细胞氧化应激基本概念
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、细胞氧化
细胞生命活动过程中所需的能量约有95%是来自于线粒体,其来源是将细胞内的供能物质氧化、分解、释放能量,并排出CO2和H2O,这一过程称之为细胞氧化(cellular oxidation),又称细胞呼吸(cellular respiration)。
其基本步骤有:糖酵乙酰辅酶A(CoA)的形成、进行三羧酸循环及电子传递和化学渗透偶联磷酸化作用。
酶能使细胞的氧化过程在此比较低的温度下进行,并释放出仅仅使细胞能够扑获和储存的能量。
这个受生物学控制的氧化结果起初就和简单的燃烧现象一样:复杂的分子被降解为水,二氧化碳,并释放能量。
这个过程中一些经过交换的电子永久地逃离细胞的呼吸或从呼吸中心遗漏掉并同周围的氧分子相互作用,产生有毒性氧分子—自由基。
在细胞呼吸的过程中,估计有2-5%的电子转化为过氧化物分子和其他类型的氧化自由基,自由基的持续增加就对机体组织造成大量的氧化压力。
自由基被认为与大约60种(而且至少是60种)疾病的发生有关,科学有证据证实,抗氧化剂能停止甚至逆转(在某些疾病中)由于自由基所导致的损伤。
自由基与机体细胞发生作用后,给机体留下了毁灭性的灾难。
在细胞膜上留下了许多微笑的孔洞,使细胞的分子结构发生改变,破坏了细胞的蛋白和脂类分子。
一旦我们机体细胞内有足够的抗氧化剂储备,我们就能将自由基对机体的损伤程度降到最低。
2、OS
氧化应激(Oxidative Stress,OS)是指体内氧化与抗氧化作用失衡,倾向于氧化,导致中性粒细胞炎性浸润,蛋白酶分泌增加,产生大量氧化中间产物。
氧化应激是由自由基在体内产生的一种负面作用,并被认为是导致衰老和疾病的一个重要因素。
指机体在内外环境有害刺激的条件下,体内产生活性氧自由基(Reactive Oxygen Species,ROS)和活性氮自由基(Reactive Ntrogen Species,RNS)所引起的细胞和组织的生理和病理反应。
ROS有超氧阴离子(.O2-)、羟自由基(.OH-)和过氧化氢(H2O2)等等;RNS有一氧化氮(NO)、二氧化碳(CO2)和过氧亚硝酸盐(.ONOO-)等等。
由于它们可以直接或间接氧化或损伤DNA、蛋白质和脂质,可诱发基因的突变、蛋白质变性和脂质过氧化,被认为是人体衰老和各种重要疾病如肿瘤、心脑血管疾病、神经退行性疾病(老年痴呆)、糖尿病-最重要的危氧化应激和抗氧化不单纯是一种生化反应,它更有着极其复杂的细胞和分子机制,包括膜氧化、线粒体代谢、内质网应激、核的重构、DNA损伤修复、基因转录表达、泛素和泛素化、自吞和溶酶体、细胞外基质、信号传递、蛋白折叠等多重的细胞和分子改变。
3、ROS
需氧细胞在代谢过程中产生一系列活性氧簇( reactive oxygen species, ROS),包括:O2 -·、H2O2 及HO2·、·OH 等。
4、细胞凋亡
细胞凋亡(apoptosis )是维持正常组织形态和一定功能的主动自杀过程,是在基因控制下按照一定程序进行的细胞死亡,故又称为程序性细胞死亡( PCD )
5、SOD
超氧化物歧化酶Orgotein (Superoxide Dismutase, SOD),别名肝蛋白、奥谷蛋白,简称:SOD。
SOD
成的损害,并及时修复受损细胞,复原因自由基造成的对细胞伤害。
