2018江苏专转本考试高等教育数学真题[含解析]
2018年全国普通高等学校招生统一考试数学(江苏卷)(解析版)
绝密★启用前2018年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:锥体的体积13V Sh =,其中S 是锥体的底面积,h 是锥体的高. 一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知集合{}0,1,2,8A =,{}1,1,6,8B =-,那么A B ⋂=________.【答案】{1,8}.【解析】分析:根据交集定义{}A B x x A x B 且⋂=∈∈求结果.详解:由题设和交集的定义可知:{}1,8A B ⋂=.点睛:本题考查交集及其运算,考查基础知识,难度较小.2.若复数z 满足i 12i z ⋅=+,其中i 是虚数单位,则z 的实部为________.【答案】2【解析】分析:先根据复数的除法运算进行化简,再根据复数实部概念求结果.详解:因为i 12i z ⋅=+,则12i 2i iz +==-,则z 的实部为2. 点睛:本题重点考查复数相关基本概念,如复数+i(,)a b a b R ∈的实部为a 、虚部为b 、模为22a b +、对应点为(,)a b 、共轭复数为i a b -.3.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为________.【答案】90.【解析】分析:先由茎叶图得数据,再根据平均数公式求平均数.详解:由茎叶图可知,5位裁判打出的分数分别为8989909191,,,,,故平均数为89+89+90+91+91905=. 点睛:12,,,n x x x L 的平均数为12n x x x n+++L .4.一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为________.【答案】8【解析】分析:先判断6I <是否成立,若成立,再计算I S ,,若不成立,结束循环,输出结果.详解:由伪代码可得3,2;5,4;7,8I S I S I S ======,因为76>,所以结束循环,输出8.S =点睛:本题考查伪代码,考查考生的读图能力,难度较小.5.函数()f x =________.【答案】[2,+∞)【解析】分析:根据偶次根式下被开方数非负列不等式,解对数不等式得函数定义域.详解:要使函数()f x 有意义,则2log 10x -≥,解得2x ≥,即函数()f x 的定义域为[2,)+∞. 点睛:求给定函数的定义域往往需转化为解不等式(组)的问题.6.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为________. 【答案】3.10【解析】分析:先确定总基本事件数,再从中确定满足条件的基本事件数,最后根据古典概型概率公式求概率.详解:从5名学生中抽取2名学生,共有10种方法,其中恰好选中2名女生的方法有3种,因此所求概率为3.10点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法(理科):适用于限制条件较多且元素数目较多的题目.7.已知函数sin(2)()22y x ϕϕππ=+-<<图象关于直线3x π=对称,则ϕ的值是________. 【答案】6π-. 【解析】 分析:由对称轴得ππ()6k k Z ϕ=-+∈,再根据限制范围求结果.详解:由题意可得2sin π13ϕ⎛⎫+=±⎪⎝⎭,所以2πππππ()326k k k Z ϕϕ+=+=-+∈,,因为ππ22ϕ-<<,所以π0,.6k ϕ==- 点睛:函数sin()y A x B ωϕ=++(A >0,ω>0)的性质:(1)max min ,y A B y A B =+=-+;(2)最小正周期2πT ω=;(3)由ππ()2x k k ωϕ+=+∈Z 求对称轴;(4)由ππ2π2π()22k x k k ωϕ-+≤+≤+∈Z 求增区间; 由π3π2π2π()22k x k k ωϕ+≤+≤+∈Z 求减区间.8.在平面直角坐标系xOy 中,若双曲线22221(0,0)x y a b a b-=>>的右焦点(c,0)F到一条渐近线的距离为,则其离心率的值是________. 【答案】2【解析】分析:先确定双曲线的焦点到渐近线的距离,再根据条件求离心率.详解:因为双曲线的焦点(c,0)F 到渐近线,b y x a =±即0bx ay ±=,bc b c ==所以2b c =,因此22222231,44a c b c c c =-=-=1, 2.2a c e == 点睛:双曲线的焦点到渐近线的距离为b ,焦点在渐近线上的射影到坐标原点的距离为a .9.函数()f x 满足(4)()()f x f x x R +=∈,且在区间(2,2]-上,cos ,02,2()1,20,2x x f x x x π⎧<≤⎪⎪=⎨⎪+-<≤⎪⎩则((15))f f 的值为____.【答案】2 【解析】分析:先根据函数周期将自变量转化到已知区间,代入对应函数解析式求值,再代入对应函数解析式求结果.详解:由(4)()f x f x +=得函数()f x 的周期为4,所以11(15)(161)(1)1,22f f f =-=-=-+=因此1π2((15))()cos .242f f f === 点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现(())f f a 的形式时,应从内到外依次求值.(2)求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.【答案】43【解析】 分析:先分析组合体的构成,再确定锥体的高,最后利用锥体体积公式求结果.详解:由图可知,该多面体为两个全等正四棱锥的组合体,正四棱锥的高为1,2,,所以该多面体的体积为21421(2).33⨯⨯⨯= 点睛:解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.11.若函数()()3221f x x ax a R =-+∈在()0,+∞内有且只有一个零点,则()f x 在[]1,1-上的最大值与最小值的和为__________.【答案】3-.【解析】分析:先结合三次函数图象确定在(0,)+∞上有且仅有一个零点的条件,求出参数a ,再根据单调性确定函数最值,即得结果.详解:由()2620f x x ax '=-=得0,3a x x ==,因为函数()f x 在(0,)+∞上有且仅有一个零点且()0=1f ,所以0,033a a f ⎛⎫>= ⎪⎝⎭,因此322()()10, 3.33a a a a -+==从而函数()f x 在[1,0]-上单调递增,在[0,1]上单调递减,所以()max ()0,f x f ={}min ()min (1),(1)(1)f x f f f =-=-,max min ()()f x f x +=()0+(1)14 3.f f -=-=- 点睛:对于函数零点个数问题,可利用函数的单调性、草图确定其中参数取值条件.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.12.在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,()5,0B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=u u u v u u u v ,则点A 的横坐标为________.【答案】3【解析】分析:先根据条件确定圆方程,再利用方程组解出交点坐标,最后根据平面向量的数量积求结果. 详解:设(),2(0)A a a a >,则由圆心C 为AB 中点得5,,2a C a +⎛⎫ ⎪⎝⎭易得()()():520C x x a y y a --+-=e ,与2y x =联立解得点D 的横坐标1,D x =所以()1,2D .所以()55,2,1,22a AB a a CD a +⎛⎫=--=-- ⎪⎝⎭u u u v u u u v , 由0AB CD ⋅=u u u v u u u v 得()()()2551220,230,32a a a a a a a +⎛⎫--+--=--== ⎪⎝⎭或1a =-, 因为0a >,所以 3.a =点睛:以向量为载体求相关变量的取值或范围,是向量与函数、不等式、三角函数、曲线方程等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解方程或解不等式或求函数值域,是解决这类问题的一般方法.13.在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为________.【答案】9【解析】分析:先根据三角形面积公式得条件、再利用基本不等式求最值.详解:由题意可知,ABC ABD BCD S S S =+△△△,由角平分线性质和三角形面积公式得111sin1201sin 601sin 60222ac a c ︒=⨯⨯︒+⨯⨯︒,化简得11,1ac a c a c=++=,因此1144(4)()559,c a a c a c a c a c +=++=++≥+= 当且仅当23c a ==时取等号,则4a c +的最小值为9.点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.14.已知集合*{|21,}A x x n n N ==-∈,*{|2,}n B x x n N ==∈.将A B U 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为________.【答案】27【解析】分析:先根据等差数列以及等比数列的求和公式确定满足条件的项数的取值范围,再列不等式求满足条件的项数的最小值.详解:设=2k n a ,则12[(211)+(221)+(221)][222]k k n S -=⨯-⨯-+⋅-++++L L()11221212212(12)222212k k kk k ---++⨯--=+=+--由112n n S a +>得2211211522212(21),(2)20(2)140,22,6k k k k k k k -+---+->+-->≥≥所以只需研究5622n a <<是否有满足条件的解,此时25[(211)+(221)+(21)][222]n S m L L =⨯-⨯-+-++++25122m +=+-,+121n a m =+,m 为等差数列项数,且16m >.由25122212(21),2450022,527m m m m m n m ++->+-+>∴≥=+≥,得满足条件的n 最小值为27.点睛:本题采用分组转化法求和,将原数列转化为一个等差数列与一个等比数列的和.分组转化法求和的常见类型主要有分段型(如,2,n n n n a n ⎧=⎨⎩为奇数为偶数),符号型(如2(1)n n a n =-),周期型(如πsin 3n n a =).二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.在平行六面体1111ABCD A B C D -中,1AA AB =,111AB B C ⊥。
(完整word版)2018高考真题——数学(江苏卷)+Word版含解析
绝密★启用前2018年普通高等学校招生全国统一考试(江苏卷)数学I注意事项考生在答题前请认真阅读本注意事项及各题答题要求1 .本试卷共4页,均为非选择题(第1题~第20题,共20题)。
本卷满分为160分,考试时间为120分钟。
考试结束后,请将本试卷和答题卡一片交回。
2 .答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定3 .请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符。
4 •作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。
5 •如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗。
参考公式:锥体的体积Y 其中药是锥体的底面积,h是锥体的高.一、填空题:本大题共14小题,每小题5分,共计70分•请把答案填写在答题卡相应位置上1. 已知集合A{叩丄已,pi」血約,那么MU__________________ .【答案】{1 , 8}【解析】分析:根据交集定义■- : :■- - . \ :-\ ■ - .求结果•详解:由题设和交集的定义可知:点睛:本题考查交集及其运算,考查基础知识,难度较小2. 若复数/满足I ■ z M2:,其中i是虚数单位,则z的实部为___________ .【答案】2【解析】分析:先根据复数的除法运算进行化简,再根据复数实部概念求结果1 +2i详解:因为id 1+匸,—:—-2 L,则2的实部为2.I点睛:本题重点考查复数相关基本概念,如复数a亠hLfAbER.}的实部为乩、虚部为tv模为(齐总、对应点为d共轭复数为乞-呼.•3. 已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为9 011(第\题)【答案】90【解析】分析:先由茎叶图得数据,再根据平均数公式求平均数详解:由苹叶图可知t 5位裁判打出的分数分别为89.90,91,91 ,故平均数为B9 - S9 + 90 + 91 + 91-------- ------------- = 90□be + 3C + + xJ点睛:的平均数为n4. 一个算法的伪代码如图所示,执行此算法,最后输出的S的值为 ________ .I ------------------------- 1”1!I I門![While 7<6 ;:I十2;:S—2S ;;End While ;;Print S \…〔第WW…【答案】8【解析】分析:先判断i■:二T是否成立,若成立,再计算 .,若不成立,结束循环,输出结果•详解:由伪代码可得■红7总-4 因为,所以结束循环,输出=二|点睛:本题考查伪代码,考查考生的读图能力,难度较小5. 函数2屮曾'的定义域为 _______________ .【答案】[2, +R)【解析】分析:根据偶次根式下被开方数非负列不等式,解对数不等式得函数定义域详解:要使函数「(川有意义,则log2x 110,解得X-2,即函数的定义域为[工点睛:求给定函数的定义域往往需转化为解不等式(组)的问题6.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为【答案】10【解析】分析:先确定总基本事件数,再从中确定满足条件的基本事件数,最后根据古典概型概率公式求概率•详解:从5名学生中抽取2名学生,共有10种方法,其中恰好选中2名女生的方法有3种,因此所求概率为10点睛:古典概型中基本事件数的探求方法(1) 列举法•(2) 树状图法:适合于较为复杂的问题中的基本事件的探求采用树状图法••对于基本事件有有序”与无序”区别的题目,常(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化⑷排列组合法(理科):适用于限制条件较多且元素数目较多的题目7.已知函数y ■- sin(2x + < P --的图象关于直线对称,则T的值是【答案】【解析】分析:由对称轴得qj - --4 k<k € Z),再根据限制范围求结果•详解:由题意可得:1,所以2 兀丸n +甲■ ■十上旺(p - ― + kz(k毛Z),因为-、 2 6北...-,所以:.点睛:函数厂加诚曲IB (A>0, 3>0 )的性质:(彷唤-2 乞沁厂八I B;(2)最小正周期I(!)冗朮;(3)由厨為I业■,+求对称轴;(4)由斥+ ]也冬3咒+屮冬;斗求增区间;2 223x兀JX 、由_ + 2kjt ——■+ 2kx(k € £.i求减区间•8.在平面直角坐标系中,若双曲线-=iu >o)的右焦点到一条渐近线的距离为,则其离心率的值是_________ •【答案】2【解析】分析:先确定双曲线的焦点到渐近线的距离,再根据条件求离心率详解:因为双曲线的焦点F(c.O)到渐近线y = ± :热即bx ±av= 0的距离为聲寻=7= 0所以b = yc ,因此『=c2-b? = c2-|c?= f a = ^c#e = 2.点睛:双曲线的焦点到渐近线的距离为b,焦点在渐近线上的射影到坐标原点的距离为 a.(cos—,0 < x < 2,9.函数[侃满足+ 4) - «x.KxeR),且在区间(W]上,f(刃二:贝他⑸)的值为|x - - 2 <x< 0h【答案】2【解析】分析:先根据函数周期将自变量转化到已知区间,代入对应函数解析式求值,再代入对应函数解析式求结果•详解:由、•门2得函数世対的周期为4,所以I.讥iH) F I L - \ ',因此.. .1 兀 Qt(f(l5)) = f(^) = cos- = —点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现|;m:的形式时,应从内到外依次求值.(2)求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围•10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 _______________ •(第10®)【答案】【解析】分析:先分析组合体的构成,再确定锥体的高,最后利用锥体体积公式求结果详解:由图可知,该多面体为两个全等正四棱锥的组合体,正四棱锥的高为1,底面正方形的边长等于,| l r 4所以该多面体的体积为2 —1、〔a -点睛:解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.若函数I: . . I ::_:在•内有且只有一个零点,则:在|上的最大值与最小值的和为【答案】-【解析】分析:先结合三次函数图象确定在隐-閱上有且仅有一个零点的条件,求出参数a,再根据单调性确定函数最值,即得结果.详解:由- 0得—0^ ■:,因为函数啦•在0亠「珂上有且仅有一个零点且f(0)],所以一品从而函数須在[上单调递增,在[H'J上单调递减,所以轨《.阿躯也・曲诃[-1)血)}7可,附心+姻)丄・| D- 1-4--3.点睛:对于函数零点个数问题,可利用函数的单调性、草图确定其中参数取值条件•从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.12. 在平面直角坐标系中,A为直线族■:制上在第一象限内的点,|哄淇;|,以AB为直径的圆C与直线I交于另一点D •若AB 00 = (',则点A的横坐标为_____________ •【答案】3【解析】分析:先根据条件确定圆方程,再利用方程组解出交点坐标,最后根据平面向量的数量积求结果亂+ 5详解:设|A(aJa)(a >0),则由圆心C为.中点得C(——Q易得|OC.(x-5)(x a)-hyiy-2a) o|,与y■■毀联立解 2得点D的横坐标£ - I」所以疥、聞.所以p I厂遊颅上J上二2-克| £1 + 5 r由.输■ CD = 0得15-a)( 1—-—) + (^2aX2_a) - 0用^2a 3 ■ 0,a ■ 3或a ■ - 1 ,因为Im】,所以£ - |点睛:以向量为载体求相关变量的取值或范围,是向量与函数、不等式、三角函数、曲线方程等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解方程或解不等式或求函数值域,是解决这类问题的一般方法•13. 在|二阳也:中,角km所对的边分别为k"l,m m •心:的平分线交于点D,且.m,则碾::的最小值为__________ •【答案】9【解析】分析:先根据三角形面积公式得条件、再利用基本不等式求最值详解:由题意可知,渝込-仏加口+ S ABCL,由角平分线性质和三角形面积公式得ncsinl 20" - ■ I - + 1sin60°,化简得ac " a + + - = I ,因此|2 2 2 A c] [ (T 4a |cWa + c = (4a + + -) = 5-i >5 + 2 h1— - 9,a c a. c * e当且仅当匚J.i 2时取等号,则!