数字信号处理实验作业剖析.doc
数字信号处理实验报告 3
数字信号处理实验报告姓名:班级:通信学号:实验名称:频域抽样定理验证实验类型:验证试验指导教师:实习日期:2013.频域采样定理验证实验一. 实验目的:1. 加深对离散序列频域抽样定理的理解2.了解由频谱通过IFFT 计算连续时间信号的方法3.掌握用MATLAB 语言进行频域抽样与恢复时程序的编写方法 4、用MATLAB 语言将X(k)恢复为X(z)及X(e jw )。
二. 实验原理:1、1、频域采样定理: 如果序列x(n)的长度为M ,频域抽样点数为N ,则只有当频域采样点数N ≥M 时,才有x N (n)=IDFT[X(k)]=x(n),即可由频域采样X(k)无失真的恢复原序列 x(n)。
2、用X(k)表示X(z)的内插公式:∑-=-----=10111)(1)(N k kNNzWz k X Nz X内插函数: zWzkNNN z 1k111)(-----=ϕ频域内插公式:∑-=-=10)2()()(N K j k Nk X e X πωϕω频域内插函数:e N j N N )21()2sin()2sin(1)(--=ωωωωϕ三. 实验任务与步骤:实验一:长度为26的三角形序列x(n)如图(b)所示,编写MATLAB 程序验证频域抽样定理。
实验二:已知一个时间序列的频谱为X(e jw )=2+4e -jw +6e -j2w +4e -j3w +2e -j4w分别取频域抽样点数N为3、5和10,用IPPT计算并求出其时间序列x(n),用图形显示各时间序列。
由此讨论原时域信号不失真地由频域抽样恢复的条件。
实验三:由X32(k)恢复X(z)和X(e jw)。
四.实验结论与分析:实验一:源程序:M=26;N=32;n=0:M; %产生M长三角波序列x(n)xa=0:floor(M/2);xb= ceil(M/2)-1:-1:0; xn=[xa,xb];Xk=fft(xn,512); %1024点FFT[x(n)], 用于近似序列x(n)的TFX32k=fft(xn,32); %32点FFT[x(n)]x32n=ifft(X32k); %32点IFFT[X32(k)]得到x32(n)X16k=X32k(1:2:N); %隔点抽取X32k得到X16(K)x16n=ifft(X16k,N/2); %16点IFFT[X16(k)]得到x16(n)subplot(3,2,2);stem(n,xn,'.');box ontitle('(b) 三角波序列x(n)');xlabel('n');ylabel('x(n)');axis([0,32,0,20])k=0:511;wk=2*k/512;subplot(3,2,1);plot(wk,abs(Xk));title('(a)FT[x(n)]');xlabel('\omega/\pi');ylabel('|X(e^j^\omega)|');axis([0,1,0,200])k=0:N/2-1;subplot(3,2,3);stem(k,abs(X16k),'.');box ontitle('(c) 16点频域');xlabel('k');ylabel('|X_1_6(k)|');axis([0,8,0,200])n1=0:N/2-1;subplot(3,2,4);stem(n1,x16n,'.');box ontitle('(d) 16点IDFT[X_1_6(k)]');xlabel('n');ylabel('x_1_6(n)');axis([0,32,0,20])k=0:N-1;subplot(3,2,5);stem(k,abs(X32k),'.');box ontitle('(e) 32点频域采样');xlabel('k');ylabel('|X_3_2(k)|');axis([0,16,0,200])n1=0:N-1;subplot(3,2,6);stem(n1,x32n,'.');box ontitle('(f) 32点IDFT[X_3_2(k)]');xlabel('n');ylabel('x_3_2(n)');axis([0,32,0,20])结果如下所示:实验一分析:序列x(n)的长度M=26,由图中可以看出,当采样点数N=16<M时,x16(n)确实等于原三角序列x(n)以16为周期的周期延拓序列的主值序列。
数字信号处理实验报告
实验一 信号、系统及系统响应一、实验目的1、熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对时域采样定理的理解。
2、熟悉离散信号和系统的时域特性。
3、熟悉线性卷积的计算编程方法:利用卷积的方法,观察、分析系统响应的时域特性。
4、掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号、系统及其系统响应进行频域分析。
二、 实验原理1.理想采样序列:对信号x a (t)=A e −αt sin(Ω0t )u(t)进行理想采样,可以得到一个理想的采样信号序列x a (t)=A e −αt sin(Ω0nT ),0≤n ≤50,其中A 为幅度因子,α是衰减因子,Ω0是频率,T 是采样周期。
2.对一个连续时间信号x a (t)进行理想采样可以表示为该信号与一个周期冲激脉冲的乘积,即x ̂a (t)= x a (t)M(t),其中x ̂a (t)是连续信号x a (t)的理想采样;M(t)是周期冲激M(t)=∑δ+∞−∞(t-nT)=1T ∑e jm Ωs t +∞−∞,其中T 为采样周期,Ωs =2π/T 是采样角频率。
信号理想采样的傅里叶变换为X ̂a (j Ω)=1T ∑X a +∞−∞[j(Ω−k Ωs )],由此式可知:信号理想采样后的频谱是原信号频谱的周期延拓,其延拓周期为Ωs =2π/T 。
根据时域采样定理,如果原信号是带限信号,且采样频率高于原信号最高频率分量的2倍,则采样以后不会发生频率混叠现象。
三、简明步骤产生理想采样信号序列x a (n),使A=444.128,α=50√2π,Ω0=50√2π。
(1) 首先选用采样频率为1000HZ ,T=1/1000,观察所得理想采样信号的幅频特性,在折叠频率以内和给定的理想幅频特性无明显差异,并做记录;(2) 改变采样频率为300HZ ,T=1/300,观察所得到的频谱特性曲线的变化,并做记录;(3) 进一步减小采样频率为200HZ ,T=1/200,观察频谱混淆现象是否明显存在,说明原因,并记录这时候的幅频特性曲线。
数字信号处理实验报告
数字信号处理实验报告引言数字信号处理(Digital Signal Processing,DSP)是一门研究数字信号的获取、分析、处理和控制的学科。
在现代科技发展中,数字信号处理在通信、图像处理、音频处理等领域起着重要的作用。
本次实验旨在通过实际操作,深入了解数字信号处理的基本原理和实践技巧。
实验一:离散时间信号的生成与显示在实验开始之前,我们首先需要了解信号的生成与显示方法。
通过数字信号处理器(Digital Signal Processor,DSP)可以轻松生成和显示各种类型的离散时间信号。
实验设置如下:1. 设置采样频率为8kHz。
2. 生成一个正弦信号:频率为1kHz,振幅为1。
3. 生成一个方波信号:频率为1kHz,振幅为1。
4. 将生成的信号通过DAC(Digital-to-Analog Converter)输出到示波器上进行显示。
实验结果如下图所示:(插入示波器显示的正弦信号和方波信号的图片)实验分析:通过示波器的显示结果可以看出,正弦信号在时域上呈现周期性的波形,而方波信号则具有稳定的上下跳变。
这体现了正弦信号和方波信号在时域上的不同特征。
实验二:信号的采样和重构在数字信号处理中,信号的采样是将连续时间信号转化为离散时间信号的过程,信号的重构则是将离散时间信号还原为连续时间信号的过程。
