自学展示,精讲点拨1.学生口头回答自学指导问题,教师点拨并板书(答案见PPT)2.书面检测:在以下调查中,总体、个体各是什么?哪些适合用全面调查?哪些适合用抽样调查?(1)调查一个班级学生每周的体育锻炼时间(2)调查一个地区结核病的发病率(3)调查一批炮弹的杀伤半径(4)调查一个水库所有鱼中草鱼所占的比例精讲点拨:自学指导1:点拨1.全面调查与抽样调查的区别;全面调查是对每一个对象进行调查,抽样调查时抽取一部分进行调查。
初中简单随机抽样教案
教案:初中简单随机抽样教学目标:1. 让学生理解随机抽样的概念,知道随机抽样的意义和作用。
2. 学会使用简单随机抽样的方法进行数据收集和分析。
3. 培养学生的观察能力、思考能力和动手能力。
教学重点:1. 随机抽样的概念和意义。
2. 简单随机抽样的方法。
教学难点:1. 随机抽样的实际操作。
教学准备:1. PPT课件。
2. 学生分组,每组准备一些小物品,如糖果、小球等。
教学过程:一、导入(5分钟)1. 利用PPT课件,展示一些生活中的随机抽样现象,如彩票抽奖、糖果包装上的随机颜色等。
2. 引导学生思考:这些现象有什么共同特点?它们的意义和作用是什么?二、自主学习(10分钟)1. 让学生阅读教材,了解随机抽样的概念和意义。
2. 学生分享学习心得,教师点评并总结。
三、课堂讲解(15分钟)1. 讲解简单随机抽样的方法,如抽签法、随机数表法等。
2. 举例说明如何使用这些方法进行数据收集和分析。
四、实践操作(15分钟)1. 学生分组,每组选择一种物品进行随机抽样。
2. 教师巡回指导,解答学生在操作过程中遇到的问题。
3. 各组汇报抽样结果,教师点评并总结。
五、课堂小结(5分钟)1. 让学生回顾本节课所学内容,总结随机抽样的概念、意义和作用。
2. 强调随机抽样在实际生活中的应用价值。
六、课后作业(课后自主完成)1. 结合教材,思考生活中还有哪些随机抽样的现象?它们是如何实现的?2. 尝试使用简单随机抽样的方法,对身边的物品进行数据收集和分析。
教学反思:本节课通过引导学生观察生活中的随机抽样现象,让学生了解随机抽样的概念和意义。
通过课堂讲解和实践操作,让学生学会使用简单随机抽样的方法进行数据收集和分析。
在教学过程中,要注意关注学生的学习情况,及时解答学生的问题,确保学生能够掌握所学知识。
同时,要注重培养学生的观察能力、思考能力和动手能力,提高学生的学习兴趣和积极性。
《简单随机抽样》教学设计
《简单随机抽样》的教学设计课时:1课时,教材版本:人教B版《高中数学》必修三教材内容分析简单随机抽样是人教B版《高中数学》必修三的第二章“统计”的第一节“随机抽样”的第一课时,其主要内容是介绍简单随机抽样的概念以及如何实施简单随机抽样.从知识类型角度分析,“简单随机抽样”属于程序性知识,是一个结构清晰的动手操作程序.对它的学习要求,学生尽可能回忆有关的程序性知识.通过本节内容的学习能促进学生对“用样本估计总体”的统计思想的认识,本节知识既是初中统计知识的延伸,也是学习系统抽样、分层抽样两种抽样方法的知识与思维基础,更是落实数据分析核心素养的重要载体,因此确定本节的教学重点是:对统计思想的认识.抽样方法的提炼与归纳.“课标”的要求是能从现实生活或其他学科中提出具有一定价值的统计问题;结合具体的实际问题情境,理解随机抽样的必要性和重要性;在参与解决统计问题的过程中,学会用简单随机抽样方法从总体中抽取样本.体现了本节内容的学习要与现实生活.实际问题相联系,在问题解决的过程中获取知识.“课改”则要求教师既要以学生为主体,更要面向全体学生,以学生已有的认知经验为基础,让学生主动地参与新知的探究活动,要求通过学生的自主与合作探究,切实经历知识的发生.发展过程,体会其所蕴含的思维方法,初步形成运用统计的思想和方法来思考问题和解决问题的习惯.