(.的最小值为目.点睛:在利用基本不等式求最值时,要特别注意拆、拼、凑”等技巧,使其满足基本不等式中正”即条件要求中字母为正数卜定”不等式的另一边必须为定值)、等”等号取得的条件)的条件才能应用,否则会出现错误.14. 已知集合A ■仪恢■ 2n—l,n €N }, B ■凶%■ E N } •将AUB(的所有兀素从小到大依次排列构成一个数列何J.记S:为数列他丿的前n项和,则使得S n> I2a-—成立的n的最小值为_____________ •【答案】27【解析】分析:先根据等差数列以及等比数列的求和公式确定满足条件的项数的取值范围,再列不等式求满足条件的项数的最小值.详解:设,贝U -Q- i —w十--十住芒--:;■]占+ 十2(1-右_ 尹七小_22 1-2由驚》也.十]得尹'+ 屮"012(21£+]人少¥-20(2* \T4AQ210 l> :\k>6所以只需研究是否有满足条件的解,此时\ = [(21-1)十(2 V—I)十…十门叶打]十十于十…十刃[J + f 2, %+1-加+ 1 , m为等差数列项数,且序-化由' ‘I !- 1. ■' r- I ■得满足条件的最小值为.点睛:本题采用分组转化法求和,将原数列转化为一个等差数列与一个等比数列的和.分组转化法求和的常二、解答题:本大题共 6小题,共计90分•请在答题卡指定区域.内作答,解答时应写出文字说明、证明过 程或演算步骤.15.在平行六面体 I ' ■- \1'_' J .中, 一";I '求证:(1) d 訂..\: (2)平面1 平面AiBC . 【答案】答案见解析【解析】分析:(1 )先根据平行六面体得线线平行,再根据线面平行判定定理得结论;(2)先根据条件得菱形ABB I A I ,再根据菱形对角线相互垂直,以及已知垂直条件,利用线面垂直判定定理得线面垂直,最后 根据面面垂直判定定理得结论 详解:证明:(1)在平行六面体 ABCD-A I B I C I D I 中,AB // A I B I .因为 AB 平面 A 1B 1C , A 1B 1;平面 A 1B 1C , 所以AB //平面A 1B 1C .见类型主要有分段型(如如需需蠶),符号型(如备十曲),周期型(如埠喑)(2)在平行六面体ABCD-A1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA I=AB,所以四边形ABB i A i为菱形,因此AB i丄A I B .又因为AB i 丄B i C i, BC // B1C1,所以AB i丄BC.又因为A I B Q BC=B, A I B平面A i BC, BC 平面A i BC,所以AB i丄平面A i BC .因为AB i :二平面ABB i A i,所以平面ABB i A i丄平面A i BC.点睛:本题可能会出现对常见几何体的结构不熟悉导致几何体中的位置关系无法得到运用或者运用错误,如柱体的概念中包含两个底面是全等的多边形,且对应边互相平行,侧面都是平行四边形”,再如菱形对角线互相垂直的条件,这些条件在解题中都是已知条件,缺少对这些条件的应用可导致无法证明i6.已知为锐角,,^3 5(i)求卜芯领的值;(2 )求• 的值.°7【答案】(i) ■加osPT -25lan2a-tan(tt + B) 2(2)1 + un2atan(<i 十卩) 11【解析】分析:先根据同角三角函数关系得帚抄』,再根据二倍角余弦公式得结果;公式得,再利用两角差的正切公式得结果(2)因为k加为锐角,所以(■: -:-又因为costa+ p)= - ,所以$in(a + p)= Ji - 卩)因此"U42Lum 24因lana,所以un2a 、-(2)先根据二倍角正切详解:解:4sina tana ,t^na3COS<1因为ccsTi 1,所以因此,3曲"■烷(i)因为,所以3 1 - tan3a 丁因此,tan2a - Un(a + 阳 2吨邛)-网"3卩)]■门融亦卩1 5点睛:应用三角公式解决问题的三个变换角度(1) 变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是 配凑”.(2) 变名:通过变换函数名称达到减少函数种类的目的,其手法通常有切化弦”、升幕与降幕”等.(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有: 换”、逆用变用公式”、通分约分”、分解与组合”、配方与平方”等• 17.某农场有一块农田,如图所示,它的边界由圆0的一段圆弧if ( P 为此圆弧的中点)和线段MN 构成.已 知圆0的半径为40米,点P 到MN 的距离为50米•现规划在此农田上修建两个温室大棚,大棚I 内的地 块形状为矩形 ABCD ,大棚H 内的地块形状为 HF ,要求卢制均在线段上,均在圆弧上.设 0C 与MN 所成的角为耳(第门题)(1 )用卜分别表示矩形 忙益时和■■■■■■ 的面积,并确定林嗟的取值范围; (2)若大棚I 内种植甲种蔬菜,大棚n 内种植乙种蔬菜, 且甲、乙两种蔬菜的单位面积年产值之比为岂胡.求当 为何值时,能使甲、乙两种蔬菜的年总产值最大.【答案】 (1)矩形ABCD 的面积为800 (4sin 9cos &+cos B)平方米,△ CDP 的面积为【解析】分析:(1)先根据条件求矩形长与宽,三角形的底与高,再根据矩形面积公式以及三角形面积公式得结果,最后根据实际意义确定阪的取值范围;(2)根据条件列函数关系式,利用导数求极值点,再根 据单调性确定函数最值取法 •常值代1600 (cos B —in 0cos 9) , sin 1) (2)当详解:解:(1)连结PO并延长交MN于H,贝U PH丄MN,所以OH=10.过O 作OE 丄BC 于E,贝U OE // MN,所以/ COE= 0,故OE=40cos 0 EC=40sin 0,则矩形ABCD 的面积为2><4Ocos0( 40sin0+1O) =800 (4sin 0cos 0+cos 0), △ CDP 的面积为1X2 X40cos 0 (40 -40sin 0) =1600 (cos 0-sin 0cos 0).过N作GN丄MN,分别交圆弧和OE的延长线于G和K,则GK=KN=10 .I gr令/ GOK= 0,则sin 0= , (0,).4 6r兀当0€ [ 0,-)时,才能作出满足条件的矩形ABCD ,所以sin0的取值范围是[,1).4答:矩形ABCD的面积为800 (4sin0cos 0+cos 0平方米,△ CDP的面积为11600 (cos 0-in 0cos 0) , si n0 的取值范围是[,1).]4(2)因为甲、乙两种蔬菜的单位面积年产值之比为 4 : 3,设甲的单位面积的年产值为4k,乙的单位面积的年产值为3k (k>0),则年总产值为4k >800 (4si n0cos0+cos0) +3kX1600 (cos 0-si n 0cos 0)=8000k (sin 0cos 0+cos 0) , 0€ [ 00,).设 f ( 0) = sin 0cos0+cos 0, 0€[ 0, “),则卜覚=「屣憑-涂蛙理心=-划用2心H=-加z -斗ii:兀令f⑹0,得0-,当0€ ( 0,)时,,所以f ( 0)为增函数;当0€ (,)时,];;/:*所以f ( 0)为减函数,因此,当0=时,f ( 0)取到最大值.p7C答:当匸时,能使甲、乙两种蔬菜的年总产值最大.6点睛:解决实际应用题的步骤一般有两步:一是将实际问题转化为数学问题;二是利用数学内部的知识解决问题•18. 如图,在平面直角坐标系koy中,椭圆C过点屁',焦点F1(曲切皿新0),圆O的直径为F』』.(1)求椭圆C及圆O的方程;(2)设直线I与圆O相切于第一象限内的点P.①若直线I与椭圆C有且只有一个公共点,求点P的坐标;②直线I与椭圆C交于两点.若的面积为工,求直线I的方程.7i【答案】(1)椭圆C的方程为- +[;圆O的方程为耳(2)①点P的坐标为;②直线I的方程为];•=,【解析】分析:(1 )根据条件易得圆的半径,即得圆的标准方程,再根据点在椭圆上,解方程组可得即得椭圆方程;(2 )第一问先根据直线与圆相切得一方程,再根据直线与椭圆相切得另一方程,解方程组可得切点坐标•第二问先根据三角形面积得三角形底边边长,再结合①中方程组,利用求根公式以及两点间距离公式,列方程,解得切点坐标,即得直线方程•详解:解:(1 )因为椭圆C的焦点为.:•,所以a2 4b2,解得a" - ~ 3,因此,椭圆C的方程为F十严=1・因为圆O的直径为儿叫,所以其方程为宀 f(2)①设直线I与圆O相切于,则,%所以直线1的方程为V =-上& -心+ y0,y=-—X +a,b,可设椭圆C的’-一=l(a ■' b ■■■ O'.又点『b2(黒)在椭圆C上,点睛:直线与椭圆的交点问题的处理一般有两种处理方法:一是设出点的坐标,运用+ - ?帰 + 36 - 4y 02 0-( *) 因为直线I 与椭圆C 有且只有一个公共点,所以鸟=.羽叼卩-4(%' yf )(茹_ %?)=地代J ・2) = o| • 因为陥% - °,所以鮭■百矿】•因此,点P 的坐标为匕:.办『②因为三角形OAB 的面积为•,所以丄需■设卜念「■.; :/:•.:「:: 由(* )得2% 士(4%丫好 一2)2(吋+泊所以总”广=十:_“「因为 所以解得(^2^)2 49,5瓜■:血-20舍去),则yf [,因此P 的坐标为 »)设而不求”思想求解;由综上,直线I 的方程为因此,f (x )与g (x )不存在“ S ”点.(2)函数『3I TTK则 fCx) -2ax, g R (x)--.x设 x o 为 f (x )与 g (x )的“ S'点,由 f (x o )与 g (x o )且 f ' (x o )与 g (x o ),得,即得 Inxo---甘八则1 ea . --------- ■ ■T1 2 2(/ ¥当垃■时,--=、满足方程组(*),即k 为f ( X )与g (X )的“ s’点. ^0芒因此,a 的值为I二是设出直线方程,与椭圆方程联立,利用韦达定理求出交点坐标,适用于已知直线与椭圆的一个交点的 情况•19•记分别为函数f(x).g(x)的导函数.若存在K ,满足Rg 以血且l (K 』・g 〔加,则称为函数「(X ) 与|券:的一个“ S 点”. (1)证明:函数血r.与 不存在“ S 点”;(2) 若函数- ax 3-l.与Inx 存在“ S 点”,求实数a 的值;(3) 已知函数”闆■」缸,皐代^骂. 对任意a *0,判断是否存在b >0 ,使函数心)与g (心在区间(0*亠上)内x 存在“ S 点”,并说明理由. 【答案】(1)证明见解析 (2) a 的值为(3)对任意a>0,存在b>0,使函数f (x )与g (x )在区间(0, +8)内存在“ S 点” 【解析】分析:(1 )根据题中S 点”的定义列两个方程,根据方程组无解证得结论; (2)同(1)根据S 点的定义列两个方程,解方程组可得 a 的值;(3)通过构造函数以及结合S 点”的定义列两个方程,再判断方程组是否有解即可证得结论 •详解:解:(1)函数 f (x ) =x , g (x ) =x 2+2x-2,贝V f' (x ) =1 , g' (x ) =2x+2 .由 f (x ) =g (x )且 f' (x ) = g' (x ),得(x = X' + 2x - 2 (1 = 2x + 2 ,此方程组无解,(3)对任意 a>0,设+乩.因为1. j I |.L _ 1.,且h (x )的图象是不间断的,be" f(x) = - x 2 + a . g(x)=——由 f (x )与 g (x )且 f' (x )与 g' (x ),得be -+ a -——Xbe y (x - 1)所以存在(0, 1),使得h(%) 0,令匕=,则 b>0.函数 则 f(x) = - 2x ,, g'lx}be\x - 1 j,即(** )此时, 满足方程组(** ),即是函数f (x )与g (x )在区间(0, 1)内的一个"S 点”因此,对任意a>0,存在b>0,使函数f (x )与g (x )在区间(0, +〜内存在"S 点” 点睛: 涉及函数的零点问题、方程解的个数问题、函数图象交点个数问题,一般先通过导数研究函数的单 调性、 最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底 还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路 20.设卜丿是首项为 ,公差为d 的等差数列,|代是首项为,公比为q 的等比数列. (1)设」.j2,若% bjub ]对:i 12〃均成立,求d 的取值范围;(2)若 =b 1>0,m€N".c]G(l.V -l,证明:存在乙;K ,使得'"r - 对-I 均成立,并求旧的取 值范围(用% E 兀表示).【答案】(1) d 的取值范围为 D与2(2) d 的取值范围为MEM 0------- •—I m m,证明见解析。
(完整版)江苏专转本高等数学真题(附答案)
2001年江苏省普通高校“专转本”统一考试高等数学一、选择题(本大题共5小题,每小题3分,共15分)1、下列各极限正确的是 ( )A 、e xxx =+→)11(lim 0B 、e xx x =+∞→1)11(limC 、11sinlim =∞→x x x D 、11sin lim 0=→xx x2、不定积分=-⎰dx x211 ( )A 、211x-B 、c x+-211C 、x arcsinD 、c x +arcsin3、若)()(x f x f -=,且在[)+∞,0内0)('>x f 、0)(''>x f ,则在)0,(-∞内必有 ( )A 、0)('<x f ,0)(''<x f B 、0)('<x f ,0)(''>x f C 、0)('>x f ,0)(''<x f D 、0)('>x f ,0)(''>x f4、=-⎰dx x 21 ( )A 、0B 、2C 、-1D 、15、方程x y x 422=+在空间直角坐标系中表示 ( ) A 、圆柱面B 、点C 、圆D 、旋转抛物面二、填空题(本大题共5小题,每小题3分,共15分)6、设⎩⎨⎧+==22tt y te x t ,则==0t dx dy7、0136'''=+-y y y 的通解为 8、交换积分次序=⎰⎰dy y x f dx x x220),(9、函数yx z =的全微分=dz10、设)(x f 为连续函数,则=+-+⎰-dx x x x f x f 311])()([三、计算题(本大题共10小题,每小题4分,共40分) 11、已知5cos)21ln(arctan π+++=xx y ,求dy .12、计算xx dte x xt x sin lim202⎰-→.13、求)1(sin )1()(2--=x x xx x f 的间断点,并说明其类型.14、已知x y x y ln 2+=,求1,1==y x dxdy.15、计算dx ee xx⎰+12. 16、已知⎰∞-=+02211dx x k ,求k 的值. 17、求x x y y sec tan '=-满足00==x y 的特解.18、计算⎰⎰Ddxdy y2sin ,D 是1=x 、2=y 、1-=x y 围成的区域.19、已知)(x f y =过坐标原点,并且在原点处的切线平行于直线032=-+y x ,若b ax x f +=2'3)(,且)(x f 在1=x 处取得极值,试确定a 、b 的值,并求出)(x f y =的表达式.20、设),(2y x x f z =,其中f 具有二阶连续偏导数,求x z∂∂、yx z ∂∂∂2.四、综合题(本大题共4小题,第21小题10分,第22小题8分,第23、24小题各6分,共30分) 21、过)0,1(P 作抛物线2-=x y 的切线,求(1)切线方程; (2)由2-=x y ,切线及x 轴围成的平面图形面积;(3)该平面图形分别绕x 轴、y 轴旋转一周的体积。
2018年普通高等学校招生全国统一(江苏卷)数学试卷和答案解析
2018年普通高等学校招生全国统一考试(江苏卷)数学1. 已知集合,,那么__________.2. 若复数z满足,其中i是虚数单位,则z的实部为__________.3. 已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为______.4. 一个算法的伪代码如图所示,执行此算法,最后输出的S的值为______.5. 函数的定义域为__________.6. 某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为__________.7. 已知函数的图象关于直线对称,则的值为__________.8. 在平面直角坐标系xOy中,若双曲线的右焦点到一条渐近线的距离为,则其离心率的值是__________.9. 函数满足,且在区间上,,则的值为__________.10. 如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为__________.11. 若函数在内有且只有一个零点,则在上的最大值与最小值的和为__________.12. 在平面直角坐标系xOy中,A为直线l:上在第一象限内的点,,以AB 为直径的圆C与直线l交于另一点若,则点A的横坐标为__________. 13. 在中,角A,B,C所对的边分别为a,b,c,,的平分线交AC于点D,且,则的最小值为__________.14. 已知集合,将的所有元素从小到大依次排列构成一个数列,记为数列的前n项和,则使得成立的n的最小值为______.15. 在平行六面体中,,求证:平面;平面平面16. 已知,为锐角,,求的值;求的值.17. 某农场有一块农田,如图所示,它的边界由圆O的一段圆弧为此圆弧的中点和线段MN构成.已知圆O的半径为40米,点P到MN的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为,要求A,B均在线段MN上,C,D均在圆弧上.设OC与MN所成的角为用分别表示矩形ABCD和的面积,并确定的取值范围;若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:求当为何值时,能使甲、乙两种蔬菜的年总产值最大.18. 如图,在平面直角坐标系xOy中,椭圆C过点,焦点,,圆O的直径为求椭圆C及圆O的方程;设直线l与圆O相切于第一象限内的点①若直线l与椭圆C有且只有一个公共点,求点P的坐标;②直线l与椭圆C交于A,B两点.若的面积为,求直线l的方程.19. 记,分别为函数,的导函数.若存在,满足且,则称为函数与的一个“S点”.证明:函数与不存在“S点”;若函数与存在“S点”,求实数a的值;已知函数,对任意,判断是否存在,使函数与在区间内存在“S点”,并说明理由.20. 设是首项为,公差为d的等差数列,是首项为,公比为q的等比数列.设,,,若对,2,3,4均成立,求d的取值范围;若,,证明:存在,使得对,3,…,均成立,并求d的取值范围用,m,q表示21. 如图,圆O的半径为2,AB为圆O的直径,P为AB延长线上一点,过P作圆O的切线,切点为若,求BC的长.22. 已知矩阵求A的逆矩阵;若点P在矩阵A对应的变换作用下得到点,求点P的坐标.23. 在极坐标系中,直线l的方程为,曲线C的方程为,求直线l被曲线C截得的弦长.24. 若x,y,z为实数,且,求的最小值.25. 如图,正三棱柱中,,点P,Q分别为,BC的中点.求异面直线BP与所成角的余弦值;求直线与平面所成角的正弦值.26. 设,对1,2,……,n的一个排列……,如果当时,有,则称是排列……的一个逆序,排列……的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序,,则排列231的逆序数为记为1,2,…,n的所有排列中逆序数为k的全部排列的个数.