在实际应用中,信号的采样和重构对信号处理的准确性至关重要。
实验设置如下:1. 生成一个正弦信号:频率为1kHz,振幅为1。
2. 设置采样频率为8kHz。
3. 对正弦信号进行采样,得到离散时间信号。
4. 对离散时间信号进行重构,得到连续时间信号。
5. 将重构的信号通过DAC输出到示波器上进行显示。
实验结果如下图所示:(插入示波器显示的连续时间信号和重构信号的图片)实验分析:通过示波器的显示结果可以看出,重构的信号与原信号非常接近,并且能够还原出原信号的形状和特征。
这说明信号的采样和重构方法对于信号处理的准确性有着重要影响。
最新数字信号处理实验报告
最新数字信号处理实验报告一、实验目的本次实验旨在加深对数字信号处理(DSP)理论的理解,并通过实践操作掌握数字信号处理的基本方法和技术。
通过实验,学习如何使用相关软件工具进行信号的采集、分析、处理和重构,提高解决实际问题的能力。
二、实验内容1. 信号采集与分析- 使用数字示波器采集模拟信号,并将其转换为数字信号。
- 利用傅里叶变换(FFT)分析信号的频谱特性。
- 观察并记录信号的时域和频域特性。
2. 滤波器设计与实现- 设计低通、高通、带通和带阻滤波器。
- 通过编程实现上述滤波器,并测试其性能。
- 分析滤波器对信号的影响,并调整参数以优化性能。
3. 信号重构实验- 应用所学滤波器对采集的信号进行去噪处理。
- 使用逆傅里叶变换(IFFT)重构经过滤波处理的信号。
- 比较重构信号与原始信号的差异,评估处理效果。
三、实验设备与材料- 计算机及DSP相关软件(如MATLAB、LabVIEW等)- 数字示波器- 模拟信号发生器- 数据采集卡四、实验步骤1. 信号采集- 连接并设置好数字示波器和模拟信号发生器。
- 生成一系列不同频率和幅度的模拟信号。
- 通过数据采集卡将模拟信号转换为数字信号。
2. 滤波器设计- 在DSP软件中设计所需的滤波器,并编写相应的程序代码。
- 调整滤波器参数,如截止频率、增益等,以达到预期的滤波效果。
3. 信号处理与重构- 应用设计的滤波器对采集的数字信号进行处理。
- 利用IFFT对处理后的信号进行重构。
- 通过对比原始信号和重构信号,评估滤波器的性能。
五、实验结果与分析- 展示信号在时域和频域的分析结果。
- 描述滤波器设计参数及其对信号处理的影响。
- 分析重构信号的质量,包括信噪比、失真度等指标。
六、实验结论- 总结实验中所学习到的数字信号处理的基本概念和方法。
- 讨论实验中遇到的问题及其解决方案。
- 提出对实验方法和过程的改进建议。
七、参考文献- 列出实验过程中参考的书籍、文章和其他资源。
【精品】数字信号处理实验报告
【精品】数字信号处理实验报告
1 实验目的
本次实验的目的是在MATLAB软件环境中运用数字信号处理理论,通过实验操作来检验用于数字信号处理的算法的正确性,以便明确数字信号处理理论在实际应用中的重要作用。
2 实验原理
数字信号处理实验的原理是使用MATLAB进行数字信号处理算法实验,首先,设置一些用于数字信号处理的参数,如传输函数、离散时间区间、采样频率、滤波器类型等;其次,按照信号处理的算法进行编程实现,搭建一个数字信号处理系统,在MATLAB下对信号进行处理,包括采样、滤波和量化等;最后,对处理后的信号进行数字分析,监测数字信号处理后的变化趋势,验证数字信号处理算法的正确性。
3 实验步骤
(1) 建立信号处理实验系统:选择一个常见的信号处理算法,运用MATLAB软件分别编写信号发生程序、信号采样程序、滤波程序和信号量化程序;
(2) 运行实验程序:实验同学可以自行设置参数,如传输函数、离散时间区间、采样频率、滤波器类型等,调整完毕后,点击“run”,运行实验程序;
(3) 观察实验结果:运行完毕后,可以观察MATLAB的图形结果,以此来分析信号处理算法的性能;
(4) 对结果进行分析:经过上述实验操作后,可以根据所得到的实验结果来判断信号处理算法的性能,如输出信号的噪声抑制能力、良好的时域和频域性能等,从而验证信号处理理论在实际应用中的价值。
4 总结。
课程大作业——数字信号处理实验报告
实验一 信号、系统及系统响应一.实验目的1.熟悉理想采样的性质,了解信号采用前后的频谱变化,加深对采样定理的理解。
2.熟悉离散信号和系统的时域特性。
3.熟悉线性卷积的计算编程方法:利用卷积的方法,观察、分析系统响应的时域特性。
4.掌握序列傅氏变换的计算机实现方法,利用序列的傅氏变换对离散信号、系统及系统响应进行频域分析。
二.实验原理1.连续时间信号的采样采样是从连续时间信号到离散时间信号的过渡桥梁,对采样过程的研究不仅可以了解采样前后信号时域和频域特性发生的变化以及信号内容不丢失的条件,而且有助于加深对拉氏变换、傅氏变换、z 变换和序列傅氏变换之间关系的理解。
对一个连续时间信号进行理想采样的过程可以表示为该信号和个周期冲激脉冲的乘积,即)()()(ˆt M t x t xa a = (1-1) 其中)(ˆt xa 是连续信号)(t x a 的理想采样,)(t M 是周期冲激脉冲 ∑+∞-∞=-=n nT t t M )()(δ (1-2)它也可以用傅立叶级数表示为:∑+∞-∞=Ω=n tjm s e T t M 1)( (1-3)其中T 为采样周期,T s /2π=Ω是采样角频率。
设)(s X a 是连续时间信号)(t x a 的双边拉氏变换,即有:⎰+∞∞--=dt e t xs X st aa )()( (1-4)此时理想采样信号)(ˆt xa 的拉氏变换为 ∑⎰+∞-∞=+∞∞--Ω-===m s a sta a jm s X T dt e t x s X )(1)(ˆ)(ˆ (1-5)作为拉氏变换的一种特例,信号理想采样的傅立叶变换[]∑+∞-∞=Ω-Ω=Ωm s a a m j X T j X )(1)(ˆ (1-6)由式(1-5)和式(1-6)可知,信号理想采样后的频谱是原信号频谱的周期延拓,其延拓周期等于采样频率。
根据Shannon 采样定理,如果原信号是带限信号,且采样频率高于原信号最高频率分量的2倍,则采样以后不会发生频率混淆现象。
数字信号处理实验报告(西南交通大学)
实验三
用窗函数法设计 FIR 数字滤波器
一、实验目的 1.熟悉用双线性变换法设计 FIR 数字滤波器的原理与方法; 2.掌握数字滤波器的计算机仿真方法 二、实验内容 1.用 MATLAB 产生各种窗函数 2.利用窗函数设计 FIR 滤波器 设计具有下列指标(p=0.25(,Rp=0.25dB,(s=0.3(,Rp=50dB 的低通数字滤波 器。 要求: 1)、选择合适的窗函数; 2)、画出滤波器的频率特性
x(n) cos(0.48n) cos(0.52n)
(1) 取 x(n)(n=0:9)时,画出 x(n)的频谱 X(k) 的幅度; (2) 将(1)中的 x(n)以补零的方式,使 x(n)加长到(n:0~99)时,画出 x(n)的频谱 X(k) 的幅度; (3) 取 x(n)(n:0~99)时,画出 x(n)的频谱 X(k) 的幅度。 利用 FFT 进行谱分析。 2.1 MATLAB 结果输出:
图 1.31
不同采样点数对应的幅值曲线
结果分析:随着采样点数的增加,幅值曲线越来越清晰,更能准确反应幅值 随时间的变化规律。
实验二 用双线性变换法设计 IIR 数字滤波器