6、P53
因编码一种分子质量为53 kDa的蛋白质而得名,是一种抗癌基因。
其表达产物为基因调节蛋白(P53蛋白),当DNA受到损伤时表达产物急剧增加,可抑制细胞周期进一步运转。
一旦p53基因发生突变,P53蛋白失活,细胞分裂失去节制,发生癌变,人类癌症中约有一半是由于该基因发生突变失活。
7、MTT
四甲基偶氮唑盐,MTT主要有两个用途
1.药物(也包括其他处理方式如放射线照射)对体外培养的细胞毒性的测定;
2.细胞增殖及细胞活性测定。
检测原理为活细胞线粒体中的琥珀酸脱氢酶能使外源性MTT还原为水不溶性的蓝紫色结晶甲瓒(Formazan)并沉积在细胞中,而死细胞无此功能。
二甲基亚砜(DMSO)能溶解细胞中的甲瓒,用酶标仪在490nm波长处测定其光吸收值,在一定细胞数范围内,MTT结晶形成的量与细胞数成正比。
根据测得的吸光度值(OD值),来判断活细胞数量,OD值越大,细胞活性越强(如果是测药物毒性,则表示药物毒性越小)。
8、黄嘌呤氧化酶法测定抗氧化能力
黄嘌呤氧化酶催化黄嘌呤产生超氧阴离子自由基,后者氧化羟胺成亚硝酸盐,亚硝酸盐在对氨基苯磺酸与甲萘胺作用下呈现紫红色,用可见光分光光度计测其吸光度。
当被测样品中含SOD时,则对超氧阴离子自由基有专一性抑止作用,使可形成的亚硝酸盐减少,比色时测定管的吸光度值低于空白管的吸光度值,通过公式计算可求出被测样品中SOD 的活力。
9、信号通路
当细胞里要发生某种反应时,信号从细胞外到细胞内传递了一种信息,细胞要根据这种信息来做出反应的现象,叫做信号通路。
信号通路分为两类:
一是当信号分子是胆固醇等脂质时,它们可以轻易穿过细胞膜,在细胞质内与目的受体相结合;
一是当信号分子是多肽时,它们只能与细胞膜上的蛋白质等受体结合,这些受体大都是跨膜蛋白,通过构象变化,将信号从膜外domain传到膜内的domain,然后再与下一级别受体作用,通过磷酸化等修饰化激活下一级别通路。
信号通路(signal pathway)的提出最早可以追溯到1972年,不过那时被称为信号转换(signal transmission)。
1980年,M. Rodbell在一篇综述中提到信号转导(signal transduction),此后这个概念就被广泛使用了[4]。
信号通路是指能将细胞外的分子信号经细胞膜传入细胞内发挥效应的一系列酶促反应通路。
这些细胞外的分子信号(称为配体,ligand)包括激素、生长因子、细胞因子、神经递质以及其它小分子化合物等。
当配体特异性地结合到细胞膜或细胞内的受体(receptor)后,在细胞内的信号又是如何传递的呢?
细胞内各种不同的生化反应途径都是由一系列不同的蛋白组成的,执行着不同的生理生化功能。
各个信号通路中上游蛋白对下游蛋白活性的调节(包括激活或抑制作用)主要是通过添加或去除磷酸基团,从而改变下游蛋白的立体构象完成的。
所以,构成信号通路的主要成员是蛋白激酶和磷酸酶,它们能够快速改变和恢复下游蛋白的构象。
从细胞受体接收外界信号到最后做出综合性应答,不仅是一个信号转导过程,更重要的是将外界信号进行逐步放大的过程。
受体蛋白将细胞外信号转变为细胞内信号,经信号级联放大、分散和调节,最终产生一系列综合性的细胞应答,包括下游基因表达的调节、细胞内酶活性的变化、细胞骨架构型和DNA合成的改变等(如图3)。
这些变化并非都是由一种信号引起的,也可以通过几种信号的不同组合产生不同的反应.