求,的值;求的表达式用n表示答案和解析1.【答案】【解析】【分析】直接利用交集运算得答案.本题考查交集及其运算,属于基础题.【解答】解:,,,故答案为:2.【答案】2【解析】【分析】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.把已知等式变形,再由复数代数形式的乘除运算化简得答案.【解答】解:由,得,的实部为故答案为:3.【答案】90【解析】【分析】本题考查了利用茎叶图计算平均数的问题,是基础题.根据茎叶图中的数据计算它们的平均数即可.【解答】解:根据茎叶图中的数据知,这5位裁判打出的分数为89、89、90、91、91,它们的平均数为故答案为:4.【答案】8【解析】【分析】模拟程序的运行过程,即可得出程序运行后输出的S值.本题考查了程序语言的应用问题,模拟程序的运行过程是解题的常用方法,属基础题.【解答】解:模拟程序的运行过程如下;,,,,,,,,此时不满足循环条件,则输出故答案为:5.【答案】【解析】【分析】本题考查了对数函数的性质,考查求函数的定义域问题,是一道基础题.解关于对数函数的不等式,求出x的范围即可.【解答】解:由题意得:,解得:,函数的定义域是故答案为:6.【答案】【解析】【分析】本题考查了古典概率的问题,属于基础题.设2名男生为a,b,3名女生为A,B,C,则任选2人的种数为ab,aA,aB,aC,bA,bB,bC,AB,AC,BC共10种,其中全是女生为AB,AC,BC共3种,根据概率公式计算即可.【解答】解:设2名男生为a,b,3名女生为A,B,C,则任选2人的种数为ab,aA,aB,aC,bA,bB,bC,AB,AC,BC共10种,其中全是女生为AB,AC,BC共3种,故选中的2人都是女同学的概率,故答案为:7.【答案】【解析】【分析】本题主要考查三角函数的图象和性质,利用正弦函数的对称性建立方程关系是解决本题的关键.根据正弦函数的对称性建立方程关系进行求解即可.【解答】解:的图象关于直线对称,,,即,,,当时,,故答案为:8.【答案】2【解析】【分析】本题考查双曲线的简单性质的应用,考查转化思想以及计算能力.利用双曲线的简单性质,以及点到直线的距离列出方程,转化求解即可.【解答】解:双曲线的右焦点到一条渐近线的距离为,可得:,可得,即,所以双曲线的离心率为:故答案为:9.【答案】【解析】【分析】本题主要考查函数值的计算,根据函数的周期性结合分段函数的表达式利用转化法是解决本题的关键.根据函数的周期性,进行转化求解即可.【解答】解:由得函数是周期为4的周期函数,则,,即,故答案为:10.【答案】【解析】【分析】本题考查几何体的体积的求法,考查空间想象能力,属于中档题.将多面体看做两个正四棱锥,然后利用体积公式求解即可.【解答】解:正方体的棱长为2,中间四边形的边长为,八面体看做两个正四棱锥,棱锥的高为1,多面体的体积为故答案为11.【答案】【解析】【分析】解:,,①当时,,函数在上单调递增,,在上没有零点,舍去;②当时,的解为,在上递减,在递增,又只有一个零点,,解得,则,,,的解集为,在上递增,在上递减,,,,,,在上的最大值与最小值的和为:【解答】本题考查函数的单调性、最值,导数的运算及其应用,同时考查逻辑思维能力和综合应用能力,是中档题.推导出,,当时,,,在上没有零点;当时,的解为,在上递减,在递增,由只有一个零点,解得,从而,,,利用导数性质能求出在上的最大值与最小值的和.12.【答案】3【解析】【分析】本题考查平面向量的数量积运算,考查圆的方程的求法,是中档题.设,,求出C的坐标,得到圆C的方程,联立直线方程与圆的方程,求得D的坐标,结合求得a值得答案.【解答】解:设,,,,则圆C的方程为联立,解得解得:或又,即A的横坐标为故答案为:13.【答案】9【解析】【分析】本题主要考查三角形的面积公式与基本不等式的应用.根据面积关系建立条件等式,结合基本不等式利用1的代换的方法进行求解即可.【解答】解:由题意得,即,得,得,当且仅当,即,亦即,时,取等号,故答案为:14.【答案】27【解析】【分析】本题考查数列的递推关系以及数列的分组转化求和,属于拔高题.根据题意说明当,时不符合题意,当时,,符合题意,求出n的最小值. 【解答】解:集合A是由所有正奇数组成的集合,集合B是由组成的集合,所有的正奇数与按照从小到大的顺序排列构成,在数列中,前面有16个正奇数,即,当时,,不符合题意;当时,,不符合题意;当时,,不符合题意;当时,,不符合题意;……;当时,,,不符合题意;当时,,,,符合题意.故使得成立的n的最小值为故答案为:15.【答案】证明:平行六面体中,,又平面平面;得平面;在平行六面体中,,得四边形是菱形,在平行六面体中,,又,平面,平面得面,且平面平面平面【解析】本题考查了平行六面体的性质,及空间线面平行、面面垂直的判定,属于中档题.由平面;可得四边形是菱形,,由面,平面平面16.【答案】解:由,解得,;由得,,则,,,则【解析】本题考查三角函数的恒等变换及化简求值,考查同角三角函数基本关系式的应用,属于中档题.由已知结合平方关系求得,的值,再由倍角公式得的值;由求得,再由求得,利用,展开两角差的正切求解.17.【答案】解:,,当B、N重合时,最小,此时;当C、P重合时,最大,此时,的取值范围是;设年总产值为y,甲种蔬菜单位面积年产值为4t,乙种蔬菜单位面积年产值为3t,则,其中;设,则;令,解得,此时,;当时,,单调递增;当时,,单调递减;时,取得最大值,即总产值y最大.【解析】本题考查了解三角形的应用问题,也考查了构造函数以及利用导数求函数的最值问题,是较难题.根据图形计算矩形ABCD和的面积,求出的取值范围;根据题意求出年总产值y的解析式,构造函数,利用导数求的最大值,即可得出为何值时年总产值最大.18.【答案】解:由题意可设椭圆方程为,焦点,,椭圆C过点,,又,解得,椭圆C的方程为:,圆O的方程为:①可知直线l与圆O相切,也与椭圆C,且切点在第一象限,因此k一定小于0,可设直线l的方程为,由圆心到直线l的距离等于圆半径,可得,即由,可得,,可得,,结合,,解得,将,代入,可得,解得,,故点P的坐标为②设,,由联立直线与椭圆方程得,,O到直线l的距离,,的面积为,解得,正值舍去,直线l的方程为【解析】本题考查了椭圆的方程,直线与圆、椭圆的位置关系,属于较难题.由题意可得,,又,解得,,即可得到椭圆C的方程和圆O的方程;①可设直线l的方程为,,可得,即,由,可得,,解得,,进而可得P点坐标;②设,,联立直线与椭圆方程得,根据弦长公式和点到直线得距离公式可解得,正值舍去,,即可得到直线方程.19.【答案】解:证明:,,则由定义得,得方程无解,则与不存在“S点”;,,,由得,得,,得;,,,由,假设,得,得,由,得,得,令,,设,,则,,得,又的图象在上不间断,则在上有零点,则在上有零点,则存在,使与在区间内存在“S”点.【解析】本题主要考查导数的应用,根据条件建立两个方程组,判断方程组是否有解是解决本题的关键.根据“S点”的定义解两个方程,判断方程是否有解即可;根据“S点”的定义解两个方程即可;分别求出两个函数的导数,结合两个方程之间的关系进行求解判断即可.20.【答案】解:由题意可知对任意,2,3,4均成立,,,,解得即且对,3,…,均成立,,…,,即,…,,…,,,…,,又,…,,存在,使得对,3,…,均成立当时,,设,则,…,,设,,单调递增,,设,且设,则,,,,在上恒成立,即单调递减,又,,对…,均成立,数列,…,单调递减,的最大值为,的最小值为,的取值范围是【解析】本题主要考查等比数列和等差数列以及不等式的综合应用,考查学生的运算能力,综合性较强,难度较大.根据等比数列和等差数列的通项公式,解不等式组即可;根据数列和不等式的关系,利用不等式的关系构造新数列和函数,判断数列和函数的单调性和性质进行求解即可.21.【答案】解:连接OC,因为PC为切线且切点为C,所以因为圆O的半径为2,,所以,,所以,所以,所以为等边三角形,所以【解析】连接OC,由题意,CP为圆O的切线,得到垂直关系,由线段长度及勾股定理,可以得到PO的长,即可判断是等边三角形,BC的长.本题主要考查圆与直线的位置关系,切线的应用,考查发现问题解决问题的能力.22.【答案】解:矩阵,,所以A可逆,从而:A的逆矩阵设,则,所以,因此点P的坐标为【解析】本题矩阵与逆矩阵的关系,逆矩阵的求法,考查转化思想的应用,是基本知识的考查.矩阵,求出,A可逆,然后求解A的逆矩阵设,通过,求出,即可得到点P的坐标.23.【答案】解:曲线C的方程为,,,曲线C是圆心为,半径为得圆.直线l的方程为,,直线l的普通方程为:圆心C到直线l的距离为,直线l被曲线C截得的弦长为【解析】将直线l、曲线C的极坐标方程利用互化公式可得直角坐标方程,利用直线与圆的相交弦长公式即可求解.本题考查了极坐标方程化为直角坐标方程、直线与圆的相交弦长关系、点到直线的距离公式,属于中档题.24.【答案】解:由柯西不等式得,,是当且仅当时,不等式取等号,此时,,,的最小值为4【解析】本题主要考查求的最值,利用柯西不等式是解决本题的关键.根据柯西不等式进行证明即可.25.【答案】解:如图,在正三棱柱中,设AC,的中点分别为O,,则,,,故以为基底,建立空间直角坐标系,,,,,,,点P为的中点.,,异面直线BP与所成角的余弦值为;为BC的中点.,,设平面的一个法向量为,由,可取,设直线与平面所成角的正弦值为,,直线与平面所成角的正弦值为【解析】本题考查了异面直线所成角,直线与平面所成角,向量法求空间角,考查学生的计算能力和推理能力,属于中档题.设AC,的中点分别为O,,以为基底,建立空间直角坐标系,由可得异面直线BP与所成角的余弦值;求得平面的一个法向量为,设直线与平面所成角的正弦值为,可得,即可得直线与平面所成角的正弦值.26.【答案】解:记为排列abc得逆序数,对1,2,3的所有排列,有,,,,,,,,对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置.因此,;对一般的的情形,逆序数为0的排列只有一个:12…n,逆序数为1的排列只能是将排列12…n中的任意相邻两个数字调换位置得到的排列,为计算,当1,2,…,n的排列及其逆序数确定后,将添加进原排列,在新排列中的位置只能是最后三个位置.因此,当时,……因此,当时,【解析】由题意直接求得的值,对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置,由此可得的值;对一般的的情形,可知逆序数为0的排列只有一个,逆序数为1的排列只能是将排列12…n中的任意相邻两个数字调换位置得到的排列,为计算,当1,2,…,n的排列及其逆序数确定后,将添加进原排列,在新排列中的位置只能是最后三个位置,可得,则当时,…,则的表达式可求.本题主要考查计数原理、排列等基础知识,考查运算求解能力和推理论证能力,是中档题.。
2018年全国普通高等学校招生统一考试数学(江苏卷)(原卷版)
绝密★启用前2018年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。
本卷满分为160分,考试时间为120分钟。
考试结束后,请将本试卷和答题卡一片交回。
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。
3.请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符。
4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗。
学@科网参考公式:锥体的体积,其中是锥体的底面积,是锥体的高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.........1.1.已知集合,,那么________.2.2.若复数满足,其中i是虚数单位,则的实部为________.3.3.【2018年江苏卷】已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为________.4.4.一个算法的伪代码如图所示,执行此算法,最后输出的S的值为________.5.5.函数的定义域为________.6.6.【2018年江苏卷】某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为________.7.7.【2018年江苏卷】已知函数的图象关于直线对称,则的值是________.8.8.在平面直角坐标系中,若双曲线的右焦点到一条渐近线的距离为,则其离心率的值是________.9.9.函数满足,且在区间上,则的值为____.10.10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.11.11.若函数在内有且只有一个零点,则在上的最大值与最小值的和为__________.12.12.在平面直角坐标系中,为直线上在第一象限内的点,,以为直径的圆与直线交于另一点.若,则点的横坐标为________.13.13.在中,角所对的边分别为,,的平分线交于点D,且,则的最小值为________.14.14.已知集合,.将的所有元素从小到大依次排列构成一个数列.记为数列的前n项和,则使得成立的n的最小值为________.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.15.在平行六面体中,,。
(完整版)2018年江苏省普通高校“专转本”统一考试《高等数学》试卷
2018年江苏省普通高校“专转本”统一考试一、 选择题(本大题共6小题,每小题4分,满分24分)1、当0x →时,下列无穷小与()2sin f x x x =同阶的是 ( )A.2cos 1x -1 C. 31x - D 。
()3211x +- 2、设函数2()x a f x x x b-=++,若1x =为其可去间断点,则常数a ,b 的值分别为 ( ) A 。
1,2- B 。
1,2- C 。
1,2-- D. 1,23、设1()1x f x x ϕ-⎛⎫= ⎪+⎝⎭,其中()x ϕ为可导函数,且()13ϕ'=,则()0f '等于 ( ) A.6- B 。
6 C.3- D. 34、设()2x F x e =是函数()f x 的一个原函数,则()xf x dx '=⎰ ( ) A. 2112x e x C ⎛⎫-+ ⎪⎝⎭ B. ()221x e x C -+ C. 2112x e x C ⎛⎫++ ⎪⎝⎭D. ()221x e x C ++ 5、下列反常积分发散的是( )A 。
0x e dx -∞⎰B 。
311dx x +∞⎰C 。
211dx x +∞-∞+⎰D 。
011dx x+∞+⎰ 6、下列级数中绝对收敛的是( )A. 1n n ∞=∑()1121nn n ∞=+-∑ C. 21sin n n n ∞=∑ D 。
31(3)n n n ∞=-∑ 二、填空题(本大题共6小题,每小题4分,共24分)7设()102lim 1lim sin x x x ax x x→→∞+=,则常数a =_________. 8、设函数()0y x =>,则y '=____________.9、设(),z z x y =是由方程21z xyz +=所确定的函数,则z x ∂=∂___________. 10、曲线43234612y x x x x =+--的凸区间为___________.11、已知空间三点()1,1,1M ,()1,1,0A ,()2,1,2B ,则AMB ∠的大小为__________.12、幂级数1(4)5nn n x n ∞=+∑的收敛域为____________.三、计算题(本大题共8小题,每小题8分,共64分)13、求极限()22011lim ln 1x x x →⎡⎤⎢⎥-+⎢⎥⎣⎦. 14、设函数)(x y y =由参数方程323101x xt t y t t ⎧-+-=⎪⎨=++⎪⎩所确定,求0t dy dx =. 15、求不定积分. 16、计算定积分()2121ln x xdx +⎰ .17、求通过点()1,2,3M 及直线131415x t y t z t =+⎧⎪=+⎨⎪=+⎩的平面方程.18、求微分方程()323220y x y dx x dy -+=的通解. 19、设,x z xf y y ⎛⎫= ⎪⎝⎭,其中函数具有一阶连续偏导数,求全微分dz .20、计算二重积分D xydxdy ⎰⎰,其中()(){}22,11,0D x y x y y x =-+≤≤≤. 四、证明题(本大题共2小题,每小题9分,共18分)21、证明:当0x >时,ln x ≤ 22、设0()0()00x f t dt x F x x x⎧⎪≠=⎨⎪⎩⎰ =,其中函数()f x 在),(+∞-∞上连续,且0()lim 1x f x x →=,证明:()F x '在点0=x 处连续.五、综合题(本大题共2小题,每小题10分,共20分)23、设D 是由曲线弧cos 42y x x ππ⎛⎫=≤≤ ⎪⎝⎭与sin 4y x x ππ⎛⎫=≤≤ ⎪⎝⎭及x 轴所围成的平面图形,试求: (1)D 的面积;(2)D 绕x 轴旋转一周所形成的旋转体的体积.24、设函数()f x 满足方程()()()320f x f x f x '''-+=,且在0x =处取得极值1,试求:(1)函数)(x f 的表达式;(2)曲线()()f x y f x '=的渐近线.。
2018高考真题——数学(江苏卷)+Word版含解析(2021年整理)
2018高考真题——数学(江苏卷)+Word版含解析(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018高考真题——数学(江苏卷)+Word版含解析(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018高考真题——数学(江苏卷)+Word版含解析(word版可编辑修改)的全部内容。
绝密★启用前2018年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。
本卷满分为160分,考试时间为120分钟.考试结束后,请将本试卷和答题卡一片交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。
3.请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符。
4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.参考公式:锥体的体积,其中是锥体的底面积,是锥体的高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.........1。
已知集合,,那么________.【答案】{1,8}【解析】分析:根据交集定义求结果.详解:由题设和交集的定义可知:。
点睛:本题考查交集及其运算,考查基础知识,难度较小.2. 若复数满足,其中i是虚数单位,则的实部为________.【答案】2【解析】分析:先根据复数的除法运算进行化简,再根据复数实部概念求结果。
2001—2018年江苏专转本高等数学真题(及答案)
B、偶函数
C、非奇 非偶函数
D、不能确定奇偶性
4
8、设 I 1 x 4 dx ,则 I 的范围是
0 1 x
A、 0 I 2 2
B、 I 1
9、若广义积分
1
1 xp
dx
收敛,则
p
应满足
A、 0 p 1
B、 p 1
1
10、若
f (x)
1 2e x 1
f
' (x0 )
2 ,则 lim h0
f
(x0
h) h
f
(x0
h)
()
A、2
B、4
C、0
D、 2
2、若已知 F ' (x) f (x) ,且 f (x) 连续,则下列表达式正确的是
A、 F (x)dx f (x) c C、 f (x)dx F (x) c
B、 a b 1 2
D、 a b 1
二、填空题(本大题共 4 小题,每小题 3 分,共 12 分)
9、设函数 y y(x) 由方程 ln(x y) ) x3 3x 2 x 9 的凹区间为
11、 1 x 2 (3 x sin x)dx 1
(2)求 g ' (x) .