一、实验目的 1.熟悉用双线性变换法设计 IIR 数字滤波器的原理与方法; 2.掌握数字滤波器的计算机仿真方法; 3.通过观察对实际心电图的滤波作用,获得数字滤波器的感性知识。 二、实验内容 1.用双线性变换法设计一个巴特沃斯低通 IIR 滤波器,设计指标参数为:在通 带内频率低于 0.2π时,最大衰减小于 1dB;在阻带内[0.3π,π]频率区间 上,最小衰减大于 15dB 2.以 0.2π为采样间隔,打印出数字滤波器在频率区 间[0, 0.2π]上的幅值 响应曲线。 3. 用 所 设 计 的 滤 波 器 对 实 际 的 心 电 图 信 号 采 样 序 列 x(n)=[-4,-2,0,-4,-6,-4,-2,-4,-6,-6,-4,-4,-6,-6,-2,6,12,8,0,-16,-38,-6 0,-84,-90,-66,-32,-4,-2,-4,8,12,12,10,6,6,6,4,0,0,0,0,0,-2,-4,0,0,0,2,-2,0,0,-2,-2,-2,-2,0];) 进行仿真滤波处理,并分别打印出滤波前后的心电 图信号波形图,观察总结滤波作用与效果。 三、MATLAB 结果输出 1.模拟滤波器和数字滤波器幅度特性的比较
数字信号处理实验报告
一、实验目的1. 理解数字信号处理的基本概念和原理。
2. 掌握离散时间信号的基本运算和变换方法。
3. 熟悉数字滤波器的设计和实现。
4. 培养实验操作能力和数据分析能力。
二、实验原理数字信号处理(Digital Signal Processing,DSP)是利用计算机对信号进行采样、量化、处理和分析的一种技术。
本实验主要涉及以下内容:1. 离散时间信号:离散时间信号是指时间上离散的信号,通常用序列表示。
2. 离散时间系统的时域分析:分析离散时间系统的时域特性,如稳定性、因果性、线性等。
3. 离散时间信号的变换:包括离散时间傅里叶变换(DTFT)、离散傅里叶变换(DFT)和快速傅里叶变换(FFT)等。
4. 数字滤波器:设计、实现和分析数字滤波器,如低通、高通、带通、带阻滤波器等。
三、实验内容1. 离散时间信号的时域运算(1)实验目的:掌握离散时间信号的时域运算方法。
(2)实验步骤:a. 使用MATLAB生成两个离散时间信号;b. 进行时域运算,如加、减、乘、除等;c. 绘制运算结果的时域波形图。
2. 离散时间信号的变换(1)实验目的:掌握离散时间信号的变换方法。
(2)实验步骤:a. 使用MATLAB生成一个离散时间信号;b. 进行DTFT、DFT和FFT变换;c. 绘制变换结果的频域波形图。
3. 数字滤波器的设计和实现(1)实验目的:掌握数字滤波器的设计和实现方法。
(2)实验步骤:a. 设计一个低通滤波器,如巴特沃斯滤波器、切比雪夫滤波器等;b. 使用MATLAB实现滤波器;c. 使用MATLAB对滤波器进行时域和频域分析。
4. 数字滤波器的应用(1)实验目的:掌握数字滤波器的应用。
(2)实验步骤:a. 采集一段语音信号;b. 使用数字滤波器对语音信号进行降噪处理;c. 比较降噪前后的语音信号,分析滤波器的效果。
四、实验结果与分析1. 离散时间信号的时域运算实验结果显示,通过MATLAB可以方便地进行离散时间信号的时域运算,并绘制出运算结果的时域波形图。
数字信号处理实验报告
数字信号处理实验报告实验报告
实验题目:数字信号处理实验
实验日期:XXXX年XX月XX日
实验目的:
1. 了解数字信号处理的基本概念和原理;
2. 掌握数字信号的采样、量化和编码方法;
3. 学习数字信号处理的基本算法和应用。
实验内容:
1. 采样与重建
1.1 采样定理的验证
1.2 重建信号的实现
2. 量化与编码
2.1 量化方法的比较
2.2 编码方法的选择与实现
3. 数字滤波器设计与实现
3.1 FIR滤波器设计方法
3.2 IIR滤波器设计方法
实验步骤:
1. 使用示波器对输入的模拟信号进行采样,记录采样频率和采样点数。
2. 使用恢复信号方法,将采样得到的数字信号重建为模拟信号,并进行对比分析。
3. 对重建的信号进行量化处理,比较不同量化方法的效果,选择合适的方法进行编码。
4. 设计并实现数字滤波器,比较FIR和IIR滤波器的性能和实
现复杂度。
实验结果与分析:
1. 采样与重建实验结果表明,在满足采样定理的条件下,采样频率越高,重建信号的质量越高。
2. 量化与编码实验结果表明,在相同位数下,线性量化方法优于非线性量化方法,而编码方法可以根据信号特性选择,例如
差分编码适用于连续变化的信号。
3. 数字滤波器实验结果表明,FIR滤波器相对于IIR滤波器在时域和频域上更易于设计和理解,但实现复杂度较高。
实验结论:
数字信号处理是对模拟信号进行采样、量化和编码等处理,具有较高的灵活性和可靠性。
在实际应用中,应根据需要选择合适的采样频率、量化位数和编码方式,并根据信号特性选择合适的滤波器设计方法。
数字信号处理实验报告完整版[5篇模版]
数字信号处理实验报告完整版[5篇模版]第一篇:数字信号处理实验报告完整版实验 1利用 T DFT 分析信号频谱一、实验目的1.加深对 DFT 原理的理解。
2.应用 DFT 分析信号的频谱。
3.深刻理解利用DFT 分析信号频谱的原理,分析实现过程中出现的现象及解决方法。
二、实验设备与环境计算机、MATLAB 软件环境三、实验基础理论T 1.DFT 与与 T DTFT 的关系有限长序列的离散时间傅里叶变换在频率区间的N 个等间隔分布的点上的 N 个取样值可以由下式表示:212 /0()|()()0 1Nj knjNk NkX e x n e X k k Nπωωπ--====≤≤-∑由上式可知,序列的 N 点 DFT ,实际上就是序列的 DTFT 在 N 个等间隔频率点上样本。
2.利用 T DFT 求求 DTFT方法 1 1:由恢复出的方法如下:由图 2.1 所示流程可知:101()()()Nj j n kn j nNn n kX e x n e X k W eNωωω∞∞----=-∞=-∞=⎡⎤==⎢⎥⎣⎦∑∑∑由上式可以得到:IDFT DTFT第二篇:数字信号处理实验报告JIANGSUUNIVERSITY OF TECHNOLOGY数字信号处理实验报告学院名称:电气信息工程学院专业:班级:姓名:学号:指导老师:张维玺(教授)2013年12月20日实验一离散时间信号的产生一、实验目的数字信号处理系统中的信号都是以离散时间形态存在的,所以对离散时间信号的研究是数字信号的基本所在。
而要研究离散时间信号,首先需要产生出各种离散时间信号。
使用MATLAB软件可以很方便地产生各种常见的离散时间信号,而且它还具有强大绘图功能,便于用户直观地处理输出结果。
通过本实验,学生将学习如何用MATLAB产生一些常见的离散时间信号,实现信号的卷积运算,并通过MATLAB中的绘图工具对产生的信号进行观察,加深对常用离散信号和信号卷积和运算的理解。
数字信号处理与分析实验报告
h (n) d
理 想 滤 波 器 单 位 抽 样 响 应 Hanning窗 N=15
1
1
0.8
0.8
0.6
0.6
滤波器单位抽样响应 0.2 0.15
h(n)
(n)
0.4
0.4
0.1
0.2
0.2
0.05
0
0
0
0
10
20 0
10
20 0
10
20
|H(ej)| 0
3dB衰 减 和 20dB衰 减
0
0
()
-20
图一:fp=25Hz;fs=40Hz;Ap=1dB;As=15dB。
Magnitude (dB)
0
-10
-20
-30
-40
0
10
20
30
40
50
60
Frequency (Hz)
0
-100
-200
-300
-400
0
10
20
30
40
50
60
Frequency (Hz)
1.5
1
0.5
0
-0.5
0
0.5
1
1.5
3
|X(k)|
2
1
0
0
2
4
6
8
k
图五
|X(k)|
1 0.5
0 -0.5
-1 0
8 6 4 2 0
0
图六
N = 16
5
10
15
n
5
10
15
k
(k)
(k)
(k)
史上最全数字信号处理实验报告完美版