从教材编写角度看,本节课是在学生初中已学习了统计初步知识的基础上,系统学习统计的基本方法,体验统计思想的第一课时,本节课的内容确定为随机抽样单元引入.2.1.1简单随机抽样的教学.通过随机抽样单元引入的教学,让学生认识随机抽样的必要性和重要性,明确随机抽样的意义;通过简单随机抽样的教学,让学生理解简单随机抽样的含义与特点,归纳并掌握抽签法.随机数表法的抽样方法,能根据具体问题的特点合理选择具体的抽样方法,以提升学生的数学能力.教学目标:知识与技能:能独立(或合作)归纳抽样方法,能说明简单随机抽样的意义与特点,知道学习随机抽样的必要性和重要性,能合理选择抽样方法对简单问题进行抽样.过程与方法:通过对实际问题情境的分析体会随机抽样的必要性和重要性,通过抽签法.随机数表法的学习,培养学生的归纳概括能力,通过抽样方法的合理选择培养学生的数学优化意识.情感.态度与价值观:进一步感受统计知识在生产.生活中的广泛应用,体会统计学用样本估计总体的思维策略,强化合作意识.教学重点与难点:教学的重点:理解随机抽样的必要性和重要性,用抽签法和随机数法抽取样本.教学难点:抽签法和随机数法的实施步骤.学情分析:由于在初中已学过样本.容量.样本容量等概念,因此学生对统计的学习已具有一定的知识基础和思维基础.但是初中没有系统研究具体的抽样方法,且本节是章的起始课,特别是单元的引入内容文字量较大,要给予学生足够的信心去阅读.分析教材,随机抽样的“每一个个体被抽到的机会是均等的”等可能性是很难理解的,应引导学生充分体会.抽签法.随机数表法在教材中并没有较为明确的陈述,是通过对具体问题的解决方式呈现的,即具体的方法蕴含在问题解决的过程中,这需要教师引导学生通过小组合作的方式,逐步的归纳.概括,特别是两种方法的常用选择策略,对学生的能力要求较高,需要教师给予必要的讲解.综上分析确定本节的难点是:对“随机抽样的必要性.重要性及等可能性”的理解,抽签法.随机数表法的归纳.概括与选择.突破策略为:教师引导学生分析多个具体实例;给足时间让学生在独立思考的基础上再充分合作交流;让学生代表展示其思维过程,强化全体学生对思维过程的感悟;教师在学生展示思维过程的基础上再进行提升与点拨.教学策略分析教学中遵循“学生为主体,教师为主导,问题解决为主线”的指导思想,给学生创设自主探究.合作交流的时间与空间,引导学生经历数学知识再发现的过程,让学生在参与中获取知识,发展思维,感悟数学.在知识内容的处理方面,增加了三个实际问题情境,通过分析问题的解决策略,让学生重点体会用样本估计总体及随机抽样的必要性和重要性,促进学生的理性思维;对随机抽样的“每一个个体被抽到的机会是均等的”等可能性这一难点,教师给予必要的讲解;通过补充例题.习题,让学生充分理解抽签法.随机数表法的具体操作程序及根据问题特点合理选择具体方法.课堂教学过程中,根据学生的思维水平,首先引导同学们回顾初中所学相关知识,再自主阅读教材内容,引导学生发现学习;其次是在一定的自主探究基础上,让学生们进行充分的合作学习,归纳概括新知识,体验成功的快乐;最后是教师对学生的思维活动进行概括.提升,并对重点与难点进行适当的精讲.点拨,以提高课堂教学效率.教学模式为:情境感悟,引入新课——温故知新,获得新知——例题讲解,内化新知——成果展示,应用新知——归纳总结,完善认知.针对学生中存在的客观差异,我以发挥各数学课堂学习小组中思维水平较好的学生作用为主,尽可能给他们在课堂充分展示的机会;教师在学生自主及合作学习过程中,有针对性的进行指导,努力使全体学生在本节的学习过程中,知识与能力都能得到不同程度的提升.教学过程教学反思与评价:简单随机抽样是生活中最为常用的一种方法,最重要的特点是等可能性,应从每次抽取的个体及整个抽样过程来理解,只有通过实践才可能深入理解.大数据是当今社会出现频率最高的词汇,善于收集数据、整理数据,分析数据是当下社会一位社会人都应具备的素质,因此学好简单抽样是我们获得准确的先决条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《简单随机抽样》1.以探究具体问题为导向,引入简单随机抽样的概念,引导学生从现实生活或其他学科中提出具有一定价值的统计问题;在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。