23、设 f (x) 在 0, c上具有严格单调递减的导数 f ' (x) 且 f (0) 0 ;试证明:
对于满足不等式 0 a b a b c 的 a 、 b 有 f (a) f (b) f (a b) .
24、一租赁公司有 40 套设备,若定金每月每套 200 元时可全租出,当租金每月每套增加 10 元 时,租出设备就会减少一套,对于租出的设备每套每月需花 20 元的维护费。问每月一套的定金 多少时公司可获得最大利润?
江苏省2018年专转本高等数学试卷及解答
0
,
x2
x
f (t)dt
∫ ∫ 当 x = 0 时= , F′(0)
lim F (= x) − F (0)
x→0
x
0
lim= x
x→0
x
x
f (t)dt lxi→m0= 0 x2
1= lim f (x) 2 x→0 x
1 ,
2
∫
xf
(
x)
−
x
f (t)dt
0
所以
F
′(
x)
=
x2
1
2
解 cos x2 −1~ − 1 x2 , 1 + x3 −1 ~ 1 x3 , 3x −1 ~ x ln 3 , (1 + x2 )3 −1 ~ 3x2 ,答案为:B
2
2
2.设函数
f
(x)
=
x−a x2 + x +
b
,若
x
= 1 为其可去间断点,则常数 a
,b
的值分别为(
A
).
A .1,− 2
B . −1,2
∫
x 0
f (t)dt
22.设函数 F (x) = x
0
x ≠ 0 ,其中 f (x) 在 (−∞ , + ∞) 内连续,且 lim f (x) = 1 ,证明:F ′(x) x→0 x
x=0
在点 x = 0 处连续.
x
∫ xf (x) − f (t)dt
证明 当 x ≠ 0 时, F ′(x) =
+
x y
f2′)dx + x( f1′−
x y2
2018年普通高等学校招生全国统一考试数学试题(江苏卷,含解析)
S←1
I←1
【答案】7 While I
10
【解析】S←S+2
试题分析I:←第I+一3 次循环: S 3, I 4 ;第二次循环: S 5, I 7 ;第三次循环: S 7, I 10 ;结束循环,输出 SEn7d. While
Print S 考点:循环结构流程图
(第 4 题图)
6
6
6
6
4
62
6
因此
11 k 0
ak
ak 1
33 4
12
9
3
考点:向量数量积,三角函数性质
二、解答题 (本大题共 6 小题,共 90 分.解答应写出文字说明、证明过程或演算步骤.)
15.(本小题满分 14 分)
在 ABC 中,已知 AB 2, AC 3, A 60 .
g(x)
|
0,0 x 1
x2
4
|
2,
x
,则方程
1
|
f
(x)
g(x) | 1 实根的个数为
【答案】4
考点:函数与方程
14.设向量 ak
(cos
k 6
, sin
k 6
cos k 6
)(k
11
0,1,2,,12) ,则 (ak ak1) 的值为 k 0
5.袋中有形状、大小都相同的 4 只球,其中 1 只白球,1 只红球,2 只黄球,从中一次随机摸出 2 只球,
则这 2 只球颜色不同的概率为________. 【答案】 5 .
6
考点:古典概型概率
6.已知向量 a= (2,1) ,b= (1,2) , 若 ma+nb= (9,8) ( m, n R ), m n 的值为______.
2018年全国普通高等学校招生统一考试数学真题及答案(江苏卷)
绝密★启用前2018年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:锥体的体积,其中是锥体的底面积,是锥体的高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置.......上..1. 已知集合,,那么________.【答案】{1,8}【解析】分析:根据交集定义求结果.详解:由题设和交集的定义可知:.点睛:本题考查交集及其运算,考查基础知识,难度较小.2. 若复数满足,其中i是虚数单位,则的实部为________.【答案】2【解析】分析:先根据复数的除法运算进行化简,再根据复数实部概念求结果.详解:因为,则,则的实部为.点睛:本题重点考查复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭复数为.3. 已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为________.【答案】90【解析】分析:先由茎叶图得数据,再根据平均数公式求平均数.点睛:的平均数为.4. 一个算法的伪代码如图所示,执行此算法,最后输出的S的值为________.【答案】8【解析】分析:先判断是否成立,若成立,再计算,若不成立,结束循环,输出结果.详解:由伪代码可得,因为,所以结束循环,输出点睛:本题考查伪代码,考查考生的读图能力,难度较小.5. 函数的定义域为________.【答案】[2,+∞)【解析】分析:根据偶次根式下被开方数非负列不等式,解对数不等式得函数定义域.详解:要使函数有意义,则,解得,即函数的定义域为.点睛:求给定函数的定义域往往需转化为解不等式(组)的问题.6. 某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为________.【答案】【解析】分析:先确定总基本事件数,再从中确定满足条件的基本事件数,最后根据古典概型概率公式求概率.详解:从5名学生中抽取2名学生,共有10种方法,其中恰好选中2名女生的方法有3种,因此所求概率为点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法(理科):适用于限制条件较多且元素数目较多的题目.7. 已知函数的图象关于直线对称,则的值是________.【答案】【解析】分析:由对称轴得,再根据限制范围求结果.详解:由题意可得,所以,因为,所以点睛:函数(A>0,ω>0)的性质:(1);(2)最小正周期;(3)由求对称轴;(4)由求增区间; 由求减区间.8. 在平面直角坐标系中,若双曲线的右焦点到一条渐近线的距离为,则其离心率的值是________.【答案】2【解析】分析:先确定双曲线的焦点到渐近线的距离,再根据条件求离心率.点睛:双曲线的焦点到渐近线的距离为b,焦点在渐近线上的射影到坐标原点的距离为a. 9. 函数满足,且在区间上,则的值为________.【答案】【解析】分析:先根据函数周期将自变量转化到已知区间,代入对应函数解析式求值,再代入对应函数解析式求结果.详解:由得函数的周期为4,所以因此点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现的形式时,应从内到外依次求值.(2)求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.10. 如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.【答案】【解析】分析:先分析组合体的构成,再确定锥体的高,最后利用锥体体积公式求结果.详解:由图可知,该多面体为两个全等正四棱锥的组合体,正四棱锥的高为1,底面正方形的边长等于,所以该多面体的体积为点睛:解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.11. 若函数在内有且只有一个零点,则在上的最大值与最小值的和为________.【答案】–3【解析】分析:先结合三次函数图象确定在上有且仅有一个零点的条件,求出参数a,再根据单调性确定函数最值,即得结果.详解:由得,因为函数在上有且仅有一个零点且,所以,因此从而函数在上单调递增,在上单调递减,所以,点睛:对于函数零点个数问题,可利用函数的单调性、草图确定其中参数取值条件.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.12. 在平面直角坐标系中,A为直线上在第一象限内的点,,以AB为直径的圆C与直线l交于另一点D.若,则点A的横坐标为________.【答案】3【解析】分析:先根据条件确定圆方程,再利用方程组解出交点坐标,最后根据平面向量的数量积求结果.详解:设,则由圆心为中点得易得,与联立解得点D的横坐标所以.所以,由得或,因为,所以点睛:以向量为载体求相关变量的取值或范围,是向量与函数、不等式、三角函数、曲线方程等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解方程或解不等式或求函数值域,是解决这类问题的一般方法.13. 在中,角所对的边分别为,,的平分线交于点D,且,则的最小值为________.【答案】9【解析】分析:先根据三角形面积公式得条件、再利用基本不等式求最值.详解:由题意可知,,由角平分线性质和三角形面积公式得,化简得,因此当且仅当时取等号,则的最小值为.点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.14. 已知集合,.将的所有元素从小到大依次排列构成一个数列.记为数列的前n项和,则使得成立的n的最小值为________.【答案】27【解析】分析:先根据等差数列以及等比数列的求和公式确定满足条件的项数的取值范围,再列不等式求满足条件的项数的最小值.详解:设,则由得所以只需研究是否有满足条件的解,此时,,为等差数列项数,且.由得满足条件的最小值为.点睛:本题采用分组转化法求和,将原数列转化为一个等差数列与一个等比数列的和.分组转化法求和的常见类型主要有分段型(如),符号型(如),周期型(如).二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15. 在平行六面体中,.求证:(1);(2).【答案】答案见解析【解析】分析:(1)先根据平行六面体得线线平行,再根据线面平行判定定理得结论;(2)先根据条件得菱形ABB1A1,再根据菱形对角线相互垂直,以及已知垂直条件,利用线面垂直判定定理得线面垂直,最后根据面面垂直判定定理得结论.详解:证明:(1)在平行六面体ABCD-A1B1C1D1中,AB∥A1B1.因为AB平面A 1B1C,A1B1平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面体ABCD-A1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1⊥A1B.又因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.又因为A 1B∩BC=B,A1B平面A1BC,BC平面A1BC,所以AB1⊥平面A1BC.因为AB 1平面ABB1A1,所以平面ABB1A1⊥平面A1BC.点睛:本题可能会出现对常见几何体的结构不熟悉导致几何体中的位置关系无法得到运用或者运用错误,如柱体的概念中包含“两个底面是全等的多边形,且对应边互相平行,侧面都是平行四边形”,再如菱形对角线互相垂直的条件,这些条件在解题中都是已知条件,缺少对这些条件的应用可导致无法证明.16. 已知为锐角,,.(1)求的值;(2)求的值.【答案】(1)(2)【解析】分析:先根据同角三角函数关系得,再根据二倍角余弦公式得结果;(2)先根据二倍角正切公式得,再利用两角差的正切公式得结果.详解:解:(1)因为,,所以.因为,所以,因此,.(2)因为为锐角,所以.又因为,所以,因此.因为,所以,因此,.点睛:应用三角公式解决问题的三个变换角度(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”.(2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等.(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等. 17. 某农场有一块农田,如图所示,它的边界由圆O的一段圆弧(P为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点P到MN的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为,要求均在线段上,均在圆弧上.设OC与MN所成的角为.(1)用分别表示矩形和的面积,并确定的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为.求当为何值时,能使甲、乙两种蔬菜的年总产值最大.【答案】(1)矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为1600(cosθ–sinθcosθ),sinθ的取值范围是[,1).(2)当θ=时,能使甲、乙两种蔬菜的年总产值最大【解析】分析:(1)先根据条件求矩形长与宽,三角形的底与高,再根据矩形面积公式以及三角形面积公式得结果,最后根据实际意义确定的取值范围;(2)根据条件列函数关系式,利用导数求极值点,再根据单调性确定函数最值取法.详解:解:(1)连结PO并延长交MN于H,则PH⊥MN,所以OH=10.过O作OE⊥BC于E,则OE∥MN,所以∠COE=θ,故OE=40cosθ,EC=40sinθ,则矩形ABCD的面积为2×40cosθ(40sinθ+10)=800(4sinθcosθ+cosθ),△CDP的面积为×2×40cosθ(40–40sinθ)=1600(cosθ–sinθcosθ).过N作GN⊥MN,分别交圆弧和OE的延长线于G和K,则GK=KN=10.令∠GOK=θ0,则sinθ0=,θ0∈(0,).当θ∈[θ0,)时,才能作出满足条件的矩形ABCD,所以sinθ的取值范围是[,1).答:矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为1600(cosθ–sinθcosθ),sinθ的取值范围是[,1).(2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k,乙的单位面积的年产值为3k(k>0),则年总产值为4k×800(4sinθcosθ+cosθ)+3k×1600(cosθ–sinθcosθ)=8000k(sinθcosθ+cosθ),θ∈[θ0,).设f(θ)= sinθcosθ+cosθ,θ∈[θ0,),则.令,得θ=,当θ∈(θ0,)时,,所以f(θ)为增函数;当θ∈(,)时,,所以f(θ)为减函数,因此,当θ=时,f(θ)取到最大值.答:当θ=时,能使甲、乙两种蔬菜的年总产值最大.点睛:解决实际应用题的步骤一般有两步:一是将实际问题转化为数学问题;二是利用数学内部的知识解决问题.18. 如图,在平面直角坐标系中,椭圆C过点,焦点,圆O的直径为.(1)求椭圆C及圆O的方程;(2)设直线l与圆O相切于第一象限内的点P.①若直线l与椭圆C有且只有一个公共点,求点P的坐标;②直线l与椭圆C交于两点.若的面积为,求直线l的方程.【答案】(1)椭圆C的方程为;圆O的方程为(2)①点P的坐标为;②直线l的方程为【解析】分析:(1)根据条件易得圆的半径,即得圆的标准方程,再根据点在椭圆上,解方程组可得a,b,即得椭圆方程;(2)第一问先根据直线与圆相切得一方程,再根据直线与椭圆相切得另一方程,解方程组可得切点坐标.第二问先根据三角形面积得三角形底边边长,再结合①中方程组,利用求根公式以及两点间距离公式,列方程,解得切点坐标,即得直线方程. 详解:解:(1)因为椭圆C的焦点为,可设椭圆C的方程为.又点在椭圆C上,所以,解得因此,椭圆C的方程为.因为圆O的直径为,所以其方程为.(2)①设直线l与圆O相切于,则,所以直线l的方程为,即.由,消去y,得.(*)因为直线l与椭圆C有且只有一个公共点,所以.因为,所以.因此,点P的坐标为.②因为三角形OAB的面积为,所以,从而.设,由(*)得,所以.因为,所以,即,解得舍去),则,因此P的坐标为.综上,直线l的方程为.点睛:直线与椭圆的交点问题的处理一般有两种处理方法:一是设出点的坐标,运用“设而不求”思想求解;二是设出直线方程,与椭圆方程联立,利用韦达定理求出交点坐标,适用于已知直线与椭圆的一个交点的情况.19. 记分别为函数的导函数.若存在,满足且,则称为函数与的一个“S点”.(1)证明:函数与不存在“S点”;(2)若函数与存在“S点”,求实数a的值;(3)已知函数,.对任意,判断是否存在,使函数与在区间内存在“S点”,并说明理由.【答案】(1)证明见解析(2)a的值为(3)对任意a>0,存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”.【解析】分析:(1)根据题中“S点”的定义列两个方程,根据方程组无解证得结论;(2)同(1)根据“S点”的定义列两个方程,解方程组可得a的值;(3)通过构造函数以及结合“S 点”的定义列两个方程,再判断方程组是否有解即可证得结论.详解:解:(1)函数f(x)=x,g(x)=x2+2x-2,则f′(x)=1,g′(x)=2x+2.由f(x)=g(x)且f′(x)= g′(x),得,此方程组无解,因此,f(x)与g(x)不存在“S”点.(2)函数,,则.设x0为f(x)与g(x)的“S”点,由f(x0)与g(x0)且f′(x0)与g′(x0),得,即,(*)得,即,则.当时,满足方程组(*),即为f(x)与g(x)的“S”点.因此,a的值为.(3)对任意a>0,设.因为,且h(x)的图象是不间断的,所以存在∈(0,1),使得,令,则b>0.函数,则.由f(x)与g(x)且f′(x)与g′(x),得,即(**)此时,满足方程组(**),即是函数f(x)与g(x)在区间(0,1)内的一个“S点”.因此,对任意a>0,存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”.点睛:涉及函数的零点问题、方程解的个数问题、函数图象交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.20. 设是首项为,公差为d的等差数列,是首项为,公比为q的等比数列.(1)设,若对均成立,求d的取值范围;(2)若,证明:存在,使得对均成立,并求的取值范围(用表示).【答案】(1)d的取值范围为.(2)d的取值范围为,证明见解析。