10、细胞因子
细胞因子(cytokine,CK)是一类能在细胞间传递信息、具有免疫调节和效应功能的蛋白质或小分子多肽。
细胞因子是免疫原、丝裂原或其他刺激剂诱导多种细胞产生的低分子量可溶性蛋白质,具有调节固有免疫和适应性免疫、血细胞生成、细胞生长以及损伤组织修复等多种功能。
细胞因子可被分为白细胞介素、干扰素、肿瘤坏死因子超家族、集落刺激因子、趋化因子、生长因子等。
众多细胞因子在体内通过旁分泌、自分泌或内分泌等方式发挥作用,具有多效性、重叠性、拮抗性、协同性等多种生理特性,形成了十分复杂的细胞因子调节网络,参与人体多种重要的生理功能。
根据产生细胞因子的细胞种类不同分类
细胞因子
1.淋巴因子(lymphokine) 于命名,主要由淋巴细胞产生,包括T淋巴细胞、B淋巴细胞和NK细胞等。
重要的淋巴因子有IL-2、IL-3、IL-4、IL-5、IL-6、IL-9、IL-10、IL-12、IL-13、IL-14、IFN-γ、TNF-β、GM-CSF和神经白细胞素等。
2.单核因子(monokine)主要由单核细胞或巨噬细胞产生,如IL-1、IL-6、IL-8、TNF-α、G-CSF和M-CSF 等。
3.非淋巴细胞、非单核-巨噬细胞产生的细胞因子主要由骨髓和胸腺中的基质细胞、血管内皮细胞、成纤维细胞等细胞产生,如EPO、IL-7、IL-11、SCF、内皮细胞源性IL-8和IFN-β等。
(二)根据细胞因子主要的功能不同分类
1.白细胞介素(interleukin, IL) 1979年开始命名。
由淋巴细胞、单核细胞或其它非单个核细胞产生的细胞因子,在细胞间相互作用、免疫调节、造血以及炎症过程中起重要调节作用,凡命名的白细胞介素的cDNA基因克隆和表达均已成功,已报道有三十余种(IL-1―IL-35)。
2.集落刺激因子(colony stimulating factor, CSF) 根据不同细胞因子刺激造血干细胞或分化不同阶段的造血细胞在半固体培养基中形成不同的细胞集落,分别命名为G(粒细胞)-CSF、M(巨噬细胞)-CSF、GM(粒细胞、巨噬细胞)-CSF、Multi(多重)-CSF(IL-3)、SCF、EPO等。
不同CSF不仅可刺激不同发育阶段的造血干细胞和祖细胞增殖的分化,还可促进成熟细胞的功能。
3.干扰素(interferon, IFN) 1957年发现的细胞因子,最初发现某一种病毒感染的细胞能产生一种物质可干扰另一种病毒的感染和复制,因此而得名。
根据干扰素产生的来源和结构不同,可分为IFN-α、IFN-β和IFN-γ,他们分别由白细胞、成纤维细胞和活化T细胞所产生。
各种不同的IFN生物学活性基本相同,具有抗病毒、抗肿瘤和免疫调节等作用。
4.肿瘤坏死因子(tumor necrosis factor, TNF) 最初发现这种物质能造成肿瘤组织坏死而得名。
根据其产生来源和结构不同,可分为TNF-α和TNF-β两类,前者由单核-巨噬细胞产生,后者由活化T细胞产生,又名淋巴毒素(lymphotoxin, LT)。
两类TNF基本的生物学活性相似,除具有杀伤肿瘤细胞外,还有免疫调节、参与发热和炎症的发生。
大剂量TNF-α可引起恶液质,因而TNF-α又称恶液质素(cachectin)。
5.转化生长因子-β家族(transforming growth factor-β family, TGF-β family) 由多种细胞产生,主要包括TGF-β1、TGF-β2、TGF-β3、TGFβ1β2以及骨形成蛋白(BMP)等。
6.生长因子(growth factor,GF)如表皮生长因子(EGF)、血小板衍生的生长因子(PDGF)、成纤维细胞生长因子(FGF)、肝细胞生长因子(HGF)、胰岛素样生长因子-I(IGF-1)、IGF-Ⅱ、白血病抑制因子(LIF)、神经生长因子(NGF)、抑瘤素M(OSM)、血小板衍生的内皮细胞生长因子(PDECGF)、转化生长因子-α(TGF-α)、血管内皮细胞生长因子(VEGF)等。