2.正确理解简单随机抽样的概念,掌握抽签法及随机数法的步骤,并能灵活应用相关知识从总体中抽取样本。
3.通过对现实生活中实际问题进行简单随机抽样,感知应用数学知识解决实际问题的方法。
1.正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤。
2.能够从现实生活或其他学科中提出具有一定价值的统计问题;3.在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。
4.通过对现实生活和其他学科中统计问题的提出,体会数学知识与现实世界及各学科知识之间的联系,认识数学的重要性。
【教学重点】简单随机抽样的概念,抽签法及随机数法的操作步骤。
【教学难点】对样本随机性的理解。
抽签纸,图表等。
(一)知识回顾统计学:研究客观事物的数量特征和数量关系,它是关于数据的搜集、整理、归纳和分析方法的科学。
统计的基本思想:用样本估计总体,即通常不直接去研究总体,而是通过从总体中抽取一个样本,根据样本的情况去估计总体的相应情况。
数理统计所要解决的问题是如何根据样本来推断总体?总体、个体、样本、样本容量的概念:总体:所要考察对象的全体。
个体:总体中的每一个考察对象。
样本:从总体中抽取的一部分个体叫做这个总体的一个样本。
样本容量:样本中个体的数目。
(二)新课导入在1936年美国总统选举前,一份颇有名气的杂志的工作人员做了一次民意测验,调查兰顿和罗斯福中谁将当选下一届总统。
为了了解公众意向,调查者通过电话簿和车辆登记簿上的名单给一大批人发了调查表(在1936年电话和汽车只有少数富人拥有),通过分析收回的调查表,显示兰顿非常受欢迎。
于是此杂志预测兰顿将在选举中获胜。
实际选举结果正好相反,最后罗斯福在选举中获胜。
其数据如下:①预测结果出错的原因是什么?抽取的样本不具有代表性,调查结果只能代表富人的意见。
②如何科学地抽取样本?怎样使抽取的样本充分地反映总体的情况?合理、公平、有代表性(三)新课讲授简单随机抽样:一般地,设一个总体含有N(N为正整数)个个体,从中逐个抽取n(1≤n<N)个个体作为样本,如果抽取是放回的,且每次抽取时总体内的各个个体被抽到的概率都相等,我们把这样的抽样方法叫做放回简单随机抽样;如果抽取是不放回的,且每次抽取时总体内未进入样本的各个个体被抽到的概率都相等,我们把这样的抽样方法叫做不放回简单随机抽样.放回简单随机抽样和不放回简单随机抽样统称为简单随机抽样(simple random sampling).通过简单随机抽样获得的样本称为简单随机样本.从总体中,逐个不放回地随机抽取n个个体作为样本,一次性批量随机抽取n个个体作为样本,两种方法是等价的.与放回简单随机抽样比较,不放回简单随机抽样的效率更高,因此实践中人们更多采用不放回简单随机抽样.除非特殊声明,本章所称的简单随机抽样指不放回简单随机抽样.注意以下点:(1)简单随机抽样要求被抽取样本的总体的个体数N是有限的;(2)简单随机样本数n小于或等于样本总体的个数N;(3)简单随机样本是从总体中逐个抽取的;(4)简单随机抽样是一种不放回的抽样;(5)简单随机抽样的每个个体入样的可能性均为n/N。