实验一、零极点分布对系统频率响应的影响Y(n)=x(n)+ay(n-1)1、调用MATLAB函数freqz计算并绘制的幅频特性和相频特性其中:1 代表a=0.7;2代表a=0.8;3代表a=0.9a=0.7时的零极点图A=0.8时的零极点图a=0.9时的零极点图观察零极点的分布与相应曲线易知:小结:系统极点z=a,零点z=0,当B点从w=0逆时针旋转时,在w=0点,由于极点向量长度最短,形成波峰,并且当a越大,极点越接近单位圆,峰值愈高愈尖锐;在w=pi点形成波谷;z=0处零点不影响幅频响应2、先求出系统传函的封闭表达式,通过直接计算法得出的幅频特性和相频特性曲线。
其中:1代表a=0.7;2代表a=0.8;3代表a=0.9附录程序如下:(对程序进行部分注释)>> a=0.7;w=0:0.01:2*pi;%设定w的范围由0到2π,间隔为0.01y=1./(1-a*exp(-j*w)); %生成函数subplot(211);plot(w/2/pi,10*log(abs(y)),'g');%生成图像其中通过调用abs函数计算幅值hold on;xlabel('Frequency(Hz)');%定义横坐标名称ylabel('magnitude(dB)');%定义纵坐标名称title('a=0.8,直接计算h(ejw)');grid on;%定义图片标题subplot(212);plot(w/2/pi,unwrap(angle(y)),'g');grid on;%生成图像其中通过调用angle计算相角,‘g’为规定线条颜色hold on;>> a=0.8;w=0:0.01:2*pi;y=1./(1-a*exp(-j*w));subplot(211);plot(w/2/pi,10*log(abs(y)),'r');hold on;xlabel('Frequency(Hz)');ylabel('magnitude(dB)');title('a=0.8,直接计算h(ejw)');grid on;subplot(212);plot(w/2/pi,unwrap(angle(y)),'r');grid on;hold on;>> a=0.9;w=0:0.01:2*pi;y=1./(1-a*exp(-j*w));subplot(211);plot(w/2/pi,10*log(abs(y)),'b');hold on;xlabel('Frequency(Hz)');ylabel('magnitude(dB)');title('a=0.9,直接计算h(ejw)');grid on;subplot(212);plot(w/2/pi,unwrap(angle(y)),'b');grid on;hold on;2、y(n)=x(n)=ax(n-1)通过调用freqz函数绘图,其中:1代表a=0.7,;2代表a=0.8;3代表a=0.9附录程序如下:(因为程序同实验一相同不再进行注释)a=0.7;A=1;B=[1,a];freqz(B,A,256,'whole',1);title('a=0.7');hold on;a=0.8;A=1;B=[1,a];freqz(B,A,256,'whole',1);title('a=0.8');hold on;a=0.9;A=1;B=[1,a];freqz(B,A,256,'whole',1);title('a=0.9');以下为a为不同数值时的零极点图a=0.7A=0.8A=0.9小结:系统极点z=0,零点z=a,当B点从w=0逆时针旋转时,在w=0点,由于零点向量长度最长,形成波峰:在w=pi点形成波谷;z=a处极点不影响相频响应。
数字信号处理实验报告_完整版
实验1 利用DFT 分析信号频谱一、实验目的1.加深对DFT 原理的理解。
2.应用DFT 分析信号的频谱。
3.深刻理解利用DFT 分析信号频谱的原理,分析实现过程中出现的现象及解决方法。
二、实验设备与环境 计算机、MATLAB 软件环境 三、实验基础理论1.DFT 与DTFT 的关系有限长序列x (n )(0≤n ≤N −1)的离散时间傅里叶变换X (e jω)在频率区间(0≤ω≤2π)的N 个等间隔分布的点kω=2πk /N (0≤k ≤N −1)上的N 个取样值可以由下式表示:212/0()|()()01N jkn j Nk N k X e x n eX k k N πωωπ--====≤≤-∑由上式可知,序列x (n )的N 点DFT X k ,实际上就是x (n )序列的DTFT 在N 个等间隔频率点kω=2πk /N (0≤k ≤N −1)上样本X k 。
2.利用DFT 求DTFT方法1:由恢复出的方法如下:由图2.1所示流程可知:101()()()N j j nkn j nN n n k X e x n eX k W e N ωωω∞∞----=-∞=-∞=⎡⎤==⎢⎥⎣⎦∑∑∑ 由上式可以得到:IDFTDTFTX (ejω)12()()()Nj k kX e X k Nωπφω==-∑ 其中为内插函数12sin(/2)()sin(/2)N j N x eN ωωφω--= 方法2:实际在MATLAB 计算中,上述插值运算不见得是最好的办法。
由于DFT 是DTFT 的取样值,其相邻两个频率样本点的间距为2π/N ,所以如果我们增加数据的长度N ,使得到的DFT 谱线就更加精细,其包络就越接近DTFT 的结果,这样就可以利用DFT 计算DTFT 。
如果没有更多的数据,可以通过补零来增加数据长度。
3.利用DFT 分析连续信号的频谱采用计算机分析连续时间信号的频谱,第一步就是把连续信号离散化,这里需要进行两个操作:一是采样,二是截断。
数字信号处理实验报告
数字信号处理实验报告数字信号处理实验报告一、实验目的本实验旨在通过数字信号处理的方法,对给定的信号进行滤波、频域分析和采样率转换等操作,深入理解数字信号处理的基本原理和技术。
二、实验原理数字信号处理(DSP)是一种利用计算机、数字电路或其他数字设备对信号进行各种处理的技术。
其主要内容包括采样、量化、滤波、变换分析、重建等。
其中,滤波器是数字信号处理中最重要的元件之一,它可以用来提取信号的特征,抑制噪声,增强信号的清晰度。
频域分析是指将时域信号转化为频域信号,从而更好地理解信号的频率特性。
采样率转换则是在不同采样率之间对信号进行转换,以满足不同应用的需求。
三、实验步骤1.信号采集:首先,我们使用实验室的信号采集设备对给定的信号进行采集。
采集的信号包括噪声信号、含有正弦波和方波的混合信号等。
2.数据量化:采集到的信号需要进行量化处理,即将连续的模拟信号转化为离散的数字信号。
这一步通常通过ADC(模数转换器)实现。
3.滤波处理:将量化后的数字信号输入到数字滤波器中。
我们使用不同的滤波器,如低通、高通、带通等,对信号进行滤波处理,以观察不同滤波器对信号的影响。
4.频域分析:将经过滤波处理的信号进行FFT(快速傅里叶变换)处理,将时域信号转化为频域信号,从而可以对其频率特性进行分析。
5.采样率转换:在进行上述处理后,我们还需要对信号进行采样率转换。
我们使用了不同的采样率对信号进行转换,并观察采样率对信号处理结果的影响。
四、实验结果及分析1.滤波处理:经过不同类型滤波器处理后,我们发现低通滤波器可以有效抑制噪声,高通滤波器可以突出高频信号的特征,带通滤波器则可以提取特定频率范围的信号。
这表明不同类型的滤波器在处理不同类型的信号时具有不同的效果。
2.频域分析:通过FFT处理,我们将时域信号转化为频域信号。
在频域分析中,我们可以更清楚地看到信号的频率特性。
例如,对于噪声信号,我们可以看到其频率分布较为均匀;对于含有正弦波和方波的混合信号,我们可以看到其包含了不同频率的分量。
数字信号处理实验报告(自己的实验报告)
数字信号处理实验报告西南交通大学信息科学与技术学院姓名:伍先春学号:20092487班级:自动化1班指导老师:张翠芳实验一序列的傅立叶变换实验目的进一步加深理解DFS,DFT 算法的原理;研究补零问题;快速傅立叶变换(FFT )的应用。
实验步骤1. 复习DFS 和DFT 的定义,性质和应用;2. 熟悉MATLAB 语言的命令窗口、编程窗口和图形窗口的使用;利用提供的程序例子编写实验用程序;按实验内容上机实验,并进行实验结果分析;写出完整的实验报告,并将程序附在后面。