7.趋化因子家族(chemokinefamily) 包括两个亚族:(1)C-X-C/α亚族,主要趋化中性粒细胞,主要的成员有IL-8、黑素瘤细胞生长刺激活性(GRO/MGSA)、血小板因子-4(PF-4)、血小板碱性蛋白、蛋白水解来源的产物CTAP-Ⅲ和β-thromboglobulin、炎症蛋白10(IP-10)、ENA-78;(2)C-C/β亚族,主要趋化
单核细胞,这个亚族的成员包括巨噬细胞炎症蛋白1α(MIP-1α)、MIP-1β、RANTES、单核细胞趋化蛋白-1(MCP-1/MCAF)、MCP-2、MCP-3和I-309。
受体
概念
细胞因子是由多种细胞产生的,具有广泛调节细胞功能作用的多肽分子,细胞因子不仅作用于免疫系统和造血系统,还广泛作用于神经、内分泌系统,对细胞间相互作用、细胞的增殖分化和效应功能有重要的调节作用。
细胞因子发挥广泛多样的生物学功能是通过与靶细胞膜表面的受体相结合并将信号传递到细胞内部。
因此,了解细胞因子受体的结构和功能对于深入研究细胞因子的生物学功能是必不可少的。
随着对细胞因子受体的深入研究,发现了细胞因子受体不同亚单位中有共享链现象,这对阐明众多细胞因子生物学活性的相似性和差异性从受体水平上提供了依据。
绝大多数细胞因子受体存在着可溶性形式,掌握可溶性细胞因子受体产生的规律及其生理和病理意义,必将扩展人们对细胞因子网络作用的认识。
检测细胞因子及其受体的水平已成为基础和临床免疫学研究中的一个重要的方面。
分类
一、细胞因子受体的结构和分类
根据细胞因子受体cDNA序列以及受体胞膜外区氨基酸序列的同源性和结构征,可将细胞因子受体主要分为四种类型:免疫球蛋白超家族(IGSF)、造血细胞因子受体超家族、神经生长因子受体超家族和趋化因子受体。
此外,还有些细胞因子受体的结构尚未完全搞清,如IL-10R、IL-12R等;有的细胞因子受体结构虽已搞清,但尚未归类,如IL-2Rα链(CD25)。
(一)免疫球蛋白超家族
该家族成员胞膜外部分均具有一个或数个免疫球蛋白(Ig)样结构。
已知,属于IGSF成员的细胞因子受体的IL-1RtI(CD121a)、IL-1RtⅡ(CD121b)、IL-6Rα链(CD126)、gp130(CDw130)、G-CSFR、M-CSFR(CD115)、SCFR(CD117)和PDGFR,并可分为几种不同的结构类型,不同IGSF结构类型的受体其信号转导途径也有差别。
(1)M-CSFR、SCFR和PDGFR:胞膜外区均含有5个Ig样结构域,其中靠近胞膜区为1个V样结构,其余4个为C2样结构。
受体通常以二聚体形式与相应的同源二聚体配体结合。
受体胞浆区本身含有蛋白酷氨酸激酶(proteintyrosinekinase,PTK)结构。
(2)IL-1RtI和IL-1RtⅡ:胞膜外区均含有3个C2样结构,受体胞浆区丝氨酸/苏氨酸磷酸化可能与受体介导的信号转导有关。
(3)IL-6Rα链、gp130以及G-CSFR:胞膜外区N端均含1个C2样区,在靠近胞膜侧各有1个红细胞生成素受体超家族结构域,此外在胞有胞膜外区还含有2-4个纤粘连素结构域。
gp130胞浆区酷氨酸磷酸化与信号转导有关。
这种结构类型的受体其相应配体IL-6、OSM、LIF和G-CSF在氨基酸序列和分子结构上也有很大的相似性。
(二)造血细胞因子受体超家族
造血细胞因子受体超家族(haemopoieticcytokinereceptorsuperfamily)又称细胞因子受体家族(cytokinereceptorfamily),可分为红细胞生成素受人本超家族(erythropoietinreceptorsuperfamily,ERS)和干扰素受体家族(interferonreceptorfamily)。
1.ERSERS所有成员胞膜外区与红细胞生成素(erythropoietin,EPO)受体胞膜外区体在氨基酸序列上有较高的同源性,分子结构上也有较大的相似性,故得名。