近十年江苏省专转本高等数学试题分类整理
江苏省普通高校“专转本”统一考试高等数学专转本高数试卷结构知识分类与历年真题●函数、极限和连续●一元函数微分学●一元函数积分学●向量代数与空间解析几何●多元函数微积分●无穷级数●常微分方程时间排序与参考答案◆2004年高等数学真题参考答案◆2005年高等数学真题参考答案◆2006年高等数学真题参考答案◆2007年高等数学真题参考答案◆2008年高等数学真题参考答案◆2009年高等数学真题参考答案◆2010年高等数学真题参考答案◆2011年高等数学真题参考答案◆2012年高等数学真题参考答案◆2013年高等数学真题参考答案江苏省普通高校“专转本”统一考试高等数学试卷结构全卷满分150分一、单选题(本大题共6小题,每小题4分,满分24分) 二、填空题(本大题共6小题,每小题4分,满分24分) 三、解答题(本大题共8小题,每小题8分,满分64分) 四、综合题(本大题共2小题,每小题10分,满分20分) 五、证明题(本大题共2小题,每小题9分,满分18分)知识分类与历年真题一、函数、极限和连续(一)函数(0401)[](]333,0()0,2x x f x x x ⎧∈-⎪=⎨-∈⎪⎩是( ) A.有界函数 B.奇函数 C.偶函数 D.周期函数 (0801)设函数)(x f 在),(+∞-∞上有定义,下列函数中必为奇函数的是( )A.()y f x =-B.)(43x f x y = C.()y f x =-- D.)()(x f x f y -+= (二)极限(0402)当0→x 时,x x sin 2-是关于x 的( )A.高阶无穷小B.同阶无穷小C.低阶无穷小D.等价无穷小(0407)设xx x x f ⎪⎭⎫⎝⎛++=32)(,则=∞→)(lim x f x .(0601)若012lim2x x f x →⎛⎫ ⎪⎝⎭=,则0lim 3x xx f →=⎛⎫ ⎪⎝⎭( ) A.21 B.2C.3D.31 (0607)已知0→x 时,(1cos )a x ⋅-与x x sin 是等价无穷小,则=a .(0613)计算311lim1x x x →--. (0701)若0(2)lim2x f x x→=,则1lim 2x xf x →∞⎛⎫= ⎪⎝⎭( ) A.41B.21 C.2D.4(0702)已知当0→x 时,)1ln(22x x +是x n sin 的高阶无穷小,而x nsin 又是x cos 1-的高阶无穷小,则正整数=n ( ) A.1B.2C.3D.4(0813)求极限:32lim xx x x →∞-⎛⎫⎪⎝⎭. (0901)已知22lim32x x ax bx →++=-,则常数b a ,的取值分别为( ) A.2,1-=-=b a B.0,2=-=b aC.0,1=-=b aD.1,2-=-=b a(0907)已知lim 2xx x x C →∞⎛⎫= ⎪-⎝⎭,则常数=C . (1001)设当0x →时,()sin f x x x =-与()ng x ax =是等价无穷小,则常数,a n 的值为 ( ) A.1,36a n == B.1,33a n == C.1,412a n == D.1,46a n == (1007) 1lim 1xx x x →∞+⎛⎫= ⎪-⎝⎭. (1101)当0→x 时,函数1)(--=x e x f x是函数2)(x x g =的( ) A.高阶无穷小 B.低阶无穷小C.同阶无穷小D.等价无穷小(1107)已知22lim kxx x e x →∞-⎛⎫= ⎪⎝⎭,则=k _________. (1201)极限1sin 3lim 2sinx x x x x →∞⎛⎫+= ⎪⎝⎭( ) A.0 B.2 C.3D.5(1301)当0x →时,函数()ln(1)f x x x =+-是函数2()g x x =的( ) A.高阶无穷小 B.低阶无穷小C.同阶无穷小D.等价无穷小(1310)设10lim xx a x e a x →+⎛⎫=⎪-⎝⎭,则常数a = . (三)连续(0413)求函数xxx f sin )(=的间断点,并判断其类型. (0501)0=x 是xx x f 1sin )(=的( ) A.可去间断点B.跳跃间断点C.第二类间断点D.连续点(0513)设()2sin 0()0f x xx F x xa x +⎧≠⎪=⎨⎪=⎩在R 内连续,并满足0)0(=f ,(0)6f '=,求a . (0602)函数21sin 0()00x x f x xx ⎧≠⎪=⎨⎪=⎩在0x =处( ) A.连续但不可导B.连续且可导C.不连续也不可导D.可导但不连续(0608)若A x f x x =→)(lim 0,且)(x f 在0x x =处有定义,则当=A 时,)(x f 在0x x =处连续.(0707)设函数1(1)0()20x kx x f x x ⎧⎪+≠=⎨⎪=⎩,在点0=x 处连续,则常数=k .(0807)设函数21()(1)x f x x x -=-,则其第一类间断点为 .(0808)设函数0()tan 30a x x f x x x x+≥⎧⎪=⎨<⎪⎩在点0=x 处连续,则a = .(0902)已知函数423)(22-+-=x x x x f ,则2=x 为)(x f 的( )A.跳跃间断点B.可去间断点C.无穷间断点D.震荡间断点(1123)设210arctan ()1010sin 2ax axe x ax x x xf x x e x x ⎧---<⎪⎪⎪==⎨⎪-⎪>⎪⎩,问常数为何值时:(1)0=x 是函数)(x f 的连续点? (2)0=x 是函数)(x f 的可去间断点? (3)0=x 是函数)(x f 的跳跃间断点? (1202)设()2(2)sin ()4x xf x x x -⋅=⋅-,则函数)(x f 的第一类间断点的个数为( ) A.0 B.1C.2D.3(1207)要使函数()1()12xf x x =-在点0=x 处连续,则需补充定义(0)f =_________.(1303)设sin 20()011xx x f x x x x ⎧<⎪⎪=⎨⎪>⎪+-⎩,这点0x =是函数()f x 的( )A.跳跃间断点B.可去间断点C.无穷间断点D.连续点(1307)设1sin0()0x x f x xa x ⎧≠⎪=⎨⎪=⎩在点0x =处连续,则常数a = . 二、一元函数微分学(一) 导数与微分(0403)直线L 与x 轴平行且与曲线xe x y -=相切,则切点的坐标是( ) A.()1,1B.()1,1-C.()0,1-D.()0,1(0409)设()(1)(2)()f x x x x x n =+++,N n ∈,则=)0('f .(0415)设函数)(x y y =由方程1=-yxe y 所确定,求22d d x yx=的值.(0502)若2=x 是函数1ln 2y x ax ⎛⎫=-+ ⎪⎝⎭的可导极值点,则常数=a ( ) A.1-B.21C.21- D.1 (0514)设函数)(x y y =由方程cos sin cos x t y t t t =⎧⎨=-⎩所确定,求d d y x 、22d d yx .(0614)若函数)(x y y =是由参数方程2ln (1)arctan x t y t t⎧=+⎨=-⎩所确定,求d d y x 、22d d yx .(0708)若直线m x y +=5是曲线232++=x x y 的一条切线,则常数=m .(0714)设函数)(x y y =由方程xy e e yx=-确定,求d d x yx=、22d d x y x =.(0802)设函数)(x f 可导,则下列式子中正确的是( ) A.0(0)()lim(0)x f f x f x →-'=- B.000(2)()lim ()x f x x f x f x x→+-'=C.0000()()lim ()x f x x f x x f x x ∆→+∆--∆'=∆D.0000()()lim 2()x f x x f x x f x x∆→-∆-+∆'=∆ (0814)设函数)(x y y =由参数方程sin 1cos x t t y t =-⎧⎨=-⎩(2t n π≠,n Z ∈)所决定,求d d y x 、22d d y x .(0903)设函数00()1sin 0x f x x x x α≤⎧⎪=⎨>⎪⎩在点0=x 处可导,则常数α的取值范围为( ) A.10<<αB.10≤<αC.1>αD.1≥α(0914)设函数)(x y y =由参数方程2ln (1)23x t y t t =+⎧⎨=+-⎩所确定,d d y x 、22d d yx . (0923)已知函数0()10x e x f x x x -⎧<=⎨+≥⎩,证明函数)(x f 在点0=x 处连续但不可导.(1008).若(0)1f '=,则0()()limx f x f x x→--= .(1014)设函数()y y x =由方程2x yy ex ++=所确定,求d d y x 、22d d yx .(1022)设()0()1x x f x xx ϕ⎧≠⎪=⎨⎪=⎩,其中函数()x ϕ在0x =处具有二阶连续导数,且(0)0ϕ=,(0)1ϕ'=,证明:函数()f x 在0x =处连续且可导.(1102)设函数)(x f 在点0x 处可导,且4)()(lim 000=+--→hh x f h x f h ,则=')(0x f ( )A.4-B.2-C.2D.4(1110)设函数x y arctan=,则1d x y==_____________.(1114)设函数)(x y y =由参数方程⎪⎩⎪⎨⎧=++=22ty e tt x y 所确定,求d d y x .(1208)设函数()22221x y x x x e =⋅+++,则=)0()7(y________.(1209)设xy x =(0x >),则函数y 的微分=dy ___________.(1214)设函数)(x y y =由参数方程⎪⎩⎪⎨⎧+=-=tt y tt x ln 212所确定,求d d y x 、22d d y x . (1304)设1y f x ⎛⎫= ⎪⎝⎭,其中f 具有二阶导数,则22d d y x =( )A.231121f f x x x x ⎛⎫⎛⎫'''-+ ⎪ ⎪⎝⎭⎝⎭ B.231121f f x x x x ⎛⎫⎛⎫'''+ ⎪ ⎪⎝⎭⎝⎭ C.231121f f x x x x ⎛⎫⎛⎫'''--⎪ ⎪⎝⎭⎝⎭D.231121f f x x x x ⎛⎫⎛⎫'''-⎪ ⎪⎝⎭⎝⎭(1306)已知函数()f x 在点1x =处连续,且21()1lim 12x f x x →=-,则曲线()f x 在点()1,()f x 处切线方程为( ) A.1y x =-B.22y x =-C.33y x =-D.44y x =-(1309)设函数由参数方程2211x t y t ⎧=+⎨=-⎩所确定,则221d d t yx == .(二)中值定理及导数的应用(0423)甲、乙二城位于一直线形河流的同一侧,甲城位于岸边,乙城离河岸40公里,乙城在河岸的垂足与甲城相距50公里,两城计划在河岸上合建一个污水处理厂,已知从污水处理厂到甲乙二城铺设排污管道的费用分别为每公里500、700元.问污水处理厂建在何处,才能使铺设排污管道的费用最省?(0507)02limsin x x x e e xx x-→--=- . (0508)函数x x f ln )(=在区间[]1,e 上满足拉格郎日中值定理的=ξ . (0521)证明方程:0133=+-x x 在[]1,1-上有且仅有一根.(0603)下列函数在[]1,1-上满足罗尔定理条件的是( ) A.xe y =B.1y x =+C.21x y -=D.xy 11-= (0621)证明:当2x ≤时,332x x -≤.(0703)设函数()(1)(2)(3)f x x x x x =---,则方程()0f x '=的实根个数为( ) A.1B.2C.3D.4(0713)求极限01lim tan x x e x x x→--.(0722)设函数9)(23-++=cx bx ax x f 具有如下性质:(1)在点1-=x 的左侧临近单调减少; (2)在点1-=x 的右侧临近单调增加; (3)其图形在点(1,2)的两侧凹凸性发生改变. 试确定a ,b ,c 的值.(0724)求证:当0>x 时,22(1)ln (1)x x x -⋅≥-.(0809)已知曲线543223++-=x x x y ,则其拐点为 . (0821)求曲线1y x=(0x >)的切线,使其在两坐标轴上的截距之和最小,并求此最小值. (0823)设函数)(x f 在闭区间[]0,2a (0a >)上连续,且)()2()0(a f a f f ≠=,证明:在开区间(0,)a 上至少存在一点ξ,使得()()f f a ξξ=+.(0824)对任意实数x ,证明不等式:(1)1xx e -⋅≤.(0904)曲线221(1)x y x +=-的渐近线的条数为( )A.1B.2C.3D.4(0913)求极限30lim sin x x x x→-.(0921)已知函数13)(3+-=x x x f ,试求: (1)函数)(x f 的单调区间与极值; (2)曲线)(x f y =的凹凸区间与拐点;(3)函数)(x f 在闭区间[2,3]-上的最大值与最小值.(0924)证明:当12x <<时,24ln 23x x x x >+-.(1002)曲线223456x x y x x -+=-+的渐近线共有 ( )A.1条B.2条C.3条D.4条 (1006)设3()3f x x x =-,则在区间(0,1)内 ( ) A.函数()f x 单调增加且其图形是凹的 B.函数()f x 单调增加且其图形是凸的 C.函数()f x 单调减少且其图形是凹的 D.函数()f x 单调减少且其图形是凸的(1013)求极限2|011lim tan x x x x →⎛⎫-⎪⎝⎭.(1021)证明:当1x >时,121122x e x ->+. (1103)若点(1,2)-是曲线23bx ax y -=的拐点,则( ) A.3,1==b aB.1,3-=-=b aC.3,1-=-=b aD.6,4==b a(1113)求极限()()22limln 1xx x eex -→-+.(1121)证明:方程()2ln 12x x ⋅+=有且仅有一个小于2的正实根. (1122)证明:当0>x 时,x x201120102011≥+.(1203)设232152)(x x x f -=,则函数)(x f ( ) A.只有一个最大值 B.只有一个极小值 C.既有极大值又有极小值D.没有极值(1213)求极限()2302cos 2lim ln 1x x x x x →+-+. (1223)证明:当10<<x 时,361arcsin x x x +>. (1302)曲线22232x xy x x +=-+的渐近线共有( )A.1条B.2条C.3条D.4条(1313)求极限01lim ln (1)x x e x x →⎡⎤-⎢⎥+⎣⎦.(1323)证明:当1x >时,2(1ln )21x x +<-.