实验内容1. 周期方波序列的频谱试画出下面四种情况下的的幅度频谱,并分析补零后,对信号频谱的影响。
2. 有限长序列x(n)的DFT(1) 取x(n)(n=0:10)时,画出x(n)的频谱X(k) 的幅度;(2) 将(1)中的x(n)以补零的方式,使x(n)加长到(n:0~100)时,画出x(n)的频谱X(k) 的幅度;(3) 取x(n)(n:0~100)时,画出x(n)的频谱X(k) 的幅度。
利用FFT进行谱分析 已知:模拟信号以t=0.01n(n=0:N-1)进行采样,求N 点DFT 的幅值谱。
请分别画出N=45; N=50;N=55;N=60时的幅值曲线。
数字信号处理实验一1.(1) L=5;N=20;60,7)4(;60,5)3(;40,5)2(;20,5)1()](~[)(~,2,1,01)1(,01,1)(~=========±±=⎩⎨⎧-+≤≤+-+≤≤=N L N L N L N L n x DFS k X m N m n L mN L mN n mN n x )52.0cos()48.0cos()(n n n x ππ+=)8cos(5)4sin(2)(t t t x ππ+=n=1:N;xn=[ones(1,L),zeros(1,N-L)];Xk=dfs(xn,N);magXk=abs([Xk(N/2+1:N) Xk(1:N/2+1)]);k=[-N/2:N/2];figure(1)subplot(2,1,1);stem(n,xn);xlabel('n');ylabel('xtide(n)'); title('DFS of SQ.wave:L=5,N=20');subplot(2,1,2);stem(k,magXk);axis([-N/2,N/2,0,16]);xlabel('k');ylabel('Xtide(k)');(2)L=5;N=40;n=1:N;xn=[ones(1,L),zeros(1,N-L)];Xk=dfs(xn,N);magXk=abs([Xk(N/2+1:N) Xk(1:N/2+1)]);k=[-N/2:N/2];figure(2)subplot(2,1,1);stem(n,xn);xlabel('n');ylabel('xtide(n)'); title('DFS of SQ.wave:L=5,N=40');subplot(2,1,2);stem(k,magXk);axis([-N/2,N/2,0,16]);xlabel('k');ylabel('Xtide(k)');(3)L=5;N=60;n=1:N;xn=[ones(1,L),zeros(1,N-L)];Xk=dfs(xn,N);magXk=abs([Xk(N/2+1:N) Xk(1:N/2+1)]);k=[-N/2:N/2];figure(3)subplot(2,1,1);stem(n,xn);xlabel('n');ylabel('xtide(n)'); title('DFS of SQ.wave:L=5,N=60');subplot(2,1,2);stem(k,magXk);axis([-N/2,N/2,0,16]);xlabel('k');ylabel('Xtide(k)');(4)L=7;N=60;n=1:N;xn=[ones(1,L),zeros(1,N-L)];Xk=dfs(xn,N);magXk=abs([Xk(N/2+1:N) Xk(1:N/2+1)]);k=[-N/2:N/2];figure(4)subplot(2,1,1);stem(n,xn);xlabel('n');ylabel('xtide(n)'); title('DFS of SQ.wave:L=7,N=60');subplot(2,1,2);stem(k,magXk);axis([-N/2,N/2,0,16]);xlabel('k');ylabel('Xtide(k)');2. (1)M=10;N=10;n=1:M;xn=cos(0.48*pi*n)+cos(0.52*pi*n);n1=[0:1:N-1];y1=[xn(1:1:M),zeros(1,N-M)]; figure(1)subplot(2,1,1);stem(n1,y1);xlabel('n'); title('signal x(n),0<=n<=10');axis([0,N,-2.5,2.5]);Y1=fft(y1);magY1=abs(Y1(1:1:N/2+1));k1=0:1:N/2;w1=2*pi/N*k1;subplot(2,1,2);title('Samples of DTFT Magnitude');stem(w1/pi,magY1); axis([0,1,0,10]);xlabel('frequency in pi units');(2)M=10;N=100;n=1:M;xn=cos(0.48*pi*n)+cos(0.52*pi*n);n1=[0:1:N-1];y1=[xn(1:1:M),zeros(1,N-M)]; figure(2)subplot(2,1,1);stem(n1,y1);xlabel('n'); title('signal x(n),0<=n<=10');axis([0,N,-2.5,2.5]);Y1=fft(y1);magY1=abs(Y1(1:1:N/2+1));k1=0:1:N/2;w1=2*pi/N*k1;subplot(2,1,2);title('Samples of DTFT Magnitude');stem(w1/pi,magY1); axis([0,1,0,10]);xlabel('frequency in pi units');(3)M=100;N=100;n=1:M;xn=cos(0.48*pi*n)+cos(0.52*pi*n);n1=[0:1:N-1];y1=[xn(1:1:M),zeros(1,N-M)]; figure(3)subplot(2,1,1);stem(n1,y1);xlabel('n'); title('signal x(n),0<=n<=100');axis([0,N,-2.5,2.5]);Y1=fft(y1);magY1=abs(Y1(1:1:N/2+1));k1=0:1:N/2;w1=2*pi/N*k1;subplot(2,1,2);title('Samples of DTFT Magnitude');stem(w1/pi,magY1); axis([0,1,0,10]);xlabel('frequency in pi units');3.figure(1)subplot(2,2,1)N=45;n=0:N-1;t=0.01*n;q=n*2*pi/N;x=2*sin(4*pi*t)+5*cos(8*pi*t); y=fft(x,N);plot(q,abs(y))stem(q,abs(y))title('FFT N=45')%subplot(2,2,2)N=50;n=0:N-1;t=0.01*n;q=n*2*pi/N;x=2*sin(4*pi*t)+5*cos(8*pi*t); y=fft(x,N);plot(q,abs(y))title('FFT N=50')%subplot(2,2,3)N=55;n=0:N-1;t=0.01*n;q=n*2*pi/N;x=2*sin(4*pi*t)+5*cos(8*pi*t); y=fft(x,N);plot(q,abs(y))title('FFT N=55')%subplot(2,2,4)N=16;n=0:N-1;t=0.01*n;q=n*2*pi/N;x=2*sin(4*pi*t)+5*cos(8*pi*t); y=fft(x,N);plot(q,abs(y))title('FFT N=16')function[Xk]=dfs(xn,N)n=[0:1:N-1];k=[0:1:N-1];WN=exp(-j*2*pi/N);nk=n'*k;WNnk=WN.^nk;Xk=xn*WNnk;实验二 用双线性变换法设计IIR 数字滤波器 一、 实验目的1. 熟悉用双线性变换法设计IIR 数字滤波器的原理与方法; 2. 掌握数字滤波器的计算机仿真方法;3.通过观察对实际心电图的滤波作用,获得数字滤波器的感性知识。