(1)ERS的成员:属于ERS的成员有EPOR、血小板生成素R、IL-2β链(CD122)、IL-2Rγ链、IL-3Rα链(CD123)、IL-3Rβ、IIL-4R(CDw124)、IL-5Rα链、IL-5βα链、IL-5Rβ链、IL-6Rα链(CD126)、gp130(CDw123)、IL-7R、IL-9R、IL-11R、IL-1240kDa亚单位、G-CSFR、GM-CSFRα链、GM=CSFRβ链、LIFR、CNTFR等,此外,某些激素如生长激素受体(GRGR)和促乳素受体(PRLR)亦属于ERS。
(2)ERS的结构特征:红细胞生成素受体超家族成员在胞膜外与配体结合部位有一个约含210氨基酸残基的牲性同源区域,主要特点①同源区靠近N端有4个高并能保守的半胱氨酸残基Cysl、Cys2、Cys3、Cys4和1个保守的钯氨酸,Cys1与Cys2之间、Cys3与Cys4之间形成两个二硫键。
②同源区靠近细胞膜处,约
在细胞膜外18~22氨基酸基处有一个色氨酸一丝氨酸-X-色氨酸-丝氨酸基序,所谓Trp-Ser-Xaa-Trp-Ser 即WSXWS基序,其生物学功能尚不明了。
IL-3α链、IL-3Rβ链、GM-CSFRβ链、LIFR办有两个ERS结构域,其中GM-CSFRβ链第一个ERS结构中有一个类似WSXWS基序,即为脯氨酸一丝氨酸-赖氨酸-色氨酸-丝氨酸(PSKWS)基序。
1994年Hilton等合成WSXWS基序相应的寡核苷酸为探针,从成鼠肝cDNA文库中克隆小鼠IL-11受体α链cDNA获得成功。
IL-6Rα链和gp130以及G-CSFrN端有一个IGSF结构。
IL-7R靠近N端侧的部位只有Cys1和Cys3,与其它成员相比,缺乏Cys2和Cys4以及色氨酸残基。
IL-1240kDa亚单位有ERS的同源结构,但为非膜结合的,而且与IL-12另一35kDa亚单位通过二硫键开成异源双体。
GM-CSFrN 端在ERS中可以看作由2个Ⅲ型纤维粘连素组成,每个Ⅲ型纤维粘连素结构域由7股反平行β折叠股形成一个桶状结构,两个桶状结构之间的槽是配体膜外保守区域有明显的进化同源性,这种同源性的程度与IGSF 成员间相似。
EPoR似科与其它家族成员有更高的同源性,在进化上可能处于主导的地位。
ERS的胞浆区长度不一,从54个氨基酸残基到568个氨基酸残基,除IL-2Rβ链与EPOR之间胞浆区有一定同源性外,其它成员在胞浆区未见明显的同源性。
ERS成员胞浆区本身均不具备PTK结构,其信号传递的途径和机理也有所不同。
IL-2Rβ链胞浆区的本双重性区与胞浆中酪氨酸激酶相关联,富含丝氨酸区与非激酶信赖途径有关。
IL-2Rγ链胞浆区具有SH2结构,参与信号传递。
细胞浆中的PTK和PKC可能参与IL-4R介导的信号传递。
gp130胞浆区丝氨酸富含区以及酷氨酸磷酸化与gp130介导的信号转导有关。
此外,酪氨酸磷酸化与IL-7R、GM-CSFRβ链、IL-3Rβ链、IL-5Rβ链介导的信号转导有关。
2.干扰素受体家族属于这一家族的成员有IFN-α/βR、IFN-γR和组织因子(TF)(为凝固白酶因子Ⅶ的细胞膜受体),其结构与红细胞生成素受体家族相似,但N端只含有两个保守性的Cys,两个Cys之间有7个氨基酸。
近膜处也有两个保守的Cys,两个Cys之间间隔有20-22个氨基酸。
IFN-α/βR由两个上述的结构域所组成。
(三)神经生长因子受体超家族
1.NGFR超家族的成员属于该家族成员除神经生长因子受体(nervegrowthfactorreceptorNGFR)外,不有TNF-RⅠ(CD120a)、TNF-RⅡ(CD120b)、CD40、CD27、T细胞cDNA-41BB编码产物、大鼠T细胞抗原OX40和人髓样细胞表面活化抗原Fas(CD95)。
2.NGFR超家族的结构特点NGFR超家族成员其胞膜外由3-6个约40个氨基酸组成的富含Cys区域,如NGFR、TNF-RⅠ、TNF-RⅡ有4个结构域,CD95有3个结构域,CD30有6个结构域。