三、一元函数积分学(一)不定积分(0410)求不定积分32arcsin d 1x x x=-⎰.(0416)设)(x f 的一个原函数为xe x,计算(2)d x f x x '⎰.(0503)若()d ()f x x F x C =+⎰,则sin (cos )d x f x x =⎰( )A.C x F +)(sinB.C x F +-)(sinC.C F +(cos)D.C x F +-)(cos(0515)计算3tan sec d x x x ⎰.(0522)设函数)(x f y =的图形上有一拐点(2,4)P ,在拐点处的切线斜率为3-,又知该函数的二阶导数6y x a ''=+,求)(x f .(0604)已知2()d x f x x e C =+⎰,则()d f x x '-=⎰( )A.C ex+-22B.C e x +-221 C.C e x +--22 D.C e x +--221(0615)计算1ln d xx x+⎰. (0622)已知曲线)(x f y =过原点且在点),(y x 处的切线斜率等于y x +2,求此曲线方程. (0704)设函数)(x f 的一个原函数为x 2sin ,则(2)d f x x '=⎰( )A.C x +4cosB.C x +4cos 21C.C x +4cos 2D.C x +4sin(0715)求不定积分2d x x e x -⎰.(0810)设函数)(x f 的导数为x cos ,且21)0(=f ,则不定积分()d f x x =⎰ . (0815)求不定积分3d 1x x x +⎰. (0905)设()ln (31)F x x =+是函数)(x f 的一个原函数,则(21)d f x x '+=⎰( )A.C x ++461B.C x ++463C.C x ++8121D.C x ++8123(0915)求不定积分sin21d x x +⎰.(1015)求不定积分arctan d x x x ⎰.(1115)设)(x f 的一个原函数为x x sin 2,求不定积分()d f x x x⎰. (1215)求不定积分sin 2d x x x ⎰. (1315)求不定积分sin 2d x x x ⎰.(二)定积分(0404)2228R y x =+设所围的面积为S ,则222208d R R x x -⎰的值为( )A.SB.4S C.2S D.S 2(0421)证明:0(sin )d (sin )d 2x f x x f x x πππ=⎰⎰,并利用此式求20sin d 1cos xxx xπ+⎰.(0509)1211d 1x x x π-+=+⎰.(0516)计算10arctan d x x ⎰.(0609)设)(x f 在[]0,1上有连续的导数且(1)2f =,10()d 3f x x =⎰,则1()d x f x x '=⎰ .(0616)计算22cos d x x x π⎰.(0709)定积分()223241cos d x x x x --+⎰的值为 .(0716)计算定积分212221d x x x-⎰. (0811)定积分1212sin d 1xx x -++⎰的值为 .(0816)求定积分10d xe x ⎰.(0916)求定积分:212d 2x x x-⎰.(1009)定积分31211d 1x x x -++⎰的值为 . (1016)计算定积分403d 21x x x ++⎰. (1111)定积分()32221sin d xx x ππ-+⋅⎰的值为____________.(1116)计算定积分3d 11x xx ++⎰ . (1216)计算定积分21d 21xx x -⎰.(1316)计算定积分22d 24x x+-⎰.(1324)设函数()f x 在[,]a b 上连续,证明:[]2()d ()()d a b b aaf x x f x f a b x x +=++-⎰⎰.(三)变限积分与广义积分(0417)计算广义积分2d 1xx x +∞⋅-⎰.(0422)设函数)(x f 可导,且满足方程20()d 1()x t f t t x f x =++⎰,求)(x f .(0705)设221()sin d x f x t t =⎰,则()f x '=( )A.4sin x B.2sin 2x xC.2cos 2x xD.4sin 2x x(0803)设函数)(x f 122sin d xt t t =⎰,则()f x '等于( )A.x x 2sin 42B.x x 2sin 82C.x x 2sin 42-D.x x 2sin 82-(0908)设函数20()d x t x te t ϕ=⎰,则()x ϕ'= .(1003)设函数22()cos d t xx e t t Φ=⎰,则函数()x Φ的导数()x 'Φ等于 ( )A.222cos x xe x B.222cos x xe x - C.2cos xxe x - D.22cos x e x - (1108)设函数2()ln (1)d x x t t Φ=+⎰ ,则=Φ'')1(____________.(1211)设反常积分1d 2x ae x +∞-=⎰,则常数=a ______. (1222)已知定义在(),-∞+∞上的可导函数)(x f 满足方程31()4()d 3xx f x f t t x -=-⎰,试求:(1)函数()f x 的表达式; (2)函数)(x f 的单调区间与极值; (3)曲线()y f x =的凹凸区间与拐点.(1224)设0()d 0()(0)0x g t t x f x g x ⎧≠⎪=⎨⎪=⎩⎰,其中函数)(x g 在(,)-∞+∞上连续,且3cos 1)(lim 0=-→xx g x .证明:函数)(x f 在0=x 处可导,且1(0)2f '=. (1322)已知251320()95d x F x t t t ⎛⎫=- ⎪⎝⎭⎰是()f x 的一个原函数,求曲线()y f x =的凹凸区间、拐点. (四)定积分的几何应用(0523)已知曲边三角形由x y 22=、0=x 、1=y 所围成,求:(1)曲边三角形的面积;(2)曲边三角形绕x 轴旋转一周的旋转体体积.(0623)已知一平面图形由抛物线2x y =、82+-=x y 围成.(1)求此平面图形的面积;(2)求此平面图形绕y 轴旋转一周所得的旋转体的体积.(0721)设平面图形由曲线21x y -=(0≥x )及两坐标轴围成.(1)求该平面图形绕x 轴旋转所形成的旋转体的体积;(2)求常数a 的值,使直线a y =将该平面图形分成面积相等的两部分.(0822)设平面图形由曲线2x y =,22x y =与直线1=x 所围成.(1)求该平面图形绕x 轴旋转一周所得的旋转体的体积;(2)求常数a ,使直线a x =将该平面图形分成面积相等的两部分.(0922)设1D 是由抛物线22x y =和直线x a =,0y =所围成的平面封闭区域,2D 是由抛物线22x y =和直线x a =,2x =及0=y 所围成的平面封闭区域,其中20<<a .试求:(1)1D 绕y 轴旋转所成的旋转体的体积1V ,以及2D 绕x 轴旋转所成的旋转体的体积2V ; (2)求常数a 的值,使得1D 的面积与2D 的面积相等.(1023)设由抛物线2y x =(0x ≥),直线2y a =(01a <<)与y 轴所围成的平面图形绕x 轴旋转一周所形成的旋转体的体积记为1()V a ,由抛物线2y x =(0x ≥),直线2y a =(01a <<)与直线1x =所围成的平面图形绕x 轴旋转一周所形成的旋转体的体积记为2()V a ,另12()()()V a V a V a =+,试求常数a 的值,使()V a 取得最小值.(1024)设函数()f x 满足方程()()2xf x f x e '+=,且(0)2f =,记由曲线'()()f x y f x =与直线1y =,x t =(0t >)及y 轴所围平面图形的面积为()A t ,试求lim ()t A t →+∞.(1124)设函数)(x f 满足微分方程()2()(1)x f x f x a x '-=-+(其中a 为正常数),且1)1(=f ,由曲线()y f x =(1x ≤)与直线1x =,0y =所围成的平面图形记为D .已知D 的面积为32. (1)求函数)(x f 的表达式;(2)求平面图形D 绕x 轴旋转一周所形成的旋转体的体积x V ; (3)求平面图形D 绕y 轴旋转一周所形成的旋转体的体积y V .(1221)在抛物线2y x =(0x >)上求一点P ,使该抛物线与其在点P 处的切线及x 轴所围成的平面图形的面积为32,并求该平面图形绕x 轴旋转一周所形成的旋转体的体积. (1321)设平面图形D 是由曲线2x y =,y x =-与直线1y =所围成,试求:(1)平面图形D 的面积;(2)平面图形D 绕x 轴旋转一周所形成的旋转体的体积.四、向量代数与空间解析几何(一)向量代数(0510)设向量{}3,4,2=-a 、{}2,1,k =b ;a 、b 互相垂直,则=k . (0610)设1=a ,⊥a b ,则()⋅+=a a b . (0710)已知a 、b 均为单位向量,且12⋅=a b ,则以a 、b 为邻边的平行四边形面积为 . (0804)设向量(1,2,3)=a ,(3,2,4)=b ,则⨯a b 等于( )A.(2,5,4)B.(2,5,4)--C.(2,5,4)-D.(2,5,4)--(0909)已知向量{}1,0,1=-a ,{}1,2,1=-b ,则+a b 与a 的夹角为 . (1010)设{}1,2,3=a ,{}2,5,k=b ,若a 与b 垂直,则常数k = .(1109)若1=a ,4=b ,2⋅=a b ,则⨯=a b ____________.(1210)设向量a 、b 互相垂直,且3=a ,2=b ,则2+=a b ________.(1308)已知空间三点(1,1,1)A ,(2,3,4)B ,(3,4,5)C ,则ABC ∆的面积为 .(二)平面与直线(0518)求过点(3,1,2)A -且通过直线L :43521x y z-+==的平面方程. (0619)求过点(3,1,2)M -且与二平面07=-+-z y x 、0634=-+-z y x 都平行的直线方程.(0719)求过点(1,2,3)且垂直于直线20210x y z x y z +++=⎧⎨-++=⎩的平面方程.(0817)设平面∏经过点(2,0,0)A ,(0,3,0)B ,(0,0,5)C ,求经过点(1,2,1)P 且与平面∏垂直的直线方程. (0917)求通过直线12213-=-=z y x 且垂直于平面02=+++z y x 的平面方程. (1017)求通过点(1,1,1),且与直线23253x ty t z t =+⎧⎪=+⎨⎪=+⎩垂直,又与平面250x z --=平行的直线的方程.(1117)求通过x 轴与直线132zy x ==的平面方程. (1217)已知平面∏通过(1,2,3)M 与x 轴,求通过(1,1,1)N 且与平面∏平行,又与x 轴垂直的直线方程.(1318)已知直线10330x y z x y z -+-=⎧⎨--+=⎩在平面∏上,又知直线23132x ty t z t=-⎧⎪=+⎨⎪=+⎩与平面∏平行,求平面∏的方程.五、多元函数微积分(一)多元函数微分学(0418)设(,)z f x y xy =-,且具有二阶连续的偏导数,求x z ∂∂、yx z∂∂∂2.(0505)设yxy x u arctan),(=,22(,)ln v x y x y =+,则下列等式成立的是( )A.yv x u ∂∂=∂∂ B.xvx u ∂∂=∂∂ C.x v y u ∂∂=∂∂ D.y v y u ∂∂=∂∂ (0517)已知函数2(sin ,)z f x y =,其中),(v u f 有二阶连续偏导数,求x z ∂∂、yx z∂∂∂2.(0611)设x e u xysin =,=∂∂xu. (0620)设2(,)z x f x xy =⋅其中(,)f u v 的二阶偏导数存在,求y z ∂∂、xy z∂∂∂2.(0711)设yxz =,则全微分d z = .(0717)设(23,)z f x y xy =+其中f 具有二阶连续偏导数,求yx z∂∂∂2.(0805)函数xyz ln =在点(2,2)处的全微分d z 为( )A.11d d 22x y -+B.11d d 22x y +C.11d d 22x y -D.11d d 22x y --(0818)设函数,y z f x y x ⎛⎫=+ ⎪⎝⎭,其中)(x f 具有二阶连续偏导数,求y x z ∂∂∂2.(0910)设函数(,)z z x y =由方程12=+yz xz 所确定,则xz∂∂= . (0919)设函数(sin ,)z f x xy =,其中)(x f 具有二阶连续偏导数,求yx z∂∂∂2.(1011)设函数2ln4z x y =+,则10d x y z=== .(1018)设()2,xz y f xy e =⋅,其中函数f 具有二阶连续偏导数,求2zx y∂∂∂.(1104)设),(y x f z =为由方程8333=+-x yz z 所确定的函数,则=∂∂==00y x yz ( )A.21-B.21C.2-D.2(1118)设)(y xyxf z ,=,其中函数f 具有二阶连续偏导数,求y x z ∂∂∂2.(1204)设3ln 2z x y=+在点()1,1处的全微分为 ( )A.d 3d x y -B.d 3d x y +C.1d 3d 2x y +D.1d 3d 2x y -(1218)设函数22(,)()z f x xy x y ϕ=++,其中函数f 具有二阶连续偏导数,函数()x ϕ具有二阶连续导数,求yx z∂∂∂2.(1314)设函数(,)z z x y =由方程3331z xy z +-=所确定,求d z 及22zx∂∂.(1317)设()223,x yz fx e+=,其中函数f 具有二阶连续偏导数,求2zy x ∂∂∂.(二)二重积分(0411)交换二次积分的次序2120d (,)d x x x f x y y -=⎰⎰.(0419)计算二重积分sin d d Dy x y y ⎰⎰,其中D 由曲线x y =及x y =2所围成. (0504)设区域D 是xoy 平面上以点(1,1)A 、(1,1)B -、(1,1)C --为顶点的三角形区域,区域1D 是D 在第一象限的部分,则(cos sin )d d Dxy x y x y +=⎰⎰( )A.⎰⎰1)sin (cos 2D dxdy y xB.⎰⎰12D xydxdyC.⎰⎰+1)sin cos (4D dxdy y x xyD. 0(0511)交换二次积分的次序20111d (,)d x x x f x y y --+=⎰⎰;(0524)设)(x f 为连续函数,且1)2(=f ,1()d ()d uuyF u y f x x =⎰⎰(1u >). (1)交换)(u F 的积分次序; (2)求(2)F '.(0606)设对一切x 有(,)(,)f x y f x y -=-,22{(,)|1,0}D x y x y y =+≤≥,=1D 22{(,)|1,0,0}x y x y x y +≤≥≥,则(,)d d Df x y x y =⎰⎰( )A. 0B.1(,)d d D f x y x y ⎰⎰C.21(,)d d D f x y x y ⎰⎰D.41(,)d d D f x y x y ⎰⎰(0612)D 为以点(0,0)O 、(1,0)A 、(0,2)B 为顶点的三角形区域,d d Dx y =⎰⎰ .(0624)设⎪⎩⎪⎨⎧=≠=⎰⎰00)(1)(t a t dxdy x f t t g tD ,其中t D 是由t x =、t y =以及坐标轴围成的正方形区域,函数)(x f 连续.(1)求a 的值使得)(t g 连续;(2)求)('t g .(0720)计算二重积分22d d Dx y x y +⎰⎰,其中{}22(,)|2,0D x y x y x y =+≤≥.(0723)设0>>a b ,证明:()232d ()d ()d b b b x y xx a ayay f x e x ee f x x ++⋅=-⎰⎰⎰.(0819)计算二重积分2d d Dx x y ⎰⎰,其中D 是由曲线xy 1=,直线y x =,2x =及0=y 所围成的平面区域.(0918)计算二重积分d Dy σ⎰⎰,其中22{(,)02,2,2}D x y x x y x y =≤≤≤≤+≥.(1005)二次积分111d (,)d y y f x y x +⎰⎰交换积分次序后得 ( )A.1101d (,)d x x f x y y +⎰⎰B.2110d (,)d x x f x y y -⎰⎰C.2111d (,)d x x f x y y -⎰⎰D.2111(,)d x dx f x y y -⎰⎰(1019)计算d d Dx x y ⎰⎰,其中D 是由曲线21x y =-,直线y x =及x 轴所围成的闭区域.