数字信号处理课程实验报告
数字信号处理课程实验报告课题名称:IIR滤波器相位校正实验一、实验内容与分析1、实验目的和内容1)利用MATLAB设计一个IIR滤波器;2)结合课本关于全通滤波器特性知识(课本p128),在IIR滤波器后级联一个全通相位滤波器进行相位校正,使此滤波器最终实现线性相位特性;3)分别使用相位校正前后两滤波器实现对某一信号的处理;4)画出IIR滤波器、全通滤波器、相位校正后滤波器的幅度频率特性曲线、相位频率特性曲线,信号时域波形、信号的幅度频率特性曲线、相位频率特性曲线;5)详述实验设计原理,分析相位校正前后两类滤波器对信号处理后的区别。
2、实验的分析1)、IIR滤波器的设计通过对实验内容的理解,我们首先需要设计一个IIR滤波器,对课本第六章的学习我们知道IIR数字滤波器有两种设计方法:间接设计法和直接设计法。
间接设计法中有巴特沃斯滤波器,切比雪夫I型、II型滤波器,椭圆滤波器和贝塞尔滤波器五种。
我们选择设计切比雪夫II型低通滤波器,其中的技术指标为:通带边界频率fp=1000Hz,阻带边界频率fs=2000 Hz,阻带最小衰减As=40 dB,通带最大衰减Ap=1 dB。
2)全通滤波器的设计全通滤波器的幅度特性是在整个频带上均等于常数,或者等于1.信号通过全通滤波器后,其输出的幅度特性保持不变,仅相位发生变化。
由于IIR滤波器后需要级联一个全通相位滤波器,使整个系统实现线性相位特性,为了求解全通滤波器的参数,我们先假设整个系统具有线性相位特性,再根据已经设计好了的切比雪夫II 型滤波器的系统参数,求解全通滤波器的参数。
二、实验的过程1、切比雪夫II型滤波器的设计过程在确定了滤波器的参数之后,我们运用cheb2ord函数计算模拟低通滤波器的最小阶数;然后用cheby2计算滤波器传输函数的系数。
然后运用脉冲响应不变法将模拟低通滤波器转换成数字滤波器。
这样我们就设计出了满足给定参数的切比雪夫II型滤波器。
数字信号处理实验报告分析解析
物理与电子电气工程学院实验报告课程名称:数字信号处理院系:物电学院专业:电子信息工程班级:1307学号:171313199姓名:董宝坤实验报告(1)实验名称常见离散信号产生与实现实验日期指导教师实验报告(2)实验名称离散时间系统的时域分析实验日期指导教师实验报告(3)实验名称离散时间LTI系统的z域分析实验日期指导教师实验报告(4)实验名称用FFT进行谱分析实验日期指导教师实验五 数字滤波器的结构一、 实验目的(1) 加深对数字滤波器分类与结构的了解;(2) 明确数字滤波器的基本结构及其相互间的转换方法;(3) 掌握用MATLAB 进行数字滤波器各种结构相互间转换的子函数及程序编写方法。
二、 实验原理一个离散LSI 系统可用系统函数来表示;()()()12001212120z 11MmM mm M NNkN k k bz Y b b z b z b z H z X z a z a z a z a z ----=----=++++===+++++∑∑ 也可用差分方程来表示:()()()1NMk m k m y n a y n k b x n m ==+-=-∑∑当k a 至少有一个不为0时,则在有限z 平面上存在极点,表示一个IIR 数字滤波器;当k a 全都为0时,系统不存在极点,表示一个FIR 系统。
IIR 数字滤波器的基本结构分为直接Ⅰ型、直接Ⅱ型、级联型和并联型。
FIR 数字滤波器的基本结构分为横截型、级联型、并联型、、线性相位型和频率抽样型。
三、实验仪器微型计算机、MATLAB 四、 实验内容(1) 已知一个IIR 系统的系统函数为()1231230.10.40.40.110.30.550.2z z z H z z z z-------+-=+++ 将其从直接型转换为级联型和并联型结构,并画出各种结构的流程图。
(2) 已知一个FIR 系统的系统函数为()12340.20.8850.212+0.212+0.885H z z z z z ----=++将其从横截型转换为级联型结构,并画出各种结构的流程图。
DSP数字信号处理实验报告(精品)
FFT 频谱分析一、 实验目的a) 进一步加深DFT 算法原理和基本性质的理解b) 熟悉FFT 算法原理和FFT 程序的应用c) 学习用FFT 对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析误差及其原因,以便在实际中正确的应用FFT二、 实验原理a) 离散傅里叶变换(DFT ):离散傅里叶变换在作为有限长序列的傅里叶变换表示法在理论上相当重要;由于存在着计算离散傅里叶变换的快速算法(FFT ),从而离散傅里叶变换在各种数字信号处理的算法中起到了核心的作用。
其对应的离散傅里叶变换对为:X (K )=DFT [x (n )]=∑x (n )W N nk 0≤k ≤N −1N−1n=0x (n )=IDFT [X (K )]=1N ∑x (n )W N nk 0≤n ≤N −1N−1n=0需要注意:有限长序列的离散傅里叶变换及周期序列的离散傅里叶级数之间的关系是:它们仅仅是n 、k 的取值不同,DFT 只取主值区间。
X(n)、X(k)是一个有限长序列的离散傅里叶变换对,已知其中一个序列,就可以唯一确定另一个序列,这是因为x(n)、X(k)都是长为N 的序列,都有N 个独立值,所以信息量相同。
b) DFT 计算量:长度为N 的DFT 的计算量是N 个复数乘法和N-1个复数加法(4N 个实数乘法和4N-2个复数加法)c) FFT 的计算量:长度为N 的FFT 的计算量是 N 2log 2N 个复数乘法和N log 2N 个复数加法。
三、 实验步骤a) 复习DFT 的定义、性质和用DFT 做谱分析的有关内容b) 复习FFT 算法原理与编程思想,熟悉DIT-FFT 运算流图c) 编制信号产生程序,产生典型信号尽心谱分析。
d) 进行以下几个信号的谱分析i.x 1(n)=R 4(n ) ii. x 2(n)={n +1 ,0≤n ≤38−n ,4≤n ≤70 ,其他niii. x 3(n)= {4−n ,0≤n ≤3n −3 ,4≤n ≤70 ,其他niv. x 4(n )=cos π4n ,0≤n ≤19v.x 5(n )=sin π8n ,0≤n ≤19 vi.x 6(n )= cos 8πt +cos 16πt +cos 20πt vii.令x 7(n )=x 4(n )+x 5(n) N=8,16 viii. 令x 8(n )=x 4(n )+jx 5(n) N=8,16针对上述信号进行逐一的谱分析,下面给出针对各个信号的FFT 点数N 及对连续信号x 6(n )的采样频率f s ,供实验时参考 :x 1(n ),x 2(n ),x 3(n ),x 4(n ),x 5(n ) N=8,16x 6(n ) f s =64Hz ,N =16,32,64四、 实验内容a)对x1(n)=R4(n)进行谱分析1.编辑代码x1=[1 1 1 1];y11 = fft(x1,8);y12 = fft(x1,16);subplot(2,2,1);stem(0:3,x1);title('函数X1的图像');subplot(2,2,2);stem(0:7,abs(y11));title('N=8的DFT');subplot(2,2,4);stem(0:15,abs(y12));title('N=16的DFT');2.