所有成员N端第一个区域中均含6个保守的Cys以及Tyr、Gly、Thr残基各一个,其它区域亦含4-6个Cys。
TNF-RⅠ、CD95、CD40分子之间胞浆区约有40-50%同源性。
(四)趋化因子受体
1988年IL-8基因克隆成功以来,已形成了称之为趋化因子(chemokine)的一个家族。
到目前为止,趋化因子家族的成员至少有19个。
部分趋化因子的受体已基本搞清,它们都性属于G蛋白偶联受体(GTP-bindingproteincoupledreceptor),由于此类受体有7个穿膜区,又称7个穿膜区受体超家族(sevenpredicatedtransmembranedomainreceptorsuperfamily,STRsuperfamily)。
G蛋白偶联受体(或STR)包括的范围很广,除了趋化因子受体外,如某些氨基酸、乙酰胆碱、单胺受体,经典的趋化剂(C5a、fMLP、PAF)受体等都属于G蛋白偶联受体/STR。
1.趋化因子受体的种类和结构
(1)趋化因子受体的种类:已发现的趋化因子受体种类有IL-8RA、IL-8RB、MIP-1α/RANTEsR、NCP-1R和细胞趋化因子受体(redbloodcellchemokinereceptorRBCCKR)。
有人将能与IL-8结合的IL-8RA、IL-8RB 和RBCCKR(Duffy抗原)归为IL-8受体家族。
(2)趋化因子受体的结构:所有趋化因子受体都属于G蛋白偶联受体/STR,N端在胞膜外,C端位于胞浆内。
7个穿膜区(transmembranedomain,TMD)为α螺旋,在TMDⅡ、Ⅳ、Ⅴ、Ⅵ和Ⅶ由α螺旋内保守的肺腑氨酸所扭结(kinked),胞膜外和胞浆内各有由亲水氨基酸所组成的三个一不,分别简称为e1-e3(e:extracellularconnectingloops)和il-i3(iintracellularconnectingloops)。
e1和e2之间由两个保守的Cys形成一个二硫键,有些受体在胞外N端和e3之间也形成二硫键,如IL-8Ra30Cys与277ys
形成二硫键。
在STR超家族中,趋化因子受体以及经典的趋化剂受体具有以下特点:(1)其长度在STR超家族中最短,约为350氨基酸,其主要原因是N端、C端较短,i3环只含16-22个氨基酸;(2)在氨基酸水平上同源性大于20%;(3)i3富含碱性氨基酸,带正电;(4)N端仿酸,带负是电;(5)胞浆区含有多个丝氨酸和苏氨酸,可能是磷酸化位点;(6)mRNAs多表达于白细胞。
2. IL-8受体家族IL-8R家族是趋化因子受体中能与IL-8结合的不同受体的总称,包括IL-8RA、IL-8RB 和RBCCKR。
(1)IL-8RA:IL-8RAcDNA1991年基因克隆成功,是Holmes等从中性粒细胞cDNA表达文库中分离得到,人IL-8RA基因定位于染色体2q35,与IL-8RB基因密切连锁和高度同源,可能是从同一祖先基因经复制而来。
从cDNA推算出IL-8RA由350氨基酸组成,有5个N连接的糖基化位点。
裸肽分子量为40kDa,糖基化后55~69kDa,在氨基酸水平上与IL-8RB的同源性为77%。
IL-8RA只与配体IL-8(碱性,PI8.0-8.5)结合,这与IL-8RA的结构有关,IL-8RaN端酸性氨基酸是与IL-8结合的位置,N端Asp11和e3中Gly275和Arg280对于与配体结合至关重要,由于Cys30与Cys277之间形成二硫键,Asp11、Glu275和Arg280在空间置上十分接近,共同参与同配体的结合。
IL-8RA基因表达的细胞种类较为广泛,如中性粒细胞、单核细胞、PGA活化的T细胞、单核细胞样细胞系、黑素瘤细胞、滑液成纤维细胞、HL60细胞和前髓样细胞系THP-1等。
(2)IL-8RB:IL-8RBcDNA是首先从HL60细胞中克隆成功,推断的氨基酸残基数为335,有一个潜在的N 连接糖基化位点。