(1105)若(,)d d Df x y x y ⎰⎰可转化为二次积分1201d (,)d y y f x y x +⎰⎰ ,则积分域D 可表示为( ) A.{}(,)01,11x y x x y ≤≤-≤≤ B.{}(,)12,11x y x x y ≤≤-≤≤C.{}(,)01,10x y x x y ≤≤-≤≤D.{}(,)12,01x y x y x ≤≤≤≤-(1119)计算二重积分d d Dy x y ⎰⎰,其中D 是由曲线22y x =-,直线x y -=及y 轴所围成的平面闭区域. (1205)二次积分dx y x f dy y),(11⎰⎰ 在极坐标系下可化为( )A.sec 40d (cos ,sin )d f πθθρθρθρ⎰⎰ B.sec 40d (cos ,sin )d f πθθρθρθρρ⎰⎰C.sec 24d (cos ,sin )d f πθπθρθρθρ⎰⎰D .sec 24d (cos ,sin )d f πθπθρθρθρρ⎰⎰ (1220)计算二重积分d d Dy x y ⎰⎰,其中D 是由曲线1y x =-,直线2xy =及x 轴所围成的平面闭区域.(1320)计算二重积分d d Dx x y ⎰⎰,其中D 是由曲线24y x =-(0x >)与三条直线y x =,3x =,0y =所围成的平面闭区域.六、无穷级数(一)数项级数(0506)正项级数(1)∑∞=1n nu、(2)∑∞=13n nu,则下列说法正确的是( )A.若(1)发散、则(2)必发散B.若(2)收敛、则(1)必收敛C.若(1)发散、则(2)不确定D.(1)、(2)敛散性相同(0605)设∑∞=1n nu为正项级数,如下说法正确的是( )A.若0lim 0=→n n u ,则∑∞=1n nu必收敛 B.若l u u nn n =+∞→1lim )0(∞≤≤l ,则∑∞=1n n u 必收敛C.若∑∞=1n nu收敛,则∑∞=12n nu必定收敛D.若∑∞=-1)1(n n nu 收敛,则∑∞=1n n u 必定收敛(0706)下列级数收敛的是( )A.∑∞=122n nnB.∑∞=+11n n n C.∑∞=-+1)1(1n nnD.∑∞=-1)1(n nn(0906)设α为非零常数,则数项级数∑∞=+12n nn α( )A.条件收敛B.绝对收敛C.发散D.敛散性与α有关(1004)下列级数收敛的是( )A.11n n n ∞=+∑B.2121n n n n ∞=++∑ C.11(1)nn n ∞=+-∑ D.212n n n ∞=∑(1206)下列级数中条件收敛的是( )A.1(1)21nn nn ∞=-+∑B.13(1)2nn n ∞=⎛⎫- ⎪⎝⎭∑C.21(1)nn n ∞=-∑ D.1(1)nn n ∞=-∑(1305)下列级数中收敛的是( )A.211n n n∞=+∑ B.11nn n n ∞=⎛⎫ ⎪+⎝⎭∑ C.1!2n n n ∞=∑ D.13n n n ∞=∑(二)幂级数(0412)幂级数∑∞=-12)1(n nnx 的收敛区间为 . (0420)把函数21)(+=x x f 展开为2-x 的幂级数,并写出它的收敛区间. (0512)幂级数1(21)nn n x∞=-∑的收敛区间为 .(0519)把函数222)(xx x x f --=展开为x 的幂级数,并写出它的收敛区间. (0618)将函数()ln (1)f x x x =+展开为x 的幂函数(要求指出收敛区间).(0812)幂函数12nnn x n ∞=⋅∑的收敛域为 . (0911)若幂函数21n nn a x n∞=∑(0a >)的收敛半径为21,则常数=a .(1012)幂级数0(1)n nn x n ∞=-∑的收敛域为 .(1106)若x x f +=21)(的幂级数展开式为0()nn n f x a x ∞==∑(22x -<<),则系数=n a ( )A.n 21B.121+n C.(1)2nn- D.1(1)2n n +-(1112)幂级数01nn x n ∞=+∑的收敛域为_ _ _________. (1212)幂级数1(1)(3)3n nnn x n ∞=--⋅∑的收敛域为____________. (1312)幂级数12n nn x n∞=∑的收敛域为 . 七、常微分方程(一)一阶微分方程(0520)求微分方程0'=-+xe y xy 满足1x ye ==的特解.(0617)求微分方程22x y xy y '=-的通解. (0718)求微分方程22007xy y x '-=满足初始条件12008x y==的特解.(0820)求微分方程22xy y x '=+的通解.(0912)微分方程2(1)d (2)d 0x y x y x y +--=的通解为 . (1311)微分方程d d y x y x x+=的通解为 . (二)二阶线性微分方程(0406)微分方程232xy y y xe '''-+=的特解*y 的形式应为( )A.xAxe 2B.xe B Ax 2)(+C.xeAx 22D.xeB Ax x 2)(+(0712)设x xe C eC y 3221+=为某二阶常系数齐次线性微分方程的通解,则该微分方程为 .(0806)微分方程321y y y '''++=的通解为( )A.1221++=--x xe c e c yB.21221++=--x xe c ec yC.1221++=-xxec e c yD.21221++=-xxec e c y (0920)求微分方程y y x ''-=的通解. (1020)已知函数xy e =和2xy e-=是二阶常系数齐次线性微分方程0y py qy '''++=的两个解,试确定常数p 、q 的值,并求微分方程xy py qy e '''++=的通解.(1120)已知函数(1)xy x e =+⋅是一阶线性微分方程2()y y f x '+=的解,求二阶常系数线性微分方程)(23x f y y y =+'+''的通解.(1219)已知函数)(x f 的一个原函数为xxe ,求微分方程)(44x f y y y =+'+''的通解. (1319)已知函数()y f x =是一阶微分方程d d yy x=满足初始条件(0)1y =的特解,求二阶常系数非齐次线性微分方程32()y y y f x '''-+=的通解.时间排序与参考答案2004年高等数学真题参考答案1、A .2、B .3、C .4、B .5、A .6、D .7、1-e . 8、32241-+==-z y x . 9、!n . 10、C x +4arcsin 41. 11、12201d (,)d d (,)d y y y f x y x y f x y x -+⎰⎰⎰⎰.12、()3,1-.13、解:间断点为πk x =(Z k ∈),当0=x 时,1sin lim)(lim 00==→→xxx f x x ,为可去间断点;当πk x =(0≠k ,Z k ∈)时,∞=→xxx sin lim0,为第二类间断点.14、解:原式04300(tan sin )d tan sin limlim312xx x t t tx xx x→→--==⎰ 233001tan (1cos )12lim lim 121224x x x x x x x x →→⋅-===. 15、解:0=x 代入原方程得1)0(=y ,对原方程求导得0''=--y xe e y yy,对上式求导并将0=x 、1=y 代入,解得:22''e y =.16、解:因为)(x f 的一个原函数为x e x,所以2')1()(x e x x e x f xx -=⎪⎪⎭⎫ ⎝⎛=, 原式11(2)d(2)d (2)22xf x x x f x '==⎰⎰11(2)(2)d 22x f x f x x =-⎰222211(21)1(2)(2)d(2)24884x x x x x e e x x f x f x x C e C x x x--=-=-+=+⎰. 17、解:原式2111122d d 22arctan (1)12t x t tt t t t t π+∞=∞-+∞+===++⎰⎰.18、解:12zf f y x∂''=+⋅∂; []21112221221112222(1)(1)()zf f x f y f f x f x y f xy f f x y∂''''''''''''''''=⋅-+⋅++⋅-+⋅=-+-⋅+⋅+∂∂.19、解:原式21100sin sin d d d d (1)sin d y y Dyy x y y x y y y y y ===-⎰⎰⎰⎰⎰ 1100(1)cos cos d 1sin1y y y y =--=-⎰.20、解:01111(2)()(1)24244414n n nn x f x x x ∞=-==⋅=--+-+∑)62(<<-x . 21、证:00(sin )d ()[sin ()]d ()(sin )d t xx f x xt f t t t f t I t πππππππ=-=---=-⎰⎰⎰(sin )d (sin )d (sin )d f x x x f x x f x x I πππππ=-=-⎰⎰⎰解得: 0(sin )d (sin )d 2f x x f x x I x πππ==⎰⎰, 原命题证毕.222000sin sin d d arctan (cos )1cos 21cos 24x x x x x x x x ππππππ⋅==-=++⎰⎰. 22、解:等式两边求导得()2()x f x x f x '=+,即()()2f x x f x x '-=-,且(0)1f =-,x p -=,x q 2-=,而2()d 2x x xe e --⎰=,由公式求得通解:222222()2d 2x x x f x e xq x C C e -⎡⎤⎛⎫=-+=+⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎣⎦⎰, 将初始条件(0)1f =-代入通解,解得:3-=C ,故22()23x f x e =-.23、解:设污水厂建在河岸离甲城x 公里处,则22()50070040(50)M x x x =++-(500≤≤x ), 由2212(50)5007000240(50)x M x -'=+⨯⨯=+-解得:650050-=x (公里),唯一驻点,即为所求.2005年高等数学真题参考答案1、A .2、C .3、D .4、A .5、A .6、C .7、2. 8、1-e . 9、2π. 10、5. 11、2111d (,)d y y y f x y x ---⎰⎰.12、(1,1)-.13、解:因为)(x F 在0=x 处连续,所以)0()(lim 0F x F x =→,'00()2sin ()(0)lim ()limlim 2(0)28x x x f x x f x f F x f x x→→→+-==+=+=, 解得:a F =)0(,故8=a .14、解:d d cos cos sin d d d sin d yy t t t t t t x x t t-+===--,22d ()csc d (cos )y t t x t '-=='.15、解:原式22tan tan sec d (sec1)d(sec )x x x xx x =⋅-⎰⎰积进去231sec d(sec )d(sec )sec sec 3x x x x x C =-=-+⎰⎰.16、解:原式211120002d 1d(1)arctan 1421x x x x x x x π+=--++⎰⎰积进去 ()12011ln 1ln 24242x ππ⎡⎤=-+=-⎣⎦.17、解:1cos zx f x∂'=⋅∂,()21212cos 22cos z x f y y x f x y ∂''''=⋅⋅=⋅∂∂. 18、解:直线L 的方向向量{}5,2,1=s ,过点()4,3,0B -,{}1,4,2AB =-;所求平面的法向量{}5218,9,22142AB =⨯==---ij kn s ,点法式为8(3)9(1)22(2)0x y z ----+=,即592298=--z y x .19、解:2222101111(1)()13216313212n nn n x x x x f x x x x x x ∞+=⎡⎤-⎛⎫=+=⋅+⋅=+⋅ ⎪⎢⎥+--⎝⎭⎣⎦+∑, 收敛域为:11<<-x .20、解:1x e y y x x '+⋅=,即1p x=,x e q x =,而1d 1x x e x -⎰=;故通解为1d xx e e C y x x C x x x ⎛⎫+=+= ⎪⎝⎭⎰.把初始条件1x y e ==解得:0=C ;故所求特解为:xe y x=.21、证:令13)(3+-=x x x f ,[]1,1x ∈-,且(1)30f -=>,(1)10f =-<,(1)(1)0f f -⋅<;由连续函数零点定理知:)(x f 在(1,1)-内至少有一实根;对于()1,1x ∈-恒有()22()33310f x x x '=-=-<,即)(x f 在(1,1)-内单调递减, 故方程0133=+-x x 在[]1,1-上有且仅有一根; 原命题获证.22、解:设所求函数为)(x f y =,则有4)2(=f ,(2)3f '=-,(2)0f ''=;由()6f x x a ''=+和(2)0f ''=解得:12-=a ,即()612f x x ''=-,故21()312f x x x C '=-+,由(2)3f '=-解得:91=C ,故22396C x x x y ++-=,由(2)4f =解得:22=C ; 所求函数为:29623++-=x x x y .23、解:(1)112300111d 266S y y y ===⎰;(如图1所示) (2)()()112222012d 4x V x x x x πππ=-=-=⎰.24、解:积分区域D 为:u y ≤≤1,u x y ≤≤;(1)111()()d d ()d (1)()d u xuDF u f x x f x y x f x x σ===-⎰⎰⎰⎰⎰;(2)()(1)()F u u f u '=-,(2)(21)(2)(2)1F f f '=-==.2006年高等数学真题参考答案1、C .2、B .3、C .4、C .5、C .6、A .7、2. 8、)(0x f . 9、1-. 10、1. 11、(sin cos )xye y x x +. 12、1.13、解:原式322131lim 21341==--→x xx . yOS1x12y x=图114、解:2211d 12d 21t t y y t t t x x t-'+==='+,2222d 1d d 122d 41ty x y t t x x t t '⎛⎫ ⎪+⎝⎭==='+. 15、解:原式3221ln d(1ln )(1ln )3x x x C =++=++⎰.16、解:原式()2222220d(sin )sin 2sin d x x x xx x πππ=-⎰⎰积进去222220sin 2sin d 2d(cos )4x xx x xx x ππππ-+⎰⎰积进去导出来2222002cos 2cos d 244x x x x ππππ=+-=-⎰.17、解:方程变形为2y y y x x ⎛⎫'=- ⎪⎝⎭,即得到了形如d d y y f x x ⎛⎫= ⎪⎝⎭齐次方程; 令yu x=,则d d d d y u u x x x =+,代入得:2d d u x u x =-,分离变量得:211d d u x u x -=; 两边积分,得:211d d u x u x -=⎰⎰,1ln x C u=+,故ln x y x C =+. 18、解:令()ln (1)g x x =+,则(0)0g =;由于01()(1)1n n n g x x x ∞='==-+∑((]1,1x ∈-), 所以01(1)((1))d x n n n g x n x g t t ∞+='=+=-∑⎰((]1,1x ∈-),故20(1)()1n n n f x x n ∞+=-=+∑,收敛域为:11x -<≤.19、解:由题意知:{}11,1,1=-n ,{}24,3,1=-n ;{}12311232,3,1431=⨯=-=++=-i j ks n n i j k ,故所求直线方程的对称式方程为:123123+=-=-z y x . 20、解:22z x f x∂'=∂,2'2'''''3''2''22122221222(2)22z x f x f x f y x f x f x y f y x ∂=+⋅+⋅=++∂∂.21、证:令33)(x x x f -=,[]2,2x ∈-,由2()330f x x '=-=解得驻点:1±=x ,比较以下函数值的大小:(1)2f -=-,(1)2f =,(2)2f =-,(2)2f -=; 所以2min -=f ,2m ax =f ,故2)(2≤≤-x f ,即332x x -≤,原命题获证.22、解:0)0(=y ,2y x y '=+,通解为:xCe x y +--=)22(;将0)0(=y 代入通解解得:2=C ,故所求特解为:xe x y 222+--=.23、解:(1)()2222648d 3S xx x -=--=⎰; (2)()()224804d 8d 16y V y y yy πππ=+-=⎰⎰.24、解:()d d d ()d ()d tt t tD f x x y x f x y t f x x ==⎰⎰⎰⎰⎰,0()d 0()0t f x x t g t a t ⎧≠⎪=⎨⎪=⎩⎰;(1)00lim ()lim()d 0t t t g t f x x →→==⎰,由)(t g 的连续性可知:0)(lim )0(0===→t g g a t ;(2)当0≠t 时,()()g t f t '=,当0=t 时,0000()d ()(0)(0)limlim lim ()(0)hh h h f x x g h g g f h f h h→→→-'====⎰; 综上,()()g t f t '=.2007年高等数学真题参考答案1、B .2、C .3、C .4、A .5、D .6、D .7、2ln . 8、1. 9、π2. 10、23. 11、21d d xx y y y-. 12、06'5''=+-y y y . 13、解:212lim 21lim 1lim tan 1lim00200==-=--=--→→→→x x x x x x x x e x e x x e x x x e . 14、解:当0=x 时,0=y ;在方程xy e e yx=-两边对x 求导得:''xye e y y x y -⋅=+⋅,故d 'd x yy e y y x e x-==+;。