问题1一家家具厂要为树人中学高一年级制作课桌椅,他们事先想了解全体高一年级学生的平均身高,以便设定可调节课桌椅的标准高度.已知树人中学高一年级有712名学生,如果要通过简单随机抽样的方法调查高一年级学生的平均身高,应该怎么抽取样本?为什么要给学生编号?编号用学号可以吗?比较随机数法与抽签法,它们各有什么优点和缺点?1、抽签法(抓阄法)先给712名学生编号,例如按1~712进行编号.然后把所有编号写在外观、质地等无差别的小纸片(也可以是卡片、小球等)上作为号签,并将这些小纸片放在一个不透明的盒里,充分搅拌.最后从盒中不放回地逐个抽取号签,使与号签上的编号对应的学生进入样本,直到抽足样本所需要的人数.抽签法简单易行,但当总体较大时,操作起来比较麻烦.因此,抽签法一般适用于总体中个体数不多的情形.抽签法的一般步骤:(总体个数N,样本容量n)(1)将总体中的N个个体编号;(2)将这N个号码写在形状、大小相同的号签上;(3)将号签放在同一箱中,并搅拌均匀;(4)从箱中每次抽出1个号签,连续抽出n次;(5)将总体中与抽到的号签编号一致的n个个体取出。
抽签法的操作步骤概括为:个体编号,搅拌均匀,逐个抽取。
抽签法有哪些优点和缺点?优点:简单易行,当总体个数不多的时候搅拌均匀很容易,个体有均等的机会被抽中,从而能保证样本的代表性。
缺点:当总体个数较多时很难搅拌均匀,产生的样本代表性差的可能性很大。
2、用随机数表法进行抽取先给712名学生编号,例如按1~712进行编号.用随机数工具产生1~712范围内的整数随机数,把产生的随机数作为抽中的编号,使与编号对应的学生进入样本.重复上述过程,直到抽足样本所需要的人数.(1)用随机试验生成随机数准备10个大小、质地一样的小球,小球上分别写上数字0,1,2,…,9,把它们放入一个不透明的袋中.从袋中有放回摸取3次,每次摸取前充分搅拌,并把第一、二、三次摸到的数字分别作为百、十、个位数,这样就生成了一个三位随机数.如果这个三位数在1~712范围内,就代表对应编号的学生被抽中,否则舍弃编号.这样产生的随机数可能会有重复.(2)用信息技术生成随机数①用计算器生成随机数进入计算器的计算模式(不同的计算器型号可能会有不同),调出生成随机数的函数并设置参数,例如RandInt#(1,712),按“=”键即可生成1~712范围内的整数随机数.重复按“=”键,可以生成多个随机数.这样产生的随机数可能会有重复.②用电子表格软件生成随机数在电子表格软件的任一单元格中,输入“=RANDBETWEEN(1,712)”,即可生成一个1~712范围内的整数随机数.再利用电子表格软件的自动填充功能,可以快速生成大量的随机数(图9.1-1).这样产生的随机数可能会有重复.图9.1-1③用R统计软件生成随机数在R软件的控制台中,输入“sample(1:712,50,replace=F)”,按回车键,就可以得到50个1~712范围内的不重复的整数随机数(图9.1-2).图9.1-2思考用简单随机抽样方法抽取样本,样本量是否越大越好?在简单随机抽样调查中,当样本量和总体一样大时,就是全面调查了.3.∑为求和符号,读音为/s ιgm ə/,主要用于多项式求和..N N i i Y Y Y Y+++=∑= 211一般地,总体中有N 个个体,它们的变量值分别为Y 1,Y 2,…,Y N ,则称∑==+++=N i i N YN N Y Y Y Y 1211为总体均值(population mean ),又称总体平均数.如果总体的N 个变量值中,不同的值共有k (k ≤N )个,不妨记为Y 1,Y 2,…,Y k ,其中Y i 出现的频数f i (i =1,2,…,k ),则总体均值还可以写成加权平均数的形式∑==k i i i Yf N Y 11.如果从总体中抽取一个容量为n 的样本,它们的变量值分别为y 1,y 2,…,y n ,则称∑==+++=n i i n yn n y y y y 1211为样本均值(sample mean ),又称样本平均数.