IL-8RB可与CXC亚族中IL-8、GROα、GROβ、GROγ和NAP-2结合。
人IL-8RB主要表达于髓样细胞,如中性粒细胞、HL60、THP-1和AML193细胞。
(3)RBCCKR:这种受体结合配体的特异性较宽,又称multi-specificreceptor,可结合CXC亚族中的IL-8、NAP-2、GROα和CC亚族中的MCP-1和RANTES。
人RBCCKRcDNA1993年克隆成功,基因定位于1q21-q25,成熟受体分子由338个氨基酸组成,分子量为39kDa,与IL-8RB和MIP-1α/RANTESR分别有27%和23%同源性。
胞膜外区为66个氨基酸,含有2个潜在的N连接糖基化点,酸性。
C端胞浆区长24个氨基酸残基,RBC-CKR似乎不G蛋白调节,可能是一种G蛋白的非偶联受体。
RBCCKR是人红细胞Duffy抗原(gpD),也是微小间日疟原虫(Plasmodiumvivax)受体。
Duffy血型阴性个体尽管存在着该血型的原因,但不表达Duffy 抗原/RBCCKR。
RBCCKR作为一种清除受体(clearancereceptor)清除血液中趋化因子。
这种受体与配体结合的亲和力Kd为5nM,正常血清中IL-8水平在pM水平。
在成人呼吸窘迫综合征(ARDS)、脓毒症时,血清IL-8水平可升高至8nM,过高水平的IL-8结合到RBCCKR而得以清除。
IL-8等趋化因子结合到红细胞上后即失去了对靶细胞作用。
红细胞的这种清除作用的意义还在于维持一个合适的趋化因子浓度,保证中性粒细胞等敏感地从血液中向趋化因子浓度高的炎症部位动。
RBCCKR除表达在红细胞上外,还表达在肾脏、大脑,基因表在这还见于脾、肺和胸腺等。
3.受体的信号转导IL-8RA和IL-8RB中紧接第三个穿膜区(TMDⅢ)的第二个胞内环(i2)有一段高度保守的DRYLAIVHA序列,与受体信号的转导密切相关,其中DRY对于受体有效地偶联G蛋白是必要的,如用突变方法改变此序列,虽然不影响受体与配体的结合,但几乎完全丧失了配体刺激的生物学活性。
IL-8R与配体结合后使与受体结合的异源三体G蛋白分解为α亚单位和βγ亚单位,α亚单位活化磷脂酶C (phospholipaseCPLC),导致胞浆内三磷酸肌醇(IP3)和二酰基甘油(DAG)增加,分别诱导胞浆内Ca库释放Ca2 和PKC的活化。
此外,IL-8RA和IL-8RBC端丝氨酸和苏氨酸残基的磷酸化可能与信号的转导有关。
4.趋化因子受体与病毒发现某些感染人或灵长类病毒的开放读框产物与某些趋化因子受体有较高的同源性,这可能与病毒的致病以及病毒所具有的某些生物学特性有关。
(1)人巨细胞病毒(humancytomegalovirusHCMV):是一种可感染人上皮细胞、髓样和淋巴样细胞的β疱疹病毒(βHerpesvirus)。
HCMV3个开放读框US27、US28和UL33所推断的氨基酸序列在分子结构上均可模拟STR,其中US28产物与人MIP-1α/RANTEsR约有30%同源性,与该受体N端的同源性高达56%。
US28产物可与趋化因子β亚族中MIP-1α、MIP-1β、MCP-1和RANTES相结合,但不能结合α亚族中的趋化因子。
(2)Saimiri疱疹病毒(HerpesvirussaimiriHVS):是一种感染灵长类动物嗜T细胞的γ疱疹病毒(γHerpesvirus)。
HVS开放读框ECRF3产物与IL-8R有近30%的同源性,与IL-8RbN端的同源性为44%。
ECRF3产物与IL-8、GROα和NAP-2均可发生一定程度的结合。
HCMV-US28和HVS-ECRF3探针不能与人基因组DNA杂交,提示疱疹病毒不仅从宿主体内获得了趋化因子受体基因拷贝,而且进行了修饰。
类似的现象见于嗜人B淋巴细胞的γ疱疹病毒-EB病毒(EBV),EBV开放读框BCRF1是从宿主体内获得的IL-10基因,BCRF1产物又称为病毒IL-10(vIL-10),可模拟哺乳动物IL-10的抗炎症和抗增殖效应。