江苏专升本高等数学真题(附答案)
江苏专转本高数考纲及重点总结一、函数、极限和连续(一)函数(1)理解函数的概念:函数的定义,函数的表示法,分段函数。
(2)理解和把握函数的简单性质:单调性,奇偶性,有界性,周期性。
(3)了解反函数:反函数的定义,反函数的图象。
(4)把握函数的四则运算与复合运算。
(5)理解和把握基本初等函数:幂函数,指数函数,对数函数,三角函数,反三角函数。
(6)了解初等函数的概念。
重点:函数的单调性、周期性、奇偶性,分段函数和隐函数(二)极限(1)理解数列极限的概念:数列,数列极限的定义,能根据极限概念分析函数的变化趋势。
会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。
(2)了解数列极限的性质:唯一性,有界性,四则运算定理,夹逼定理,单调有界数列,极限存在定理,把握极限的四则运算法则。
(3)理解函数极限的概念:函数在一点处极限的定义,左、右极限及其与极限的关系,x趋于无穷(x→∞,x→+∞,x→-∞)时函数的极限。
(4)把握函数极限的定理:唯一性定理,夹逼定理,四则运算定理。
(5)理解无穷小量和无穷大量:无穷小量与无穷大量的定义,无穷小量与无穷大量的关系,无穷小量与无穷大量的性质,两个无穷小量阶的比较。
(6)熟练把握用两个重要极限求极限的方法。
重点:会用左、右极限求解分段函数的极限,把握极限的四则运算法则、利用两个重要极限求极限以及利用等价无穷小求解极限。
(三)连续(1)理解函数连续的概念:函数在一点连续的定义,左连续和右连续,函数在一点连续的充分必要条件,函数的中断点及其分类。
(2)把握函数在一点处连续的性质:连续函数的四则运算,复合函数的连续性,反函数的连续性,会求函数的中断点及确定其类型。
(3)把握闭区间上连续函数的性质:有界性定理,最大值和最小值定理,介值定理(包括零点定理),会运用介值定理推证一些简单命题。
(4)理解初等函数在其定义区间上连续,并会利用连续性求极限。
重点:理解函数(左、右连续)性的概念,会判别函数的中断点。
2018年专升本高数真题答案
2018年专升本高数真题答案1、下列有关《红楼梦》的说明,正确的一项是( ) [单选题] *A.《红楼梦》中长着“两弯似蹙非蹙罥烟眉,一双似喜非喜含情目”的是王熙凤,该人最擅弄权术,例如毒设相思局、弄权铁槛寺、逼死尤二姐、破坏宝黛婚姻,最后落了个“机关算尽太聪明,反误了卿卿性命”的悲剧下场。
B.《红楼梦》中贾府的“四春”分别是:孤独的贾元春、精明的贾迎春、懦弱的贾探春、孤僻的贾惜春,取“原应叹息”之意。
C.“花谢花飞飞满天,红消香断有谁怜?……一朝春尽红颜老,花落人亡两不知!”这首诗出自《红楼梦》中人物林黛玉之手。
(正确答案)D.《红楼梦》中表明贾府收入主要书回的情节在第二十五回“乌庄头交租”一事上,表明贾府“排场费用,又不肯讲究省俭”的主要情节是“可卿丧仪”和“元春省亲”两件事。
2、1《边城》是沈从文创作的一部中篇小说。
[判断题] *对错(正确答案)3、14.下面各组词语中加点字的注音,完全正确的一项是()[单选题] *A.渲染(xuàn)抽噎(yè)逞能(chěnɡ)自惭形秽(huì)B.迸溅(bènɡ)荣膺(yīnɡ)褶皱(zhě)气冲斗牛(dǒu)(正确答案)C.殷红(yīn)阔绰(chuò)惩戒(chéng)戛然而止(jiá)D.缄默(jiān)追溯(sù)栈桥(zhàn)鲜为人知(xiān)4、下列各句中加点词的解释,全部正确的一项是()[单选题] *A.虞常果引张胜引:招出会论虞常论:判罪(正确答案)B.欲信大义于天下信:通“伸”,伸张子为父死,亡所恨恨:怨恨C.自分己死久矣分:职责恐前语发发:暴露,泄露D.又非亲属,何谓相坐坐:定罪,治罪汉使张胜谋杀单于近臣,当死当:应当5、关联词选用:()怎么样,()让你觉得它们是泰山的天然的主人,好像少了谁都不应该似的。
[单选题] *只有才不仅还不但而且不管都(正确答案)6、下列关于名著的表述,不正确的一项是;( ) [单选题] *A.凤姐发现贾琏偷娶尤二姐,待贾琏外出办事,把尤二姐骗到家中,百般羞辱二姐,后又利用贾琏新妾秋桐羞辱折磨尤二姐,最后逼得尤二姐吞金自杀。
江苏省“专转本”《高等数学》试卷分类解析不定积分.
同方专转本高等数学核心教程第三章不定积分本章主要知识点:● 不定积分的意义,基本公式● 不定积分的三种基本方法● 杂例历年考试真题1.(2001)不定积分=( D )A.B. +CC. arcsinxD. arcsinx+C解析: 利用不定积分的定义.2001)计算⎰e2x2. (1+exdx。
解: ⎰e2xe2x+ex-exx1+exdx=⎰1+exdx=e-ln(1+ex)+C3. (2002)设f(x)有连续的导函数,且a≠0,1,则下列命题正确的是(A. ⎰f'(ax)dx=1af(ax)+C B. ⎰f'(ax)dx=f(ax)+CC. (⎰f'(ax)dx)'=af(ax)D. ⎰f'(ax)dx=f(x)+C解析: 由⎰f'(x)dx=f(x)+C⎰f'(ax)dx=1a⎰f'(ax)dax=1af(ax)+C4. (2002)求积分2解: 14arcsin2x2+C5. (2003)若F'(x)=f(x),f(x)连续,则下列说法正确的是( C ) - 78 - A )第三章不定积分A.C. ⎰F(x)dx=f(x)+c B. ⎰⎰dF(x)dx=f(x)dx dx⎰dF(x)dx=f(x) f(x)dx=F(x)+c D. dx⎰解析: 不定积分的定义 6. (2003)xlnxdxx2x2x2=lnx-⎰dlnx 解: 设u=lnx,dv=xdx,则⎰xlnxdx=⎰lnxd222x21=lnx-⎰xdx22 11=x2(lnx-)+C227. (2004)求不定积分3=1arcsin4x+C 4解析: 31dx=⎰arcsin3xdarcsinx=arcsin4x+C 4ex8. (2004)设f(x)的一个原函数为,计算⎰xf'(2x)dx xexex(x-1)ex解: 因为f(x)的一个原函数为,所以f(x)=()'=, xx2x1111⎰xf'(2x)dx=⎰xf'(2x)d(2x)=⎰xdf(2x)=xf(2x)-⎰f(2x)dx 222211x(2x-1)e2xx-12x-+C=e+C =xf(2x)-⎰f(2x)d(2x)=248x28x4x9. (2005)若⎰f(x)dx=F(x)+C,则⎰sinxf(cosx)dx=( D )A. F(sinx)+CB. -F(sinx)+CC. F(cosx)+CD. -F(cosx)+C解析: ⎰sinxf(cosx)dx=-⎰f(cosx)dcosx=-F(cosx)+C⎰310. (2005)计算tanxsecxdx2 解:原式=tanxtanxsecxdx=⎰⎰(secx-1)d- 79 - 22secx=⎰secxdsecx-secx同方专转本高等数学核心教程=secx-secx+C11.(2006)已知A.2e-2x133⎰f(x)dx=e2x+C,则⎰f'(-x)dx=( C ). 11+CB.e-2x+CC. -2e-2x+CD. -e-2x+C 22解析: 由题意f(x)=2e2x,∴f'(x)=4e2x,f'(-x)=4e-2x所以⎰f'(-x)dx=⎰4e-2x-2xdx=⎰-2e-2xd(-2x)=-2e+C12.(2006)计算⎰dx x解:原式=32(1+lnx)=(1+lnx)2+C 313. (2007) 设函数f(x)的一个原函数为sin2x,则⎰f'(2x)dx=( A )1cos4x+C 2C. 2cos4x+CD. sin4x+C A. cos4x+C B.解析: f(x)=2cos2x,所以f'(x)=4sin2x,⎰f'(2x)dx=⎰4sin4xdx=⎰sin4xd(4x)=cos4x+C2-x14. (2007)求不定积分xedx.⎰2-x2-x 解:xedx=-xd(e) ⎰⎰2-x-x2-x-x =-xe+2xedx=-xe-2xd(e) ⎰⎰2-x-x-x =-xe-2xe+2edx ⎰=-xe单元练习题3 2-x-2xe-x-2e-x+C1.dcos2x=- 80 - ⎰第三章不定积分2.已知f(cosx)=sin2x,则⎰f(x-1)dx=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省 2017 年普通高校专转本选拔考试
高数 试题卷
一、单项选择题(本大题共 6 小题,没小题 4 分,共 24 分。
在下列每小题中选出一个正确答案,请在答题卡上将所选项的字母标号涂黑)
1.设)(x f 为连续函数,则0)(0='x f 是)(x f 在点0x 处取得极值的( )
A.充分条件
B.必要条件
C.充分必要条件
D.非充分非必要条件
2.当0→x 时,下列无穷小中与x 等价的是( )
A.x x sin tan -
B.x x --+11
C.11-+x
D.x cos 1-
3.0=x 为函数)(x f =0
00
,1sin ,
2,1>=<⎪⎪⎩
⎪
⎪⎨⎧-x x x x x e x
的( )
A.可去间断点
B.跳跃间断点
C.无穷间断点
D.连续点
4.曲线x
x x x y 48
62
2++-=的渐近线共有( )
A.1 条
B.2 条
C.3 条
D.4 条
5.设函数)(x f 在 点0=x 处可导,则有( ) A.)0(')()(lim
f x x f x f x =--→ B.)0(')
3()2(lim 0f x
x f x f x =-→
C.)0(')0()(lim
f x f x f x =--→ D.)0(')
()2(lim 0f x
x f x f x =-→
6.若级数∑∞
-1
-n n
1p
n )
(条件收敛,则常数P 的取值范围( )
A. [)
∞+,1 B.()
∞+,1 C.(]1,0 D.()1,0
二、填空题(本大题共 6 小题,每小题 4 分,共 24 分)
7.设dx e x
x a x x
x ⎰∞-∞→=-)1(
lim ,则常数a= .
8.设函数)(x f y =的微分为dx e dy x
2=,则='')(x f .
9.设)(x f y =是由参数方程 {
13sin 13++=+=t t x t
y 确定的函数,则
)
1,1(dx
dy = .
10.设x x cos )(F =是函数)(x f 的一个原函数,则⎰
dx x xf )(= .
11.设 →
a 与 →
b 均为单位向量, →
a 与→
b 的夹角为3
π
,则→a +→b = .
12.幂级数 的收敛半径为 .
三、计算题(本大题共 8 小题,每小题 8 分,共 64 分)
13.求极限x
x dt
e x
t x --⎰
→tan )1(lim 0
2
.
14.设),(y x z z =是由方程0ln =-+xy z z 确定的二元函数,求22z
x
∂∂ .
n n x ∑∞
1-n 4
n
完美WORD 格式
范文.范例.指导.参考
15.求不定积分 dx x x ⎰
+3
2
.
16.计算定积分⎰
210
arcsin xdx x .
17.设),(2
xy y yf z =,其中函数f 具有二阶连续偏导数,求y
x ∂∂∂z
2
18.求通过点(1,1,1)且与直线1
1
2111-+=-=-+z y x 及直线{
12z 3y 4x 0
5=+++=-+-z y x 都垂直的直线方程.
19.求微分方程x y y y 332=+'-''是通解.
20.计算二重积分
dxdy y x
⎰⎰D 2,其中 D 是由曲线 1-=y x 与两直线1,3==+y y x 围
成的平面闭区域.
四.证明题(本大题共 2 小题,每小题 9 分,共 18 分)
21.证明:当π≤<x 0时,2cos 2sin <+x x x .
22.设函数)(x f 在闭区间[]a a ,-上连续,且)(x f 为奇函数,证明: (1)⎰⎰--=0
)()(a
a
dx x f dx x f
(2)⎰
-=a
a
dx x f 0)(
五、综合题(本大题共 2 题,每小题 10 分,共 20 分)
23.设平面图形 D 由曲线 x
e y = 与其过原点的切线及 y 轴所围成,试求;
(1)平面图形D 的面积;
(2)平面图形 D 绕 x 轴旋转一周所形成的旋转体的体积.
24.已知曲线)(x f y =通过点(-1,5),且)(x f 满足方程3
512)(8)(3x x f x f x =-',试求:
(1)函数)(x f 的表达式;
(2)曲线)(x f y =的凹凸区间与拐点.
江苏省 2017 年普通高校专转本选拔考试
高数 试题卷答案
一、单项选择题 1-6 DBACD 解析: 二、填空题 7.-1 8.x
e 22 9.
3
1 10.c x x x +-sin cos 11.3 12.4
完美WORD 格式
范文.范例.指导.参考
三、计算题 13.1
14.3
2
)1(z zy
15.C x x x ++++-+39)3(25
)3(·235
16.
48
33π
- 17.222
21
2
222f xy f y f y ''+''+' 18.
2
13141-=-=-z y x 19.3
2
)2sin 2cos (21+
++=x x c x c e y x
20.2
11ln 102
-
完美WORD格式
范文.范例.指导.参考
四、证明题
21.证:令2cos 1sin )(-+=x x x x f 则x x x x x f sin 2cos sin )(-+=' x x x x x x f cos 2sin cos cos )(--+='' x x sin -= 因为 π≤<x 0 所以 0)(<''x f
因为 ↓')(x f 所以 0)0()(='<'f x f 所以 ↓)(x f
因为 0)0()(=<f x f 所以得出
完美WORD 格式
范文.范例.指导.参考
22.证(1)
⎰⎰
--=--0
)()()(a
a
dt t f t d t f
⎰-=a
dt t f 0)( ⎰
-=a
dx x f 0
)(
(2)
dx x f dx x f dx x f a a
a
a ⎰⎰
⎰+=--0
)()()(
⎰⎰+-=a
dx x f dx x f 0
a
)()( = 0 五、综合题
23.(1)⎰⎰⎰-=-=1
21
01
02)(S x e e dx ex e x x
(2)
ππ2
1612-e 24.(1)3
53
8
4)(x x x f -=
拐点:(0,0)(1,3) 凹 :(-∞,0),(1,+∞) 凸 :(0,1)
t x -=
完美WORD格式
范文.范例.指导.参考。