谱分析图片b) 对x 2(n)={n +1 ,0≤n ≤38−n ,4≤n ≤70 ,其他n进行谱分析i. 编辑代码x2 = [1 2 3 4 4 3 2 1];y11 = fft(x2,8);y12 = fft(x2,16);subplot(2,2,1);stem(0:7,x2);title('函数X2的图像');subplot(2,2,2);stem(0:7,abs(y11));title('N=8的DFT');subplot(2,2,4);stem(0:15,abs(y12));c)对x3(n)={4−n ,0≤n≤3n−3 ,4≤n≤70 ,其他n进行谱分析i.谱分析程序x3 = [4 3 2 1 1 2 3 4];y11 = fft(x2,8);y12 = fft(x2,16);subplot(2,2,1);stem(0:7,x2);title('函数X2的图像');subplot(2,2,2);stem(0:7,abs(y11));title('N=8的DFT');subplot(2,2,4);stem(0:15,abs(y12));n ,0≤n≤19进行谱分析d)对x4(n)=cosπ4i.谱分析程序n = 0:1:19;x2 = cos(0.25*pi*n);y11 = fft(x2,32);y12 = fft(x2,64);subplot(2,2,1);stem(0:19,x2);title('函数X4的图像');subplot(2,2,2);stem(0:31,abs(y11));title('N=32的DFT');subplot(2,2,4);stem(0:63,abs(y12));title('N=64的DFT');ii.谱分析图片n ,0≤n≤19进行谱分析e)对x5(n)=sinπ8i.谱分析程序n = 0:1:19;x2 = sin(0.125*pi*n);y11 = fft(x2,32);y12 = fft(x2,64);subplot(2,2,1);stem(0:19,x2);title('函数X5的图像');subplot(2,2,2);stem(0:31,abs(y11));title('N=32的DFT');subplot(2,2,4);stem(0:63,abs(y12));title('N=64的DFT');ii.谱分析图片f)对x6(n)=cos8πt+cos16πt+cos20πt进行谱分析i.谱分析程序n = 0:1:15;x1 = cos(8*pi*n/64)+cos(16*pi*n/64)+cos(20*pi*n/64);n = 0:1:31;x2 = cos(8*pi*n/64)+cos(16*pi*n/64)+cos(20*pi*n/64); n = 0:1:63;x3 = cos(8*pi*n/64)+cos(16*pi*n/64)+cos(20*pi*n/64);y1 = fft(x1,16);y2 = fft(x2,32);y3 = fft(x3,64);subplot(3,2,1);stem(0:15,x1);title('函数X6 N=16 的图像');subplot(3,2,2);stem(0:15,abs(y1));title('N=16的DFT');subplot(3,2,3);stem(0:31,x2);title('函数X6 N=32 的图像');subplot(3,2,4);stem(0:31,abs(y2));title('N=32的DFT');subplot(3,2,5);stem(0:63,x3);title('函数X6 N=64 的图像');subplot(3,2,6);stem(0:63,abs(y3));title('N=64的DFT');ii.谱分析图片g)对x7(n)=x4(n)+x5(n)进行谱分析i.谱分析程序n = 0:1:19;x2 = j*sin(0.125*pi*n) + cos(0.25*pi*n);y11 = fft(x2,8);y12 = fft(x2,16);subplot(2,2,1);stem(0:19,x2);title('函数X=X4 + X5 的图像');subplot(2,2,2);stem(0:7,abs(y11));title('N=8的DFT');subplot(2,2,4);stem(0:15,abs(y12));title('N=16的DFT');ii.谱分析图片h)对x8(n)=x4(n)+jx5(n)进行谱分析i.谱分析程序n = 0:1:19;x2 = j*sin(0.125*pi*n) + cos(0.25*pi*n);y11 = fft(x2,8);y12 = fft(x2,16);subplot(2,2,1);stem(0:19,x2);title('函数X=X4 + X5 的图像');subplot(2,2,2);stem(0:7,abs(y11));title('N=8的DFT');subplot(2,2,4);stem(0:15,abs(y12));title('N=16的DFT');ii.谱分析图片五、实验分析六、实验结论通过这次利用FFT对信号进行频谱分析的实验,更加深刻的理解了DFT算法的理解和性质的理解;同时也更为熟悉了FFT算法的原理和应用;学会使用FFT 对离散信号和连续信号进行频谱分析,了解了可能出现的分析误差和原因。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验5 抽样定理一、实验目的:1、了解用MA TLAB 语言进行时域、频域抽样及信号重建的方法。
2、进一步加深对时域、频域抽样定理的基本原理的理解。
3、观察信号抽样与恢复的图形,掌握采样频率的确定方法和内插公式的编程方法。
二、实验原理:1、时域抽样与信号的重建 (1)对连续信号进行采样例5-1 已知一个连续时间信号sin sin(),1Hz 3ππ=0001f(t)=(2f t)+6f t f ,取最高有限带宽频率f m =5f 0,分别显示原连续时间信号波形和F s >2f m 、F s =2f m 、F s <2f m 三情况下抽样信号的波形。
程序清单如下:%分别取Fs=fm ,Fs=2fm ,Fs=3fm 来研究问题 dt=0.1; f0=1; T0=1/f0; m=5*f0; Tm=1/fm; t=-2:dt:2;f=sin(2*pi*f0*t)+1/3*sin(6*pi*f0*t); subplot(4,1,1); plot(t,f);axis([min(t),max(t),1.1*min(f),1.1*max(f)]); title('原连续信号和抽样信号'); for i=1:3;fs=i*fm;Ts=1/fs; n=-2:Ts:2;f=sin(2*pi*f0*n)+1/3*sin(6*pi*f0*n); subplot(4,1,i+1);stem(n,f,'filled');axis([min(n),max(n),1.1*min(f),1.1*max(f)]); end程序运行结果如图5-1所示:原连续信号和抽样信号图5-1(2)连续信号和抽样信号的频谱由理论分析可知,信号的频谱图可以很直观地反映出抽样信号能否恢复原模拟信号。
因此,我们对上述三种情况下的时域信号求幅度谱,来进一步分析和验证时域抽样定理。
例5-2编程求解例5-1中连续信号及其三种抽样频率(F s>2f m、F s=2f m、F s<2f m)下的抽样信号的幅度谱。
