氢能源的开发和利用()
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
氢能源的开发和利用
摘要
随着化石燃料等不可再生资源的日益紧缺和环境污染日益加重,人们迫切需要寻找替代能源。氢能作为可持续、清洁的能源而被广泛研究,是未来人类的理想能源之一,对整个世界经济的可持续发展具有重要的战略意义。本文主要述评了氢能制备、氢能储运、氢能利用在国际和国内的最新研究动态,并对氢能未来开发前景进行了展望。
关键词:氢能源氢能制备储氢技术氢能利用
前言 (3)
第一章氢能制备方法 (4)
1.1矿物燃料制氢 (4)
1.2电解水制氢 (4)
1.3甲烷催化热分解制氢 (4)
1.4生物制氢 (5)
第二章储氢技术 (6)
2.1高压气态储氢 (6)
2.2低温液态储氢 (6)
2.3固态储氢 (6)
第三章氢能利用方法 (7)
3.1氢内燃机 (7)
3.2燃料电池 (7)
3.3核聚变....................... 8 第四章国内外氢能研究开发现状............................. 9 第五章展望和总结 11 参考文献 .............................. 12 致谢.. (14)
能源是现代社会人类生活、生产中必不可缺的东西。随着社会经济的发展,人
们对能源的需求越来越高。然而在能源开发及利用的研究总,人们发现有的能源与
一般的矿物能源不同,入太阳能、风能、潮汐能等再生性能源。氢能作为一种储量丰富、来源广泛、能力密度高、清洁的绿色能源及能源载体,被认为是连接化石能源向可再生能源过度的主要桥梁。
作为能源,氢能具有无可比拟的潜在开发价值。氢是自然界最普遍存在的元素,它主要以化合物的形态储存于水中,而水是地球上最广泛的物质;除核燃料外,氢的发热值在所有化石燃料、化工燃料和生物燃料中最高;氢燃烧性能好,点燃快,与空气混合时有广泛的可燃范围,而且燃点高,燃烧速度快;氢本身无毒,于其他燃料相比氢燃烧时最清洁。氢能利用形式多,既可以通过燃烧产生热能,在热力发动机中产生机械功,又可以作为能源材料用于燃料电池,或转换成固态氢用为结构材料。用氢代替煤和石油,不需要对现有的技术装备作重大的改造,现在的内燃机稍加改装即可使用。所有气体中,氢气的导热性最好,比大多数气体的导热系数高出10倍,在能源工业中氢是极好的传热载体。所有,研究利用氢能已成为国内外学者研究的热点。
第一章氢能制备方法
1.1矿物燃料制氢
在传统的制氢工业中,矿物燃料制氢是采用最多的方法,并已有成熟的技术及工业装置。其方法主要有重油部分氧化重整制氢,天然气水蒸气重整和煤气化制氢。用蒸汽和天然气作原料的制氢化学反应为:CH4+2HO- CO+4H.用蒸汽和煤
作原料来制取氢气的基本反应过程为:C+2HC- CO+2H2。虽然目前90%以上的制
氢都是以天然气和煤为原料。但天然气和煤储量有限,且制氢过程回对环境造成污染,按照科学发展观的要求,显然在未来的制氢技术中该方法不是最佳的选择。1.2电解水制氢
电解水制氢工业历史较长,这种方法是基于如下的氢氧可逆反应:2H2O= 2H+Q目前常用的电解槽一般采用压滤式复极结构,或箱式单级结构,每对电解槽压在1.8〜2.0V之间,制取的能耗在4.0〜4.5Kwh。箱式结构的优点是装备简单,易于维修,投资少,缺点是占地面积大,时空产率低;压滤式结构较为复杂,优点是紧凑、占地面积,小、时空产率高,缺点是难维修,投资大。随着科学技术的发展,出现了固体聚合物电解质(SPE电解槽。SPE曹材料易得,适合大批量生产,而且使用相同数量的阴阳极进行H、Q2的分离,其效率比常规碱式电解槽要高,另外,SPE槽液相流量是常规碱式电解槽的1/10,使用寿命约为300天。缺点是水电解的能耗仍然非常高。目前,我国水电解工业扔停留在压滤式复极结构电解槽或单级箱式电解槽的水平上,与国外工业和研究的水平差距
还很大。
1.3甲烷催化热分解制氢
传统的甲烷裂解制造氢气过程都伴有大量的二氧化碳排放,但近年来,甲烷因热分解制氢能避免CQ的排放,而成为人们研究的热点。甲烷分解1mol氢气需要37.8KJ的能量,排放CQ0.05mol。该法主要优点在于制取高纯氢气的同时,制的更有经济价值、易于出场的固体碳,从而不向大气排放二氧化碳,减轻了温室效
应。由于基本不产生 CO,被认为是连接化石燃料和可再生能源之间的过渡工艺。但生产成本不低,如果副产物碳能具有广阔的市场前景,该法将会成为一种很有前途的制氢方法。
1.4生物制氢
利用生物制氢技术,可节约不可再生能源,减少黄精污染,可能成为未来能源制备技术的主要发展方向之一。生物制氢是利用微生物在常温、常压下以含氢元素物质(包括植物淀粉、纤维素、糖等有机物及水)为底物进行酶生化反应来制的氢气。迄今为止,以研究报道的产氢生物可分为两大类:光合生物(厌氧光合细菌、蓝细菌和绿藻)和非光合生物(严格厌氧细菌、兼性厌氧细菌和好氧细菌)。
光合生物蓝细菌和绿藻可利用体内巧妙的光合结构转化太阳能为氢能,故其产氢研究远较非光合生物深入。二者均可光裂解水产生氢气,光裂解水产氢是理想的制氢途径,但蓝细菌和绿藻在光合放氢的同时,伴随氧的释放,除产氢效率较低外,如何解决氢酶遇氧失活是该技术应解决的关键问题。厌氧光合细菌与蓝细菌和绿藻相比,其厌氧光合放氢过程不产生氧,故工艺简单。目前鉴于光合放氢过程的复杂性和精密性,研究内容仍主要集中在高活性产氢菌株的筛选或选育、育化和控制环境条件以提高产氢量,其研究水平和规模还基本处于实验室水平。
非光合生物可降解大分子有机物而产氢,使其生物转化可再生能源物质(纤维素及其降解产物和淀粉等)生产氢能研究中显示出优越于光合生物的优势。该类微生物作为氢来源的研究始于 20世纪60年代,至20世纪90年代末,我国科学家任南琪等研究开发了以厌氧活性污泥和有机质废水为原料的“有机废水发酵法生物制氢技术”,该技术突破了生物制氢技术必须采用纯菌种和固定技术的局
限,开创了利用非固定化菌种生产氢气的新途径,中试试验结果表明,生物制氢
反应器最高持续产氢能力达到5.7m3/ (nV d),生产成本约为目前采用的电解水法制氢成本的一半。
第二章储氢技术
2.1高压气态储氢
根据气体状态方程,对于一定量的气体,当温度一定时,升高压力会减小气体