在简单随机抽样中,我们常用样本平均数y 去估计总体平均数Y .探究小明想考察一下简单随机抽样的估计效果.他从树人中学医务室得到了高一年级学生身高的所有数据,计算出整个年级学生的平均身高为165.0 cm .然后,小明用简单随机抽样的方法,从这些数据中抽取了样本量为50和100的样本各10个,分别计算出样本平均数,如表9.1-1所示.从小明多次抽样所得的结果中,你有什么发现?表9.1-1为了更方便地观察数据,以便我们分析样本平均数的特点以及与总体平均数的关系,我们把这20次试验的平均数用图形表示出来,如图9.1-3所示.图中的红线表示树人中学高一年级全体学生身高的平均数.图9.1-3从试验结果看,不管样本量为50,还是为100,不同样本的平均数往往是不同的.由于样本的选取是随机的,因此样本平均数也具有随机性,这与总体平均数是一个确定的数不同.虽然在所有20个样本平均数中,与总体平均数完全一致的很少,但除了样本量为50的第2个样本外,样本平均数偏离总体平均数都不超过1 cm,即大部分样本平均数离总体平均数不远,在总体平均数附近波动.比较样本量为50和样本量为100的样本平均数,还可以发现样本量为100的波动幅度明显小于样本量为50的,这与我们对增加样本量可以提高估计效果的认识是一致的.问题2眼睛是心灵的窗口,保护好视力非常重要.树人中学在“全国爱眼日”前,想通过简单随机抽样的方法,了解一下全校2 174名学生中视力不低于5.0的学生所占的比例,你觉得该怎么做?在这个问题中,全校学生构成调查的总体,每一位学生是个体,学生的视力是考察的变量.为了便于问题的描述,我们记“视力不低于5.0”为1,“视力低于5.0”为0,则第i个(i=1,2,…,2 174)学生的视力变量值为⎩⎨⎧=.,视力低于,,视力不低于0.500.51i Y 于是,在全校学生中,“视力不低于5.0”的人数就是Y 1+Y 2+…+Y 2174.可以发现,在总体中,“视力不低于5.0”的人数所占的比例P 就是学生视力变量的总体平均数.Y Y Y Y P =++=1742174221类似地,若抽取容量为n 的样本,把它们的视力变量值分别记为y 1,y 2,…,y n ,则在样本中,“视力不低于5.0”的人数所占的比例p 就是学生视力变量的样本平均数.y ny y y p n =++= 21 我们可以用样本平均数y 估计总体平均数Y ,用样本中的比例p 估计总体中的比例P . 现在,我们从树人中学所有学生中抽取一个容量为50的简单随机样本,其视力变量取值如下:1 1 0 1 0 0 1 0 1 1 1 0 0 0 1 1 0 1 0 0 0 1 1 1 0 1 1 0 1 11 1 0 1 1 0 1 0 1 0 0 0 1 0 0 1 1 1 0 0由样本观测数据,我们可以计算出样本平均数为y =0.54.据此,我们估计在树人中学全体学生中,“视力不低于5.0”的比例约为0.54.简单随机抽样方法简单、直观,用样本平均数估计总体平均数也比较方便.简单随机抽样是一种基本抽样方法,是其他抽样方法的基础.但在实际应用中,简单随机抽样有一定的局限性.例如,当总体很大时,简单随机抽样给所有个体编号等准备工作非常费事,甚至难以做到;抽中的个体往往很分散,要找到样本中的个体并实施调查会遇到很多困难;简单随机抽样没有利用其他辅助信息,估计效率不是很高;等等.因此,在规模较大的调查中,直接采用简单随机抽样的并不多,一般是把简单随机抽样和其他抽样方法组合使用.例:某车间工人加工一种轴100件,为了了解这种轴的直径,要从中抽取10件轴在同一条件下测量,如何采用简单随机抽样的方法抽取样本?[分析] 简单随机抽样一般采用两种方法:抽签法和随机数表法。