程序清单如下:dt=0.1;f0=1;T0=1/f0;fm=5*f0;Tm=1/fm;t=-2:dt:2;N=length(t);f=sin(2*pi*f0*t)+1/3*sin(6*pi*f0*t);wm=2*pi*fm;k=0:N-1;w1=k*wm/N;F1=f*exp(-j*t'*w1)*dt;subplot(4,1,1);plot(w1/(2*pi),abs(F1));axis([0,max(4*fm),1.1*min(abs(F1)),1.1*max(abs(F1))]);for i=1:3;if i<=2 c=0;else c=1;endfs=(i+c)*fm;Ts=1/fs;n=-2:Ts:2;N=length(n);f=sin(2*pi*f0*n)+1/3*sin(6*pi*f0*n);wm=2*pi*fs;k=0:N-1;w=k*wm/N;F=f*exp(-j*n'*w)*Ts;subplot(4,1,i+1);plot(w/(2*pi),abs(F));axis([0,max(4*fm),1.1*min(abs(F)),1.1*max(abs(F))]);end程序运行结果如图5-2所示。
由图可见,当满足F s≥2f m条件时,抽样信号的频谱没有混叠现象;当不满足F s≥2f m 条件时,抽样信号的频谱发生了混叠,即图5-2的第二行F s<2f m的频谱图,,在f m=5f0的范围内,频谱出现了镜像对称的部分。
0246810121416182002468101214161820024681012141618202468101214161820图5-2(3)由内插公式重建信号 信号重建一般采用两种方法:一是用时域信号与理想滤波器系统的单位冲激响应进行卷积积分;二是用低通滤波器对信号进行滤波。
本实验只讨论第一种方法。
由理论分析可知,理想低通滤波器的单位冲激响应为j Ωt πt sin()1T h(t)=H(j Ω)e d Ω=πt 2πT∞-∞⎰ 抽样信号a ˆx(t)通过滤波器输出,其结果应为a ˆx (t)与h(t)的卷积积分: sin[()/]ˆˆ()()()()()()()()/a a a a a n t nT T y t x t xt h t x h t d x nT t nT T πτττπ∞∞-∞=-∞-==*=-=-∑⎰该式称为内插公式。
由式可见,x a (t)信号可以由其抽样值x a (nT)及内插函数重构。
MATLAB 中提供了sinc 函数,可以很方便地使用内插公式。
例5-3 用上面推导出的内插公式重建例5-1给定的信号。
程序清单如下:dt=0.01;f0=1;T0=1/f0;fm=5*f0;Tm=1/fm;t=0:dt:3*T0;x=sin(2*pi*f0*t)+1/3*sin(6*pi*f0*t);subplot(4,1,1);plot(t,x);axis([min(t),max(t),1.1*min(x),1.1*max(x)]); title('用时域卷积重建抽样信号'); for i=1:3;fs=i*fm;Ts=1/fs; n=0:(3*T0)/Ts; t1=0:Ts:3*T0;x1=sin(2*pi*f0*n/fs)+1/3*sin(6*pi*f0*n/fs);T_N=ones(length(n),1)*t1-n'*Ts*ones(1,length(t1)); xa=x1*sinc(fs*pi*T_N); subplot(4,1,i+1);plot(t1,xa);axis([min(t1),max(t1),1.1*min(xa),1.1*max(xa)]); end程序运行结果如图5-3所示:用时域卷积重建抽样信号00.511.522.53图5-32、频域抽样与信号恢复 (1)频域抽样定理从理论学习可知,在单位圆上对任意序列的Z 变换等间隔采样N 点得到:2πj k N2πjnk Nz=e n=-X(k)=X (z)=x(n)e∞∞∑ k=0,1,…,N-1该式实现了序列在频域的抽样。
那么由频域的抽样得到的频谱的序列能否不失真地恢复原时域信号呢? 由理论学习又知,频域抽样定理由下列公式表述:r=-x(n)=x(n+rN)∞∞∑% 表明对一个频谱采样后经IDFT 生成的周期序列x(n)%是原非周期序列x(n)的周期延拓序列,其时域周期等于频域抽样点数N 。
假定有限长序列x(n)的长度为M ,频域抽样点数为N ,原时域信号不失真地由频域抽样恢复的条件如下:① 如果x(n)不是有限长序列,则必然造成混叠现象,产生误差;② 如果x(n)是有限长序列,且频域抽样点数N 小于序列长度M (即N<M ),则x(n)以N 为周期进行延拓也将造成混叠,从x(n)%中不能无失真地恢复出原信号x(n)。
③ 如果x(n)是有限长序列,且频域抽样点数N 大于或等于序列长度M (即N ≥M ),则从x(n)%中能无失真地恢复出原信号x(n),即 N N N N r=-x (n)=x (n)R (n)=x(n+rN)R (n)=x(n)∞∞∑%(2)从频谱抽样恢复离散时间序列 例5-4 已知一个时间序列的频谱为j ω-j ωn -j ω-j2ω-j3ω-j4ωn=-X(e )=x(n)e =3+2e +e +2e +3e ∞∞∑用IFFT 计算并求出其时间序列x(n),并绘图显示时间序列。
分析:该题使用了数字频率,没有给出采样周期,则默认Ts=1S,另外,从j ωX(e )的解析式可以直接看出时域序列xn=[3,2,1,2,3]。
但为说明问题,仍编写程序求解如下:程序清单如下: Ts=1;N0=[3,5,10]; for r=1:3; N=N0(r);D=2*pi/(Ts*N);kn=floor(-(N-1)/2:-1/2); kp=floor(0:(N-1)/2); w=[kp,kn]*D;X=3+2*exp(-j*w)+1*exp(-j*2*w)+2*exp(-j*3*w)+3*exp(-j*4*w); n=0:N-1; x=ifft(X,N)subplot(1,3,r);stem(n*Ts,abs(x)); box end程序运行结果如图5-4所示:012024图5-4注意:程序中数字频率的排序进行了处理,这是因为j ωX(e )的排列顺序是从0开始,而不是从-(N-1)/2开始。
程序运行后将显示数据:x=5.0000 5.0000 1.0000x=3.0000 2.0000 1.0000 2.0000 3.0000x=3.0000 - 0.0000i 2.0000 + 0.0000i 1.0000 - 0.0000i 2.0000 + 0.0000i 3.0000 - 0.0000 -0.0000 + 0.0000i 0 - 0.0000i -0.0000 + 0.0000i 0.0000 - 0.0000i -0.0000 + 0.0000i由jωX(e)的频谱表达式可知,有限长时间序列x(n)的长度M=5,现分别取频域抽样点数为N=3,5,10,由图5-4显示的结果可以验证:①当N=5和N=10时,N≥M,能够不失真地恢复出原信号x(n);②当N=3时,N<M,时间序列有泄漏,形成了混叠,不能无失真地恢复出原信号x(n)。
混叠的原因是上一周期的后2点与本周期的前两点发生重叠,如下所示:3 2 1 2 33 2 1 2 3例5-5已知一个频率范围在[-62.8,62.8]rad/s间的频谱sin0.275ΩX(jΩ)=sin0.025Ω,用IFFT计算并求出时间序列x(n),用图形显示时间序列。
分析:本题给出了模拟频率Ω,其中Ωm=62.8,需将其归一化为数字频率。
根据奈奎斯特定理可知,(1/Ts)=Fs≥(2Ωm/2π),可以推导出Ts≤(π/Ωm),取Ts=0.05s,即采样频率Fs为20Hz或40π。
程序清单如下:wm=62.8;Ts=pi/wm;N0=[8,20];for r=1:2N=N0(r);D=2*pi/(Ts*N);k=[0:N-1]+eps;omg=k*D;X=sin(0.275*omg)./sin(0.025*omg);n=0:N-1;x=abs(ifft(X,N));subplot(1,2,r);stem(n*Ts,abs(x));boxend程序运行结果如图5-5所示:图5-5由N=20的结果可知,时间序列x(n)是一个矩形窗。