共享链
二、细胞因子受体中的共享链
大多数细胞因子受体是由两个或两个以上的亚单位组成的异源二聚体或多聚体,通常包括一个特异性配体结合α链和一个参与信号的β链。
α链构成低亲和力受体,β链一般单独不能与细胞因子结合,但参与高亲和力受体的形成和信号转导。
应用配体竞争结合试验、功能相似性分析以及分子克隆技术发现在细胞因子受体中存在着不同细胞因子受体共享同一种链的现象。
(一)细胞因子受体共享链的种类
在众多的细胞因子中,某些细胞因子的作用十分相似,如IL-3、IL-5、GM-CSF都作用于造血系统,促进造血干细胞或定向干细胞的增殖。
IL-6、IL-11、LIF、OSM都能作用于肝细胞、巨核细胞、浆细胞瘤,发挥相似的生物学作用。
IL-2、IL-4、IL-7、IL-9和IL-13均具有刺激T细胞或和B细胞增殖的作用。
上述细胞因子功能的相似性已部分在受体水平得到解释,在很大程度上是由细胞因子受体共享链所决定的。
已知,细胞因子共享链主要有gp310、GM-CSFRβ链和IL-2Rγ链。
1、gp130/LIFR为IL-6R、单抗MT18在骨髓瘤细胞系U266共沉淀中得到一种130kDa的糖蛋白,命名为gp130。
1990年Hibi克隆成功,gp130,属于造血因子受体家族。
IL-6、IL-11均能刺激IL-6信赖的小鼠浆细胞瘤系T1165的增殖,能在IL-3、GM-CSF的作用下缩短骨髓多能干细胞的Go期,增强IL-3依赖的人和小鼠的巨核细胞集落的形成,促进体内、体外的特异性抗体反应,诱导肝细胞急性期蛋白的产生。
抗gp130能阴断IL-6、IL-11两种细胞因子分别诱导的TF1细胞的增殖,而抗IL-5R只能阴断IL-6诱导的TF1的增殖,表明IL-6、IL-11受体共用一个信号转导链。
OSM受体存在着低亲和力及高亲和力两种受体,低亲和力受体即gp130,gp130与LIFR构成高亲和力受体。
与在IL-6R、IL-11R中不同,gp130在OSMR中只形成低亲和力受体且不能单独转导细胞因子信号。
高亲和力的LIF受体由LIFR和gp130组成,OSM与LIF能竞争结合高亲和力LIF受体,但不竞争结合低亲和力的LIF受体。
(4)IL-11Rα链(小鼠)与IL-6Rα链和CNTFRα链氨基酸同源性分别为24%和22%。
2、KH97/AIC2B为IL-3R、IL-5R、GM-CSFR所共用。
在造血方面,IL-3与GM-CSF均能促进未成熟细胞、混合细胞及粒细胞-巨噬细胞集落的形成,激活单核细胞,促进嗜酸性粒细胞集落形成。
IL-5除了促进B细胞分化和分泌抗体外,也具有刺激嗜酸性粒细胞分化作用。
用GM-CSFRβ链分别与IL-
3、IL-5、GM-CSFR α链共转染的试验证明,这三种细胞因子高亲和力受体中的β链在小鼠和人分别为AIC2B和KH97,它们有56%的同源性。
3、IL-2受体γ链除IL-2R含有γ链外,IL-4R、IL-7R、IL-9R和IL-13R复合物中也共用IL-2Rγ链(γc)。
这些受体的相应配体是一组主要作用于T细胞的生长因子。
以IL-2γ链异常为主要特征的X联锁严重免疫缺陷综合症患者显示出T细胞发育异常,T细胞的缺乏或数量明显减少,提示IL-2γ链在T细胞的发育中起至关重要的作用。
IL-
4、IL-7均在T细胞的发育中起作用,它们共用一条信号转导链IL-2Rγ链来传递T细胞增殖的信号。
在IL-2受体系统中,α链构成低亲和力受体,中亲和力受体由β、γ链组成,高亲和力受体由α、β、γ三条链组成,其中,γ链相当于其它细胞因子受体的β链,参参与信号传递,而αβ链则相当于α链,主要发挥识别和结合配体的作用。
(二)共享链与细胞因子受体信号转导
细胞因子信号转导首先需要配体与受体结合并诱导受体二聚体(或三聚体)的形成,使二聚体(或三聚体)胞浆部分的相互作用,由此引起不同途径的信号转导。
在IL-2R系统中,受β、γ链的二聚作用对于信号。